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Chapter 1

Introduction and Overview

1.1 Preface to Version 4.3

1.2 Preface to Version 4.2

First, a big acknowledgement to Steve Searle (European Bioinformatics In-
stitute) for getting STAMP to run (finally) under OSF and 64 bit machines
generally. Also thanks to Andrew Torda (Australian National University,
Canberra), Dave Schuller (University of California-Irvine), Mike Tennant
(SmithKline Beecham Pharmaceuticals, Harlow, UK), Asim Siddiqui (LMB,
Oxford) G.P.S. Raghava (LMB, Oxford), and James Cuff (EBI) for their help
and various painstaking trawls through my spaghetti code.

Apart from bugs, etc., the noticable changes are:

1. STAMP now reads compressed PDB and DSSP files. It will also look for
files that are stored in a brookhaven style directory structure (e.g. distr/mb/pdb4mbn.ent).

2. Output is now flushed (fflush) during scanning. Purely a cosmetic thing
for those who want up to the minute output when the program is running.

3. AVESTRUC now has an option to calculate an average for all aligned
positions. It also now outputs values to the temperature factor fields in
the PDB output to denote those averaged positions corresponding to struc-
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turally equivalent regions (blue in RASMOL colour by temperature) and
those equivalenced fortuitously (red). It will also highlight positions showing
identical or conserved residue character.

4. PDBSEQ has some new options, including the ability to output sepa-
rate files for each domain, and now outputs a sensible description of the
protein by considering the TITLE, COMPND and SOURCE entries in each
PDB file. Note that the default format is now FASTA.

5. DSTAMP has been changed drammatically, and is now (I think) much
more useful. The input files for ALSCRIPT are now much prettier, includ-
ing cylinders/arrows for helices/strands and colouring/fonting according to
residue property conservation within the sequence alignment. It can also be
used on alignments not derived using STAMP (i.e. from GCG, AMPS etc.).

6. STAMP now appears to run smoothly under OSF. Once again thanks
to Steve Searle. Versions have also been compiled and tested on IRIX, So-
laris and Linux.

7. CLUS2BLC and SMSF2BLC have been replaced by a general alignment
conversion program written in PERL (ACONVERT). More details are given
below. Note that this is a general alignment conversion utility that might be
useful in other contexts apart from STAMP.

8. The significance of sequence identity following structural alignment is
now estimated according to Murzin (1993), JMB, 230, 689-694.

9. Three new programs have been added to the package (see specific in-
structions below):

MERGETRANS allows one to combine transformations from a variety of dif-
ferent sources (i.e. ALIGNFIT and STAMP). It either uses a user-specified
identifier to link the two files (i.e. one found in both files) or the first common
identifier if none is specified.

MERGESTAMP. Like MERGETRANS this program permits one to merge
various kinds of STAMP data. However, it considers more than merely the
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transformations, and attempts to combine the alignments as well. It can be
used in exactly the same way as MERGETRANS (i.e. to combine files that
contain only transformations), but will also attempt to merge alignments
in the file, if they are present. The alignments must be in BLOCK format
(see the depths of the manual for details, and for how to convert things like
Clustal or MSF into BLOCK format). MERGESTAMP can combine files
that do not contain transformations as well (i.e. those that contain only
alignments), and can thus be used for sequence data handling as well.

EXTRANS allows one to select and extract particular domains from a trans-
formation file.

1.3 Overview

STAMP is a package for the alignment of protein sequence based on three–
dimensional (3D) structure. It provides not only multiple alignments and the
corresponding ‘best-fit’ superimpositions, but also a systematic and repro-
ducible method for assessing the quality of such alignments. It also provides
a method for protein 3D structure data base scanning. In addition to struc-
ture comparison, the STAMP package provides input for programs to display
and analyse protein sequence alignments and tertiary structures. Please note
that, although STAMP outputs a sequence alignment, it is a program for 3D
structures, and NOT sequences. If you are after a multiple sequence align-
ment for proteins of unknown 3D structure, stop reading now. Contact GJB
for information about AMPS, which can be used to perform multiple se-
quence alignments.

Comparison of 3D structures is a complicated business, particularly if one
wants to do unusual things (i.e. reverse a strand direction, swap two seg-
ments of a structure around, only consider equivalent structures of greater
than 10 residues, etc.). Complicated things are possible with STAMP but as
a consequence, the method is very detailed. Please be patient, and read this
manual carefully.

Alternatively, if you only want to do fairly straightforward things, such as
align a set of structures or search a database of structures for similarities, you
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can skip this entire chapter and go straight to the next one, which contains
a few worked examples that should demonstrate how to use STAMP in a
black-box way.

1.4 Background

The aim of this work was to provide a set of multiple sequence alignments
derived from structure alone. These alignments have obvious uses which have
been described elsewhere [1, 2]. Numerous other means of deriving such align-
ments have been presented, but, at the time of the development of STAMP,
only one had been applied to alignments of more than two sequences, and
no systematic method for assessing the quality of the alignments had been
provided. These, then, were the goals of this work.

At the heart of the method is the Argos & Rossmann [3] equation for ex-
pressing the probability of equivalence of residue structural equivalence:

Pij = exp
d2

ij

−2× E2
1

exp
s2

ij

−2× E2
2

where dij is the distance between Cα atoms for residues i and j, and sij is a
measure of the local main chain conformation. A detailed description of this
equation, and how it has been applied to multiple structures is given in [1].

STAMP makes extensive use of the Smith Waterman (SW) algorithm [4, 5, 6].
This is a widely used algorithm which allows fast determination of the best
path through a matrix containing a numerical measure of the pairwise simi-
larity of each position in one sequence to each position in another sequence.
Within STAMP, these similarity values correspond to modified Pij values
(above).

The result of the SW algorithm applied to a matrix of modified Pij values is
a list of residue equivalences. From this list, which we may obtain a set of
equivalenced Cα positions. These are used to obtain a best fit transormation
and RMS deviation by a least squares method of [7, 8]. This transformation
can be applied in the relevant way to yield two new sets of coordinates for
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which calculation (and correction) of Pij values, the SW path finding and
the least squares fitting may be repeated in an iterative fashion until the two
sets of coordinates, and the corresponding alignment, converge on a single
solution.

This strategy has proved sucessful in the generation of tertiary structure
based multiple protein sequence alignment for a wide variety of diverse pro-
tein structural families [1, 9, 10, 11, 12]. The method can accurately superim-
pose and obtain alignments for families of proteins as structurally diverse as
the greek key β sandwich folds (e.g. immunoglobulin domains, CD4, PapD
chaperonin, azurin, superoxide dismutase, actinotaxin, prealbumin, etc.), the
aspartic proteinase N and C terminal lobes, the Rossmann fold domains, the
globin folds (including phycocyanins and colicins), and many others.

It is important to remember that this method assumes overall topological
similarity, and will not, without explicit intervention, be able to superim-
pose/align structures with common secondary structures in similar orienta-
tions, but different connectivity or topologies (such as the different types of
four helix bundle proteins: up-down-up-down with up-up-down-down).

Two measures of alignment confidence are provided [1]

1. A structural similarity Score (Sc) is defined in order that overall align-
ment quality and structural similarity may be compared across a wide range
of protein structural families. These are defined below.

2. A measure of individual residue accuracy P ′
ij is defined in order that

residue equivalences may be normalised with respect to both the number of
structures in an alignment and the length of the structures being aligned.

Alignments having a structural similarity Score Sc between 5.5 and 9.8 imply
a high degree of structural similarity and almost always suggest a functional
and/or evolutionary relationship.. Values between 2.5 and 5.5 correspond to
more distantly related structures, and do not always imply a functional or
evolutionary relationship. Values less than 2.0 generally indicate little overall
structural similarity.
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Stretches of three or more aligned positions with P ′
ij values greater than

6.0 generally correspond to genuine topological equivalences, values between
4.0 and 6.0 are equivalent > 50% of the time, and values less than 4.0 are
generally not equivalent. Stretches of residues having P ′

ij > 6.0 generally
correspond to regions of conserved secondary structure within a family of
structures being compared. For multiple alignments, an alterntaive and more
effective way of assessing residue-by-residue equivalence is provided in POST-
STAMP (see below).

Both of these measures are refered to repeatedly below. For a more de-
tailed description of their derivation please refer to [1]. In addition, RMSD
is used to refer to the root mean square deviation between atoms selected for
a fit. The CUTOFF refers the lowest allowable P ′

ij for the program to use a
particular pair of residues in a fit (called ‘C‘ in [1]).

1.5 A brief description of the package

What follows is a brief overview of each application of STAMP. A detailed
description of each of these can be found in later sections.

1.5.1 Initial superimposition

The structure comparison algorithm of Argos & Rossmann [3], which is the
method used by STAMP, requires that the protein structures being compared
are approximately superimposed initially. If not then structural similarity
may be undetected, and reliable superimpositions and alignments unattain-
able. This is a very important thing to remember of STAMP. If initial super-
impositions do not yield high enough scores (i.e. Sc < 2.0) or if the structures
are generally different, STAMP will warn you with ‘LOW SCORE’.

The STAMP package provides three methods of arriving at an initial su-
perimposition. The first of these is to make use of an alignment derived on
the basis of sequence. The program ALIGNFIT requires that the sequences
extracted from the PDB files (using the program PDBSEQ) are aligned ver-
tically in AMPS block format (see format and examples below); one may
use AMPS or another method of aligning sequences (provided one has first
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converted the alignment to the AMPS format; two programs to do so are
included in the distribution: one converts CLUSTAL format, the other MSF
format). The program compares all possible pairs of structures by performing
a least squares fit on all equivalenced Cα atoms. Once all pairwise compar-
isons are compared, the program makes use of a tree to superimpose multiply
all coordinates following the tree. Thus the final superimposition output is
the best possible fit of the structure given the alignment. For an example
where ALIGNFIT is used to provide an initial superimposition, refer to the
alignment of the serine proteinases Chapter 2. AMPS can be obtained from
GJB.

In instances when multiple sequence alignment is inaccurate, ALIGNFIT
may still be used, though the initial superimpositions may not be accurate
enough for STAMP to find structural similarity.

It is possible to skip the use of a multiple sequence alignment by using the
ROUGHFIT option within STAMP. This option generates an initial align-
ment which simply consists of the sequences from each domain aligned from
their N-terminal ends. This works well in cases where the lengths of the do-
mains to be aligned are similar, and when they exhibit good structural simi-
larity, but will often fail to provide a good starting point. See the alignment
of the globin structures in Chapter 2 for an example of using ROUGHFIT.

By far the best way to arrive at initial superimpositions is to use the SCAN
option within STAMP. One must merely select a domain with which to scan
the other domains to be superimposed. One can obtain (by SCAN and after
running SORTTRANS, and removing other redundancies) a set of superim-
positions for all other domains onto the domain used to scan. This provides
an excellent and accurate starting point from which to begin a multiple struc-
ture based alignment by STAMP. This works particularly well when struc-
tures are very diverse. For an example, see the alignment of the aspartyl
proteinase N– and C– terminal lobes in Chapter 2.

1.5.2 Pairwise comparisons and alignments (PAIRWISE)

Given a suitable initial superimposition of structures, the best way to ob-
tain a multiple alignment and superimposition of a diverse family of domains
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is to follow a hierarchy of similarity. This allows most similar domains to
be compared/aligned first, and only makes comparisons/alignments between
distantly related domains at a later time in the procedure.

Pairwise comparisons are an ideal way to obtain such a hierarchy. The PAIR-
WISE options in STAMP will result in all N × (N − 1)/2 comparisons being
performed and will output a matrix of pairwise similarities. This is then be
used to produce a dendrogram, or tree, from which multiple alignments and
superimpositions may be generated.

1.5.3 Multiple alignment (TREEWISE)

Given the initial set of superimpositions, and a set of PAIRWISE similarity
scores, the TREEWISE option will perform all alignments that are possi-
ble given a dendrgoram (generated by considering the PAIRIWISE scores).
Statistics, transformations and alignments are output at each stage of the
hierarchy so that a continuum of structure variation can be observed (ie. the
output will get more and more structural varied as the program progresses).

Note that by default, STAMP performs both PAIRWISE and TREEWISE
procedures together.

1.5.4 Structure database scanning (SCAN)

It is often desirable to compare a particular domain or protein structure to a
database of known 3D structures in order that structurally similar proteins
may be found. The PAIRWISE option within STAMP was a logical starting
point from which protein structure database scans could be performed.

Given a single protein domain (a query) and a list of domains to which it
is to be compared (a database), STAMP can be used to perform all possible
comparisons of the query to the database structures. The initial superim-
position problem is solved by attempting more than one initial fit with each
database structure. This can be done in one of two ways, which I will call
FAST and SLOW, for the obvious reasons.

In FAST mode, fits are performed by lying query sequence onto the database
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structure starting at every ith position, where i is an adjustable parameter
usually set to five (i.e. the sequence is laid onto the 1st, 6th, 11th, etc. po-
sition). Diagramatically, this looks like:

Q=query, D=database

Fit 1 Q -------

D -----------

Fit 2 Q -------

D -----------

Fit 3 Q -------

D -----------

<etc.>

This approach is fine if the query is a single domain, and there is a strong
similarity in the database structure. However, if similarity is weaker, or if the
query is multi-domain (not always a good idea, I would recommend splitting
the structure into domains first, though this may not always be possible),
then SLOW mode will perform more fits (hence “SLOW”) by sliding query
and database sequences along each other like:

Q=query, D=database

Fit 1 Q -------

D -----------

Fit 2 Q -------

D -----------

Fit 3 Q -------

D -----------

<etc.>

Fit N-2 Q -------

D -----------

Fit N-1 Q -------

D -----------

Fit N Q -------

D -----------
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In this approach, initial superimpositions are calulated using many more frac-
tions of query and database structure, making detectiong of weak similarities
more likely.

The residues that are equivalenced by either FAST or SLOW procedures
are used to perform an initial fit, which is refined by the conformation-based
and distance-based fit used during PAIRWISE/TREEWISE comparison of
distantly related structures. If a high enough similarity score (Sc) is found
after these three steps, then the transformation is saved for further analysis.
The output from the SCAN routine is directly readable by STAMP so that
once a list of domains similar to one’s query is obtained, multiple alignment
(ie. PAIRWISE and TREEWISE) may be performed.

The program PDBC can be used to generate a list of protein domains given
a set of PDB identifier codes, and the program SORTTRANS can be used
to sort the output from SCAN, and remove any redundancies.

The Sc values output during a SCAN differ slightly from those output dur-
ing a PAIRWISE comparison. The correction introduced to correct the SW
Score according to the length of the sequence lengths is removed. During
multiple alignment the start and end points of the domains to be superim-
posed should be known, thus one can penalise all for all positions which are
not involved in the alignment. During a scan, however, it is desireable to
detect sub alignments of the two structures being compared (eg., N-terminal
helix from query missing in database structure, a much longer database struc-
ture, etc.). Thus, the Sc for scanning may be defined in one of three ways
(a=query, b=database, p=path, i=insertion, L=length):

Scheme 1

Sc =

(
Sp

Lp

)(
Lp − ia

La

)(
Lp − ib

Lb

)
As for multiple structure alignment. As discussed, this is generally not the
best way to compare a query to the database, since one would not usually
wish to penalise insertions or omitted missing segments within the database
structure (due to truncation values, etc.). However, this scheme may be use-
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ful if one is scanning a database of structures known to exhibit a particular
fold (i.e., if one is merely after accurate superimpositions for a family of
known structures; see Chapter 2).

Scheme 2

Sc =

(
Sp

Lp

)(
Lp − ia

Lp

)(
Lp − ib

Lp

)
La and Lb have been replaced by Lp to removed any dependence on query
or database structure length. The second two terms lower the score if gaps
in the path are placed in query (a) or database structure (b). This avoids a
consideration of length, but will allow short stretches structural equivalences
to score highly.

Scheme 3

Sc =

(
Sp

Lp

)(
Lp − ia

La

)
Only penalises insertions in the query sequence. If a small fraction of the
query sequence is in the actual path, then Sc drops. This scheme is most
useful if one only wants similarities to the entire protein under consideration,
since it penalises any omissions from the query structure.

Scheme 4

Sc =

(
Sp

Lp

)(
Lp − ib

Lb

)
The opposite of 3. Only penalises insertions in the database sequence. If a
small fraction of the database sequence is in the actual path, then Sc drops.
This scheme may be useful if one is scanning with a collection of secondary
structure elements, since gaps are to be expected within the query (i.e., since
the loops have been omitted).

Scheme 5

Sc =

(
Sp

Lp

)
Raw score, no length requirement, will report even short alignments between
similar sub–structures. This scheme may be useful for the search for short
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stretches of structural similarity, such as supersecondary structures.

Scheme 6

Sc =
(

Sp

La

)(
La − ia

La

)
Vaguely similar to Scheme 3, but this only scores hits favourably if the involve
a significant fraction of the query structure (i.e. similarities only containing
part of the query will not stand out). This is useful when one is comparing
a particular domain to a database and is not interested in local similarities.
This is the default for scanning.

For the most part, all of these scoring schemes will yield similar numbers
for very similar structures. However, when more distantly related structures
are compared, it becomes more useful to use a scheme specific to the par-
ticular problem (i.e., whether one wishes to scan with secondary structures
only, when one is after only very similar structures, etc.).

Schemes are specified by the parameter SCANSCORE (see below). If you
are confused, or haven’t thought about this at all, just use the defaults. I
do.

1.5.5 Displaying STAMP output (VER2HOR, DSTAMP,
GSTAMP)

In order that the output from STAMP may be displayed in a more attractive
manner, a program was developed to translate the vertical, block-file format
of STAMP multiple alignments into input for GJB’s program ALSCRIPT,
which can then be used to display the alignments in Postscript. Details of
DSTAMP and how to obtain ALSCRIPT are given CHAPTER VI. Contact
Geoff Barton for a copy of ALSCRIPT (worth having, even for other se-
quence alignments). The program deterimes reliable regions given a set of
criteria, and highlights sequence and secondary structure accordingly.

Another program (VER2HOR) can display STAMP alignments in a hori-
zontal text format for quick viewing (i.e. it takes the vertical format of
STAMP output, and changes it to an easy to see horizontal format). This is
particularly useful if you don’t have ALSCRIPT.
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STAMP multiple alignments are always associated with particular super-
impositions. It is often useful to show such superimpositions graphically.
GSTAMP provides input for Per Kraulis’ program MOLSCRIPT. Most struc-
tual biology labs have at least one copy of this program, and it is available
from Per Kraulis. One simple needs to run TRANSFORM (see below) on a
STAMP alignment file, and then run GSTAMP on the same file, followed by
separate runs of MOLSCRIPT, to produce separate Postscript files for each
aligned structure, with structually equivalent regions shown as ribbons, the
rest as Cα trace.

1.6 Some comments on interpretting struc-

tural similarities

There is a wealth of literature on the nature of protein structural similarities,
and this manual is not the place to review them. If you want to look into
the subject, then I would refer you to some of my papers [11, 13, 14] and
references therein.

An important aspect of assessing the meaning of structural similarity is
discerning whether a similarity between proteins in the absense of obvious
sequence identity implies a common evolutionary acestor, and usually an as-
sociated similarity in molecular function. Some studies have found that it is
possible to discern homology by the analysis of the sequence identity calcu-
lated following protein structure alignment. Note that this is a very different
identity than that quoted during typical sequence comparison (e.g. BLAST,
FASTA, SSEARCH, etc). During sequence comparison, the reported % iden-
tity is the result of optimising the alignment of two sequences, thus numbers
as high as % 20-30 are possible for proteins that are definitely not homolo-
gous (i.e. those having different tertiary folds). However, if an alignment has
been derived without consideration of the amino acid sequence, then lower
% identities can still be significant. See Russell et al. , 1997, and Murzin,
1993 for examples, and more details.

STAMP reports both the % identity from structure comparison, defined as
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the precentage residue identities (m) within structurally equivalent residues
(n), and an estimate of the statistical significance (reported as P (m)) of a
given a particular combination of m and n. The latter is described in Murzin
(1993). Values of P (m) smaller than about 10−3 very often indicate that
the pair of proteins are within the same protein superfamily, which implies a
common ancestor, and more importantly very often indicates a similarity in
molecular function. Specifically, the P (m) is calculated for a p = 0.1; please
see Murzin (1993) for a more through explanation of this calculation.

1.7 The programs contained within the pack-

age

STAMP consists of the main program (usually refered to as STAMP) and
several sub-programs. Briefly, the programs are:

STAMP Main program, does PAIRWISE, tree
construction, TREEWISE and SCAN modes.

ALIGNFIT Given a list of domains and a multiple sequence
alignment outputs an initial transformation.

PDBC Finds and reports information about PDB files
given a four (PDB) code and/or chain identifier.

TRANSFORM Given a list of transformations, outputs the
corresponding set of coordinates.

SORTTRANS Sorts the output from SCAN, and removes repeated
transformations.

PDBSEQ Given a list of domains, extracts the corresponding
sequences from the PDB files.

VER2HOR Given a STAMP alignment file, outputs an easy to read
text version of the alignment for quick analysis.

DSTAMP Given a STAMP alignment file, outputs commands for
GJB’s program ALSCRIPT (alignment to Postscript).

GSTAMP Given a STAMP alignment file, outputs commands for
Per Kraulis’ MOLSCRIPT program.
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The programs contained within the package (continued):

AVESTRUC Given a STAMP alignment file, generates an average
set of main chain or C alpha coordinates for the
structural family.

POSTSTAMP Reanalyses a STAMP alignment file (provides a more
accurate set of equivalences for alignments of more
than one structure).

PICKFRAME Given a transformation, transforms all other domains
onto another (specified by the user).

MERGETRANS Given two transformation files, merges them by centering
on a common identifier, either the first common one found
or one specified by the user.

MERGESTAMP Given two files containing alignments or transformations or both
merges them by centering on a common identifier, either the first
common one found or one specified by the user.

EXTRANS Given a transformation file and a list of domain identifiers
it will output a new transformation file containing only the
domains given

ACONVERT General alignment format conversion utility.
STAMP CLEAN Tidies up STAMP alignments to remove nonsensical gaps
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Chapter 2

Worked examples

The examples described below show how to apply STAMP to particular
problems. A description of the Input and Output and a summary of all pa-
rameters appear in Chapter 4.

All example output files may be found in the directory examples/ within
the directory where STAMP is installed. There are four sub-directories in
the examples directory corresponding to each of the four protein structure
familes discussed in the examples below (s prot/, ac prot/, ig/, globin/).

Before begining you must ensure a few things:

1. That you have set the environment variable STAMPDIR to the name
of the directory containing the various STAMP defaults files. This directory
is called defs/ within the directory where STAMP is installed.

2. Ensure that you have a copy of the PDB, and that you edit the file
STAMPDIR/pdb.directories (see below) to tell the program where the PDB
files might be found (it is OK if they are stored in more than one place, or
with different extensions). Given a PDB code, these programs search through
the various directories until an appropriate file is found.

3. (optional, but worthwhile). Get a copy of DSSP and run it on the PDB
structures used in the examples below (and indeed any others you wish to
analyse). Edit the file STAMPDIR/dssp.directories to tell the program where
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to find them (in the same manner as STAMPDIR/pdb.directories). I would
recommend putting DSSP files somewhere central for all users to share (this
saves having to run the program many times on the same PDB files).

2.1 Multiple alignment (PAIRWISE and TREE-

WISE)

Mammalian and Bacterial Serine Proteinases

(This example is discussed in Russell & Barton, (1992).)

Despite a pronounced functional similarity (a highly conserved catalytic
triad), this family of proteins shows little overall sequence similarity. Indeed,
sequence alignment methods generally fail to provide an accurate alignment
of these protein sequences. In situations like these, STAMP can be used to
provide an accuarate alignment of protein sequences based on a comparison
of 3D structure. This can often reveal regions of weak sequence similarity
that are not detectable during a comparison of sequence. The files for this
example are in the directory examples/s prot in the directory where you have
installed STAMP.

A list of the domains is given in the file s prot.domains. Note that you
can create such a file by using the PDBC program. Running PDBSEQ:

pdbseq -f s_prot.domains > s_prot.seqs

produced the file s prot.seqs, from which an AMPS multiple sequence align-
ment was produced, and stored in the file s prot amps.align. Running ALIGN-
FIT:

alignfit -f s_prot_amps.align -d s_prot.domains -out s_prot_alignfit.trans

should give the output:
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ALIGNFIT R.B. Russell 1995

Reading in block file...

Blocfile read: Length: 261

Reading in coordinate descriptions...

Reading coordinates...

Checking for inconsistencies...

Doing pairwise comparisons...

Doing treewise comparisons...

ALIGNFIT done.

Look in the file s_prot_alignfit.trans for output and details

The final transformation (called alignfit.trans if default ALIGNFIT settings
are used) is in the file s prot alignfit.trans.

This provides an initial set of transformations for use by STAMP. To run
STAMP type:

stamp -l s_prot_alignfit.trans -prefix s_prot

Should produce the following output:

STAMP Structural Alignment of Multiple Proteins

by Robert B. Russell & Geoffrey J. Barton

Please cite PROTEINS, v14, 309-323, 1992

Sc = STAMP score, RMS = RMS deviation, Align = alignment length

Len1, Len2 = length of domain, Nfit = residues fitted

Secs = no. equivalent sec. strucs. Eq = no. equivalent residues

%I = seq. identity, %S = sec. str. identity

P(m) = P value (p=1/10) calculated after Murzin (1993), JMB, 230, 689-694

No. Domain1 Domain2 Sc RMS Len1 Len2 Align NFit Eq. Secs. %I %S P(m)

Pair 1 4chaa 3est 7.73 10.58 239 240 242 209 207 20 37.08 74.17 0.00e+00

Pair 2 4chaa 2ptn 7.80 9.43 239 223 234 201 198 20 40.17 75.31 0.00e+00

Pair 3 4chaa 1ton 6.81 9.38 239 227 245 183 178 19 29.71 66.11 2.19e-42

Pair 4 4chaa 3rp2a 7.45 9.95 239 224 235 195 188 18 29.71 67.78 2.36e-63

Pair 5 4chaa 2pkaab 7.27 9.65 239 232 241 198 195 19 29.71 73.64 0.00e+00

Pair 6 4chaa 1sgt 7.09 9.76 239 223 239 191 183 20 27.62 69.04 3.68e-49

Pair 7 4chaa 2sga 3.66 9.75 239 181 238 105 99 14 11.72 33.05 2.03e-07

Pair 8 4chaa 3sgbe 3.56 9.24 239 185 239 103 98 16 10.04 33.47 1.89e-05

Pair 9 4chaa 2alp 3.49 9.13 239 198 246 102 97 14 9.21 31.38 1.28e-04

<etc.>

Reading in matrix file s_prot.mat...

Doing cluster analysis...

Cluster: 1 ( 2ptn & 2pkaab ) Sc 8.50 RMS 10.20 Len 232 nfit 213

See file s_prot.1 for the alignment and transformations

Cluster: 2 ( 2sga & 3sgbe ) Sc 8.34 RMS 10.37 Len 191 nfit 164

See file s_prot.2 for the alignment and transformations
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<etc.>

Cluster: 7 ( 2alp & 2sga 3sgbe ) Sc 8.40 RMS 10.30 Len 202 nfit 161

See file s_prot.7 for the alignment and transformations

Cluster: 8 ( 1sgt & 4chaa 3est 3rp2a 1ton 2ptn 2pkaab ) Sc 7.59 RMS 9.50 Len 268 nfit 175

See file s_prot.8 for the alignment and transformations

Cluster: 9 ( 1sgt 4chaa 3est 3rp2a 1ton 2ptn 2pkaab & 2alp 2sga 3sgbe ) Sc 4.77 RMS 9.74 Len 290 nfit 111

See file s_prot.9 for the alignment and transformations

The various fields describe details of the pairwise and treewise comparisons:
Sc, RMS deviation, the alignment length (Align), the length of each structure
in residues (Len1, Len2), the number of atoms used in the RMS fit (Nfit), the
number of equivalent secondary structure elements (Secs), and the number
of equivalent residues (see above, Eq.).

STAMP will also produce several files:

s prot.mat – a file containing the information used to derive the structural
similarity tree (i.e. the output from the PAIRWISE) mode. This is an upper
diagonal matrix containing the pairwise Sc values.

s prot.N – a series of files containing transformations and alignments cre-
ated by running the TREEWISE mode in STAMP. Each file corresponds
to a node in the similarity tree (i.e. a cluster), where two groups of one
or more structures have been combined to form an alignment and transfor-
mations. The higher the value of N the more structurally dissimilar the
proteins contained in the file are. Highly similar structures are clustered
(aligned/superimposed) at an early stage in the program, with more dis-
tantly related structures being clustered towards the end.

The top of each file contains the information needed to generate (using
TRANSFORM, see below) superimposed coordinates (in STAMP domain
format, see below). After these details, various details of the similarity (RMS
deviation, Sc value, etc) are given. The bottom portion of the file contains
the structural alignment in STAMP format. Positions not aligned with gaps
contain information as to the degree of local structural similarity, such as the
distance between (averaged) Cα atoms, and the P ′

ij value.

Methods for displaying sequence alignments and structures are described
below.
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2.2 Alignment using an initial rough super-

imposition

This method avoids having to create an initial sequence alignment, and tends
to work for homologous proteins, or those having very similar lengths despite
no sequence similarity.

Globins

Since the globin sequences are of similar length an initial superimposition
accurate enough to proceed with STAMP can be obtained by merely aligning
the N-terminal ends of the sequences and using whatever equivalences result
to obtain an initial superimposition. The command ROUGH (ROUGHFIT
procedure) is used. In addition, an initial conformation based fit is per-
formed in order that any inaccuracies in this initial superimposition may be
corrected. See the directory examples/globins.
To run STAMP in this example, type:

stamp -l globin.domains -rough -n 2 -prefix globin

should produce the following on the standard output (ignoring the header):

Running roughfit.

Sc = STAMP score, RMS = RMS deviation, Align = alignment length

Len1, Len2 = length of domain, Nfit = residues fitted

Secs = no. equivalent sec. strucs. Eq = no. equivalent residues

%I = seq. identity, %S = sec. str. identity

P(m) = P value (p=1/10) calculated after Murzin (1993), JMB, 230, 689-694

No. Domain1 Domain2 Sc RMS Len1 Len2 Align NFit Eq. Secs. %I %S P(m)

Pair 1 2hhbb 2hhba 6.59 10.63 146 141 147 125 125 7 39.04 72.60 1.45e-24

Pair 2 2hhbb 2lhb 5.72 10.08 146 149 151 120 120 7 20.13 68.46 1.29e-06

Pair 3 2hhbb 4mbn 6.03 9.93 146 153 155 122 114 7 18.95 66.01 1.32e-06

Pair 4 2hhbb 1ecd 6.61 10.37 146 136 143 115 109 7 15.07 65.07 6.37e-04

Pair 5 2hhbb 1lh1 5.62 10.89 146 153 155 106 92 5 9.80 49.02 1.96e-02

<etc.>

Pair 14 4mbn 1lh1 4.73 10.30 153 153 159 91 77 6 10.46 45.75 2.21e-03

Pair 15 1ecd 1lh1 5.84 11.38 136 153 149 110 101 6 11.76 57.52 5.94e-03

Reading in matrix file globin.mat...

Doing cluster analysis...

Cluster: 1 ( 2hhba & 4mbn ) Sc 7.65 RMS 10.25 Len 148 nfit 134

<etc.>

22



Cluster: 5 ( 1lh1 & 2lhb 2hhba 4mbn 2hhbb 1ecd ) Sc 7.63 RMS 10.11 Len 158 nfit 112

See file globin.5 for the alignment and transformations

where the output and files are as described for the serine proteinase example
above, with ‘s prot’ replaced with ‘globin’.

-rough performs the initial superimpositions (ROUGHFIT) and -n 2 means
that the conformation biased fit will be performed before the final fit. This
conformation biased fit is usually necessary when the initial superimpositions
are approximate.

ROUGHFIT will not always work. Note that in this example all the pairwise
Sc values are above 5.6, suggesting strong structural similarity. If when us-
ing the ROUGHFIT option you find low Sc values (the program will cry out
‘LOW SCORE’), this usually means that ROUGHFIT hasn’t managed to
generate a good enough starting superimposition, and you should try some-
thing else, such as is described in the next section.

2.3 Database Scanning

Database scanning within STAMP is unpublished, apart from a brief descrip-
tion in a figure legend [16], but it has been fairly well tested since version
2.0. Indeed, two novel similarities have resulted in publications [9, 16].

Immunglobulin domain

One example of a scan is given. The light chain variable domain of the
immunoglobulin 2FB4 is used to scan a small database of other protein do-
mains containing both a diverse collection of related folds (greek key folds,
including azurin, superoxide dismutase, CD4, etc.), and completely unrelated
folds (such as globins). See the directory examples/ig for this example.

The 2FB4 domain is described in 2fb4lv.domain. To scan this through the
database type:

stamp -l 2fb4lv.domain -s -n 2 -slide 5 -prefix 2fb4lv_stamp -d some.domains -cut
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‘-s’ specifies the SCAN mode ‘-slide’ describes how many residues to slide
the query sequence (2fb4lv) along each sequence in the file some.domains to
provide each initial fit (i.e. the sequence of 2fb4lv is layed on top of each
database sequence at postions 1, 6, 11, etc.). ‘-cut’ tells the program to
cut down each domain read in from some.domains according to where the
similarity is found. If it is not specified, the output will contain domain de-
scriptors identical to those found in ‘some.domains’. When one is comparing
a single-domain query to a database structure having mulitple domains, it is
desirable to do this. Try running it both ways (with and without -cut) and
look at the output: you will see what I mean. (e.g. CHAIN A is converted to
A 1 to A 60 in one descriptor in the SCAN output and A 120 to A 175
in another, since there are two repeats of the query domain in the database
structure).

The above run may take a couple of minutes, and should write the following
to the standard output (again, ignoring the header):

Results of scan will be written to file 2fb4lv_stamp.scan

Fits = no. of fits performed, Sc = STAMP score, RMS = RMS deviation

Align = alignment length, Nfit = residues fitted, Eq. = equivalent residues

Secs = no. equiv. secondary structures, %I = seq. identity, %S = sec. str. identity

P(m) = P value (p=1/10) calculated after Murzin (1993), JMB, 230, 689-694

Domain1 Domain2 Fits Sc RMS Len1 Len2 Align Fit Eq. Secs %I %S P(m)

Scan 2fb4lv 2fb4lc 1 3.819 7.880 111 105 127 45 45 7 6.31 26.13 8.28e-02

Scan 2fb4lv 2fb4l 8 9.799 10.383 111 166 111 111 110 11 66.27 64.46 0.00e+00

Scan 2fb4lv 1mcplv 1 7.802 9.561 111 113 118 94 90 10 39.82 69.03 9.06e-22

Scan 2fb4lv 1mcphv 1 5.637 8.513 111 122 125 71 68 9 18.85 47.54 7.00e-08

Scan 2fb4lv 1cmsC 1 2.152 6.421 111 148 153 27 21 4 1.35 8.78 1.00e+00

<etc.>

Scan 2fb4lv 1rnt 1 2.210 4.679 111 104 145 28 28 4 1.80 18.92 1.00e+00

Scan 2fb4lv 2sodo 1 3.586 7.776 111 151 158 39 32 7 1.32 15.23 1.00e+00

Scan 2fb4lv 8rubs skipped domain - sequence is too short

Scan 2fb4lv 2pcy 1 3.331 7.604 111 99 124 41 33 6 5.41 19.82 6.44e-02

Scan 2fb4lv 8atca 0 0.000 100.000 111 166 0 0 33 0 0.00 0.00 1.00e+00

See the file 2fb4lv_stamp.scan

where all of the fields are as for the PAIRWISE mode, save for Fits, which
indicates the number of fits that were saved to the file ‘2fb4lv stamp.scan’.
Note that for domain descriptors (see some.domains) containing two Ig type
folds (e.g. 2fb4l, 1cd4, etc.) that more than one fit has been saved, since the
search found both of the Ig type folds in each of these two proteins. Not also
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that ‘Fits’ is zero for several of the examples, indicating that the no similarity
was found within these proteins. Where more than one Fit is output for a
domain in the database, the best Sc, RMS etc. are reported.

2fbjlv stamp.scan will contain all the transformations output during the scan.
Several of these will be redundant, since it is possible for a particular match
to be found twice. To remove repeated transformations, or those not consid-
ered interesting, one must run the program SORTTRANS on the output.

sorttrans -f 2fb4lv_stamp.scan -s Sc 2.5 > 2fb4lv_stamp.sorted

sorts the input file by Sc values, and leaves only those non-redundent domain
descriptions having an Sc ≥ 2.5. In practice, I tend to use a value of 2.0, and
then sort through the output to look for interesting similarities.

sorttrans -f 2fb4lv_stamp.scan -s rms 1.5 > 2fb4lv_stamp.sorted

sorts the input file by RMSD values, and leaves only those domain descrip-
tions having an RMSD ≤ 1.5 Å. Despite its predominance in the literature,
RMSD is not a very good means of measuring structural similarity, since low
RMSDs can usually be obtained for any two structures if one considers a
small enough collection of residues.

sorttrans -f 2fb4lv_stamp.scan -s nfit 40 > 2fb4l_stamp.sorted

sorts the input file by the number of atoms used in the final fitting, and
leaves only those domain descriptions where nfit ≥ 40.

sorttrans -f 2fb4lv.scan -s n_sec 6 > 2fb4lv_stamp.sorted

sorts the input file by the number of equivalent secondary structures, and
leaves only those having 6 or more secondary structures equivalent.

Combinations of these can be used to select out interesting domains from a
scan output. Probably the best combination involves Sc and nfit (ie. score
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and nfit), since large structures can give fortuitously large Sc values with
very few fitted atoms.

The final output is in the file 2fb4lv stamp.sorted. This is the result of
the first example (ie. -s Sc 2.5). Note that several structures similar to the
Ig type domain have been detected, and appear (according to Sc) in the or-
der one might expect from knowledge of the 3D structures, sequences and
functions of these proteins.

The output from scanning is totally compatable with the other modes of
the program. Once you have performed a scan, and have sorted the ‘hits’
down to an interesting set, you can then use the output from scan as the
input for a multiple alignment. E.g.,

transform -f 2fb4lv_stamp.sorted -g -o ig_like.pdb

will read in the files, transform the coordinates and save them to the file
ig like.pdb (with each chain labelled starting with a different letter). This
program is explained in one of the next sections.

stamp -l 2fb4lv_stamp.sorted -prefix ig_like > ig_like.log

will read in the transformations, and run PAIRWISE and TREEWISE com-
parisons to generate a multiple alignment of these structures. The results
of this run are in the examples/ig directory. Note that there are several
‘LOW SCORE’ warnings in the output (stored in ig like.log). Note that one
would normally edit the output from a scan before performaing a multiple
alignment (i.e. to include only those domains one wants to consider further).

2.4 Using scans as a starting point for multi-

ple alignment

In certain instances initial fits based on multiple sequence alignment will be
far from accurate, such that even an initial conformation based fit will not
be able to correct the poor initial superposition, and even genuine structural
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homology will be missed. In these instances it is possible to make use of the
SCAN option to provide a more accurate initial superimposition.

To do this one need only select one representative of the domains to be su-
perimposed and use this domain in a sensiitve scan of the other domains. By
applying the same techinques as used for the scan with the Ig light variable
domain (above) one can arrive at a set of initial transformations consisting
of the transformations of all other domains onto the domain which was used
as a query for the scan.

Aspartic Proteinase Domains

An example of how such an initial superimposition might be obtained is
shown by the alignment of the aspartly proteinase N and C terminal lobes
(see directory examples/ac prot):

The N–terminal domain of 1CMS (in the file 1cmsN.domain) can be used to
scan a list of all aspartyl proteinase N– and C– terminal domains (ac prot.domains):

stamp -l 1cmsN.domain -n 2 -s -slide 5 -d ac_prot.domains -prefix ac_prot

Should produce:

Domain1 Domain2 Fits Sc RMS Len1 Len2 Align Fit Eq. Secs %I %S P(m)

Scan 1cmsN 1cmsN 1 9.800 10.091 175 175 175 175 174 18 99.43 94.29 0.00e+00

Scan 1cmsN 1cmsC 2 3.211 7.858 175 148 204 64 57 13 7.43 25.14 2.37e-03

Scan 1cmsN 4apeN 1 8.195 9.708 175 178 182 155 151 15 26.97 72.47 1.36e-13

Scan 1cmsN 4apeC 1 3.434 7.939 175 152 210 69 68 14 5.14 30.29 1.00e+00

Scan 1cmsN 3appN 1 7.967 9.830 175 174 183 149 148 18 26.86 74.86 2.51e-13

Scan 1cmsN 3appC 1 3.260 8.137 175 149 206 63 54 13 5.71 24.57 2.32e-02

Scan 1cmsN 2aprN 1 8.386 10.130 175 178 178 158 154 15 30.34 76.40 3.81e-17

Scan 1cmsN 2aprC 1 3.335 7.787 175 147 202 68 62 14 6.86 27.43 1.11e-02

Scan 1cmsN 4pepN 1 8.880 10.162 175 174 174 170 169 15 56.00 87.43 3.00e-53

Scan 1cmsN 4pepC 1 3.227 8.315 175 152 206 63 51 11 6.86 24.00 2.61e-03

See the file ac_prot.scan

The file ac prot.scan will contain all 10 domains superimposed onto 1cmsN.
Note that we haven’t run the program with the ‘-cut’ option, since the file
ac prot.domains contains an assignment of domains (done by me using molec-
ular graphics). Running SORTTRANS removes any redundancies:

sorttrans -f ac_prot.scan -s Sc 2.5 > ac_prot.sorted
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and running stamp will generate the multiple alignment as described for the
serine proteinase and globin examples above.

stamp -l ac_prot.sorted -prefix ac_prot

The output files from running all of these programs appear in the directory
examples/ac prot.

2.5 Protein domain databases

The program PDBC may be used to output a set of STAMP readable domain
descriptions. Given a list of four letter brookhaven codes and an optional
set of chains. This will only work if you have a suitable ‘pdb.directories’ file.
See the chapter on installation for details on how to do this.

pdbc -d 2hhba >! globin_fold.domains

pdbc -d 2hhbb >> globin_fold.domains

pdbc -d 4mbn >> globin_fold.domains

pdbc -d 1lh1 >> globin_fold.domains

pdbc -d 1cola >> globin_fold.domains

pdbc -d 1cpca >> globin_fold.domains

will produce the following output (ignoring comments, which are specified
by a ‘%‘ in column 0):

/(PDB PATH)/pdb2hhb.ent 2hhba { CHAIN A }

/(PDB PATH)/pdb2hhb.ent 2hhbb { CHAIN B }

/(PDB PATH)/pdb4mbn.ent 4mbn { ALL }

/(PDB PATH)/pdb1lh1.ent 1lh1 { ALL }

/(PDB PATH)/pdb1col.ent 1cola { CHAIN A }

Where (PDB PATH) denotes the location of the relevant PDB file on your
system. Note that your PDB files may be called (code).pdb instead, or may
follow some other convention. This is OK, see Chapter 5 (installation) for
details as to setting this up.

Note that there doesn’t need to be a filename in the domain file. One can
merely leave it as ‘Unknown‘ or some other string (i.e. not empty spaces),
and the programs will try and find where the file corresonding to the four
letter code is one your system. In other words, the files given in this distri-
bution should work on your system, provided that you have all the PDB files.
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Note that PDBC can be used to probe information about a PDB entry by
using the ‘-q’ option. Try it and see. This is a good test of whether STAMP
has been set up properly on your system. If you just want to test where
STAMP is looking for PDB and DSSP files, then use the ‘-m’ (minimal) op-
tions. This just reports PDB/DSSP files if found and exits.

STAMP database comparisons are computationally intensive, so it is prudent
to avoid comparisons that are redundant (e.g. multiple mutants or binding
studies of the same protein, T4 lysozyme for example). The STAMP dis-
tribution contains a series of non-redundant databases derived by a parsing
of the SCOP database. In the STAMPDIR/defs directory there are several
databases:
Domain database N Description
scop.dom 17891 All PDB entries classified in SCOP
scop domain.dom 10741 The above, though ignoring multiple copies of the same chain
scop species.dom 3495 One representative from protein of every species
scop prot.dom 2420 One representative from each protein
scop fam.dom 1031 One representative from each protein family
scop supf.dom 716 One representative from each protein superfamily
scop fold.dom 506 One representative per fold

Probably the first two databases are too big to be used sensible with STAMP
(and contain too much redundancy); they have only been included for com-
pleteness. I tend to use “scop species.dom” or “scop prot.dom”, but probably
one could get away with using “scop fam.dom”. It entirely depends on your
patience and CPU resources.

2.6 Generating transformed coordinates

The program TRANSFORM can be used with any file containing domain de-
scriptions to output a set of PDB format files for display or further analysis.
For example, if the transformed PDB files for the globin structural alignment
are desired, then it is only necessary to type:

transform -f globin.5
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should write the following to the standard output:

TRANSFORM R.B. Russell, 1995

Using PDB files

Files will not include heteroatoms

Files will not include waters

Domain 1, 1lh1 => to 1lh1.pdb

Domain 2, 2lhb => to 2lhb.pdb

Domain 3, 1ecd => to 1ecd.pdb

Domain 4, 4mbn => to 4mbn.pdb

Domain 5, 2hhbb => to 2hhbb.pdb

Domain 6, 2hhba => to 2hhba.pdb

To get a set of PDB format files containing the superimposed coordinates.
Running the program as shown above will produce one PDB file for each do-
main identifier. If one wishes to look at the superimposed structures together
(in the same file), then the option -g (i.e. graphics) can be used:

transform -f globin.5 -g -o globins.pdb

should write the following:

TRANSFORM R.B. Russell, 1995

Using PDB files

Files will not include heteroatoms

Files will not include waters

All coordinates will be in file globins.pdb

Domain 1, 1lh1 => to globins.pdb (chain A)

Domain 2, 2lhb => to globins.pdb (chain B)

Domain 3, 1ecd => to globins.pdb (chain C)

Domain 4, 4mbn => to globins.pdb (chain D)

Domain 5, 2hhbb => to globins.pdb (chain E)

Domain 6, 2hhba => to globins.pdb (chain F)

This options puts transformed coordinates for each domain into one file (spec-
ified by -o, in this example it is globins.pdb). Each domain will be labelled
sequentially with a different chain identifier (i.e. A, B, C, etc.). Note that
only ‘globins.pdb’ is included in the example directory.

Be default, TRANSFORM does not include heteroatoms in the output. If
you wish heteroatoms to be included, then add -het to the transform com-
mand. If you wish waters to be included in the file add -hoh. Note that
heteroatoms/waters are sometimes included that fall outside the range of
your domain descriptor. This may seem silly, but it is difficult to deterine
which heteroatoms are associated with which residues given PDB format.
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2.7 Generating averaged coordinates

It may also be useful to have a set of averaged coordinates derived from a
protein structural family. This makes it possible to see what portions of the
structure are common to all members of the family (i.e. the common core).
The program AVESTRUC takes the output from STAMP (i.e. an aligned
family of protein structures), and generates a PDB file containing averaged
coordinates for the common core as identified by STAMP. For example, to
generate the averaged coordinates for the aspartic proteinase domains one
needs to type:

avestruc -f ac_prot.8 -o ac_prot_ave.pdb

The file ac prot ave.pdb will contain a set of averaged Cα atoms taken by
averaging the coordinates for those positions within the file ac prot.8 that
are found to be structurally equivalent. To obtain a poly Alanine set of co-
ordinates (i.e. including main chain and Cβ coordinates), type:

avestruc -f ac_prot.8 -o ac_prot_ave.pdb -polyA

Note that this will only work if all main chain atoms are found in the file
(i.e. it won’t work if the PDB files contain only Cα atoms).

A useful feature in AVESTRUC in stamp version 4.1 is the use of the -
ident and -cons options. The program now labels all residues in the averaged
model as ‘UNK’. If positions are totally conserved across all structures in
the averaged model, the ‘-ident’ option will name residues accordingly. The
-cons option will label residues additionally as conserved in character if all
amino acids in the set have the following properties:
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SMA small
TIN tiny
POL polar
HYD hydrophobic
POS positive
NEG negative
CHA charged
ARO aromatic
ALI aliphatic
BRA Cβ branched

See Taylor (1986) for a description of amino acid properties.

Another new feature is that the tempeature factors now reflect whether pos-
tions are structural conserved, or simply fortitously aligned. If you add the
option ‘-aligned’ to the command line, all positions that are not matched
to a gap will be considered in the generation of the averaged model. If you
then colour your model according to temperature (e.g. with RasMol) the
blue regions will correspond to those that are structural equivalent (as you
have defined or by default) whereas the red regions will show those that are
simply in the same position in the sequence alignment.

2.8 Displaying/processing the output

2.8.1 POSTSTAMP

There is something inherrently wrong with the way STAMP assigns equiv-
alences within multiple alignments. It considers an average set of Cα coor-
dinates and uses an average set of probabilities to derive equivalences when
more than two structures are involved, and as a consequence, it appears to
go wrong (sometimes only) during this process. Usually this is only when
very distantly related proteins are being considered. A fix to this problem
is to consider each pair of structures within the alignment separately, and
to re-calculate the raw Rossmann and Argos probabilities. One need then
define positions as structurally equivalent when all pairs of structures have
a Pij value larger than a cutoff at a particular residue position.
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For example, for ten structures, there are (10 × 9/2) = 45 pairs. For a
position to be structurally equivalent across all members of the family, Pij

should be ≥ 0.5 for all 45 pairs.

POSTSTAMP does just this. It adds two new STAMP format fields to a
STAMP alignment file: one tells whether the above is true (1) or false (0)
for each position (i.e. is each position structurally equivalent across all mem-
bers of the family); the second tells how many pairwise comparison have Pij

greater than or equal to the cutoff (e.g. 0.5).

For example,

poststamp -f globin.5 -min 0.5

Creates a file globin.5.post, containing the above data for a Pij value of 0.5.

2.8.2 STAMP CLEAN

When aligning more than one structure, STAMP will usually create align-
ments that are fairly meaningless within regions that are not structurally
equivalent across all structures. Such regions may have meaning for particu-
lar sub-families of structures, but for the purposes of display, are nonsensical.
STAMP CLEAN is a useful program that takes a STAMP alignment file and
‘cleans up’ such gaps. To run the program, for example (using the POST-
STAMP output file generated above):

stamp_clean globin.5.post 3 > globin.5.clean

will create a file globin.5.clean where all gaps not lying within structurally
equivalent regions, and having fewer than 3 aligned residues in a row (i.e
blocks where all sequences are not aligned with gap) are shortened to their
minimum length.
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2.8.3 Displaying text alignments

There are two ways to display STAMP alignments in a vertical format. The
first is simply to use ACONVERT to change the STAMP block file format
into another such as MSF or CLUSTAL. The format would be:

aconvert -in b -out c < <stamp alignment file>

Where ‘-out c’ denotes CLUSTAL format (using ‘-out m’ would give MSF
format).

ACONVERT does not use any of the STAMP specific parts of the alignment
(i.e reliable structural equivalences, etc.). There is a program specifically
designed for displaying these data in a vertical format. VER2HOR takes a
STAMP alignment file and outputs a horizonal text format. For example, to
display the globin alignment, one needs to type:

ver2hor -f globin.5.clean

to give (see examples/globin/globin.5.ver2hor):

VER2HOR R.B. Russell, 1995

Prints STAMP alignments in horizontal format

for quick viewing

Reading Alignment...

Blocfile read: Length: 163

Getting STAMP information...

6 STAMP fields read in for 163 positions

Processing the alignment...

Output:

Very reliable => Pij’ >=6 for stretches of >=3

Less reliable => Pij’ >=4.5 for stretches of >=3

Post reliable => All Pij’ > stamp_post parameter for stretches >=3

Number 10 20 30 40 50

1lh1 gaLTESQAALVKSSWEEfnanipKHTHRFFILVLEIAPAAKDLFSFLkg

2lhb pivdtgsvapLSAAEKTKIRSAWAPvystyeTSGVDILVKFFTSTPAAQEFFPKFkg

1ecd LSADQISTVQASFDKv kGDPVGILYAVFKADPSIMAKFTQFag

4mbn vLSEGEWQLVLHVWAKveadvaGHGQDILIRLFKSHPETLEKFDRFkh

2hhbb vhLTPEEKSAVTALWGKvn vdEVGGEALGRLLVVYPWTQRFFESFgd

2hhba vLSPADKTNVKAAWGKvgahagEYGAEALERMFLSFPTTKTYFPHF

1lh1_dssp ----HHHHHHHHHHHHHhhtthhHHHHHHHHHHHHH-GGGGGG-TTTtt

2lhb_dssp ---sss------HHHHHHHHHHHHHhhhthhHHHHHHHHHHHHH-GGGGGG-GGGtt
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1ecd_dssp --HHHHHHHHHHHHTt tT-HHHHHHHHHHH-HHHHTT-TTTtt

4mbn_dssp --HHHHHHHHHHHHHGg--hhhHHHHHHHHHHHHHHHHHGGGG----s

2hhbb_dssp ----HHHHHHHHHHHTT-- hhHHHHHHHHHHHHHSGGGGGG-GGG--

2hhba_dssp ---HHHHHHHHHHHHHhggghhHHHHHHHHHHHHH-GGGGGG-TTS

Very similar ----------1111111111111110----0111111111111111111111111--

Less similar ----------1111111111111110----0111111111111111111111111--

Post similar ----------1111111111111110----0111111111111111111111111--

<etc.>

The sequences are displayed, as are the DSSP secondary structures and three
measures of similarity (explained at the top of the output). One can suppress
the displaying of secondary structures by the option ‘-sec false’, or can display
a summary of the secondary structures (an average) by typing ‘-secsum true’.
Try these and see. The column width can be modified by using ‘-columns
<value>’. The remaning parameters are as for DSTAMP (see next section).

2.8.4 Pretty Alignments via ALSCRIPT

DSTAMP generates input files for GJBs ALSCRIPT program. Given a
STAMP alignment file, DSTAMP can be run to create a fairly pretty align-
ment. Detailed descriptions of the parameters are given below. As a quick
example, using the globin example,

dstamp -f globin.5.clean -prefix globin_align

will create a file called:

globin_align.als

Which contains a set of ALSCRIPT commands. To get a pretty Postscript
alignment, one needs to run alscript:

alscript globin_align.als

The file globin align.ps will be created, and is previewable or printable on a
Postscript printer. And is shown in Figure 1.
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By default, residues occuring within structurally equivalent regions will boxed
in the sequence alignment. Helices and strands will appear as cylinders and
arrows (coil/turn regions are not shown). Conserved residues will be in in-
verse text, positions showing a conservation of polar character will be in
bold, those showing conservation of hydrophobic character will be shaded
and those showing a conservation of small size will be shown in a smaller
font. It is possible to modify the output format (paramaters are described
in a Chapter 4). I would also recommend only using the DSTAMP output
as a starting point, and refine the ALSCRIPT file yourself to give the best
alignment. The automated procedure can give some ugly results.

Figure 1 Globin alignment as discussed in the text.

2.8.5 Pretty Structures via MOLSCRIPT

GSTAMP can be used to display the structurally equivalences found by
STAMP. It works by creating an input file for MOLSCRIPT [18] (contact
Per Kraulis to obtain a copy).

As for DSTAMP, a detailed description of parameters is given later. Here is
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a quick example, using the first globin alignment (i.e. containing only two
structures).

First one needs to generate transformed PDB coordinates using the program
TRANSFORM:

transform -f globin.5.clean

This will create 2 PDB files with coordinates superimposed: 2hhbb.pdb and
2hhba.pdb.

gstamp -f globin.5.clean

This reads in the six structures and the alignment and outputs six molscript
files called (domain identifier).molscript.

One must then run molscript on each of these files that one wants to display.
For illustration, we will run two very distantly related globins:

molscript < 1lh1.molscript > 1lh1.ps

molscript < 2hhba.molscript > 2hhba.ps
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To give the two postscript files are shown in Figure 2.

Figure 2 Superimpositions of globin 1lh1 (left) and 2hhba (right).

By default, GSTAMP will show equivalent helix, strand and coil residues as
MOLSCRIPT α helix, β strand and coil, with un-equivalent regions being
shown as Cα trace.

At best, GSTAMP will give only a starting point for further refinement.
Invariably, one will need to modify the orientation of the image for the best
view, and probably need to tweak the assignments of helix and strand to
look clear; MOLSCRIPT will not work, for example, if one has very short
β strands.
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Chapter 3

Input and Output format for
all programs

3.1 Describing domain structures

Every entry in a STAMP input file is called a ‘domain’. This word is a bit
of a misnomer, since these things needn’t be single domains (though it is
usually best to do structure comparisons at the domain level).

The problem of defining domains such that a wide variety of possibilities
may be used (e.g. all the coordinates in a PDB file, one chain, bits of one
chain, two chains, one chain and bits of another, etc) is solved by defining a
domain by: 1) a file, 2) an identifier, and 3) a list of ‘objects’, from the file, to
be included in the domain. An object is defined as a run of Cα coordinates,
and a domain may contain more than one object.

Domains are stored in STAMP in files which may contain one or more of
such domain definitions.

The format of these files must be as follows:

<file name> <identifier label> { <objects> }

or,
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<file name> <identifier label> { <objects> [RETURN]

R11 R12 R13 V1

R21 R22 R23 V2

R31 R32 R33 V3 }

<file name> is the full name (including path) of the PDB file in which the
coordinate information is to be found. If you don’t know the precise location
of the file, then just call it UNK or something (i.e. not a blank), and the
programs should be able to find the appropriate PDB file using the identi-
fier (if one can be found on your system), e.g. /usr/people/jack/pdb4mbn.ent

<identifier label> is a short name to be used by the program. eg. 4mbn1

If secondary structures are to be found by the program, then the first four
letters of the identifier label should be the PDB code should correspond to
the prefix used in your PDB/DSSP naming system. There should be no
duplication of these, to allow for self comparison. It should contain the
brookhaven four letter code first and anything else afterwards.
<objects> are coordinate descriptions, and may be one of three types:

1. ALL

all Cα’s from the file.

2. CHAIN X

only Cα’s labeled as chain X.

3. <chain1> <number1> <insert1> to <chain2> <number2> <insert2>

e.g. B 20 _ to B 67 P

only Cα’s between (and including) the two full brookhaven
residue names (chain, number, insertion code; the ‘ ‘ character denotes a
space)

N.B. THERE MUST BE AT LEAST ONE SPACE BETWEEN THE VAR-
IOUS FIELDS. Combinations of these are allowed within one domain, e.g. ‘
CHAIN A B 1 to B 65 ‘
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R11 → R33 and V1 → V3 are a rotation matrix and translation vector,
respectively.

Thus, a full description of three domains might look something like this:

/data/newpdb/pdb/pdb1ton.ent 1ton { ALL

0.9876 0.34 0.543 19.23

1.0 2.34 0.98473332 1.0

0.023 0.94 4.345 20.0 }

/data/newpdb/pdb/pdb2kai.ent 2kai_Kallikrien { CHAIN X CHAIN Y }

/data/newpdb/pdb/pdb3sgb.ent 3sgbe_SGprotease { E 20 _ to E 160 P

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0 }

Note the spaces. There must be spaces separating each keyword or datum
to be read, even between the braces. For example:

/data/newpdb/pdb/pdb3sgb.ent 3sgb_protease{E 20 _ to E 160P}

would not be allowed.

In the second domain (Kallikrien) the transformation will be set equal to
the identity matrix with a translation of zero, since none has been supplied.

The domains must be listed at the start of a file (ie. nothing must come
before them in a file), but anything may come afterwards, provided that it
contains no braces (ie. { or }) unless they are on lines containing ‘%‘ in the
first column.

It is possible to reverse the direction of an object in a domain description.
For example, if one has two objects, one can reverse the direction of one or
more of these by placing the word ”REVERSE” in front of the object, e.g.:

/data/newpdb/pdb/pdb4mbn.ent { REVERSE _ 1 _ to _ 20 _ _ 21 _ to _ 120 _ }

3.2 Transformations

Transformations, which may or may not be included in the domain definition
given above are in the sense:
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Xnew | R11 R12 R13 | Xold V1

Ynew = | R21 R22 R23 | Yold + V2

Ynew | R31 R32 R33 | Zold V3

or

Xnew = (R11*Xold + R12*Yold + R13*Zold) + V1

Ynew = (R21*Xold + R22*Yold + R23*Zold) + V2

Znew = (R31*Xold + R32*Yold + R33*Zold) + V3

If initial transformations are obtained in some other way (eg. those taken
from a PDB file) they may be passed to STAMP if they are in the above
format. As far as I can make out, this is the standard used in the PDB, but
one can never be sure.

If no transformation is given, then the domain is assigned a unity rotation
matrix and zero translation vector.

3.3 Sequence format

When necessary, STAMP programs read sequence information in NBRF
(PIR) format. For example, user defined secondary structure assignment
might be supplied in a file that looks like:

>Tonin

Tonin secondary structure Author’s assignments

----EEEEE-----EEEEEE-- <etc.> --HHHH---*

>Kallikrien

Kallikrien secondary structure -- visual inspection

----EEEEEEEE---E-EEEEE--- <etc.> --GGHHHH---*

>SGprotease

S. Griseus protease secondary structure.

----EEEEE---EEEE-EEEEEEEE--- <etc.> --GGHGHG---*

This is essentially NBRF (PIR) format. Note the position of the asterix.
Comments must be limited to the single line between the >identifier and the
start of the sequence string.
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3.4 Multiple alignment format

STAMP alignment output consists first of a list of domain descriptions and
relevant transformations. After this an alignment may or may not be output.

Multiple alignments are displayed as follows (see STAMPDIR/examples/globin stamp trans.6):

/data/newpdb/pdb/pdb1lh1.ent 1lh1 { ALL

1.00000 0.00000 0.00000 0.00000

0.00000 1.00000 0.00000 0.00000

0.00000 0.00000 1.00000 0.00000 }

/data/newpdb/pdb/pdb2hhb.ent 2hhba { CHAIN A

0.71639 0.34414 0.60691 19.45435

<Etc.>

-0.31092 -0.94263 0.12159 68.85890 }

Alignment Score Sc = 7.665619

Alignment length Lp = 156

RMS deviation after fitting on 116 atoms = 2.434597

Secondary structures are from DSSP

>1lh1 (cluster A) sequence

>2hhba (cluster B) sequence

>2hhbb (cluster B) sequence

>4mbn (cluster B) sequence

>1ecd (cluster B) sequence

>2lhb (cluster B) sequence

>space

>1lh1_dssp (cluster A) secondary structure from DSSP

>2hhba_dssp (cluster B) secondary structure from DSSP

>2hhbb_dssp (cluster B) secondary structure from DSSP

>4mbn_dssp (cluster B) secondary structure from DSSP

>1ecd_dssp (cluster B) secondary structure from DSSP

>2lhb_dssp (cluster B) secondary structure from DSSP

#T -- ’1’ = used in the final fit

#P -- averaged Pij

#A -- distance between averaged CA atoms in angtroms

#G -- $P_{ij}{\prime}$ value

ABBBBB ABBBBB use Pij Distance $P_{ij}{\prime}$

* iteration 1

P

I

V

D

T

G

S

V

G V A - - -

AVHV P ---- -

LLLLLL ------ 1 0.50337 1.90006 6.98400
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TSTSSS ------ 1 0.49631 2.00483 6.88900

EPPEAA HHHHHH 1 0.55533 1.89926 7.68300

SAEGDA HHHHHH 1 0.60834 1.80863 8.39600

QDEEQE HHHHHH 1 0.70134 1.64212 9.64700

AKKWIK HHHHHH 1 0.75434 1.52204 10.36000

ATSQST HHHHHH 1 0.75137 1.51092 10.32000

LNALTK HHHHHH 1 0.80831 1.36142 11.08600

VVVVVI HHHHHH 1 0.85737 1.21626 11.74600

KKTLQR HHHHHH 1 0.83537 1.27448 11.45000

<Etc.>

ITNKGI HHHHHH 1 0.85737 1.04393 11.74600

VVADML HHHHHH 1 0.84332 1.11847 11.55700

ILLIIL HHHHHH 1 0.81232 1.20349 11.14000

KTAAFR HTHHHH 1 0.80035 1.22529 10.97900

KSHASS HTTHHT 1 0.73137 1.29476 10.05100

EKKKKA HTTHHT 1 0.60031 1.66495 8.28800

M Y H H

D K H H

D E H H

A L H H

*

The ‘>’ and ‘#’ characters tell the routines that read alignments what is to
be contained in each field. A ‘>’ character denotes a character string which
is to be displayed vertically, and a ‘#’ character denotes a string of numbers
to be displayed separated by spaces. Thus in the above example we have 13
character strings vertically (6 amino acid sequences, 1 string of spaces and
6 DSSP assignments) and 6 numeric fields (corresponding to various details
from STAMP) specified. The actual alignment will be contained within ‘*’
characters as shown. Accordingly, no occurance of ‘>’, ‘#’ and ‘*’ characters
should occur outside of these contexts.

The As and Bs just above the ‘*’ symble refer to the members of the two
cluster (branches) which are brought together during this alignment.

Briefly, the numeric fields are:

#T 1 or 0, 1 shows those residues used to determine the fit of the two
sets of structures.

#P averaged Rossmann and Argos Pij value

#A distance between averaged Cα atoms
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#G corrected Pij value (Pij′)

Note that the program POSTSTAMP adds two new fields:

#B 1 if all pairiwse Pij ≥ the user defined minimum, 0 otherwise

#R the total number of pairwise comparisons having Pij ≥ the cutoff out of
N × (N − 1)/2

3.5 Output from SCANS

Output from STAMP scans consists of a list of domains and a corresponding
set of scores, lengths and other numbers that can be used to sort and under-
stand the output.

The format is as follows (see examples/1cmsN stamp scan.trans):

% Output from STAMP scanning routine

%

% Domain 1cmsN was used to scan the domain database:

% ac_prot.domains

% 2 fits were performed

% Fit 1 E1= 20.000, E2= 3.800, CUT= 1.000

% Fit 2 E1= 3.800, E2= 3.800, CUT= 4.500

% Approximate fits (alignment from N-termini) were performed

% at every 5 residue of the database sequences

% Transformations were output for Sc= 2.000

%

% Domain used to scan

# Sc= 10.000 RMS= 0.01 Len= 999 nfit= 999 Seqid= 100.00 Secid= 100.00 q_len= 175 d_len= 175

n_sec= 100 n_equiv 999 fit_pos= _ 0 _

/disk3/pdb/pdb1cms.ent 1cmsN { _ 1 _ to _ 175 _ }

# Sc= 9.744 RMS= 0.000 len= 174 nfit= 174 seq_id= 99.43 sec_id= 94.86 q_len= 175 d_len= 175

n_sec= 18 n_equiv= 173 fit_pos= _ 1 _

/disk3/pdb/pdb1cms.ent 1cmsN_1 { _ 1 _ to _ 175 _

1.00000 0.00000 0.00000 0.00000

0.00000 1.00000 0.00000 0.00000

0.00000 0.00000 1.00000 0.00000 }

# Sc= 2.749 RMS= 2.352 len= 204 nfit= 63 seq_id= 8.00 sec_id= 41.14 q_len= 175 d_len= 148

n_sec= 13 n_equiv= 58 fit_pos= _ 176 _

/disk3/pdb/pdb1cms.ent 1cmsC_1 { _ 176 _ to _ 323 _

-0.98340 -0.10624 -0.14708 36.75176

<etc.>
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(note that the lines begining by ‘#’ symbols have been wrapped here) ‘%‘
denotes a comment, and ‘#’ denotes numbers corresponding to the domain
description described below (both will be ignored by all programs except for
SORTTRANS, which uses the ‘#’ fields to sort and interpret the data.

‘Sc’ is the STAMP Score for the comparison of the query to each database
sequence. ‘RMS’ is the RMS difference between equivalenced atoms, ‘len’ is
the alignment length, ‘nfit’ is the number of atoms used during the final fit of
the two domains, ‘seq id’ and ‘sec id’ are the sequence and secondary struc-
ture identities, ‘q len’ and ‘d len’ are the lengths of the query and database
structure (in residues), ‘n sec’ is the number of equivalenced secondary struc-
tures, and ‘n equiv’ are the number of residues found within stretches of 3
or more having P ′

ij ≥ 6. These fields are used during any run of SORT-
TRANS to sort and remove redundant/poor superimpositions. ‘fit pos’ is
the brookhaven numbering of the position in the database sequence to which
the query’s N-terminal end was aligned for the initial fit. The transformation
supplied is that for the superimposition of the database structures onto the
query.

3.6 Output to standard output or log file

STAMP now keeps fairly quiet during its running, updating the user only
after a pairwise/treewise/scan comparison has been compeleted. You can
get lots of other output by using the -V (verbose) option. If you want a
lot of output to be written to a file instead of the standard output, you can
use -V in conjunction with -logfile <file name>. I would go into a detailed
description of this output, but I am getting tired.
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Chapter 4

Summary of STAMP
parameters

4.1 Main program (STAMP)

The format for running STAMP is:

stamp -l <starting domain file> -s -o <output file> -P <parameter file>

-n <1 or 2 fits> -d <database file for scans>

-slide <slide value>

-pen1 <gap penatly 1> -pen2 <gap pentalty 2>

-prefix <output file prefix>

-V

-rough

-cut

-<parameter> <value>

If you have old STAMP parameter files, they can be read by using the com-
mand stamp -P <parameter file>. This means that the old file can be read
in exactly the same way as for version 2.0.

In general, all commands can be specified by -<parameter> <value>. For
example, ‘-first pairpen 0.5’. However, I have made some abbreviations for
frequently used commands, these are:

-l <starting domain file> same as -listfile <list file>

-o <output file> same as -logfile <output file>

-n <1 or 2> same as -npass <1 or 2>

-pen1 <gap penalty 1> same as -first_pairpen <gap penalty 1>

-pen2 <gap penalty 2> same as -second_pairpen <gap pentalty 2>
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-prefix <output prefix> same as -transprefix <output prefix>

-s same as -scan true

-d <database file> same as -database <database file>

-slide <slide parameter> same as -scanslide <slide parameter>

-cut same as -co true

-rough same as -roughfit true

Default parameters are always looked for in the file STAMPDIR/stamp.defaults.
You can personalise this is as you like, but I would recommend using the de-
faults, unless you have a thorough understnading of the method. The values
described below were essentially chosen to mimick the successful and well-
tested parameters [1].

I would recommend using the command line parameters. The commands,
and their arguments are given below. The command line parameters are
case insensitive. To use a parameter one need only type ‘-<parameter>
<value>’ or use on of the short forms listed above.

STAMP can also be supplied with a parameter file. Parameters in a pa-
rameter file can be supplied in the format:

<Parameter> <Value> <Optional Comments> [return]

eg.

PAIRWISE Yes Perform pairwise calculations

E1 3.8

E2 3.8

CUTOFF 4.5

Since the program is written in C, the input is read in an open format.
Generally, data are expected to be separated by spaces or return characters.
The number and position of spaces, tabs and returns generally should not
matter with the exception of PDB format, which is read as the fixed format
described in the brookhaven documentation.

The possible parameters are listed below. Strings, characters, floats and
integers are as expected (though strings may not contain spaces). Boolean
variables may be set by any of the following:
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TRUE == TRUE, True, T, true, Yes, YES, yes, Y, 1

FALSE == FALSE, False, F, false, No, NO, n, 0

LOGFILE <string>
This is the file into which the log is to be written. If ‘stdout’ is supplied then
the information is written to the standard output.
Default LOGFILE = stdout

LISTFILE <string> (or ‘-l <string>’ or ‘-f <string>’)
This is the name of a file that contains the location and description of the
domains to be analysed and, if desired, an initial transformation.
Default LISTFILE = domain.list

SECTYPE <integer>
This must be set to 0 (no secondary structure assignment) or to one of the
following values:

SECTYPE = 1 Kabsch and Sander’s DSSP output. This program, which
calculates secondary structure based on hydrogen bonding criteria [19] is
available from the EMBL fileserver.
SECTYPE = 2 Secondary structure summary format. A string of residue
by residue secondary structure assignments for each domain is to be read in
from SECFILE in the format specified in the previous chapter.

Note that it is not possible to mix assignments. This is probably not a
very realistic thing to do anyway, since assignments can differ substantially.
If you really want to do this, then the only possible way is to set SECTYPE
= 3, and define each secondary structure independently in SECFILE.
Default SECTYPE = 1 (for DSSP).

SECFILE <string>
The file from which user specified secondary structure assignments are to be
read (ie. SECTYPE = 2 only).
Default SECFILE = stamp.sec

PAIRWISE <boolean>
If TRUE, then pairwise comparisons are to be performed for each possible
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pair of domains described in LISTFILE. A matrix of pairwise (Sc) scores will
be output (to MATFILE).
Default PAIRWISE = TRUE

N.B. Many of the following parameters also apply to TREEWISE and SCAN
comparisons. For clarity they are discussed here in the PAIRWISE compar-
ison context.

NPASS <1 or 2> (or ‘-n <1 or 2>’)
Whether one or two fits are to be performed. The idea is that the initial
fit can be used with a conformation biased set of parameters to improve
the initial fit prior to fitting using distance and conformation parameters.
The parameters described below are called ‘first ’ and ‘second ’ accordingly.
When NPASS = 1, then only the ‘second ’ (or unprefixed) parameters are
used. Default NPASS = 1

SW <0 or 1>
If set to 0, then the entire M x N matrix will be calculated and used during
the Smith Waterman path finding routine. If set to 1, then a corner cutting
routine will be used (to save time). Note that corner cutting will nullify many
of the parameters specified in [1], and is only recommended for SCAN mode.
Accordingly, corner cutting parameters are specified below (after SCAN).

PAIRPEN <float> (or ‘-pen1 <float>’/ ‘-pen2 <float>’)
(first PAIRPEN)
(second PAIRPEN)
Smith-Waterman gap penalty to be used during the fitting. second PAIRPEN
and PAIRPEN are equivalent. (PAIRPEN is also relevant to treewise fitting)
Defaults PAIRPEN = second PAIRPEN = 0.0 first PAIRPEN = 0.0

E1 <float>
E2 <float>
(first E1,first E2)
(second E2,second E2)

Rossmann and Argos parameters to be used during the fitting. Rossmann
and Argos suggested that E1 = E2 = 3.8 lead to good superimpositions,
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and further suggested that E1 = 20.0 and E2 = 3.8 would relax the distance
requirement, and allow poor initial superimpositions to be improved. The
defaults are defined accordingly.
Defaults:
E1 = second E1 = 3.8
E2 = second E2 = 3.8
first E1 = 20.0
first E2 = 3.8

I would not recommend modifying these parameters, since I really don’t
know what changing them will do. If it ain’t broke, don’t fix it as my father
would say.

NA <float>
NB <float>
NASD <float>
NBSD <float>
NSD <float>
NMEAN <float>

Parameters used to define Pij′ and Sc values. These are defined in [1]. I
wouldn’t change these.

Defaults:
NA = -0.9497
NB = 0.6859
NASD = -0.4743
NBSD = 0.01522
NMEAN = 0.02
NSD = 0.1

CUTOFF <float>
(first CUTOFF)
(second CUTOFF)
This is the minimum Pij′ value allowed for atoms to be used for a least
squares fit. Equivalences above this value will be used to determine a trans-
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formation and RMS deviation.
Defaults:
CUTOFF = second CUTOFF = 4.5
first CUTOFF = 1.0

PAIRALIGN <boolean>
If true, then each final pairwise alignment will be output to the log file.
Default PAIRALIGN = FALSE

COLUMNS <integer>
Number of sequence positions to be displayed per line when either PAIRALIGN,
SCANALIN or TREEALIGN is set to TRUE.
Default COLUMNS = 80

SCORETOL <float>
This is the percent Sc difference that will result in convergence being reached.
In other words, if 100× abs|Sc −Sc,old|/Sc,old ≤ SCORETOL then the fitting
will be considered done.
Default SCORETOL = 1.0

MAXPITER <integer>
The maximum number of iterations allowed during the pairwise comparisons.
This prevents a particular fit, which jumps between two values rather than
converging, from lasting indefinitely.
Default MAXPITER = 10

MATFILE <string>
This is the file which contains an upper diagonal matrix consisting of the
pairwise Scores (either 1/RMS, or Sc) for each comparison. It may then be
used to derive a tree, if desired, for treewise analysis.
Default MATFILE = <stamp prefix>.mat

ROUGHFIT <boolean> (or ‘-rough’ to set to TRUE)
If set to TRUE, then an initial rough superimposition will be performed by
aligning the N-terminal ends of the sequences and fitting on whatever atoms
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this process equivalences. Probably this is too crude for structures that differ
quite a bit, but if they are very similar, one can use this to avoid having to
perform a multiple sequence alignment.

TREEWISE <boolean>
If TRUE, then a treewise comparison is performed by following a derived
hierarchy. Reads in the matrix file specified (either created by PAIRWISE
or some other method), derives a tree (dendrogram), and does a tree-based
alignment.
Default TREEWISE = TRUE

TREEPEN <float>
(first TREEPEN)
(second TREEPEN)
Value subtracted from the Pij′ matrix at positions where a residue is to be
aligned with a gap. For details see [1].
Defaults TREEPEN = second TREEPEN = 0.0 first TREEPEN = 0.0

MAXTITER <int>
As for MAXPITER, but applied to the treewise case.
Default MAXPITER = 10

TREEALIGN <boolean>
As for PAIRALIGN, only for treewise comparisons.
Default TREEALIGN = TRUE

STAMPPREFIX <string> (or ‘-prefix <string>’)
This is the name of the family of files that will be produced from a multiple
alignment. The files will be named STAMPPREFIX.<N>, where N is the
number of the cluster after which the alignment has been derived. There are
always one fewer clusters than their are domains being compared.
Default STAMPPREFIX = ‘stamp trans’

SCAN <boolean> (or simply ‘-s’ to set true)
If TRUE, then SCAN mode is selected. TREEWISE and PAIRWISE are
set to FALSE. The first domain described in LISTFILE (the query) is used
to scan all the domains listed in DATABASE. The parameters for scanning
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are described below. The output of a SCAN run appears in the file called
STAMPPREFIX.scan.
Default SCAN = FALSE

DATABASE <string> (or -d <string>)
The list of domains to be compared with the query during a scan.
Default DATABASE = domain.database

MAXSITER <int>
As for MAXPITER and MAXTITER, but for scanning. Equivalent within
the program to MAXPITER.
Default MAXSITER = 10

SCANALIGN <boolean>
As for PAIRALIGN and TREEALIGN, but for scanning. Equivalent within
the program to MAXPITER.
Default SCANALIGN = FALSE

SCANSCORE <integer>
Specifies how the Sc value is to be calculated. This depends on the particular
application. The values are described in the first chapter.

As a general rule of thumb, use SCANSCORE=6 for large database scans,
when you are scanning with a small domain, and wishing to find all examples
of this domain – even within large structures. Use SCANSCORE=1 when
you wish to obtain a set of transformations for a set of domains which you
know are similar (and have defined fairly precisely as domains rather than
the larger structure that they may be a part of).
Default SCANSCORE = 6

SKIPAHEAD <boolean>
If set to TRUE, then the program will skip over all hits. In other words,
if a similarity is found with a particular starting fit position, then the next
fit position will be the last residue of the similar region. This is not always
desireable, since there can be more than one hit within repetetive structures,
such as α/β barrels.
Default SKIPAHED = TRUE
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OPD <boolean>
Means “One Per Domain”. When the first hit for a domain is found during a
SCAN (i.e. with Sc above SCANCUT), the rest of the comparisons involving
that domain are skipped. Means that multiple matches involving the probe
and database structures will be missed.
Default OPD = FALSE

SCANCUT <float>
If SCANMODE = 1, then Sc must be >= SCANCUT in order for a trans-
formation to be output.
Default SCANCUT = 2.0

SCANSLIDE <integer> (or ‘-slide <integer>’) This is the number of residues
that a query sequence is ‘slid‘ along a database sequence to derive each ini-
tial superimposition. Initially, the N–terminus of the query is aligned to
the 1st residue of the databse, once this fit has been performed and refined,
and tested for good structural similarity, the N–terminus is aligned with the
1+<SCANSLIDE>th position, and the process repeated until the end of the
database sequence has been reached.
Default SCANSLIDE = 5

SCANTRUNC <boolean>
If TRUE, then sequences from DATABASE that are more than SCANT-
RUNCFACTOR x the length of the query sequence are truncated to this
size. This saves a lot of CPU time, as comparisons between things that are
vastly different in size are largely meaningless. Moreover, since most scans
will be done with discrete domains, then this allows separate domains in large
proteins to be compared to the query separately.
Default SCANTRUNC = TRUE

SCANTRUNCFACTOR <float>
The largest size of sequence which may be compared to the query sequence
(expressed as SCANTRUNCFACTOR x query sequence length). Structures
in the DATABASE that are larger than this will be truncated to this size if
SCANTRUNC = TRUE.
Default SCANTRUNCFACTOR = 2.0
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SLOWSCAN <boolean>
If set to TRUE, then the SLOW method of getting the initial fits for scanning
will be used (See chapter 1).
Default SLOWSCAN = FALSE

MIN FRAC <float>
This is the minimum ratio of database length/query length to be allowed. In
other words, if a database structure is too small (ie. if databaselength/query
length < MIN FRAC), then the comparison will be skipped. Whether to use
this or not depends on whether or not one is interested in sub alignments
where only a part of the query structure is used. The default implies that all
comparisons will be performed.
Default MIN FRAC = 0.001

SECSCREEN <boolean>
If TRUE, then an initial comparison between query and DATABASE sec-
ondary structure assignments (if available) is performed. A secondary struc-
ture distance is defined by:

Dsec =
√

(‖Qh −Dh‖2 + ‖Qb −Db‖2)

where Qh and Qb are the percent of Helix and Beta structure in the query,
and Dh and Db are the same for the database sequence. If Dist is larger than
a threshold (SECSCREENMAX) then the comparison will be ignored.
Default SECSCREEN = true

SECSCREENMAX <float>
This is the maximum value of Dist (above) tolerated. If Dist is larger than
SECSCREENMAX then the comparison is ignored. For screening to be ef-
fective, it is important that secondary structure assignments are accurate
(preferably done using the same program).
Default SECSCREENMAX = 60.0 (this is very lenient; 40 is usually safe)

CCFACTOR <float>
Corner cutting factor. This is approximately the maximum number of gaps
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to be tolerated in any pairwise comparison. Only used if SW = 1. For a
more detailed explanation, refer to [6] (pp 279 – 281).
Default CCFACTOR = 30.0

CCADD <boolean>
If TRUE, then the difference between query and database sequence lengths
will be added to CCFACTOR. Probably this is only realistic when SCANT-
RUNC is set TRUE.
Default CCADD = FALSE

PRECISION <integer>
Since STAMP works as much as possible with integers, this is what all float-
ing point values are multiplied by during conversion. A value of 1000 has
never presented us with any problems.
Default PRECISION = 1000

MAX SEQ LEN <integer>
The maximum length of alignment tolerated. The program ought to inform
you when this value is surpassed.
Default MAX SEQ LEN = 1500

4.2 Summary of parameters for other pro-

grams

4.2.1 PDB checker (PDBC)

This is a simple program which looks for the location of a four letter PDB
code (using the list of directories, prefixes and suffixes supplied in the file
./pdb.directories or if this does not exist STAMPDIR/pdb.directories) There
are several options:

pdbc -q <four letter code>

will mearly report useful information (number of atoms, the occurance of
HETATM, resolution, etc.) about each chain found in the PDB file which
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corresponds to the four letter code supplied.

pdbc -d <four letter code>[<chains to be considered>]

this outputs a domain description (or more than one if more than one chain is
given. Sequential use of this program can be used to create a list of domains
for use in scanning.

pdbc -m <four letter code>

this will just report the location of PDB and DSSP files. Good for a quick
test of whether PDB codes can be found in the files specified in STAMPDIR.

Output is to standard output.

4.2.2 PDBSEQ

This program takes a list of protein domains (ie. a LISTFILE) and outputs
a series of sequences derived from the described PDB files. The format is:

pdbseq -f <domain file> [-min <val> -max <val> -separate

-foramt <fasta> -v -tl <max title length>]

‘-min/max <val>’ specify the minimum/maximum sequence length to be
output. If the length of a sequence is less than min or greater than max,
the sequence will be skipped (useful particularly if one wants to ignore very
short PDB sequence, such as peptide inhibitors, etc.).

The output is in NBRF (PIR) format, and is written to the standard output.
Using ‘-format <fasta> will make the output as FASTA format.

The option ‘-separate’ will produce files for each domain in the input file.
These files are named ‘ID’.seq.

The program outputs a title line that attempts to describe the protein se-
quence according to the definitions given in the PDB file. The TITLE,
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COMPND and SOURCE lines are strung together (in that order). The
option -tl ¡number¿ (tl = title limit) specifies the maximum length of this
string. This description will always be postfixed (after a “:”) by the range
of residues considered (i.e. All, Chain a, etc.).

4.2.3 ALIGNFIT

ALIGNFIT takes a multiple sequence alignment of proteins of known 3D
structures and uses it to superimpose them. It requires two files: an AMPS
multiple sequence alignment (block format), and a domain description file.
An optional parameter file may be supplied; if none is given the program
simply uses default parameters.

The format is:

alignfit -a <AMPS file> -d <domain file>

(-P <optional parm file> -<parameter> <value>)

-P can be used to read in an old ALIGNFIT parameter file (version 3.0 and
earlier) The possible parameters, and their defaults are (names are case in-
sensitive):

PAIRWISE <boolean>
If TRUE, then pairwise comparisons will be performed to derive a matrix
(MATFILE).
Default PAIRWISE = TRUE

TREEWISE <boolean>
If TRUE, then treewise comparisons will be performed to derive a final trans-
formation.
Default TREEWISE = TRUE

MATFILE <string>
The file into which the results of PAIRWISE are output.
Default MATFILE = alignfit.mat

MAX SEQ LEN <integer>
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The maximum length of alignment to be tolerated.
Default is 3000

For most purposes, the default parameters should suffice. Note that one can
use ACONVERT to convert CLUSTAL and MSF formats to block format,
so that one can use alignments created using other programs (e.g. PILEUP,
CLUSTAL, etc.) as a starting point for superimposition.

4.2.4 VER2HOR

This program provides a horizontal alignment given a STAMP alignment file
(i.e. a text alignment written to the standard output). The format is:

ver2hor -f <stamp alignment file> [ -columns <width> ]

‘-columns’ specifies the number of columns to be used in the alignment out-
put. This program is explained by example in the Worked Examples chapter.
It also accepts most DSTAMP (see below) commands (i.e. those that are rel-
evant to text output) from the command line.

4.2.5 DSTAMP

This program provides input for ALSCRIPT [20], GJB’s program for the
display of multiple sequence alignments. To get a copy of this program, refer
to GJB at the above address.

The format is:

dstamp -f <STAMP alignment file> -prefix <output prefix>

(-<parameter> [<value>])

where <parameter> is one of the many parameters described below. The
new command line argument -P reads in parameter files, so if you have old
DSTAMP files, they can still be read in this way.

The parameters for DSTAMP, and their defaults, are (parameter names are
case insensitive):
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prefix <string>
Prefix specify the name of the alscript (.als) and postscript files (.ps) to be
generated.
Default prefix = ‘alscript’

t <character>
The type of STAMP data to be used (ie. the first letter that occurs after the
‘#’ characters in STAMP multiple alignment output). Default t = ‘G’

c <float>
The minimum (or maximum in the case of RMS deviation) value to make a
position considered as reliably aligned.
Default c = 6.0

w <integer>
The minimum length of a stetch of reliable regions to be allowed.
Default w = 3

ignore <integer>
This is the number of sequences that can be ignored during the calculation
of residue or residue-property conservation (i.e. if ignore = 1 you allow one
‘error’ in one sequence during the calculation of conserved positions).

colour
Boolean parameter. If specified, the output will be in colour (via alscript).

motif
Boolean parameter. If specified, then a motif is written in the space between
the sequence alignment and the aligned secondary structures.

The output is an ALSCRIPT command file.

4.2.6 SORTTRANS

This program takes the output from a scan, and cleans and sorts the output.
It removes repeated transformations by a simple least squares comparison
of the matrices and vectors for those transformations which have the same
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identifier.

The format is:

sorttrans -f <scan output file> -s <keyword> <cutoff> [-t -i]

-f reads output from STAMP scanning, -s tells the program how to sort the
output. The keyword tells which method to use. There are 8 possible key-
words:

Sc sort by Sc

rms RMS deviaition

nfit number of fitted atoms

len alignment length

frac nfit/len

q_frac nfit/q_len (q_len = length of query structure)

d_frac nfit/d_len (d_len = length of database structure)

n_sec number of equivalent secondary structure elements

seq_id percent sequence identity

sec_id percent secondary structure identity

sorted transformations are written to the standard output.
The option -i ==> identifiers only. Consider only the best transformation
per identifier.

The option -n ==> ignore domain descriptors. This means that only the
filename and the transformations are used. This is useful if you have different
domain names attributed to the same region of the structure. Why I put this
in I can’t remember, but it must have been useful for something.

4.2.7 TRANSFORM

This program takes a transformation file, either from ALIGNFIT, STAMP,
or SORTRANS and outputs a series of PDB format files containing the spec-
ified coordinates transformed as specified in the given file.

The format is:

transform -f <transformation file> [ -g -het -hoh -o <output file> ]
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options:

‘-het’ Include hetero atoms. Hetero atoms are normally not included in the
output.
‘-hoh’ Include waters.

‘-g’ Graphics output. This mode puts all transformed coordinates into a
single PDB file, and labels the chains for domains sequentially (after their
order in the transformation file) with A, B, C.. etc. This allows fast analysis
of the structures graphically (i.e. using Rasmol) since one need only colour
each chain a different colour to see the superimposition. The default file for
writing the coordinates using this mode is ‘all.pdb’, but this can be changed
(see below).

‘-o <output file>’ When using ‘-g’, this option allows the specification of
a file to contain the transformed coordinates. The default is ‘all.pdb’

The PDB files will be named <identifier>.pdb (except when running using
the ‘-g’ option).

4.2.8 PICKFRAME

It is often the case that one wishes a particular protein structure to be the
‘parent’ of the superimposition, i.e. the structure that is un-transformed.
Accordingly, the program PICKFRAME allows one to select a particular
reference frame for a particular domain identifier. Given a transformation
file and an identifier, the program will set the selected identifier’s transforma-
tion to the unit matrix and zero vector, and transform the other structures
accordingly. This is useful if one wishes to combine different transformation
files (i.e. if a multidomain protein has two domains, with each being similar
to a separate domain).

The format is:

pickframe -f <transformation file> -i <domain identifier>
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The output will be to the standard output (i.e. one need just pipe the results
into a file).

This program is very useful if one wishes to superimpose STAMP results
for two different domains from the same protein. Since one can just make
all transformations relative to the PDB file containing the two domains, and
then combine the output into one transformation file.

4.2.9 MERGETRANS & EXTRANS

Sometimes one has several transformations and wants to combine them. For
example, one may have transformations from an ALIGNFIT run (i.e. taken
from a multiple alignment) and those from a STAMP run and want to com-
bine them, since they have at least one domain in common. This would avoid
having to run the more time-consumming STAMP program on things where
similarity was obvious (i.e. clear sequence homologues). MERGETRANS
allows this to be done.
The format is:

mergetrans -f1 <transformation file1> -f2 <transformation file2> [-i <domain identifier>]

If an identifier is given, then that identifier will be used to link the two files
(provided it can be found in both). Otherwise the program will simply search
for the first identifier that is exactly in common across the two transforma-
tion files.

One may also wish to extract particular transformations from a file. To
do this, use EXTRANS as follows:

extrans -f <transformation file> -i <id1> <id2> <id3> ... <idN>

A new transformation file will be output to the standard output containing
only those domains that have been input on the command line.
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4.2.10 MERGESTAMP

Sometimes one has several files containing transformations or alignemnts or
both and wants to combine them. Alignments/transformations from STAMP
may need to be combined with (for example) an alignment of a single PDB se-
quence with it’s homologues from a sequence database search, etc. MERGES-
TAMP does just this. It is essentially an extension of MERGETRANS.

The format is:

mergestamp -f1 <transformation file1> -f2 <transformation file2> [-i <domain identifier>]

If an identifier is given, then that identifier will be used to link the two
files (provided it can be found in both). Otherwise the program will sim-
ply search for the first identifier that is exactly in common across the two
transformation/alignment files.

4.2.11 AVESTRUC
For various reasons, it is often useful to derive ‘average‘ structures (i.e. for
homology modelling, molecular replacement search objects, etc.). STAMP
output provides an obvious starting point for obtaining an average structure.
AVESTRUC reads in a STAMP alignment file, and generates another PDB
file containing averaged coordaintes (either as C alpha or as a polyalanine
structure).

The format is:

avestruc -f <STAMP alignment file>

[ -polyA -c <STAMP char> -t <threshold> -w <window> -aligned ]

‘-f’ specifies the file to be considered. Note that this MUST BE a STAMP
alignment file, containing both transformations and a sequence alignment.
It will not work on transformation files lacking sequence alignment data or
STAMP data.

‘-polyA’ generate polyalanine model, the default is a C alpha model

‘-c <STAMP char>’ ‘-t <threshold>’ ‘-w <window>’
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these three parameters tell the program how to define structurally equiva-
lent residues. ‘STAMP char’ is the label of the STAMP field specified by
the ‘#’ character in the alignment file. ‘threshold’ is the minimum (or maxi-
mum in the case of RMS deviation) value of the specified STAMP parameter
tolerated, and ‘window’ tells the minimum number of residues over which
this must be true for structural equivalence. This is less complicated than it
sounds.

The default is as described in [1]:
STAMP char = ‘G’ (i.e. Pij′)
threshold = 6.0
window = 3
(i.e. stretches of three or more residues having Pij′ > 6.0 are considered
equivalent)

‘-aligned’ this flag will generate an averaged position for all positions struc-
tures are present at a position (i.e. positions not containing any gaps are
deamed equivalent). The temperature factor will then distinguish between
genuine structural equivalences and fortitously aligned residues.

‘-ident’ ‘-cons’ these flags will name residues either as a single amino acid
type (ident) or a conserved type (cons) according to the sequence alignment.
See the appropriate sections in the preceding chapter for a further explana-
tion.

4.2.12 GSTAMP

Like DSTAMP, this program takes STAMP output and translates it in to
input for another program, namely Per Kraulis’ program MOLSCRIPT. The
program allows one to create multiple molscript files (i.e. one for each struc-
ture in the STAMP alignment file), or a single molscript file for an aver-
age structure. Appropriate PDB files for these alternatives must be gener-
ated by using TRANSFORM and AVESTRUC, respectively, prior to running
MOLSCRIPT.

When multiple structure are considered, structurally equivalent regions (spec-
ified as for AVESTRUC) are shown as MOLSCRIPT helix, strand or coil.
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Non-structurally equivalent regions are shown as Cα trace. For an example
of how this looks, see Figure 1 [11] or Figure 1 in [12].

The rest is up to you. Once MOLSCRIPT input files have been generated,
they can be modified to suit your particular display needs (i.e. using colour,
etc.).

The format is:

gstamp -f <STAMP alignment file>

[ -c <STAMP char> -t <threshold> -w <window> -aligned -a -cons ]

-f, -c, -t, -w and -aligned is as for AVESTRUC and DSTAMP.

-a specifies that an average structure is to be used.

-cons specifies how the secondary structures are to be define in the MOLSCRIPT
files. By default, structures are displayed as helix or strand only if all struc-
tures are helix or strand at the positions. ‘- cons’ means that structures are
displayed as helix or strand if the majority of structures are helix or strand
at the positions. In both cases, the remaining structures are drawn as ‘coil’.

BUG: sometimes GSTAMP will output single residue strands for Molscript
input. It is therefore necessary to modify the Molscript output to correct the
odd mistake (single residue strands produce funny pictures in my version of
MOLSCRIPT — try it and see).

4.2.13 STAMP CLEAN

This program allows you to tidy up gaps that are not meaningful in the con-
text of a multiple sequence alignment derived from structure. In other words,
regions that are not similar across all members of a structural family can be
‘cleaned’ to remove isolated residues aligned in the middle of nowhere. Note
that one doesn’t always want to do this (since the sub-alignments can be
meaningful). I just find this useful if I am preparing a figure for publication
or something.

The format is:
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stamp_clean <stamp alignment file> <minimum segment length> > <output file>

The <minimum segment length> is the minimum number of residues that
is to be considered significant. I always use 3, since this means that short
stretches of 1-2 residues that are surround by gaps (i.e. in any sequence) are
‘cleaned’. Try it and see what I mean.

4.2.14 Converting alignment formats ACONVERT

A perl utility is now included in the STAMP package. In the STAMPDIR/bin
directory you should find a perl program called ACONVERT. This program
converts various alignment formats back and forth. The format is:

aconvert [-in <type> -out <type>] < <input file> > <output file>

where ‘type’ is one of ‘c’, ‘m’, ‘b’, ‘f’, ‘p’, which denote CLUSTAL, MSF,
BLOCK, FASTA and PIR format respectively. If no ‘-in’ argument is given,
the program tries to guess the format, though note that this can sometimes
fail (the program will usually tell you). So to convert a STAMP alignment
into CLUSTAL format, you type (e.g.):

aconvert -in b -out c < stamp_trans.10 > stamp_trans.10.aln
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Chapter 5

Installation

5.1 Compiling/running

STAMP was developed on a Sun SPARCstation, and later on a Silicon Graph-
ics system. Consequently it may encounter difficulties running on other sys-
tems.

Most of STAMP was written in C, thus STAMP requires an ansi-C com-
piler (e.g. gcc) for installation.

STAMP should be received as a gzipped tar file, so must be uncompressed
and de-tarred to expose all files and directories.

On most UNIX systems, one can install STAMP with:

gunzip STAMP.tarfile.gz

tar xvf STAMP.tarfile

cd stamp.4.1

BUILD <system type> (e.g. BUILD sgi)

should work.

The systems that are available are:
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sgi (IRIX64 version 6.2)
mips4-sgi (IRIX64 R10K version 6.2)
dec (OSF1 version 4.0)
sun (SunOS sol4 5.5.1)
linux (Linux 2.0.36)

All of these are specified by a makefile in the src/ sub–directory. If your
system isn’t one of the above, then you can probably just use the one that
is nearest, and edit the makefile accordingly. Note that the above are just
the systems that I have easy access to. Note also that there are only very
few differences between the various makefiles. I haven’t been able to test the
‘linux’ version as robustly as the others owing to limited time and access.

Note that there are several precompiled executables in the distribution. Files
found in the directories bin/sgi, bin/sun, bin/dec, bin/linux. You will over-
write these if you attempt a ‘BUILD’ as discussed above. Note also that
these binaries may be slightly out of date, as their creation depends entirely
on the machine I have access to.

Once the executables are made, they will be put into the directory bin/<system-
type>, and these can then either be included in your path name, or linked/copied
to some central directory, such as /usr/local/bin.

5.2 Setting up STAMP files

To use STAMP, all users must define the environment variable STAMPDIR,
and set it equal to the sub-directory /defs in which the installation was made.
Users must also have STAMPDIR in their path. The logical thing is to make
modifications to one’s .cshrc file to this end.

STAMP reads PDB coordinate information and DSSP information in stan-
dard format. Thus, you really must have copies of PDB and DSSP output
if you wish to make full use of the program (though DSSP is not, strictly
required).

You must create files in the STAMP directory for reading by the program that
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are specific to your system. These files must be in STAMPDIR/pdb.directories.
This file contains a description as to where possible PDB files may be found.
The format is:

<directory> <prefix> <suffix> [RETURN]

For example:

/data/newpdb/pdb/ pdb .ent

/data/newpdb/prerelase/ pdb .ent.Z

/usr/people/jack/extrapdb/ _ .pdb.gz

./ myprefix .pdb

A four letter code is meant to go between the suffix and prefix. For exam-
ple, the file corresponding the PDB code 4mbn might be found in the file
/data/newpdb/pdb/pdb4mbn.ent. A ‘ ’ character in the suffix or prefix field
denotes no prefix or suffix. When a file is to correspond to a four letter code
is to be found, STAMP routines will try each of the specifications in turn,
and will use the first one found. A recent modification (version 4.2) is to look
in each of the ‘distr’ type sub-directories for filenames. Some people store
PDB files in a format, e.g.

<directory>/ab/pdb1abc.ent

Where the two letter sub-directory name corresponds to the second two
characters in the four letter PDB code (i.e. ignoring the leading number).
STAMP now handles these file types. If you just specify the top directory,
the program will explore suitable two-letter sub-directories corresponding to
each file it is looking for.

dssp.directories contains a description as to where possible DSSP files may
be found. The format is as for pdb.directories, e.g.

/data/newdssp/ _ .dssp

/data/dssp/ _ .dssp

For example, the DSSP file for 4mbn might be found in the file /data/newdssp/4mbn.dssp

STAMP now reads compressed files (.Z or .gz suffixes). In order for this
to work properly, you must have the programs zcat (.Z) and gunzip (.gz)
installed on your system.
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5.3 Getting other programs

There are several other programs that are useful to have when using STAMP:

DSSP – Definition of Secondary Structure in Proteins, Kabsch & Sander.
Contact
http://www.sander.embl-heidelberg.de/dssp/
Note that this is the WWW page for both the program and a database of
precomputed DSSP files corresonding to PDB entries.

ALSCRIPT – displays alignments in PostScript format, contact GJB (see
address above)
WWW page: http://barton.ebi.ac.uk/

MOLSCRIPT – displays PDB structures in PostScript format, contact:
http://www.avatar.se/molscript/
email: pjk@avatar.se
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Chapter 6

Some of our studies involving
STAMP

STAMP has been invovled in numerous published studies. Several novel sim-
ilarities uncovered by STAMP have appeared in the literature: the similarity
between the SH2 domain and domain II of E. coli biotin operon protein [9];
the similarity between HIV matrix protein p17 and Interferon gamma [16]
and numerous others [12, 21, 22].

STAMP has also aided several other investigations into protein structure.
STAMP alignments have been used to determine the best accuracy of sec-
ondary structure prediction from multiple sequence alignment [10]. It has
been used to investigate the conservation of various protein structural fea-
tures across structural similar (but apparently non-homologous) proteins
[11, 13] and has been used for several investigations into protein domain
structure [12, 23, 24].

STAMP has also proved extremely useful when assessing the results of pro-
tein structure prediction by fold recognition [25, 26, 27].

Most recently, STAMP has been used to investigate various aspects of pro-
tein function and evolution, in addition to doing large scale superimpositions
of the entire protein database according to SCOP [13, 14], and problems
associated with alignments for protein comparative modelling [28].
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Chapter 7

Appendix - STAMP Academic
License

SOFTWARE LICENCE AGREEMENT FOR ACADEMIC USE OF STAMP

IMPORTANT: This software and its associated documentation are the copyright

works of the authors, Robert B. Russell and Geoffrey J. Barton hereinafter

referred to as the LICENSOR. Use of the software and documentation is

governed by the terms of the Academic License Agreement set out below. You,

hereinafter referred to as the LICENSEE, will not be able to install the

software unless you first agree to those terms.

The LICENSOR has developed a body of computer software and associated

documentation called STAMP hereafter referred to as the WORK.

The LICENSEE desires to use the WORK for education and research purposes.

The LICENSEE and LICENSOR agree as follows:

The LICENSOR grants to the LICENSEE a nonexclusive, nontransferable,

licence to use the WORK subject to the following conditions.

1. LICENSEE’S RIGHTS
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The Licensee shall have the right to use the WORK for educational and

research purposes on all computers owned or leased by the Licensee and

located on the LICENSEE’S campus or site.

2. RESTRICTIONS ON USE

No commercial use of any kind is permitted under this licence. For

commercial use, a commercial licence is required.

3. LICENSING FEE

For a distribution via electronic means, there is no fee. For a physical

distribution on magnetic media, the fee is fifty (50) pounds (UK).

4. NO SUPPORT

The LICENSEE recognizes that the LICENSOR is not obligated to provide

support, maintenance, consulting, or revision of the WORK. If the LICENSOR

chooses to release to the LICENSEE updates of, additions to, or

modifications of the WORK, this agreement shall apply to them as though

they were part of the original WORK.

5. NO PRODUCT WARRANTY

The WORK is released on a "as is" basis. There is no warranty whatsoever as

to functioning, performance or effect on hardware or other software,

express or implied. The LICENSOR disclaims any implied warranties of

merchantability or fitness for any particular purpose.

6. OWNERSHIP

The LICENSEE agrees that the WORK including any updates, additions, and

modifications, is, and shall at all times remain, the property of the

LICENSOR, and that it has been copyrighted by the LICENSOR. The LICENSEE

shall have no right, title or interest therein or thereto except as

expressly set forth in this agreement.
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7. CREDITS

All credits and copyright notices in the WORK, both in listings and/or

documentation, whether names of individuals or organisations, shall be

retained in place. Publications referring to the WORK, or to other works

containing the WORK in whole or in part, shall refer to it as STAMP and

shall specify that the WORK was made by Robert B. Russell and Geoffrey J.

Barton. Publication of results that use the WORK shall cite: Russell, R. B.

and Barton, G. J. (1992), Proteins, 14, 309-323.

8. NONDISCLOSURE

Under no conditions shall the LICENSEE disclose the WORK, in whole or in

part, to third parties, except as expressly provided for in this agreement.

Nor shall the LICENSEE make the WORK available to third parties via a

computer network. Permission is hereby granted to the LICENSEE to disclose

the WORK or modifications thereof to other organisations in possession of a

valid source licence for the WORK, provided that such disclosure shall be

for educational or research purposes only. LICENSEE may also disclose the

WORK to its students and employees for use in their educational and

research activities, provided that they are bound not to further disclose

it to third parties. This article shall survive termination of the

agreement.

9. NO LIABILITY

Neither the LICENSOR nor any individual or any legal entity involved in

creating, modifying, updating, or supplementing the work, shall be liable

for damages arising out of the failure or malfunctioning of the WORK. The

LICENSEE hereby assumes the risk of and releases and forever discharges the

LICENSOR, its employees and any other individual or legal entity referred

to in the foregoing sentence with respect to any expense, claim, liability,

loss or damage, direct or indirect, including any incidental or

consequential damages, whether made or suffered by LICENSEE in connection

with the failure or malfunction of the WORK. LICENSEE acknowledges that the

WORK is in the process of development and is not error-free, that the

foregoing exclusion of liability is therefore an essential term of this
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Agreement without which exclusion the LICENSOR would not be willing to

enter into this Agreement and to make the Work available on the Price

agreed upon herein.

10. GOVERNING LAW

This agreement shall be construed and enforced according to the laws of

England.

11. TERMINATION AND ENFORCEMENT COSTS

LICENSOR shall have the right to terminate this agreement with immediate

effect upon notice by registered mail to LICENSEE in the event that

LICENSEE, its employees, or persons acting on its behalf breach any

provision of this agreement. Upon termination, the LICENSEE agrees to

return the orginal WORK immediately, to destroy all copies of the WORK

(exact or modified) in its possession or under its control, and to send to

the LICENSOR a signed statement that all such copies have been destroyed.

If the LICENSOR takes legal action against the LICENSEE to enforce this

agreement and prevails, the LICENSEE agrees to pay LICENSOR’S legal costs,

including reasonable attorney’s fees.

12. CHANGES TO THIS AGREEMENT

This agreement may only be changed if both parties agree to the proposed

changes in writing.
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