OXBench: A benchmark suite for evaluation of
protein multiple sequence alignment accuracy

User and Developer Guide

Version 1.3 - June 2005
Tom Walsh and Geoffrey J. Barton

School of Life Sciences
University of Dundee
Dundee DD1 5EH
Scotland, UK

email: tom@compbio.dundee.ac.uk, geoff@compbio.dundee.ac.uk

If you use this suite, please cite:

Raghava, G.P.S., Searle, S.M.J., Audley, P.C., Barber, J.D. and Barton, G.J.
OXBench: A benchmark for evaluation of protein multiple sequence alignment
accuracy. BMC' Bioinformatics, 4: 4-47. 2003.

Contents
1 Introduction

2 Organisation of the Data files in the Distribution

2.1 Reference alignment set lists

2.2 Reference alignments and ancillary data
2.2.1 Directory structure
2.2.2 Sequences e
2.2.3 Pairwise sequence identity data
2.2.4 Sequence identity calculated across multiple alignments
2.2.5 Structurally conserved regions.
2.2.6 Sequence family sizes.o

Metrics
3.1 Imtroduction L
3.2 Using aconvert to create alignments in BLOC format
3.3 Running the programs in the package
3.3.1 Metric command line options
3.4 The dependent average accuracy metric - 'dep’
3.5 The dependent column score metric
3.6 The independent metric (STAMP metric) using structural com-
PATISONL o v o e e e e e e e e e
3.6.1 PDB files for the independent metric
3.7 The output format of the metrics
3.7.1 Output format of the dependent average accuracy metric
3.7.2 Output format of the column metric
3.7.3 Output format of the structural metric.
3.8 Running metrics on sets of alignments using run metric.pl . . .
3.9 Running metrics on combinations of test sets and metrics

Analysis of metric results and comparison of methods
4.1 Imtroduction L
4.2 Editing the oxbsetup.R script
4.3 Starting R and initialising reference data
4.4 Reading metricdata L oL
441 Example.
4.5 Plotting a boxplot for a method by percentage identity range . .
4.6 Comparing methods and assessing the significance of differences .
4.7 Comparing two result setsindetail
4.8 Utility Function: Subsetting data
4.9 Utility Function: Make PID labels
491 Example.o
4.10 Utility function: Check the order of two results sets
4.11 Utility Function: Binning data by PID range
4.12 Combining R functions interactively

w

0~ 1 O UL

5 Worked examples - benchmarking clustal W and AMPS 20

5.1 Introduction. 20

5.2 Example 1: Benchmarking on the master reference set using the
STAMP metric 21

5.3 Example 2: Benchmarking full-length sequence alignments using
the dep metric L 22

5.4 Example 3: Benchmarking using extended sequence families and
the column metric, 22

5.5 Example 4. Benchmarking clustal W using multiple combinations
of test sets and metrics L L oL 23
5.5.1 Specifying the metrics to beused 24
5.5.2 Specifying the test sets tobeused 24

5.6 Example 5. Benchmarking AMPS with multiple metrics and test
SEtS . . L e 24
5.7 Analysing the clustalW result in R 24
5.8 Comparing the clustalw result to the AMPS result 25
6 Developing new metrics 26
6.1 Introduction 26
7 New Reference Datasets 27
8 Installation 27
8.1 Imtroduction 27
8.2 Requirements L Lo 27
8.3 Building the installationo 28

1 Introduction

The OXBench suite is a system for assessing the accuracy of multiple protein
sequence alignments. For full details about the development of the suite, its eval-
uation and application to some popular alignment methods, please see Raghava
et al (2003). Please see Section: 8 of this User Guide for instructions on how to
install the OXBench suite.

OXBench includes a large set of reference alignments derived from 3D-
structure comparison of protein domains as well as software to compare align-
ments, measure agreement by a variety of metrics and estimate the significance
of any differences found. The essential steps in using OXBench are outlined
here, but full step-by-step instructions are given in Section: 5. In outline:

1. Select the dataset on which you will test the method. This may be one of:

master This is a set of 672 reference alignments of protein structural
domains. Use this only if you are not intending to use OXBench to
optimise parameters for the method.

mrefl /2 These are two subsets of the master dataset that are intended for
training/test of new methods. i.e. you should use one of these sets
with which to develop your method and optimise parameters,then
test the method on the other set.

small This dataset is the subset of the master dataset that contains align-
ments with 8 or fewer sequences. This can be useful for some com-
putationally intensive algorithms.

pair This is the subset of the master dataset that contains alignments of
only two sequences.

multi This is the subset that contains alignments with 3 or more se-
quences.

full This is the full-length sequences of the domains contained in the
master dataset. Use this to test if the method can align correctly a
domain that is contained within a longer protein sequence.

extended This is the master set of domains augmented by sequences
of unknown structure. Use this to test the effect of having more
sequences in an alignment on the alignment quality.

2. Run the method on the sequence files appropriate to the set you have
selected.

3. Convert output of the method to BLC format

4. Choose either to run only on Structurally Conserved Regions (SCRs), or
the full alignment. SCRs makes most sense since these regions are most
likely to have a genuine alignment. Structurally Variable Regions (SVRs)
may have no meaningful alignment.

5. Run the OXBench metric(s) on the results of the alignment method. In
the paper (Raghava et al, 2003), a number of different metrics were in-
vestigated. Not all provided good discrimination between methods. For
this reason, in Version 1.0 of the distributed suite, we only include the
following metrics:

column This counts the number of alignment columns in agreement be-
tween reference alignment and test alignment. In the paper, we found
this to be less effective than the dep metric at discriminating small
changes in alignment quality, but it is often used and so is included
for the sake of completeness.

dep The dep metric measures accuracy for each pair of sequences within
a multiple alignment, and reports an average over all the pairs. The
output files for this method record both the pairwise accuracy within
the multiple alignment and the average of all the pairs.

stamp The stamp metric does not compare to a reference alignment.
Instead, it evaluates the “quality” of structural superposition ob-
tained given the sequence alignment that is presented. “Quality” is
reported as an “Sc score”. Sc is a measure that takes into account
both distance and conformational similarities between the superim-
posed protein structures. As with the dep metric, the stamp metric is
calculated over all pairs within the multiple alignment and an average
Sc reported.

6. Start and initialise the R package as explained in Section: 4 in order to
summarise accuracies and report differences between methods.

2 Organisation of the Data files in the Distribu-
tion

Data files are found in the data subdirectory of the OXBench installation. Not
all data files are needed to run evaluations in OXBench, but they are included
in the distribution to allow you to characterise the data sets that are used in
the benchmark.

2.1 Reference alignment set lists

Reference set lists contain lists of the reference alignments that comprise the
test sets described in the OXBench paper. These lists of alignment IDs (aids)
are key to using the OXBench metrics.

full.id The full-length sequence set (605 families)
mref.id Master data set (672 families)

mrefl.id Subset of the master set for training and testing (334 families)

mref2.id Subset of the master set for training and testing (338 families)
mref_small.id Small families of 8 sequences or fewer (590 families)
mref_multi.id Alignments with 3 or more sequences (399 families)

mref_pair.id Alignments with 2 sequences in each (273 families)

2.2 Reference alignments and ancillary data
2.2.1 Directory structure

The reference alignments and other associated data are organised into subdirec-
tories as follows:

align/ alignments of the master set families in BLOC format.

dom/ STAMP domain definitions for the domains in the master set famililes.
fasta/ Reference alignment sequences in FASTA format.

pairwise/ Pairwise alignments of sequences in the master set families.

pdb/ PDB files used by the STAMP metric.

pid/ Pairwise sequence identity data for the reference alignments.

scr/ Structural conservation data for the reference alignments.

seq/ Reference alignment sequences in PIR format.

2.2.2 Sequences

The seq/ and fasta directories are subdivided into three directories:

master Sequences sets for the reference alignments (these correspond to the
sequences in the master alignment files in the align directory.

extended Extended sequence sets for the reference alignments.

full Full-length sequence sets for the reference alignments.

The master and full directories contain further subdirectories correspond-
ing to the test sets listed in the $0XBENCH/data directory.

2.2.3 Pairwise sequence identity data

The file $0XBENCH/data/pid/all.pid contains pairwise percentage identity
(PID) values for the reference structural alignments. Pairwise values and aver-
age PID values for the full multiple alignment are included.

The contents of the first three fields are:

1. The alignment identifier (aid).
2. The identifier of the first domain in the pair (id1).

3. The identifier of the second domain in the pair (id2).

The next four fields (pid1,pid2,pid3 and pid4) are percentage pairwise iden-
tities (PIDs). The value of the PID is given by:

pid = 7.

where n is the number of identical positions and [is the number of positions
over which identity is assessed. The PID values differ in the number of positions
used to define .

The four PIDs are:

1. PID calculated over the length of the aligned region, excluding positions
where both sequences contain a gap, i.e.:
pldl = 1007l niie;;; .
ar—TNdg
where n;4ens is the number of identities, [,, is the length of the aligned
region and ngy is the number double gaps.

The aligned region for a pairwise comparison is defined by removing po-
sitions at the start and end in which both sequences contain a gap.

2. PID calculated over the length of the alignment, excluding positions at
which there is a gap in one or both of the sequences.
pidy = 100" 2et

where a,0s is the length of the alignment, excluding positions with gaps.

3. PID calculated over the number of residues in the shorter sequence.
pldS — 100 Nident

min(leny,lens)

where len; and leny are the lengths of the two sequences.

4. PID calculated over the length of the shorter sequence, including internal
gaps in the shorter sequence.
pidy = 10072t
where [and ng are the length of and number of gaps in the shorter of the

two sequences.

The remaining fields are:

e Number of identical positions in the alignment (n;4ent)

e Number of aligned positions excluding positions where there is a gap in
either or both sequences (apos)

e Length of first sequence (len;)

e Length of second sequence (leng)

e Number of gaps in first sequence (n41)

e Number of gaps in second sequence (n42)

e Length of the aligned region, excluding double gaps (I,)

e Number of alignment positions at which there is a double gap (n4,)

The penultimate line in the file contains the mean PIDs across the entire
multiple alignment.
The last line contains the minumum PIDs in the multiple alignment.

2.2.4 Sequence identity calculated across multiple alignments

Percentage sequence identity values calculated across all sequences in an align-
ment for the reference alignments can be found in SOXBENCH /data/pidw.dat.
The fields are:

e Alignment identifier
e Percentage sequence identity
e Number of identical positions

e Length of the alignment.

2.2.5 Structurally conserved regions

Structurally conserved regions (SCRs) are those in which one can have greater
confidence that the reference alignment is meaningful when compared to other
positions in the alignment. In the OXBench reference alignments, SCRs are
defined as follows:

SCRs are stretches of 3 or more alignment positions in which the STAMP
P/; score at each position is > 6. The P/; score is column 7 in the vertical
alignment section of the reference alignment file.

The file $0XBENCH/data/scr/all.scr contains data about the proportion
of each reference alignment that is structurally conserved. The columns in the

file are:

id The reference alignment identifier.

len The length of the alignment.

nscr The number of alignment positions that are structurally conserved.

pscr The percentage of alignment positions that are structurally conserved
(Fen)

2.2.6 Sequence family sizes

The number of sequences in each reference alignments is listed in
$OXBENCH /data/seq_count_master.dat. Corresponding data for the extended
sequence families is in §OXBENCH/data/seq_count_extended.dat

3 Metrics

3.1 Introduction

There are three sequence alignment metrics provided in the package. This sec-
tion summarises how they work and how to run them. See the Raghava et
al(2003) for full details of how they are calculated. Run the metrics with the
—help option to get a detailed list of the command-line options. The metric pro-
grams read alignments in BLOC format. Alignments in other formats can be
converted to BLOC format by the aconvert program included in the OXBench
package (see Section: 3.2 for details).

The run_metric.pl program (see below) is a convenient way to run a metric
on a large number of test alignments at once.

3.2 Using aconvert to create alignments in BLOC format

The program aconvert can be used to generate alignments in BLOC format
from other formats. The usage of aconvert is:

aconvert [-in type -out typel < filel > file2

where type is one of:

c Clustal format

b BLOC format

f FASTA format

m MSF format

p PIR format

s PFAM (Sanger) format

If the input format is not specified, aconvert will attempt to identify it. If
the output format is not specified, it is assumed to be BLOC format.

3.3 Running the programs in the package

The programs used in the package can be found in the bin/ directory of the
OXBench installation. The default behaviour of the metrics is to do their calcu-
lations only over the structurally-conserved regions (SCRs) in the alignments.
To do the calculations over all positions, pass the —all option to the metric.
If the metrics are run in default mode but there is no structural data in the
reference alignment file, the metric will issue a warning and switch to assessing
accuracy over the entire aligned region.

The metrics are run using commands of the form:

metric-name [options] -i TEST -r REFERENCE

where TEST is the file containing the test alignment of a given alignment
from the reference set, and REFERENCE is the corresponding reference align-
ment. Both alignments must be in BLOC format.

3.3.1 Metric command line options

-r, —reference_alignment=STRING The reference alignment in BLOC for-
mat.

-i, —input=STRING Input (test) alignment in BLOC format.
-f, —full Input alignment is a full-length sequence alignment

-n, —alignment_id=STRING Alignment name to be included in the output,
defaults to “default”)

-a, —all Calculate accuracy over the full aligned region, not just the SCRs

-m, —allow_id_mismatch Don’t abort if the test and reference seqs have dif-
ferent IDs

-h, —help Print help and exit
-V, —version Print version and exit
-v, —verbose display more information

-d, —debug display debug information

3.4 The dependent average accuracy metric - ’dep’

This metric compares a multiple alignment to a reference alignment (see below).
The accuracy of each pairwise alignment in the multiple alignment is calculated
by counting the number of positions that agree with the reference alignment.
The overall agreement is the average of the pairwise alignment accuracies.

The metric is run using the dep_acc_avg.metric and is referred to as the
"dep’ metric.

3.5 The dependent column score metric

This metric compares the columns of the test alignment with those of the refer-
ence alignment and calculates the percentage of the columns that are identical.
The metric is run using column.metric

3.6 The independent metric (STAMP metric) using struc-
tural comparison

This metric uses the alignment to create a structural superposition of the cor-
responding protein structures and calculates a structural similarity score based
on the C, atoms. The program for this metric is stamp.metric. Note that this
metric requires a reference alignment only because the reference alignment con-
tains structural information used to specify the portions of the PDB structures
used in the structural comparison.

3.6.1 PDB files for the independent metric

The STAMP metric requires the PDB files corresponding to the sequences
in the alignment. The metric finds the PDB files using a set of rules in the
data/pdb.directories file. This file is created automatically during the instal-
lation process. There should be no need to edit this file unless the OXBench
installation is moved to another location, in which case it can be recreated by
running “make pdb.dir” in the OXBench directory. The entries in this file have
the format:

Path Prefix Suffix
PDB files are assumed to have names of the form:
Path/PrefictPDBcodeSuffix

where PDBcode is a Brookhaven PDB code.For example, PDB files with
conventional Brookhaven names, stored in /db/pdb/, can be found using the
rule:

/site/packages/oxbench/data/pdb pdb .ent

A value of ’_’ for the path, prefix or suffix indicates that the corresponding
element should be omitted from the filename.

3.7 The output format of the metrics

The metrics output data in comma-separated variable(CSV) format. The first
line is a list of headers explaining what the corresponding fields mean.

10

3.7.1 Output format of the dependent average accuracy metric

The output format for the dependent average accuracy is:

aid,id1,id2,metric,pairwise,score,nmatch,ncomp
default,1bmda-1-GJB,1hlpa-1-AUT0.1,dep_acc_avg,1,86.62
default,1bmda-1-GJB, 1hyha-1-AUTO0.1,dep_acc_avg,1,67.30

default,total,total,dep_acc_avg,0,75.35

The first line lists the headers:

aid: alignment identifier.

id1 and id2: sequence identifiers. If the data are for the full multiple
alignment, both identifiers will be 'total’.

metric: the name of the metric

pairwise: 1 if the data on this line are for a pairwise comparison, 0 if they
are for a multiple alignment.

score: the pairwise accuracy (%)

nmatch: the number of positions at which the test alignment matches the
reference alignment.

ncomp: the number of positions at which the test and reference alignments
were compared.

The subsequent lines list the data for each pairwise comparison. The final
line contains the data for the overall multiple alignment. The score is the average
pairwise score over the all of the pairs in the alignment. The nmatch field
contains the sum of the pairwise scores and the ncomp contains the number of
pairwise comparisons.

3.7.2 Output format of the column metric

The headers in the column metric output are:

aid: alignment identifier.

id1 and id2: sequence identifiers. If the data are for the full multiple
alignment, both identifiers will be ’total’.

metric: the name of the metric

pairwise: 1 if the data are for a pairwise comparison, 0 if they are for a
multiple alignment..

score: the column accuracy (%)

11

e nmatch: the number of positions at which the test alignment matches the
reference alignment.

e ncomp: the number of positions at which the test and reference alignments
were compared.

3.7.3 Output format of the structural metric

The header line is:
aid,id1,id2,metric,pairwise,rmsd,sc,pfit,ntofit,ia,ib,lena,lenb

aid,id1,id2,metric and pairwise have the same meanings as for the dependent
metric. The other fields are:

rmsd is the RMSD for the pairwise comparison,
e sc is a structural similarity score (Sc; see the paper for details).

e pfit is the percentage of the alignment positions used to calculate the
RMSD and Sec scores.

e nfit is the number of alignment positions.

e ja is the number of gaps in sequence A in the alignment.
e ib is the number of gaps in sequence B in the alignment.
e [ena is the length of sequence A.

e [enbd is the length of sequence B.

3.8 Running metrics on sets of alignments using run metric.pl

The set of reference alignments is in the ref/ directory. The metrics can be run
for the one of the reference sets using the run_metric.pl program: To run this
program, the OXBENCH environment variable must be set to the path of the
OXBench installation directory.

run metric.pl metric-name id-file

metric-name is the name of the metric to be run. Use runmetric.pl
--list to get a list of the available metrics.

id-file is a file containing a list of the reference alignments on which the
metric is to be run. If id-file does not contain a directory path, the program will
look for the file firstly in the working directory and then in $0XBENCH/data/,
which contains lists for the reference sets described in the OXBench paper. The
$0XBENCH/data/README file contains descriptions of each of the subset files.

The output is a set of files, one for each alignment in the reference set, con-
taining the metric data in CSV format (see the descriptions of the metrics for
details of the output format). The data for the alignments are also aggregated

12

into a single file. This file will have a name that matches the pattern
<id-file>-<metric-name>.csv.

e <id-file> is the reference set used.

e <metric-name> is the metric name.

Reference alignment files are assumed to be in the $0XBENCH/data/align
directory unless --refdir option is used to specify another directory. The
default format for reference alignments is BLOC format. If you want to use
an alternative set of reference alignments, the ——fasta option can be used to
specify that the reference alignments are in FASTA format.

Test alignment files are assumed to be in the current working directory unless
the -—testdir option is used to specify another directory. The default format
for test alignments is FASTA (although the program also accepts alignments
in BLOC format if the --blc option is used). By default, test alignments are
assumed to have names identical to the corresponding reference alignments. For
example, a test alignment for family 10t11 should be in a file named ”10t11”.
The --suffix option can be used to specify extensions to the default name,
e.g. ——suffix .fa will make the program assume that the test alignment for
10t11 is named " 10t11.fa”.

Test alignments are assumed to be generated from the families of sequences in
the master reference set or from extended sets containing additional sequences.
Use --full to specify that the alignments contain full-length sequences; other-
wise the metric will report errors because the test sequences do not match those
in the reference alignemtns.

3.9 Running metrics on combinations of test sets and met-
rics

It usually the case that one wants to run all of the metrics on alignments

of all of the test sets. Since this can be tedious using run metric.pl, the

$0XBENCH/bin/oxbench.pl script is provided to make benchmarking easier.

See Example 4 in Section 5 of this manual for an explanation of how to use
this script.

4 Analysis of metric results and comparison of
methods

4.1 Introduction

The OXBench metrics produce results in a straightforward to parse comma-
delimited format. Since analysis of these basic results requires combining the
data in different ways (e.g. by percentage identity range) and the evaluation

13

of statistical significance when comparing different methods, we have employed
the R language for all subsequent data analysis.

R allows interactive exploration of data, while including very powerful tools
for subsetting and otherwise manipulating the data, plotting in a wide range
of styles, and calculating statistics. Since R is a full programming language,
we have written some functions to perform standard operations on a single
OXBench metric result and to allow straighforward comparison of two metric
results and assessment of significance of differences between the methods. The
functions allow the alignments to be partitioned easily into different subsets
based on the percentage identity of the reference alignments.

A step-by-step example of using the R functions is given in Section 5 but
first we detail the basic steps in getting data into R, what each function does,
and how to get hard copy.

4.2 Editing the oxbsetup.R script

In the analyse/ subdirectory, edit the script oxbsetup. R and change the directory
path to suit your installation.

4.3 Starting R and initialising reference data

Assuming R has been installed on your Linux workstation, just typing: R in
the analyse/ directory should produce something like:

R : Copyright 2004, The R Foundation for Statistical Computing
Version 2.0.1 (2004-11-15), ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.
Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for a HTML browser interface to help.

Type ’q()’ to quit R.

>

The “>” is the prompt. To initialise the R data and load the R functions,
type:

14

> source("oxbsetup.R")
Read 605 items
Read 523 items
Read 334 items
Read 338 items
Read 672 items
Read 399 items
Read 273 items
Read 590 items
Read 52514 records
Read 672 records
Read 672 records
Read 672 records

>

The numbers reported should be identical to the above for OXBench Version
1.0 data. The R system is now ready to analyse some alignment metric output.
The functions available are given in the following sections.

4.4 Reading metric data

There are three functions that are defined as follows:

id.column= readmetric.column(resultsdir="",resultsfile="")
id.dep = readmetric.dep(resultsdir="",resultsfile="")
id.stamp = readmetric.stamp(resultsdir="",resultsfile="", score="sc")

Are designed to read the single file summary .csv file for a method/metric
combination. You can supply either one or two arguments. If one, then it should
be the full filename including the path. If two, then the first argument can be
the directory and the second the filename.

readmetric.stamp has an extra argument to allow scores other than the
default Sc score to be used. The default score is recommended since the others
do not work as well (Raghava et al, 2003).

4.4.1 Example

id.column =
readmetric.column("/jobs/tom/oxbench/clustalw/master/column/mref-column.csv")

Will read the column metric output into an R data structure called “id.column”.
These data structures are the root for all subsequent data analysis in OXBench.
The full description of each structure is given in the oxbsetup.R file, but es-
sentially it follows the columns documented for each metric as explained in
Section 3.7.

15

4.5 Plotting a boxplot for a method by percentage iden-
tity range

Boxplots allow multiple distributions of results to be plotted in a convenient
way. The mid-line of the box shows the median of the data, the upper and
lower extents of the box enclose 50% of the data, while the upper and lower
whiskers, enclose 75% of the data.

Analysis of a single method/metric combination can be done by the following
function:

oxb.bplot (meth,
idint=c(0,10,20,30,50,100), #0PTIONAL
subtitle="", #SET TO CHOSEN TITLE
addrnge=TRUE,
metric="dep")

This plots a boxplot of accuracies from the output of a readmetric function
A boxplot is produced where each box represents the accruracy of the method
within the PID range. The mean accuracy in each range is shown on the plot
with a triangle symbol The number of data points in each PID range is shown
in line with the 5

Arguments to the function are:

meth the output of readmetric.dep, .column or .stamp.

idint breakpoints for percentage identity binning.

ilab character string for labelling bins (not needed as this is autogenerated)
subtitle arbitrary text that will be added to the bottom of the plot

addrnge if set to TRUE a box will be added to the plot for the complete data
set

metric the metric type that we are plotting - default is ”dep”.

varwidth set this to TRUE to get boxes who’s width is proportional to the
number of counts in each range. This is misleading if addrnge is also
TRUE.

A boxplot is produced on the current graphics device where each box rep-
resents the accruracy of the method within the PID range. The mean accuracy
in each range is shown on the plot with a triangle symbol The number of data
points in each PID range is shown in line with the 5accuracy.

See help(boxplot) to find out what the returned data structure contains.

16

4.6 Comparing methods and assessing the significance of
differences

Given two different alignment methods that have been run on the benchmark,
the task is to see which method performs best and whether any difference is
significant.

The main function for doing comparison of methods is oxb.compare.methods

oxb.compare.methods (methl,meth2,
method1="",method2="",
idint=c(0,10,20,30,50,100), #0PTIONAL
metric="dep", #REQUIRED
npcols=2,nprows=3) #0OPTIONAL

This takes the output of readmetric.dep etc for two different alignment meth-
ods, or parameter combinations of alignment methods

methl, meth2 output of readmetric.dep or similar

YY)

methodl, method2 strings to identify the methods, e.g. ”clustalw” ”muscle”

idint vector of breakpoints for percentage identity binning. Default is shown
as in the paper.

ilab character vector of labels that corresponds to the idint breakpoints. This
is only here as the default. In fact, the character labels are auto-generated
in the function by oxb.construct.pid.labels().

metric string to identify the type of metric used
npcols, nprows number of rows and columns of plots to put on each page.

oxb.compare.methods returns a table of results that includes the average
metric score for each method, the difference between the average for each method
in each PID range and the significance of the differences (estimated by the non-
parametric Wilcoxon signed-rank test) for all the data and for subsets within
percentage identity ranges. The function also produces sets of graphs of methl
against meth2 in each PID range and for all the data. One or more pages are
written depending on the setting of npcols and nprows.

On an X11() device, it is best to arrange npcols and nprows such that all
plots will appear on one page. The default settings will do this. On other
devices (e.g. pdf() or postscript()) multiple pages will be generated if the plots
will not all fit on one page.

4.7 Comparing two result sets in detail

Having established the overall differences between methods by application of
oxb.compare.methods, oxb.diffs allows a more detailed examination of differ-
ences for each multiple alignment and pairwise alignments within each multiple
alignment.

17

oxb.diffs(oxbl,o0xb2,decrease=FALSE, thresh=0,pairwise=0,report="all",dp=2)

Given results from two methods (or OXBench runs) returns a table that
shows the value for the metric by each method on each alignment sorted by the
absolute value of the accuracy difference.

Set “decrease” to TRUE to get differences sorted from largest to smallest

Only absolute differences greater than “thresh” are output To report all
differences, set thresh to something very negative, e.g. -10000

If “pairwise” is set to 0, differences are calculated on the score for the com-
plete alignments. If pairwise is set to 1, differences are calculated on the pairwise
alignments that make up the metric (for stamp and dep metrics - column metric
does not use pairwise comparisons)

if pairwise =1, six columns are output: aid, idl, id2, scorel, score2 and
score2-scorel

if pairwise =0, four columns are output: aid, scorel, score2 and score2-scorel

set “report” to “all” to output both positive and negative differences (de-
fault) or “positive” or “negative” for respective output.

dp sets the number of decimal places to round to for reporting differences.
Default 2.

Positive values of difference say that oxb2 is better than oxbl dataset

This function is most useful when used in conjunction with subsetting by
oxb.subset.data. oxb.subset.data allows individual alignments or small sets of
alignments to be picked out for detailed scrutiny.

4.8 Utility Function: Subsetting data

Often one wishes to look at a subset of data rather than the complete master
dataset. oxb.subset.data provides a convenient way to access subsets.

oxb.subset.data(oxbl,idlst)

This takes the data as read in by readmetric.column etc and creates an
object that contains the subset of alignment results data for the Alignment IDs
(aids) that are shown in idlst.

For example, assuming that id.column contains a full result set for the master
dataset of alignments; doing the following would get the subset of alignments
that are indicated in the character vector: c¢(”22s39”,712t116”,”34”)

oxb.subset.data(id.dep,c("22s39","12t116","34"))
There are some pre-loaded subsets such as:

mref_pair.id - the set of alignments that only contain two sequences.
mref_multi.id - the set that contain at least 3 sequences.

For example, to get the results just for the alignments that have 3 or more
sequences in them do:

oxb.subset.data(id.dep,mref_multi.id)

See oxbsetup.R for the complete list of id lists that are loaded by default.

18

4.9 Utility Function: Make PID labels

oxb.construct.pid.labels(idint,addrange=TRUE)

Takes a vector of breakpoints and makes a vector of ranges for annotating
graphs etc
4.9.1 Example
oxb.construct.pid.labels(seq(0,100,10) ,addrange=FALSE)

gives:

[1] "0-10" "10-20" "20-30" "30-40" "40-50" "50-60" "60-70" "70-80"
[9] "80-90" "90-100

setting addrange to TRUE (default adds the full range of the idint as the
last element of the vector e.g.:

oxb.construct.pid.labels(seq(0,100,10) ,addrange=T)
gives:

[1] "0-10" "10-20" "20-30" "30-40" "40-50" "50-60" "60-70" "70-80"
[9] "80-90" "90-100" "0-100"

4.10 Utility function: Check the order of two results sets

oxb.order.check(oxbl,oxb2)

Takes two sets of data as read by readmetric.column etc, and checks that
the order of the “aids” is the same in both data sets. This should not be needed
if the data sets have been generated by the OXBench Perl scripts since they
will output the data sorted in the same way. However, it is worth using this
function if, when comparing methods, the results look seriously weird.

4.11 Utility Function: Binning data by PID range

These three functions are used by other functions to create binned accuracy
data in PID ranges. They can of course be used in isolation.

column.score2(id.column,idint=c(0,10,20,30,50,100))
dep.score2(id.dep,idint=c(0,10,20,30,50,100))
stamp.score2(id.dep,idint=c(0,10,20,30,50,100))

Given the result of using readmetric.column, dep or stamp, these functions
bin the accuracy results according to the mean PID for each alignment. idint
is a vector of breakpoints for the binning. The default shown is as was used in
the paper, but you could select more break points, e.g.

19

column.score2(id.column,idint=seq(0,100,10))

for breakpoints at 0,10,20,30,40,50,60,70,80,90,100 PID.
These functions require the ”pid” reference data to have been read into R.
This should have happened already if you have sourced the oxbsetup.R script.

4.12 Combining R functions interactively

R functions may be arguments to R functions, so it is common to combine
reading data from the .csv files with some analysis or subsetting. For example,
for the master dataset to compare two results of running the “dep” metric that
are stored in the files: “clustalw.csv” and “muscle.csv” you could do:

oxb.compare.methods (readmetric.dep(‘ ‘clustalw.csv’’),
readmetric.dep(‘ ‘muscle.csv’’) ,metric=’’dep’’)

If you only want to look at the subset of results for alignments that have
two or more sequences in them, you can do:

oxb.compare.methods (oxb.subset.data(readmetric.dep(‘‘clustalw.csv’
oxb.subset.data(readmetric.dep(‘ ‘muscle.csv’’) ,mref _multi.id),
metric=’’dep’’)

which will read the data from file, take the subset of alignments defined in
“mref_multi.id”, then compare the two methods, produce plots in PID ranges
and statistics.

5 Worked examples - benchmarking clustalW
and AMPS

5.1 Introduction

This section describes how to benchmark clustalW using the master sequence
families and the corresponding full-length and extended sequence families. The
data for this example can be found in $0XBENCH/example/clustalw.

This directory contains three subdirectories containing clustalW alignments
and benchmark data for the master, full and extended test sets. The clustal W
alignments were created using the default parameter settings for clustalW. The
test alignments are in FASTA formats. The metrics accept only test alignments
in BLOC format but we will use the $0XBENCH/bin/run metric.pl program
to run the metrics; this program accepts test alignments in FASTA format and
automatically converts them to BLOC format for reading by the metrics.

20

’) ,mref_multi.id),

5.2 Example 1: Benchmarking on the master reference
set using the STAMP metric

This section describes an example of using the STAMP metric to benchmark
clustal W alignments of the master test set. Data for the example is in
$0XBENCH/example/clustalw/master. The directory contains the subdirecto-
ries:

e fasta - clustalW test alignments in FASTA format (required by the metric)
e column - results of running the column metric.

e dep - results of running the ’dep’ metric.

e stamp - results of running the STAMP metric.

1. Align the master set families using clustal W

The sequence families in the master reference set (listed in $0XBENCH/data/mref .id)
were aligned using clustalW with the default parameter settings. The in-

put sequence files were read from $0XBENCH/data/fasta/master. These
alignments are in the $0XBENCH/example/clustalw/master/fasta direc-

tory and are in FASTA format. The metrics accept only test alignments

in BLOC format but we will use the run_metric.pl program to run the

metrics; this program accepts test alignments in FASTA format and au-
tomatically converts them to BLOC format for reading by the metrics.

There are two important points to note about the naming of the test
alignment files:

e The names correspond to the reference alignments in SOXBENCH /data/align,
e.g. the alignment of family 9t3 is in file 9t3.fa and will be compared
to $0XBENCH/data/align/9t3. This correspondence is essential to
the running of run metric.pl.

e The '.fa’ file suffix is arbitrary; we could just as easily have have used
".fasta’ or any other suffix. We could in fact have used no suffix and
simply named the test alignment of family 9t3 as ’9t3’. By default,
run metric.pl assumes that the test alignments have no suffix. We
will see below how to specify the suffix if, as in this case, one is used.

2. Run the ’dep’ metric using run_metric.pl

(Ensure that the SOXBENCH environment variable is set to point to the
OXBench installation directory).

Change into the $0XBENCH/example/clustalw/master/stamp directory
and run the run metric.pl program using:

$0XBENCH/bin/run metric.pl stamp mref.id --testdir ../fasta --suffix
.fa

21

This produces a set of output files in CSV format, one for each family
in the reference set list in $0XBENCH/data/mref.id. Note that:

(a) There is no need to specify the full path of the mref . id file; run metric.pl
will know where to find it

(b) The --testdir option is used to specify that the test alignments are
in ../fasta (relative to the working directory).

(¢c) The --suffix option to used to indicate that the test alignments
have a ’.fa’ extension.

5.3 Example 2: Benchmarking full-length sequence align-
ments using the dep metric
Benchmarking alignments based on full-length sequences entails extracting the

master sequences from the full-length sequences in order that they can be com-
pared with the reference alignments. The data for this example is in SOXBENCH /example/clustalw /full.

1. Align the full-length sequence families using clustalW

clustalW was run as described for the master set but using the set list in
$0XBENCH/data/full.id and sequences read from $0XBENCH/data/fasta/full.
The full.id list differs from mref . id because full-length sequences do not

exist for all master alignments; see the OXBench paper for details).

The data for this example is in $0XBENCH/example/clustalw/full.

2. Run the 'dep’ benchmark

Change into the $0XBENCH/example/clustal/full/dep directory and run
run_metric.pl:

run metric.pl dep full.id --testdir ../fasta --suffix .fa --full

Note that we use the full.id set list and that the ——full option has been
added to indicate that the test alignments contain full-length sequences
from which the master sequences must be extracted for comparison to the
reference alignment.

5.4 Example 3: Benchmarking using extended sequence
families and the column metric

Extended sequence families contain additional sequences to those found in the
reference alignments. The metrics automatically filter extended alignments to
remove these additional sequences before comparing them to the reference align-
ments. The data for this example is in $0XBENCH/example/clustalw/extended.

1. Align the extended sequence families

22

The procedure here is the same as for the master set. The same reference
set is used as in the example for the master sequences but the sequences
are read from $0XBENCH/data/fasta/extended. The resulting alignments
are in $0XBENCH/example/clustalw/extended/fasta.

2. Run the metric

Change into the $0XBENCH/example/clustalw/extended/column direc-
tory and run the column metric using:

run metric.pl column mref.id --testdir ../fasta --suffix .fa

5.5 Example 4. Benchmarking clustalW using multiple
combinations of test sets and metrics

Benchmarking using run metric.pl can be somewhat tedious if one wishes
to run all of the benchmarks on all of the test sets. For the sake of con-
venience, the OXBench distribution includes the $0XBENCH/bin/oxbench.pl
script, which runs run metric.pl using combinations of metrics and test sets
specifed by the user. The documentation for this script can be viewed by running
$0XBENCH/bin/oxbench.pl --help or perldoc $0XBENCH/bin/oxbench.pl. The
script makes a number of assumptions about the layout of the directory con-
taining the test data. This is most easily explained by reference to the clustal W
example in the example/ directory of the OXBench package. The starting point
for running the benchmarks on this data is to have a directory containing the
clustal W data with the layout below:

clustalw/

extended/ Data for the extended set.
fasta/
Test alignments in FASTA format.

full/ Data for the full set.
[Subdirectory structure as for extended/]

master/ Data for the master set
[Subdirectory structure as for extended/]

The script would be run using;:

$0XBENCH/bin/oxbench.pl --methods=clustalw

in the $0XBENCH/example/ directory.

Within each set directory, the script creates subdirectories containing the
benchmark data. For example, after running the script, the clustalw/extended
directory will have this structure:

clustalw/
extended/

23

fasta/
column/
column-all
dep/
dep-all/
stamp/

with each metric directory containing the corresponding CSV file.
The script assumes that:

1. The data for a given method is in a directory that is specified using the
--method option, e.g. --method=clustalw. Multiple methods can be
specified by separating the method names with commas, e.g. ~—-method=clustalw,muscle.

2. The test alignments are in a subdirectory named fasta.
3. The test alignment files are in FASTA format.

4. The test alignment files have a ’>.fa’ extension.

5.5.1 Specifying the metrics to be used

The default is to run all three metrics. Other combinations of metrics can be
specified using the --metrics option, e.g. --metrics=dep,stamp. Note that
the ’dep’ and column metrics are automatically run in both SCR~only and full-
alignment modes.

5.5.2 Specifying the test sets to be used

By default, the script assumes that test alignments exist for the master, full and
extended sets. To explicitly define the sets that exist, use the —-sets option,
e.g. ——sets=master,full.

5.6 Example 5. Benchmarking AMPS with multiple met-
rics and test sets

Benchmarking AMPS can be done as in the previous example. However, special
options are needed beceausse AMPS output is in BLOC format rather than
the default FASTA format. In the AMPS example, the alignments are in a
directory named ’blc’ rather than ’fasta’ and the file suffix is > .blc’ rather
than ’.fa’. To run the script on this data, do:

oxbench.pl --method=amps --blc --suffix=.blc --testdir=../blc.

5.7 Analysing the clustalW result in R

To generate a boxplot of the clustalW results for the dep metric on the master
dataset, first c¢d to the /analyse directory, then the following commands should
work after starting R.

24

> source("oxbsetup.R")

Read 605 items

Read 523 items

Read 334 items

Read 338 items

Read 672 items

Read 399 items

Read 273 items

Read 590 items

Read 52514 records

Read 672 records

Read 672 records

Read 672 records

> X110

>
oxb.bplot(readmetric.dep("../example/clustalw/master/dep/mref-dep.csv"),
metric="dep",subtitle="clustalw, master dataset")

The above output has been truncated to delete the text output of oxb.bplot.

In order to plot a different metric, substitute the appropriate readmetric
function and metric string to the oxb.bplot function. See Section: 4.5 above for
details of plotting options and explanation of oxb.bplot output.

To get hard copy output use the pdf() or ps() functions in R. For example:

> pdf (file="clustalw_bplot.pdf")

> oxb.bplot(readmetric.dep("../example/clustalw/master/dep/mref-dep.csv"),
metric="dep",subtitle="clustalw, master dataset")

> dev.off ()

See help(pdf) for info on pdf plotting options.

5.8 Comparing the clustalw result to the AMPS result

Results for the AMPS multiple alignment method are included in the example/amps
subdirectory. The directory structure is the same as that for clustalw.

To compare the results of clustalw and amps on the dep metric use the
oxb.compare.methods function that is described in Section: 4.6. For example:

> oxb.compare.methods (readmetric.dep("../example/clustalw/master/dep/mref-dep.csv"),
readmetric.dep("../example/amps/master/dep/mref-dep.csv"),
metric="dep",methodl="clustalw",method2="amps")

Read 51842 records

25

Read 51842 records
clustalw amps Acc2-Accl Wilcoxon p
0-100 89.27628 89.44705 0.1707738 0.4563246

0-10 22.87333 22.09429 -0.7790476 0.6700765
10-20 58.29930 58.71404 0.4147368 0.9845966
20-30 79.10159 79.74000 0.6384127 0.7411265
30-50 91.61960 91.97794 0.3583429 0.5338825
50-100 98.80177 98.81455 0.0127809 0.3420469

You may see “Warning” messages from the wilcoxon function in R, but these
can be safely ignored.

This will produce multiple plots on the current graphics device showing the
relative accuracy of clustalw as measured by this metric in each of the PID
ranges selected.

As for the oxb.bplot function, you can get hard-copy output by selecting the
pdf() graphics device.

See the Section: 4.7 and Section: 4.8 for functions that allow more detailed
comparison of methods and subsetting of the data.

6 Developing new metrics

6.1 Introduction

There are many possible ways of scoring agreement between multiple alignments
and so OXBench allows for straightforward addition of further metrics within
its framework. If you wish to try a new metric on the OXBench data, then the
guidelines below should help you to implement your metric within the OXBench
framework. We will be happy to work with you to do this. Please contact Geoff
Barton to discuss.

New metrics can be added to the OXBench suite by adding a C++ program
as described below. In principle, it would also be possible to write code in
another language (e.g. Perl), but this would require some additional effort, in
particular to deal with SCRs and file i/o.

The source code that implements the dependent metric can be found in
metrics/dep_avg_acc/main.C. The code has extensive comments that explain
how to use the C++ classes in the OXBench framework to implement the metric.
This file should be easy to modify to implement other metrics. Source code
documentation in HTML, LaTeX and as man pages is in the docs/ directory.

The supplied metrics use the Gengetopt library to create the command-line
argument parsers. Further options can be added by modifying the .ggo files
in the metric directories and regenerating the corresponding source code before
rebuilding the executables. Options common to all metrics are defined in the
global_options.ggo file in the src/ subdirectory.

The source code for every metric must include metric.h and use the following
two macros defined in metric.h:

26

metric_premain() expands to set up global variables used by the metric. This
macro must be included in the source code before the main() function.

metric_setup() calls the functions that parse the command-line arguments.
This macro should be called in the main() function after the variable declara-
tions.

7 New Reference Datasets

Version 1.0 of OXBench has 672 reference alignments. It is based on the 3Dee
database of structural domains and was frozen in 1998. Given the expansion
in the PDB since then, a new database of reference alignments is under devel-
opment. This aims to provide more examples in the low PID ranges as well
as include a greater variety of sequence alignment problems (e.g. simultaneous
alignment of multiple dissimilar domains).

8 Installation

8.1 Introduction

The OXBench package has been successfully built and tested on the following
Linux platforms:

e Red Hat 7.2 running on an Opteron processor (using GCC 3.3.3)

e Mandrake 10.1 running on a 32-bit Intel processor (using GCC 3.3.3 and
3.4.1)

e Red Hat Enterprise Edition 3AS running on an AMD64 processor (using
GCC 3.2.3)

8.2 Requirements

The following packages are required to install OXBench:

e GCC v.3.0+ (3.3 preferred)
e bash
e GNU make

GNU C Library

PCRE (this can be download from http://www.pcre.org)
o Perl

R (available from: http://www.r-project.org)

27

e GNU gengetopt (available from http://www.gnu.org/software/gengetopt/gengetopt.html)
e Doxygen (available from http://www.doxygen.org)

Gengetopt and Doxygen are needed only if you are doing development work
on the OXBench source code. They are not required to run the metrics included
in the package.

8.3 Building the installation

The installation is built using make.

1. Run ’make install’ to build and install the executables. Executables
are installed into the bin directory of the distribution.

2. Run ’make subsets’ to create required symbolic links in the data direc-
tories.

3. Set the OXBENCH environment variable to the path of the OXBench in-
stallation and add the SOXBENCH /bin/ directory to your $PATH.

4. Run ’make test’ to test the executables. This runs each of the metrics
on a sample alignment and compares the CSV output to a reference CSV
file. If all is well, the output will look like this:

/sw/oxbench> make test

-> testing column... PASSED

-> testing dep_acc_avg... PASSED
-> testing stamp... PASSED

The STAMP metric test is known to give a fail message on the Red Hat
Enterprise/AMDG64 platform owing to a small difference in precision in
the output on 64-bit machines and 32-bit machines. The test fails with
the following output:

/sw/oxbench> make test

-> testing column... PASSED

-> testing dep_acc_avg... PASSED

-> testing stamp...122c122

< default,lann-4-AUTO0.1,1laxn-2-AUTO0.1,stamp,1,1.87,8.58,98.00,73,1,1,74,74
> default,lann-4-AUT0.1,1laxn-2-AUTO0.1,stamp,1,1.87,8.59,98.00,73,1,1,74,74
FAILED

make: *** [test] Error 1

28

5. (optional) Although not used in the standard OXBench metrics, a com-
plete set of pairwise structural alignments may also be installed. Since
the number of pairwise alignment files is very large, they are included as
a tarball and can be installed as follows:

make pairwise

The Makefile also includes the following targets that are useful for developers:

e make docs - updates the source code documentation generated using Doxy-
gen. This is only required if the source code has been modified.

e make profile - generates a profile optimized version of the framework using
the test suite as a training set.

29

