User Guide to

SCANPS - Scan Protein
Sequence Database

Version 2.3.9 - July 2002
Geoffrey J. Barton

School of Life Sciences
University of Dundee
Dow St.
Dundee DD1 5EH
Scotland, UK.

Tel: (44) 1382-345860
e-mail: geoff@compbio.dundee.ac.uk

1 What is SCANPS?

SCANPS is a program for comparing a protein sequence to a database of
sequences. It has the following features:

1. Full Smith-Waterman style searching with a single sequence.
2. Multiple domain matches found against each database sequence.

3. Iterative profile searching similar in concept to PSI-BLAST, but with
full dynamic programming on each cycle for additional sensitivity.

4. Significance of matches calculated “on the fly” for each search.

5. Efficient implementation on Intel CPUs by using MMX and SSE in-
structions.

6. Output of each search as pairwise alignments and multiple alignments.

2 Citing SCANPS

A paper is in preparation that describes the program, its statistics and bench-
marking. In the meantime, please cite,

Barton, G. J. (2002) ”SCANPS Version 2.3.9 User guide”, University of
Dundee, UK.

One underlying algorithm used in SCANPS is described in:

Barton, G. J. (1993) CABIOS, 9, 729-734.

3 Disclaimer

SCANPS is provided ”as-is” and without warranty of any kind, express,
implied or otherwise, including without limitation any warranty of mer-
chantability or fitness for a particular purpose. In no event will the author
be liable for any special, incidental, indirect or consequential damages of
any kind, or any damages whatsoever resulting from loss of data or profits,
whether or not advised of the possibility of damage, and on any theory of
liability, arising out of or in connection with the use or performance of this
software.

4 Development History and Acknowledgements

The bulk of SCANPS was written between 1989 and 1997 while I was a Royal
Society University Research Fellow in the Laboratory of Molecular Biophysics
at the University of Oxford, UK. Parallel code for the SGI Challenge and
Origin was developed during 1996 on the SGI Challenge at the Wellcome
Trust Centre for Human Genetics, University of Oxford. I acknowledge the
technical assistance from Silicon Graphics, in particular Nick Camp and Pam
Bremer, in helping me get good parallel performance from the SGI shared
memory machines.

Development of iterative searching was done at EMBL-EBI during 1999.
Development of MMX/SSE code and statistics were done in collaboration
with Steve Searle and Caleb Webber. Other developments in progress include
an MPI parallel version for Linux and a version for OpenMP.

5 Installing SCANPS

Until publication of the manuscript describing SCANPS, the program is avail-
able in binary form for Linux computers and compiled for Intel PIII/IV and
Athlon XP processors.

5.1 Computer requirements

Version 2.3.9 of SCANPS is available for Linux running on X86 hardware
(e.g. Pentium III/IV or Athlon XP). It has been tested on Debian, RedHat
and SuSE flavours of Linux with 2.4 kernels. The current distribution is
compiled with the gce 3.1 compiler.

SCANPS reads the entire sequence database into memory, so you must
have enough physical memory (RAM) on the computer to store the database.

5.2 Step-by-step installation

1. Unpack the scanps distribution into a directory. Assuming we do this
in /usr/local then:

tar zxf scanps_2.3.9.tar.gz

will create a directory structure like this:

2

/usr/local/scanps_2.3.9

/usr/local/scanps_2.3.9/doc (Documentation)
/usr/local/scanps_2.3.9/bin (Executables for scanps)
/usr/local/scanps_2.3.9/dat (Configuration and data files for scanps)
/usr/local/scanps_2.3.9/mat (Pairscore matrix files - e.g. BLOSUM)
/usr/local/scanps_2.3.9/examples (Example output discussed in manual)
/usr/local/scanps_2.3.9/db (Example swissprot database files)

the binary directory contains a README file that explains what the
different binaries are for. You should provide a link from your normal
bin directory to the appropriate binary for your system. For example
if you normally put local binaries in /usr/local/bin:

cd /usr/local/bin
1n -s /usr/local/scanps_2.3.9/bin/xpscanps_16K scanps

will put the standard MMX and SSE scanps for Linux in your path.

. Configure the dat/scanps_defaults.dat file. Find the following lines in
the file:

MATRIX_DIR /usr/local/scanps/mat/
GENERAL_DIR /usr/local/scanps/dat/
DB_DIR /usr/local/scanps/db/

edit the lines MATRIX_DIR and GENERAL_DIR to specify the “mat”
and “dat” subdirectories of the scanps distribution. edit the DB_DIR
line to point at the directory where you will put scanps database
files that you will search against. There is an example SWISS-PROT
database in the directory scanps/db for testing, but you should build
your own databases before using scanps for real scans. For speed, the
database directory should be on a disk local to to the computer on
which you will run scanps.

. Set the SCANPSDIR environment variable to point at the scanps/dat
directory. If you use the c-shell then type:

setenv SCANPSDIR /usr/local/scanps/dat/

if you use the bash shell, then do:

set SCANPSDIR=/usr/local/scanps/dat/

Type /usr/local/bin/scanps (or whatever the path to scanps is that
you have defined) and you should see something like:

/usr/local/bin/scanps

SCANPS Version: 2.3.9 (Wed Jul 17 14:02:27 BST 2002)
Authors: GJ Barton, SMJ Searle, C. Webber: University of Dundee and EMBL-EBI

See scanps_manual for FULL information.

Normal scans:

MODE 200: Protein vs protein with iteration and simple gaps.
MODE 202: Protein vs protein with iteration and affine gaps.

Experimental methods:
MODE 210: Protein vs protein with iteration and variable simple gaps.
MODE 212: Protein vs protein with iteration and variable affine gaps.

MODE 99: Build a scanps database - see scanps_manual.
Assuming SCANPS has been installed correctly, the following should work...

MODE 200 scan with FASTA format file query.seq against SwissProt
scanps -s query.seq -qseq_format 1 -bdb swissprot > logfile

To scan a fasta format database in any mode change -bdb swissprot to:
-d swissprot.fa -db_format 1

Common options - for full list, see scanps_manual

Change pairscore matrix from default to another matrix, e.g. PAM100
Add: -m PAM100 to command line

Change gap penalties - e.g. to length dependent of 9 and creation of 13
Add: -ugd 0 -ld_pen 9 -li_pen 13

SCANPS Version: 2.3.9 (Wed Jul 17 14:02:27 BST 2002)
Authors: GJ Barton, SMJ Searle, C. Webber: University of Dundee and EMBL-EBI

Assuming you have set the DB_DIR line in scanps/dat/scanps_defaults.dat
to point at the scanps/db directory, then you should now be able to
run a test of SCANPS.

cd /usr/local/scanps/examples (or wherever you have put scanps)
/usr/local/bin/scanps -s test.fa -bdb sprot > mytest.log

This will take all the default values for a search, output options etc and
put the results in the file ‘mytest.log’. You can look at this output file

4

and compare it to the file ‘test.log’ in the same directory. As a quick
check of your SCANPS installation, you can ‘diff” the two files There
should only be minor differences similar to those shown below:

cd /usr/local/scanps/examples
diff test.log mytest.log

lcil

< # SCANPS Scan: Tue Jul 23 10:43:05 2002
> # SCANPS Scan: Tue Jul 23 10:14:46 2002
1283c1283

< # Scan Completed at: Tue Jul 23 10:43:05 2002

> # Scan Completed at: Tue Jul 23 10:14:47 2002
1287,1291¢1287,1291

< # Load database: 0.6 0.6 0.7 0.7
< # Scan database: 9.3 9.9 9.3 10.0
< # Output scores: 0.5 10.3 0.5 10.4
< # Generate and write alignments: 0.3 10.7 0. 10.8
< # Millions of cell updates/sec in scan (CPU): 323.68 (Elapsed): 323.68
> # Load database: 1.2 1.2 3.5 3.5
> # Scan database: 9.7 10.8 10.8 14.3
> # Output scores: 0.8 11.6 1.0 15.3
> # Generate and write alignments: 0.4 12.0 0. 15.9
> # Millions of cell updates/sec in scan (CPU): 310.33 (Elapsed): 278.72

If you get the above output or similar, then all is happiness. Now lets
go through some of the different scanps options, examine the output in more
detail and how to control what you see in the output file.

6 Building SCANPS Databases

Although SCANPS will read a normal FASTA formatted sequence file as the
database to search, it runs more efficiently if you first build its own binary
database files. This is particularly important for the MMX/SSE versions of
the program. SCANPS is used to build its own databases. For example:

scanps -mode 99 -d trembl.fa -bdb trembl

will take a FASTA formatted sequence database file called “trembl.fa”
and create the SCANPS binary database and index files “trembl.bix” and
“trembl.bsq” in the directory /db/scanps (or whatever you specified in the
scanps_defaults.dat file above.

Once you have your binary database file and a sequence you want to scan
you specify the two on the command line - e.g.:

scanps -s test.fa -bdb trembl > test_trembl.log

the output of the scan is written to standard output which in this case is
redirected to the file test_trembl.log.

7 Running SCANPS

SCANPS is controlled by the defaults file (scanps_defaults.dat) that we have
already met above, and/or command line options. The details of the defaults
file and command line options are explained in later sections, but for now,
lets just go through some examples, look at the output and find out the most
common control options.

7.1 Standard SCANPS search

SCANPS has different modes, that implement different types of search. In
the current distribution, there are four MODES which have the numbers -
200, 202, 212 and 210. We will concentrate on MODES 200 and 202 which are
the most commonly used. MODE 200 searches a protein sequence against a
protein sequence database, either with or without iteration and with simple,
length-dependent gap-penalties. MODE 202 does the same, but with a more
complicated gap-penalty model that has a creation and extension penalty.
MODE 200 is the fastest, MODE 202 will typically be more sensitive and
give longer alignments.
The command:

scanps -mode 200 -s test.fa -probcut 30 -bdb sprot.fas

produced the output in the file: test_200_probcut30.log. The output has
a number of sections, the preamble the score list, the pairwise alignments,
the multiple alignment and the trailer. The sections are exaplained below:

7.1.1 Output preamble

SCANPS Scan: Thu Jul 18 12:55:08 2002

SCANPS Version: 2.3.9 (Wed Jul 17 14:02:27 BST 2002)

Authors: G. J. Barton, S. M. J. Searle, C. Webber
University of Dundee and EMBL-EBI

Query file: test.fa

Query ID: SCANPS_TEST

Query Title: - Annexin domain test seq for SCANPS
Query Length: 74

SCANPS MODE: 200

Matrix file: /homes/geoff/c/scanps/gjscanps/mat//BLOSUM50
Matrix title: NCBI Matrix - see file for type

LD penalty: 6.00

Database name: sprot.fas

Created on: Mon Jun 24 22:43:18 2002
Number of sequences: 110788

Number of residues/bases in database: 40678337

Eval Cutoff: 30

FIT_A: -1.42464e+06 1.4246e+06 -163342

FIT_B: 0 0.781179

Eval Cutoff for profile: 0.1
Number of iterations: 1
Profile Weight Method: 1
Pos Weight Factor: 1.500000
Pid Threshold: 0.970000

Intel MMX and SSE instructions supported by chip.

HOH H B OH H H HE HH HEHHHE K HEHEHE R

and contains information about the scan that was done, and which database
was searched with which parameters. The output is intended to be easy to
parse with a perl script. Lines starting with a # are comments, values follow
a colon on the line, and are identified by a string between the # and the
colon, or when there are multiple values on a line, between the last value and
a colon.

7.1.2 Score list

The next part of the output contains the score list, ranked by Evalue. This is
bounded by the key words “Start_Scores” and “End_Scores”. Only the first
17 and last 6 scores are shown here:

Start_ScCores: ————=—mmm e o

1 450 56.95 2.05e-20 ANX3_RAT (P14669) Annexin III (Lipocort
2 439 55.40 9.61e-20 ANX3_MQUSE (035639) Annexin III (Lipocort
3 392 48.78 7.26e-17 ANX3_HUMAN (P12429) Annexin III (Lipocort
4 255 29.48 1.75e-08 ANX5_MOUSE (P48036) Annexin V (Lipocortin
5 245 28.07 7.15e-08 ANX5_RAT (P14668) Annexin V (Lipocortin
6 245 28.07 7.18e-08 ANX5_HUMAN (P08758) Annexin V (Lipocortin
7 245 28.06 7.2e-08 ANX5_BOVIN (P81287) Annexin V (Lipocortin
8 247 27.78 9.52e-08 ANXB_HUMAN (P50995) Annexin A1l (Annexin

9 239 27.19 1.72e-07 ANX8_MOUSE (035640) Annexin A8 (Annexin V
10 239 27.19 1.72e-07 ANX8_HUMAN (P13928) Annexin A8 (Annexin V
11 243 26.97 2.15e-07 ANX6_BOVIN (P79134) Annexin VI (Lipocorti
12 236 26.79 2.57e-07 ANX5_CHICK (P17153) Annexin V (Lipocortin
13 228 26.77 2.61e-07 ANX1_CHICK (Q92108) Annexin I (Lipocortin
14 240 26.44 3.63e-07 ANX6_HUMAN (P08133) Annexin VI (Lipocorti
15 237 26.38 3.88e-07 ANXB_RABIT (P33477) Annexin A1l (Annexin

7

16 237 26.38 3.88e-07 ANXB_MQOUSE (P97384) Annexin A1l (Annexin
17 237 26.38 3.88e-07 ANXB_BOVIN (P27214) Annexin A11 (Annexin

lines deleted here.

55 189 20.10 0.000207 ANX9_HUMAN (076027) Annexin A9 (Annexin 3
56 187 19.91 0.000251 ANX4_FRAAN (P51074) Annexin-like protein
57 186 19.66 0.000319 AN11_COLLI (P14950) Annexin I, isoform P3
58 184 19.39 0.000419 ANX9_MOUSE (Q9JHQO) Annexin A9 (Annexin 3
59 116 12.21 0.5561 ANX2_PIG (P19620) Annexin II (Lipocorti
60 100 8.82 16.3 Y069_ARCFU (030167) Hypothetical protein

End_Scores: ————————=— - mm e

The columns are: 1: Rank, 2: Raw Score, 3: (Intermediary score - ignore,
this will be deleted from a future release of SCANPS) 4: Evalue, 5: ID of
database sequence, 6: Title of database sequence.

How many scores you see is controlled by the probcut, nptt, and max_nout
command line options. nptt means “numbers, print to threshold” and is a
toggle. For example, to print all results down to an Evalue of 100 you would
add:

-aptt 1 —-probcut 100

on the command line (the default is -aptt 1 -probcut 10). If you want to
print all scores down to a rank, e.g. the top 50, rather than controlled by
Evalue, then do the following:

-aptt 0 -max_nout 50

This is not recommended, unless you are trying to suppress a huge output.
It is better to control output through the -probcut option.

7.1.3 Pairwise Alignments

By default, SCANPS will output a single paiwise alignment (two-sequence
alignment) between the query sequence and each database sequence in the
score list. For example:

Start_Alignments_Rank: 1
Query: SCANPS_TEST Target: ANX3_RAT Number_of_Alignments: 1
Target_Title: (P14669) Annexin III (Lipocort
N: 1 Raw_Score: 450 Query_Length: 74 Target_Length: 324 Evalue: 1.9793e-20
ok koK ok ok ok KK Kok oR R KKK | ok KKk ok ok ko ok KKKk kR Rk Rk kR kR K | kkokok
1 YPGFNPSVDAEAIRKAIRGIGTDEKTLINILTERSNAQRQLIVKQYQEAY 50
16 YPGFNPSVDAEAIRKAIKGIGTDEKTLINILTERSNAQRQLIVKHIQEAY 65

sk ok ok s s ok ok ok ok sk s ok ok ok K sk o ok ok ok K ok ok ok
51 EQALKADLKGDLSGHFEHVMVALI 74

66 EQALKADLKGDLSGHFEHVMVALI 89
End_N: 1
End_Alignments_Rank: 1
Start_Alignments_Rank: 2
Query: SCANPS_TEST Target: ANX3_MOUSE Number_of_Alignments: 1
Target_Title: (035639) Annexin III (Lipocort
N: 1 Raw_Score: 439 Query_Length: 74 Target_Length: 323 Evalue: 9.29946e-20
dokokok | skokokokokokok ok ok koK ok ok ok | Kok ok ok ok ook ok Kok ok ok ok kR kK ok ok ok ok ok Rk K kok
1 YPGFNPSVDAEAIRKAIRGIGTDEKTLINILTERSNAQRQLIVKQYQEAY 50
15 YPGFSPSVDAEAIRKAIRGLGTDEKTLINILTERSNAQRQLIVKQYQAAY 64
ok Kk dokkokRRAR kR KRR KK
51 EQALKADLKGDLSGHFEHVMVALI 74
65 EQELKDDLKGDLSGHFEHVMVALV 88
End_N: 1

End_Alignments_Rank: 2

Each alignment is contained within a pair of “Start_Alignments” and
“End_Alignments” labels. The rank of the alignment is also shown. The
line beginning “# N: 1”7 idenifies this as the first alignment for this pair of
sequences. SCANPS can output more than one alignment for each pair of
sequences, so this allows these to be separated and parsed in the output.
The pairwise alignment is output in a fairly conventional way with the “-”
character used to denote gaps. The line above the alignment shows “*” for
identities and “.” for pairs of amino acids that score positive in the pairscore
matrix that was used in the search.

There are various ways to control this pairwise output. For example, the
number of residues per line can be modified with the -output_len command
line option.

You can adjust how many alignments you want to see by using the -
aptt and -max_aout commands. These work in a similar way to the -nptt
and -max_nout described above. For example to only output the first 20
alignments rather than alignments for every pair shown in the score list do:

-aptt 0 -max_aout 20

Often one want so suppress pairwise alignments entirely. You can do this
with:

-aptt 0 —max_aout O

At the moment, there is no way to set a probablility threshold on pairwise
alignments that is separate from the -probcut threshold.

7.1.4 Multiple Alignment Output

The multiple alignment output is a “pseudo” multiple alignment that has
the same length as the query sequence. It shows the query sequence as the
first row of the alignment, with the database sequences below. Insertions in
database sequences are simply discarded in this output, so it should NOT be
used for full multiple alignment analysis (but see below for a way to do this).
The alignment is output in blocks of 50 by default, though this can be
changed with the MULTIPLE OUTPUT_LENGTH command line option.

Multiple alignment Start for iteration: 0
Format: Simple

Residues_per_line: 50

#

#

ID Evalue Start End Len
1
SCANPS_TEST 0 1 74 74: YPGFNPSVDAEAIRKAIRGIGTDEKTLINILTERSNAQR
ANX3_RAT 1.98e-20 16 89 324: YPGFNPSVDAEAIRKAIKGIGTDEKTLINILTERSNAQR
ANX3_MOUSE 9.3e-20 15 88 323: YPGFSPSVDAEAIRKAIRGLGTDEKTLINILTERSNAQR
ANX3_HUMAN 7.02e-17 15 88 323: YPDFSPSVDAEAIQKAIRGIGTDEKMLISILTERSNAQR
ANX5_MOUSE 1.7e-08 10 83 319: FPGFDGRADAEVLRKAMKGLGTDEDSILNLLTSRSNAQR
ANX5_RAT 6.92e-08 9 82 318: FSGFDGRADAEVLRKAMKGLGTDEDSILNLLTARSNAQR
ANX5_HUMAN 6.94e-08 11 84 319: FPGFDERADAETLRKAMKGLGTDEESILTLLTSRSNAQR
ANX5_BOVIN 6.97e-08 11 84 320: FPGFDERADAETLRKAMKGLGTDEESILTLLTSRSNAQR
ANXB_HUMAN 9.21e-08 198 270 505: -PGFDPLRDAEVLRKAMKGFGTDEQAIIDCLGSRSNKQR
ANX8_MOUSE 1.67e-07 21 91 327: ---FNPDPDAETLYKAMKGIGTNEQAIIDVLTKRSNVQR
ANX8_HUMAN 1.67e-07 21 91 327: ---FNPDPDAETLYKAMKGIGTNEQAIIDVLTKRSNTQR
ANX6_BOVIN 2.08e-07 304 378 618: -PGFNPDADAKALRKAMKGLGTDEDTIIDIITHRSNAQR
ANX6_BOVIN 5.57e-07 38 107 618: ----- PAADAKEIKDAISGIGTDEKCLIEILASRTNEQH
ANX5_CHICK 2.49e-07 14 85 321: -P-FDARADAEALRKAMKGMGTDEETILKILTSRNNAQR
ANX1_CHICK 2.53e-07 35 107 130: -PNFDPSADVSALDKAITVKGVDEATIIDILTKRTNAQR
ANX6_HUMAN 3.51e-07 16 89 672: FPGFDPNQDAEALYTAMKGFGSDKEAILDIITSRSNRQR
ANX6_HUMAN 8.19e-07 92 161 672: ----- PACDAKEIKDAISGIGTDEKCLIEILASRTNEQH
lines deleted
ANX7_DICDI 0.000126 166 231 462: QIKREFSAKYSKDLIQDIKSETSGNFEKCLVALL
ANX2_XENLA 0.000152 33 103 339: DIAFAFHRRTKKDLPSALKGALSGNLETVMLGLI
ANX2_XENLA 0.00126 107 174 339: LDIQNYRELFKTELEKDIMSDTSGDFRKLMVAL-
ANX1_RODSP 0.000155 38 111 345: HLKAVYQETGE-PLDETLKKALTGHIQELLLAMI
ANXD_HUMAN 0.00016 10 83 315: QIKQKYKATYGKELEEVLKSELSGNFEKTALALL
ANXD_HUMAN 0.000184 86 1656 315: IAIKEYQRLFDRSLESDVKGDTSGNLKKILVSLL
ANX9_HUMAN 0.0002 31 104 338: LISRNFQERTQQDLMKSLQAALSGNLERIVMALL
ANX4_FRAAN 0.000243 8 76 314: EIRAAYEQLYQEDLLKPLESELSGDFEKAV----
AN11_COLLI 0.000309 37 107 341: RIKAAYHKAKGKSLEEAMKRVLKSHLEDVVVALL
ANX9_MOUSE 0.000405 356 104 338: LISRAFQERTKQDLLKSLQAALSGNLEKIVVALL
#
Multiple alignment End for iteration: 0
#

The first two columns should be self-explanatory. The start and end refer
to the first and last residue position within the database sequence, while

10

“Len” refers to the database sequence length so that you can see if there
are any pathologically short sequences in the alignment. This alignment is
used in iteration to build a profile for subsequent searches, which sequences
are included in the alignment is controlled by the probcut2 command. By
default probcut2 is set to 0.1.

You can obtain a FASTA formatted sequence file that contains the com-
plete sequence fragments found in the database search by adding

-pff 1 -frag file_out frags.fa

to the command line. This will create a file called “frags.fa” that contains
the fragments between Start and End in each line of the multiple alignmnent,
but without any internal deletions. You can feed this file to clustal or another
multiple alignment program for further analysis.

7.1.5 Trailer

This is just some timing information at the moment - this can be useful to
diagnose performance problems on a computer.

Scan Completed at: Tue Jul 23 10:14:47 2002

#

Times: (Seconds)

Load matrix, query and index: 0.0 0.0 0.0 0.0

Load database: 1.2 1.2 3.5 3.5

Scan database: 9.7 10.8 10.8 14.3

Output scores: 0.8 11.6 1.0 15.3

Generate and write alignments: 0.4 12.0 0.6 15.9

Millions of cell updates/sec in scan (CPU): 310.33 (Elapsed): 278.72

The above times were obtained on a 1GHz PIII processor for the test.fa
sequence against sprot. The important numbers to look at when making
comparisons are the first column and the last row. For example, the time
taken to scan the database was 9.7 seconds, which corresponds to 310 Million
Cell updates/second. If you see big numbers by the “Load database” row,
then you have a disk access problem or you do not have enough RAM to
store the database. On most machines the swissprot database should load in
under 2 seconds.

11

7.2 Obtaining more than one alignment per sequence
pair

SCANPS can output more than one alternative alignment for each sequence
in the score list. You turn this option on by adding:

-top_only O

to the command line. The output in the file test_200_probcut30_toponly0.log
is an example of output produced with this command. The test.fa query is an
Annexin domain, and many Annexins contain multiple copies of this domain.
SCANPS finds these and outputs them both as pairwise alignements, and as
the multiple alignment.

KNOWN BUG - July 2002: If you set -top_only 1, you should only see
one alignment per pair of sequences. However, some sequence pairs will show
more than one. This is a known bug and will get fixed in due course.

7.3 SCANS with Affine Gaps
All the above applies, just set -mode 202 instead of -mode 200.

7.4 TIterative Searching

Iterative searching will normally be able to find more remote similarities to
the query sequence than a single sequence search. This is illustrated in an
example below.

Iterative searching is enabled by adding the -niter command on the com-
mand line. For example:

scanps -s hahu.fa -mode 200 -niter 5 -bdb sprot > niter_test.log

will run SCANPS with 5 iterations. Examples of scans with 5 iterations,
that use the human alpha haemoglobin sequence as a query are shown in the
files with “niter5” in their name.

An iterative search starts just the same as a non-iterative search, the
query sequence is compared to the database and the score list, pairwise and
multiple alignment outputs are reported. The multiple alignment is then
used to create a query “profile” that contains information about the types
of amino acid seen at each position in the alignment. This profile is then

12

searched against the database, a score list, pairwise and multiple alignments
are output and the process is then repeated. The iterations will stop either
when the number of iterations has been reached, or if two successive iterations
find exactly the same sequences.

The key parameter that controls iterative searching is probcut2. This
controls which sequences from a search will be included in the profile with
which the next search is done

The file: hahu_202_probcut30_niter5.log shows an iterative search with
human alpha haemoglobin. This file includes pairwise output, but normally
one would switch this off with -aptt 0 -max_aout 0 on the command line
in order to minimise the output file. In the scan, probcut2 was set to 0.1
by default and in Iteration 0, there are 695 sequences that score above the
probcut2 value:

deleted lines

674 144 22.25 2.4e-05 MYG_PHOSI (P30562) Myoglobin

675 143 22.05 2.94e-05 MYG_MOUSE (P04247) Myoglobin

676 142 21.85 3.6e-05 MYG_ELEMA (P02186) Myoglobin

677 141 21.76 3.94e-05 GLB3_MYXGL (P02209) Globin III

678 140 21.53 4.93e-05 GLBA_SCAIN (P14821) Globin II, A chain (H
679 135 20.56 0.00013 GLP2_GLYDI (P21659) Globin, polymeric com
680 136 20.53 0.000135 GLBC_CAUAR (P80018) Globin C, coelomic
681 117 19.79 0.000281 HBE_MACEU (P81042) Hemoglobin epsilon ch
682 129 19.35 0.00044 GLB_NASMU (P31331) Globin (Myoglobin)
683 128 19.06 0.000586 GLB_CERRH (P02215) Globin (Myoglobin)
684 124 18.33 0.00121 GLP1_GLYDI (P23216) Globin, major polymer
685 121 17.72 0.00223 GLB_BUSCA (P02214) Globin (Myoglobin)
686 120 17.69 0.00231 Y211_AQUAE (066586) Hypothetical globin-1
687 121 17.66 0.00237 GLBA_ANATR (P14395) Globin I alpha chain
688 100 16.52 0.00742 HBB_PAPAN (Q9TSP1) Hemoglobin beta chain
689 100 16.52 0.00742 HBB_COLGU (Q9TT33) Hemoglobin beta chain
690 98 15.70 0.0168 HBO_MACEU (P81041) Hemoglobin omega chai
691 111 15.29 0.0254 GLB3_LUMTE (P11069) Globin III, extracell
692 107 14.79 0.0419 GLBP_CHITH (P11582) Globin CTT-E/E’ precu
693 106 14.73 0.0443 GLBB_RIFPA (P80592) Giant hemoglobins B c
694 90 14.47 0.0578 HBB_PONPY (Q9TT34) Hemoglobin beta chain
695 105 14.40 0.0617 GLBB_SCAIN (P14822) Globin II, B chain (H
696 102 13.64 0.132 GLBY_CHITP (P18968) Globin CTT-Y precurso
697 99 13.31 0.184 GLB_APLJU (P14393) Globin (Myoglobin)

more deleted lines

the next iteration (Iteration 1) reports 777 sequences to be above the
probcut2 threshold. At the end of the score list, is a report on which new se-
quences are found, and which (if any) sequences now fall below the threshold.
As shown here:

13

End_Scores: —-—-—-—————- e

#

Reported in iteration O but below the threshold in this iteration (1)
#

Reported in this iteration (1) but not in the previous iteration (0)
#

689 133 30.75
690 128 29.35
692 127 29.02
693 124 28.21
694 124 28.20
695 122 27.62
696 122 27.62
698 120 27.01
699 119 26.78
700 119 26.75
701 119 26.64
702 129 26.51
703 118 26.44
704 118 26.36
706 117 26.19
707 116 25.77
708 114 25.32
711 111 24.46
712 111 24.34
714 109 23.76
715 118 23.64
716 118 23.60

.9e-09 GLBB_ANATR (P04251) Globin I beta chain

.99e-08 GLB1_SCAIN (P02213) Globin I (Dimeric hemoglobin) (HBI)
.75e-08 GLB4_LUMTE (P13579) Globin IV, extracellular (Erythrocruori
.18e-08 GLB_APLKU (P02211) Globin (Myoglobin)

.28e-08 GLB1_ANABR (P02212) Globin I

.12e-07 GLB2_ANATR (P14394) Globin IIB

.12e-07 GLB1_ARTSX (P19363) Globin E1, extracellular

.06e-07 GLBM_ANATR (P25165) Globin, minor

.6e-07 GLB_APLJU (P14393) Globin (Myoglobin)

.69e-07 GLB3_TYLHE (P13578) Globin IIB, extracellular (Erythrocruor
.97e-07 GLBH_CHITP (P29242) Globin CTT-VIIB-7 precursor

.41e-07 HMPA_ALCEU (P39662) Flavohemoprotein (Hemoglobin-like prote
.63e-07 GLB2_LUCPE (P41261) Hemoglobin II (Hb II)

.96e-07 GLBH_CHITH (P12550) Globin CTT-VIIB-7 precursor

.7e-07 GLB_DOLAU (P09965) Globin (Myoglobin)

.09e-07 GLBV_CHITP (P29243) Globin CTT-V precursor (HBV)

.12e-06 GLP3_GLYDI (P21660) Globin, polymeric component P3

.64e-06 GLB_APLLI (P02210) Globin (Myoglobin)

.99e-06 GLBZ_CHITH (Q23761) Globin CTT-Z precursor (HBZ)

.31e-06 GLBZ_CHITP (P29245) Globin CTT-Z precursor (HBZ)

.02¢-06 HMPA_VIBCH (Q9KMY3) Flavohemoprotein (Hemoglobin-like prote
.27e-06 HMPA_BACSU (P49852) Flavohemoprotein (Hemoglobin-like prote

DU NNEFE NP WWWNDNNODNNNERP,OOONRE D

lines deleted...

The next iteration (2) finds 801 sequences above the probcut2 threshold,
the third iteration pushes this up to 802, but Iteration 4 does not change the
output.

8 Getting more from SCANPS

The sections above provide an introduction to running SCANPS and give
most of the commonly used options. What follows is a more detailed expla-
nation of how SCANPS is controlled and a complete options list. Once you
have got used to the basics of SCANPS it would be worth reading through
these sections to find out other useful features or options for customisation.

8.1 The Basics

The interface to SCANPS follows a fairly standard Unix command style.
If you are used to using Unix, then this should be easy. By default, out-
put goes to stdout and so can be piped to other programs for processing.

14

If you are not happy with the Unix command line, then it should be easy
for someone to hide this interface behind a WWW form, or other window-
ing interface. This has been done at the European Bioinformatics Institute
(http://www.ebi.ac.uk). We also run a server at Dundee (http://www.compbio.dundee.ac.uk).
SCANPS is controlled by a set of keyword, value commands. The com-
mands may either be specified in a defaults file (scanps_defaults.dat), or on
the command line. Values specified on the command line override the defaults
set in the scanps_defaults.dat file. The scanps_defaults.dat, scanps_alias.dat
and scanps_gapdefs.dat files must all reside in the directory pointed to by the
environment variable SCANPSDIR. If SCANPSDIR is not defined, then the
program assumes that these files are in the user’s current directory. Thus,
an installation can have a central set of defaults which may be overrid-
den by individual users who may copy and modify their own copies of the
scanps_defaults.dat, scanps_alias.dat and scanps_gapdefs.dat files.

8.2 The scanps_defaults.dat file

The scanps_defaults.dat contains settings for valid commands. When you
first install scanps, you will have to modify this file to define the correct
locations for your directories. For example:

DB_DIR /gjb/delly/databases/scanps/
MATRIX_DIR /gjb/delly/gjb/c/scanps/gjscanps/mat/
GENERAL_DIR /gjb/delly/gjb/c/scanps/gjscanps/dat/
MATRIX_FILE PAM250

MAX_NSEQ 5000000

CODON_FILE codon.dat

MATRIX_FILE nmd.mat

MAX_NSEQ 500000

MAX_SEQ_LEN 400000

LD_PEN 1

LI_PEN 8

DB_FORMAT 0

This defines the directories for various files. See the specific command
summary below for further details.

Commands in the scanps_defaults.dat file may either be the full command
name or an alias as defined in the scanps_alias.dat file (see below). Usually, it
is best to use the full command name in the scanps_defaults.dat file. Aliases
are there to ease typing commands on the command line. Note that ALL
commands and their aliases are case sensitive.

15

8.2.1 File names

File names in the scanps_defaults.dat file MUST NOT be fully qualified.
Thus,

MATRIX_FILE nmd.mat

will look in the users’ current directory for the file. If the matrix file was
in /data/local/scanps/matrices you would have to define:

MATRIX_DIR /data/local/scanps/matrices/

as well.
This is also true of the binary database files. The directory for these may
be defined by DB_DIR. e.g.

DB_DIR /data/local/databases/scanps/
BDB_ROOT pir66

would look for the files pir66.bix and pir66.bsq in the directory /data/local/databases/scanps.
The only other directory that can be specified in this way is GEN-

ERAL_DIR, this holds ”other” files needed by the program. At the moment,

the only file that is put in GENERAL_DIR is the CODON_FILE for use with

DNA vs protein comparisons. More of that later...

8.3 The scanps_alias.dat file

You will not normally modify this file. For the sake of completeness, the
format of the file is described here.

The scanps_alias.dat file allows aliases to be defined for any of the valid
commands. For example, here is an excerpt from scanps_alias.dat.

MAX_NSEQ max_nseq #Maximum number of sequences allowed

TIME time #Set to 1 to record CPU times

MODE mode #Type [scanps HELP modes] to see available modes
QSEQ_FORMAT QSEQ_F gseq_format gseq_*f #0 = PIR format, 1 = FASTA format
DB_FORMAT DB_F db_format db_f #As for QSEQ_FORMAT

MAX_SEQ_LEN max_seq_len #Max allowed length for an amino acid sequence

Each command name is followed by a list of aliases, then a # followed by
some optional descriptive text.

16

8.4 Command line switches

All the commands in scanps_alias.dat are available for use on the command
line. You can either specify the command or its alias, with or without a
preceding - symbol. For example,

QSEQ_FILE hahu.seq
-gseq_file hahu.seq
-s hahu.seq

all do the same thing on the command line assuming the standard scanps_alias.dat
file has not been modified.
A typical scan might be started by:

scanps -s hahu.seq -bdb swall -ugd 0 -1d_pen 8 -mode O > hahu.out

This would scan the sequence in file "hahu.seq” against the binary database
called ”"swall” using a length dependent gap penalty of 8 with whatever
default matrix file was specified in the scanps_defaults.dat file. The ugd
0 turns off the use of default gap penalty combinations stored in the file
”scanps_gapdefs.dat”.

More examples are given below.

8.5 Controlling the scan

SCANPS has a series of different MODEs. Each mode does a different job.
Note that not all of the modes shown here are in Version 2.3.9, but are dis-
cussed for the sake of completeness (they may come back in future releases).

MODE O Scan protein sequence against protein sequence database

with simple gap penalty. Default and fastest method.

MODE 2 As for MODE 1, but with Affine gaps.

MODE 20 DNA vs protein database with frameshifts (simple gaps).

MODE 22 DNA vs protein database scan with frameshifts (affine gaps).

MODE 99 Build scanps binary database files from FASTA or PIR format files.
MODE 100 Extract sequences from database (reads output of earlier scan).

In Version 2.3.2 two new modes are introduced:

MODE 200 is like MODE O but does iterative searching.
MODE 202 is like MODE 2 but does iterative searching.

MODES 200 and 202 will replace MODE O and 2 in a future release of SCANPS.

17

There are a variety of controlling commands that affect the scan and the
output. By default, all results are printed to stdout. You can override this by
using the STDOUT command to specify a different file for output. STDERR
can also be redefined.

Commands affecting the scan - look in the file scanps_alias.dat to see
alternative names for these commands and see APPENDIX II for a full list
of commands:

QSEQ_FILE is the query sequence file
gseq_format defines the format (0 for pir, 1 for fasta)
bdb_root defines the root name of the binary database to search
1d_pen length dependent gap-penalty
li_pen length independent gap-penalty
matrix_file pairscore matrix file (e.g. Dayhoff, BLOSUM etc)
use_gapdefs set to 1 to enable the gap defaults in scanps_gapdefs.dat
set to 0 to allow the values of ld_pen and li_pen to work.

See the full list in APPENDIX II for other valid commands.

8.6 Commands to help find problems

VERBOSE Setting this to something > 0 will give messages to stderr as the
program executes. Setting it to a big number will give more messages. VER-
BOSE 100 should output all messages. NOTE: If you set VERBOSE and you
still don’t get useful messages, try setting it first to 1, then to be absolutely
sure of getting all messages, set VERBOSE in the scanps_defaults.dat file
rather than on the command line.

TIME Setting this to a number > 0 will output various timings to stderr.
Again, bigger numbers should give more messages.

8.7 The scanps_gapdefs.dat file

This file sets default gap penalty combinations for each matrix type and
mode. If USE_GAPDEFS is set to 1, then scanps will take the default gap
penalty combinations from the scanps_defaults.dat file for the given matrix
and MODE. These values will OVERRIDE any penalties specified in the
scanps_defaults.dat file, or on the command line. If you wish to specify non-
default gap penalty combinations, then set USE_GAPDEFS (ugd) to 0.

For example:

If the scanps_gapdefs.dat file has the following entries:

18

#Format is:

mode:matrix_name:1d_pen:1li_pen:fs_pen:fse_pen
#

0:nmd.mat:8:0:0:0

2:nmd.mat:4:12:0:0

O:md.mat:8:0:0:0

2:md.mat:0.2:12:0:0

#

and USE_GAPDEFS = 1, then

scanps -s hahu.seq -mode 200 -m nmd.mat -bdb swissprot

will do a scan of the swissprot database with the nmd.mat matrix and a
penalty of 8

scanps -s hahu.seq -mode 202 -m md.mat -bdb swissprot

would do an affine scan with the penalties of 1d_pen 0.2, li_pen 12.

scanps -s hahu.seq -mode 2 -m md.mat -bdb swissprot -ugd 0 -li_pen 12
-ld_pen 4

would do the affine scan with penalties of 12, 4 rather than 12, 0.2.

WARNING: With the exception of the values for BLOSUMAb0 the scanps_gapdefs.dat
file contains numbers that I guessed might be appropriate for the given ma-
trix and mode. They are almost certainly not the optimum choices.

8.8 Scanning Protein with DNA sequence

Note: This is not availble in Version 2.4.x, but may come back in a later
version.

Version 2.3 allows a DNA sequence to be compared to a protein database
(MODE 22). Scanps first translates the DNA in three forward reading frames
to create a pseudo sequence of amino acids where every base is an amino acid
residue or STOP. This sequence is then compared to each protein sequence
using a dynamic programming algorithm. The result is an alignment of the
DNA with a protein that can include frameshifts.

Additional adjustable parameters are:

FS_PEN and STOP_WEIGHT. These are defined in the command sum-
mary APPENDIX II.

Work is in progress to establish suitable values for these parameters. I
have found that a large and negative value for STOP_WEIGHT is appropri-
ate. FS_PEN should be set larger than LI PEN and LD _PEN.

Here is an example of the comparison of the primary transcript of human
alpha haemoglobin versus the corresponding protein sequence. The DNA

19

has been modified to introduce a single frameshift error, an additional G at
position 356.
Here is the command line:

scanps -s hahunucerror.fasta -d hahu.fasta -db_format 1 -mode 22 \
-ugd 0 -m PAM250 -1d_pen 0.2 -li_pen 12 -fs_pen 24 -gseq_format 1

we are scanning a database of only one sequence (-d hahu.fasta), over-
riding the gap-penalty defaults for this MODE and matrix (-ugd 0) and
supplying our own gap-penalties (-ld_pen, -li_pen, -fs_pen). The query se-
quence is in FASTA format, but we have set the default sequence format to
0 (PIR) in the scanps_defaults.dat file. Accordingly, we need to override the
default on the command line (-gseq_format).

Here is the output:

SCANPS Scan: Mon Aug 11 15:36:04 1997

SCANPS Version: 2.3 (Fri Jul 4 16:16:41 BST 1997)

Author: G. J. Barton, University of Oxford, UK

Query file: hahunucerror.fasta

Query ID: HSHBA4

Query Title: Dummy title inserted by gseq_fasta

Query Length: 835

SCANPS MODE: 22

Matrix file: /gjb/delly/gjb/c/scanps/gjscanps/mat//PAM250

Matrix title: NCBI Matrix - see file for type

LD penalty: 0.20

LI penalty: 12.00

FS penalty: 24.00

MAX number of scores output: 1

MAX number of alignments output: 10000

MIN score to output: 769.70

MIN score of alignments to output: 769.70

Number of residues/bases in database: 141

Score type: 1n() scores

Start_Scores: =======mmesme e e m e m e m e e e — e —————
1 769 HAHU Hemoglobin alpha chain - Human and chimpanzees

End_Scores: -———-——————— e

HoH H H H H B H H H HHEHHEH R

Start_Alignments_Rank: 1
Query: HSHBA4 Target: HAHU Number_of_Alignments: 1
Target_Title: Hemoglobin alpha chain - Human and chimpanzees
N: 1 Raw_Score: 566 Query_Length: 835 Target_Length: 141 1n()_Score: 769
41 gctcggaaagaggtgagggegggtggggegatgtecttgegttcgeacac
ttcccaacataccggatgcacgaagcactagggetcgecacgecccgeage

HOoH K B H W

ggttccgeccgecgtgecgetegttggegggaccccccecgecgecgecga 190

41 VLSPADKTNVKAAWGKVGAHAGEYGAEALER!GSLPCSDPGSSPARTHRP 90
ek oksk sk ok sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok sk ok ok

1 VLSPADKTNVKAAWGKVGAHAGEYGAEALER 31

191 ctagcgcgcacacctgtccaatcttcaaaattcctgeacgtgegagegaa
cccttccacacccaccccggtttctecccacatcatatgagecatagagaa

20

91

32

341

141

62

487

189

100

637

239

113

End_N:
End_Alignments_Rank: 1

caccgcgcaccctctttccggegeccccgeccgeccgecctegtgecegg
PSTVLAPDPNPTPHSASPRRMFLSFPTTKTYFPHFDLSHGSAQVKGHGKK
e sk ok ok ok o ok ok ok ok ok o sk sk ok ok ok ok sk Kok ok ok sk ok Kok

MFLSFPTTKTYFPHFDLSHGSAQVKGHGKK

ggegcGaagggegggacagetgecagecgeaccggegataGtgggegetgt
tcact cactcataatcactcctgatacaatgtactata gccggagege
gecececg ccecggegecgecggecgecgegegtggegeececg aggeggatgg
VADAL~TNAVAHVDDMPNALSALSDLHAHKLRVDPVNFK™ ! AAGRERSGS
okokokok skokskokokok ok ok ok ok ok ook ok sk ok sk ok sk ok ok o sk ok ok

VADAL~TNAVAHVDDMPNALSALSDLHAHKLRVDPVNFK~

aggagcttcgagtcgtcggtcacccegtggecacttgeccacteccgacgge
ggatccccagggeggtgataggggtgegectcttccattgagtttcteca
gcgggtetgecaaacggggggcgggggegeagecctageaccegggegece
RGEMAPSSQGRGSRGLREV!RRRRLRAWAALTLFSAQLLSHCLLVTLAAH

sokokokokok ook ok ok ok ok

LLSHCLLVTLAAH

ccggtacggegtcgatcgtgaagecatate
tccatccctacctaattcctgettccaag
cccgectggeccgegegttgeeggecact 723
LPAEFTPAVHASLDKFLASVSTVLTSKYR 267
sk okokokokokskok ko ok ok ok ok ok ok ook ok ok ok ok ok ok
LPAEFTPAVHASLDKFLASVSTVLTSKYR 141

1

H oHE B H HE H HHE K HEHE R

The output shows the base triplets arranged VERTICALLY above the
corresponding amino acid residue. The protein sequence is shown conven-
tionally below this. Frameshifts are indicated by a caret symbol "7 and the
bases involved in the frameshift are shown in uppercase. You may see odd
effects around frameshifted gaps in alignments. My advice is to look carefully
at any frameshifted gaps to see if there might be alternative alignments by
taking a different reading frame in the region, or shifting the frameshift gap
a base or so to either side. With any dynamic programming method, there
may be more than one, equally valid alignment in a region, but the program
only reports one solution. There are more possibilities for such alternatives
in DNA vs protein comparisons than for DNA v DNA or protein v protein.

Times:
Load matrix, query and index: 0.0
Load database:
Scan database:
Sort results :
Output scores:
Generate and write alignments: 0.1 .
Millions of cell updates/sec in scan (CPU): 1.18 (Elapsed):

Scan Completed at: Mon Aug 11 15:36:04 1997

(Seconds)

[eeNelNe)
[=eNelNeNe)
(=l e Ne)

0
1
.0
0

ool eolNeolNeNol
NP, R, PR OO

0.1

21

340
140

61

486
188

99

636
238

112

= O OO OO
O © W wW oo

As well as MODE 22, there is MODE 20. MODE 20 does not have affine
gap penalties and as a consequence it is about a factor fo 3 faster than MODE
22. Penalties for frameshifts are length dependent in MODES 20 and 22, thus
if FS_PEN is 8, then a single frameshift costs 8 and a double costs 16.

9 APPENDIX I - Revision notes

2.1

First full parallel version with searching for protein vs protein database.
Includes code to build and use binary database for fast loading.

Includes code for sorting the results.

In() scores.

alignment output options.

All within the same program.

2.2

Fix get_fasta.c so that it will read a FASTA file that is missing a title.
Fix DB_DIR to permit missing / at end of directory name.

Add MATRIX_DIR command.

2.2.1

Add option to read NCBI format matrix files. MATRIX_TYPE command.

2.2.2

Various odds and ends. Added EXTRACT options to enable the sequence
of high scoring database hits to be fished out of the database.

2.2.3

Add routines to compare DNA to protein, with frameshifts.

Fix mysterious looking bug when generating alignments with affine gaps.
Tidy up timing routines.

Add option to print full length titles.

First released version? Nope.

2.2.4

Small changes not worth mentioning

2.2.5

Add MODE 20 for fast frameshifting DNA vs Protein comparisons. Add

HQUERY option at complile time to allow VERY big query sequences

(e.g. 2 Megabases). Add COMPLEMENT_QUERY option to allow scanning with
complement of the query. Modify MODE 22 code to eliminate FSE_PEN and replace

with simple length-dependent penalty for frameshift gaps.
Add MODE 100 to allow sequences to be extracted from the database following

22

a scan that produced no alignments.

2.2.6

Add statistical estimates based on extreme value distribution. This is based on the
statistics used in the programs FASTA and SSEARCH3 though the implementation is
different. No statistics in alignment output as yet,

just the score list.

2.3

Small bug fixes. Add the licensing routines. Tidy up the distribution.

2.3.1

Small changes to the way in which the probcut and max_nout options interact.
The program now allows max_nout to control the number of sequences output
when probcut >1. Bug removed for probcut ==1 case.

2.3.2

Add new statistical routines with on-the-fly EVD fitting. Add iterative searching methods.
Replace MODES O and 2 with code from MODE 200 and MODE 202.

2.3.9

Re-write the manual to include description of iterative searching and standard
protein and protein profile searching methods.

10 Plans for additions - in no special order

Extend new statistics to the DNA options - reactivate the DNA searching options. Option to read multiple
alignment files as query. Option to read ”profiles” as query. Add option to read and apply HMMs. Option
to scan a database of alignments. Allow comparison of protein sequence to DNA database.

11 APPENDIX II - Alphabetical list of scanps

commands

This section is simply a sorted and extended version of the scanps_alias.dat file. New commands may from
time to time get added to that file, so look there if something does not makes sense.

APPLY_INDEX apply_index

Flag when creating database in mode 99 if =1 then the characters used
to represent the amino acids in the binary sequence database are
converted to allow fast indexing of the pairscore matrix. This is the
default. If you use a lot of different pairscore matrices with
different index strings, then set this to zero.

APRINT_TO_THRESHOLD aprint_to_threshold aptt

23

Flag to specify if alignments will be printed down to the probability
threshold defined by PROBCUT.

AUTO_CORNER auto_corner # Obsolete
BDB_ROOT bdb_root bdb

Name of root name for binary database files - e.g. sprot would mean
there is a file called sprot.bix and sprot.bsq.

BLOCK_FILE_OUT block_file_out bfo
Name for a file to contain multiple alignment output in AMPS block file format.

CALEB_LPLBUCKETWIDTH buckwidth # logprodlen bucket width

CALEB_MINBUCK minbuck # minimum number needed for a stats bucket.
CALEB_MINRANGE minrange # minimum number of buckets needed for fitting.
CALEB_PRINT caleb_print # print out the caleb stats files. 1 = yes, 0 = no.

Options related to the Webber and Barton on-the-fly statistics.
CODON_FILE codon_file #Translation table for DNA to Protein
COMPLEMENT_QUERY comp_query cq # scan with complement of DNA query

CUT_CONSTANT cut_constant # Obsolete
CUT_CORNERS cut_corners # (Obsolete

DB_DIR db_dir

Directory for storing database files.

DB_FILE db_file d

Sequence database filename - name for file that is not a binary database file.
DB_FORMAT DB_F db_format dbf

As for QSEQ_FORMAT - the format of the database sequence.
DO_SORT do_sort # Obsolete.

DO_STATS do_stats

This should always be set to 2.

DUMP_STATS dump_stats # Obsolete.

EPB_PEN epb_pen # Obsolete.

EPL_PEN epl_pen # Obsolete.

EPR_PEN epr_pen # Obsolete.

EPT_PEN ept_pen # Obsolete.

EXTRACT_FILE extract_file efile # Obsolete.

EXTRACT_SEQ extract_seq eseq # Obsolete.
EXTRACT_SEQ_FORMAT extract_seq_format # Obsolete.

24

FAST fast # Obsolete.
FIND_REPEATS find_repeats # Obsolete.

FIT_FILE fit_file # Obsolete.
FIT_TYPE fit_type # Obsolete.

FRAG_FILE_FORMAT frag file_format fff

Format of the frag file optionally output for a profile alignment 0
for PIR 1 for FASTA.

FRAG_FILE_OUT frag_file_out ffo # the name of the frag file to output

FSE_PEN fse_pen # Obsolete.
FS_PEN fs_pen FSC_PEN fsc_pen

Penalty for frame shift creation in DNA vs Protein modes.

GAP_CHARACTER GAP_CHAR gap_character gap_char

Character used to show a gap.

GENERAL_DIR gen_dir

Directory to store miscellaneous information in - e.g. the codon.dat file.
LD_PEN ld_pen e_pen E_PEN

Length dependent (extension) gap penalty

LICENSE_DIR license_dir # Obsolete.

LI_PEN li_pen c_pen C_PEN

Length independent (creation) gap penalty

LOG_SCORES log_scores lns # Obsolete.

MATRIX_DIR matrix_dir md

Directory that contains pairscore matrices.

MATRIX_FILE matrix_file m

Name of pairscore matrix file.

MATRIX_FORMAT matrix_format mf

Format of matrix file =0 for PIR =1 for NCBI/BLAST

MAX_AOUT max_aout maout

Max number of alignments to output - works in conjunction with -aptt option.
MAX_BLOC_SEQ max_bloc_seq max_blc_seq # Not used.

MAX_ID_LEN max_id_len

25

Maximum length for sequence identifiers

MAX_NOUT max_nout mnout

Max number of sequences to output in score list (works with -nptt).

MAX_NSEQ max_nseq

Maximum number of sequences allowed in program - this must be bigger than the database size.
MAX_SEQ_LEN max_seq_len

Max allowed length for an amino acid sequence. In most compiled programs this has

a precompiled limit. If the program is compiled without MMX/SSE support or parallel
processing support, then this variable can be set.

MAX_TITLE_LEN max_title_len #Maximum length for sequence titles

MIN_ASCORE min_ascore # Obsolete.

MIN_LEN min_len # Minimum length allowed for an alignment

MIN_NSTATS min_nstats # Obsolete.

MIN_SCORE min_score # Minimum score required for score list to be output

MIXED_MODE mixed_mode mm #

When set to 1 and mode 202 is active, first iteration is mode 202
others are mode 200.

MM_LD_PEN mm_ld_pen mmpen
Length dependent penalty to use in MIXED_MODE on iterations 1-N
MODE mode

Specify type of scan or processing - see manual above.

MULTIPLE_OUTPUT_LENGTH multiple_output_length mol
Output length for multiple alignments
NCHUNK nchunk

MPI chunk size - number of sequences to send to each processor in each
parallel chunk.

NITER niter
Number of iterations to do.
NPRINT_TO_THRESHOLD nprint_to_threshold nptt

If 1 then output is down to probcut threshold if O then MAX_NOUT is

26

used

NRANS nrans # Obsolete.

OSEQ_FILE oseq_file # Obsolete.

OUTPUT_LENGTH output_length out_len OUT_LEN

Qutput length for pairwise alignments.

PCUT pcut # Obsolete.

PEN_FACTOR pen_factor penf

Factor to modify observed gap penalties in modes 210/212

PIDTHRESH pidthresh pidt

percentage identity threshold for inclusion in profile.

POSWGTFAC poswgtfac pwf # profile position specific weighting factor
PRECISION precision precis PRECIS

Precision - all floats multiplied by this number. Usually 100.
PRED_FILE pred_file # Obsolete.

PRINT_ALIGN print_align # Obsolete.

PRINT_BLOCK_FILE print_block_file pbf

If 1 then will print an AMPS block file for the multiple alignment.
PRINT_FRAG_FILE print_frag_file pff

If 1 then will print a file of seq fragments in format. See manual.
PRINT_FRQ_TABS print_frq_tabs

Print out the frequency tables in an iterated search.
PRINT_PROFILES print_profiles

Print out the lookup tables in iterated search.

PROBCUT probcut eval

Probability or eval cutoff for do_stats 1 or 2.

PROBCUT2 probcut2 eval2

Probability or eval cutoff for inclusion in profile.

PROB_TYPE prob_type

prob type O=probs 1 =oldevals 2 =newevals - only prob_type 2 is tested.

27

PROFILE_WEIGHT_METHOD profile_weight_method pwm

0 for original weighting 1 for HH.

QBLC_FILE gblc_file QBLC # Obsolete.

QBLC_FORMAT QBLC_F gblc_format # Obsolete.
QSEQ_FILE gseq_file QSEQ gseq s S

Query sequence file.

QSEQ_FORMAT QSEQ_F gseq_format gsf

0 = PIR format, 1 = FASTA format

READ_PRED read_pred # Obsolete.

ROBSIM robsim # Obsolete.

RUN_SW_MIN run_sw_min # Threshold required before NALL algorithm runs
SAVE_PROFILES save_profiles # Obsolete.

SCAN scan # Obsolete.

SEC_FILE sec_file # Obsolete.

SHOW_BLURB show_blurb

If set to 0 then no info is printed to output file.
SHOW_IDENT_WIDTH show_ident_width siw

The width of the ident string to output.

SHOW_LEN show_len lens # Obsolete.

SHOW_PMATRIX show_pmatrix spm

Print pairscore matrix to output file (requires SHOW_BLURB).
SHOW_TITLES show_titles titles

Print titles in output.

SHOW_TITLES_WIDTH show_titles_width stw

The width of the title string to output.

SPECIAL special # Obsolete.

STDERR stderr # redefinition of stderr

STDIN stdin # redefinition of stdin

STDOUT stdout # redefinition of stdout

STOP_WEIGHT stop_weight sw #

Weight for matching amino acid to STOP codon (MODE 22).

TEST #Test - no alias

28

TIME time # Set to 1 to record CPU times

TOP_CUTFRAC top_cutfrac # Obsolete.
TOP_ONLY top_only

1 for only top scoring alignment in each pair. O for all alignments
down to probcut.

USE_GAPDEFS use_gapdefs ugd

if = 1 then use scanps_Gapdefs.dat values if posssible
VERBOSE verbose

If >=1 then print various messages as program runs.

VINGRON_FILE vingron_file # Obsolete.

29

