
fetrahedronCompaer Metlndology, Vol.3, No. 6C, pp. 739-756, 1990
Printed in Great Bdtain

0898-552980 S5.0Or.00
@ tS92 Pergrmon Presr Lrd

A PROLOG Approach to Analysing Protein Structure

Geoffrey J. Bartonr'2 and Christopher J. Rawlings2

rheRex-.r,,.JHliH1','rnRT*klTJl3;1"?:X$f,H:ilP['li],.**oxbiop)
2Biomedical Computing Unrtfilp"n" Cancer Research Fund

Lincoln's Inn Fields: London

Received: 26 Septernber 1991; Revised: 14 January 1991; Accepted: I5 January 1991

Key Words: logic programming, PROLOG, protein structure, secondary structure,
topology, relational database, knowledge base

Abstract: This paper provides a detailed description of a database of protein structure implemented
in the logic programming language PROLOG. The database allows flexible access to stuctural
information at the atom, residue, secondary structure and topology levels of the protein structural
hierarchy. An extended version of the Kabsch and. Sander algorithm for secondary structure
definition lws been implemented in PROLOG, forming an integral part of the database. For protein
structure analysis, the PROLOG system shows signiftcant advantages inflexibiliry over conventional
programming languages such os Fortran, and Relational Database Management Systems using SQL.

INTRODUCTION

Comparative analysis of the protein three-dimensional structures determined by X-ray crystallography
or NMR, furthers our understanding of the factors influencing the native protein fold and suggests rules to
guide the prediction of structure and function from the amino acid sequence. Tiaditionally, these analyses have
been performed with bespoke Fortran programs that access flat files of coordinate data. Attention has focussetl
recently on using commercial Relational Database Management Systems (RDBMS) to store the coordinate and
derived structural information (e.9., torsior angles, accessibilities, secondary structure, erc.) whilst making use
of the SQL language to query the data.l'2 Ho*euer, both traditional Fortran and RDBMS are limited by the
inflexibility of the data storage format and the query language. Whilst in principal all queries can be answered
through a conventional programming language such as Fortran or C, the effort involved in coding the question
can be formidable. Furthermore, if the first question leads on to another, then a similar programming project
must be undertaken to answer the follow-up query. In contrast, the RDBMS systems provide ready access to
simple queries of the data without the need for complex programming. Unfortunately, the query language SQL
can only represent simple tabular data structures, and the underlying relational model, though well suited to
tables of names and addresses, wages, erc., does not cope well with the naturally sequential protein structural
data.

Gray et al.3 have described an object-oriented database of protein structure. Their system explores the

739

740 G. J. BanroN and C. J. Rlwrlrcs

advantages of a system developed in the logic programming language Prolog. The relational data structures
and unification based retrieval used by Prolog provide flexible ways of accessing structural data, and prolog's
symbolic (rule-based) programming style enables many aspects of structure analysis to be represented direcjy.

Our work on representing protein structures in Prolog described in this paper has developed out of the
successful initial investigations into using logic programming techniqu"r to r"pr"r"nt and search for topological
motifs.a Subsequent studies have made ot" of symbolic togilal descriptions of protein structures during protein
structure prediction,s as a common platform in the PAPAIN project to develop a knowledge-based environmenr
for the interpretation of protein sequence data,6 and for the prediction of protein topology.T Here, we extend the
original representation of protein structure which was centered around protein topoiogy, to include more detailed
structural information. Particular attention has been paid to the representation of hydrogen bonding patterns,
and the systematic classification of protein secondary structure using Kabsch and Sanderi A"nnltioni.S

The Brookhaven Protein Data Bank
All protein structural data was extracted from the Brookhaven Protein Data Bank (pDB).9 The pDB

acts as a repository for macromolecular structure information, primarily the results of X-ray crystallographic
analysis. Each molecular structure (e.g., aprotein sructure) is stored in an individual flat file. The fili entry
contains the r, y, z coordinates in a Cartesian coordinate system for every atom in the structure. Additional
information regarding the experimental procedure used is also included together with the source of the biological
material that has been analysed.

Introduction to Prolog, System, Synnx and Hardware
All programming was performed using the commercially available Quintus Prolog system (Release

2.4.2). General details of the Prolog language may be found in the book Programming in prolog (Clocksin, W.
F. and Mellish, C. S, Springer-Verlag, FRG, 1981). Briefly, Prolog stores facts and deductive rules in a database,
where the facts are equivalent to a collection of relations in a relational database. The prolog interpreter when
presented with a query (or goal as it is often called) searches the database of facts and rules to ,"" if any of
the facts and rules match the query. If there are facts that match, then the variables in the query are unffied
with the constant symbols in the fact(s). If there is a rule whose consequent (the head of the rule) matches
the query, then the interpreter proceeds by attempting to recursively prove the subgoals of the rule. Specific
examples relevant to the protein structure information stored in our database are described below. The database
system was originally developed on a Sun 3/50 workstation with 4MBytes of memory. The current installation
is running on a Sun SPARCstation 1 with l2MBytes of memory.

Chain, Residue and Protein Naming Conventions
A protein coordinate entry (file) as listed in the Brookhaven Protein Data Bank (pDB) is uniquely

identified by a 4 ot 5 character code stafting with an integer, for example, 1FB4 is the code for an immunoglobulin
Fab fragment. However, any given entry may contain multiple protein chains, and these are usually the basic
unit of protein structure. If more than one chain exists in an entry, the PDB assign a single characier code to
each chain. For example, the entry 1FB4 contains two chains labelled L and H.

One often wishes to reference an individual chain rather than the whole protein entry. Accordingly, when
converting the PDB to Prolog clauses, a two-level naming convention was adopted. Each Entry is identified
by the PDB code (e.g. Lfuq and each chain belonging to an enrry is identified by the PDB code with the chain
identifier code appended (e.g. 1fb4l). If an entry has a single chain that does nor have a chain identifier, then
the chain is simply identified by the PDB code alone. The PDB code and chain codes are linked by the prolog
clause chain/2 as described below.

Residue numbers are represented by two-element lists (e.g. [37,a], [37,b], [sg,-]) in order to
accommodate the insertion characters that allow homologous structures to be numbered in a manner consistent
with the 'parent' structure. For example, all serine proteinase enzymes (trypsin, elastase etc.) are numbered
according to the structure of chymotrypsinogen, which was the first member of the family to be solved by X-ray
crystallography. Although this simplifies cross-referencing between different proteins in the same family, thl
flexibility creates difficulties when searching for residues N amino acids before, or after the current position.

PROLOC Approach to analysing protcin structurc

SIMPLE PROLOG CLAUSES DESCRIBING BROOKHAVEN ENTRIES

A Fortran program (BRKSEQ), reads the PDB files and processes the necessary information to describe
each protein entry by up to eleven different types of Prolog clauses:

. header(Ident ,L is t) .
compnd(Ident ,L is t) .

' sou rce (Iden t ,L i s t) .
reso lu t i on (Iden t ,R) .
chain(Ident ,Chcode) .
nchains(Ident ,N) .
chain-range(Chcode, [Cstar t ,Cstar t IN] , [Cend,CendlN]) .
chain-length (Chcode , Len) .
res idues (Chcode) .
no-nainchain (Chcode) .
no-s idechains (Chcode) .

not all clauses need be present for a particular entry, as shown for the Immunoglobulin structure1fb4.

header(2fb4, I imrnunoglobul in, 18-apr-89, 2fb4]) .
compnd (2fb4, Iinununoglobulin, f ab]) .
source (2fb4, [hunan, (horno , sapiens) , nyelona, pat ient , kol , serun]) .
resolut ion (ZtV+, 1 .900) .
nchains(2fb4, 2).
chain(2fb4,2fb4L) .
c h a i n - r a n g e (2 f b 4 I , [1 , -] , | 2 I 4 , -)) .
chain- length(2fb41, 216).
res idues(2 fb41) .
chain (2fb4,2fb4h) .
c h a i n - r a n g e (2 f b 4 h , [1 , -] , I Z Z t , -)) .
chain-Iength(2fb4h, 229).
residues (2fb4h) .

. The header, conpnd, source and resolution clauses are extracted directly from the information stored at
the beginning of every PDB file. The Ident is the PDB identification code for the prorein (e.g.9lyz), List
is a Prolog list containing textual information, and R is the resolution of the sructure in Angstroms. The
remaining seven clauses are derived from an analysis of the PDB ATOM records. The chain clauses link the
PDB identification code to the chain code Chcode whilst nchains simply lists how many chains are present in
the PDB entry. The nchains clause is included for simplicity, though is strictly unnecessary since a holog rule
could be used to count the number of chain clauses present for each protein. For every chain clause, there is
one chain-range clause which specifies the starting and ending residue numbers of the chain. Similarly, there
is a chain-length clause that states the number of residues present in the chain (this clause is essential due
to the alphanumeric residue numbering scheme used by the PDB). The residues clause identifies a chain as
having amino acid residues other than UNK (or X), whilst the presence of no-mainchain or no-sidechains
clauses for a chain shows that the protein entry is incomplete (some PDB entries only contain mainchain, or
Coatoms).

Using the PDB Information
There are 7102 clauses defining the November 1990 release of the Brookhaven PDB. These provide a

very simple database that may be read directly into the holog system and interrogated by writing simple Prolog
queries. For example, the following query also known as a goal could be typed in at the Prolog prompt (| r-y.

74t

742 G. J. BenroNand C. J. Rewnos

| ? - reso lu t i on (p ID ,R) ,R < 2 , R) 0 , cha in (p ID ,C ID) , res idues (c ID) .

The query will return the protein identifier (PID), chain identifier (CID) and crystallographic resolution
(R) for each chain in the databank whose entry is less than 2 A resolution and has amino acid residues deposited.

The Prolog interpreter attempts to satisfy this query as follows. Firstly Prolog looks in its database for
facts called resolution. The first fact is found and the variables PID and R unified with the arguments of the
clause. The value of R is then tested to see if it is less than 2. If it is, then the test is made to see if R is greater
than zero. If this succeeds, then a chain clause is looked up in the database that unifies with the curreni value
of PID. Finally, if the chain clause is found, a residues clause is looked up in the database that unifies with
the value of CID.

The query can fail at any stage. For example, if no residues fact is found that contains the currenr
CID, then the goal fails. Prolog then starts a process of backtracking to search for a possible solution. The
interpreter would first look for another chain fact. If present, then this would unify CID with the value shown
in the chain fact, again the database would be checked for a corresponding residues clause. If all elements of
the query succeed, then the values of PID,CID and R are displayed. The entire query may be forced to search
for alternative solutions by typing a semicolon. For example, the following *" itt" frrst three solutions to the
query shown.

| ? - reso lu t i on (p ID ,R) ,R (2 , R > 0 ,cha in (p ID ,C ID) , res idues (C ID) .

PID = 1amt,
R = 1 . 5 ,
C I D = l a m t b ' I , . . a n d s o o n . . .

If we often want to select protein chains by the criteria shown in this query, it is simple to build the query
into a general purpose Prolog rule. For example, the rule called select_chains:

P I D = C I D = 1 a l c ,
R = 1 . 7 ;

PID = 1amt,
R = 1 . 5 ,
CID - lamta ;

select _chains (Rnin, Rnax, CID) : -

resolut ion (PID , R) ,
R (Rnax,
R) funin,
c h a i n (P I D , C I D) ,
res idues(CID) .

We can now type:

| ? - s e l e c t - c h a i n s (O , 2 , C I D) .

%Fi rs t so lu t ion found - type , ; ,
'/, to force backtracking

%second solut ion - type , ; , again for next solut ion

Connents start with a %

7. look up resolut ion
% resolut ion below Rnax
% resolution above Rnin
% t ina a chain ident i f ier for this pID

% check the chain has residues

at the prolog prompt to find out which chains satisfy our criteria. Having established this new rule, we can then
use it in further queries. For example:

| ? - s e l e c t _ c h a i n s (2 , 3 , C I D) , c h a i n _ l e n g t h (C I D , L e n) , L e n) = 1 5 0 .

will return the chain identifier and length for chains belonging to entries that are of between Z and,3 A resolution
and where the chain length is at least 150 amino acids.

PROLOG Approach to analysing protein structure

Getting All Solutions
As stated, the example queries require interactive prompting by typing a semicolon, to return more than

one solution. However, tlere are two methods by which Prolog can return all possible solutions to a particular
query. The first is to put the built-in predicate (also called a procedure) f ai 1 . at the end of the query. This forces
backtracking whenever it is encountered. In order that the results of each solution to the query are recorded,
some write statements must be added. For example:

| ? - se lec t -cha ins(2 ,3 ,CID) ,cha in_ length(CID,Len) ,Len >= 150,
wr i te (CID) ,n l ,
wr i te (Len) ,n l , fa i l .

will print the values of chain identifier and length that satisfy the query. The nl predicate simply places a
carriage-return character after each write. Part of the output of this query looks like this:

8at1c
310
Satca

3 1 0

Satcc

3 1 0

A more useful type of ouput would be to write out the results in a form that can be directly re-used by
Prolog as a set of clauses. For example:

| ? - seLec t_cha ins(2 ,3 ,CID) ,cha in_ length(CID,Len) ,Len)= 150,
wri teq (special_chains (CID, Len)) , wri teg(.) , nl , fai l .

where the writeq predicate makes sure that all syntax is correctly observed. Part of the output resulting from
this query is shown below and can be read back into prolog for further processing:

special-chains (5acn, 754) .
special_chains (5adh, 374) .
special-chains (5at 1a, 310) .
special_chains (5at 1c, 310) .
special_chains (5tIn, 316) .

In this example, there is no real advantage in writing the results in this form since the original query
is very quickly evaluated. However, for a complex query where Prolog may take several minutes to find all
solutions, it makes sense to save intermediate results in this form. This is particularly true in the analysis of
protein structure, where one question frequently leads to another and the results of the first question are necessary
to solve the following question.

An alternative way to return all solutions to a query is to make use of the Prolog built-in procedure
bagof. This is an extremely flexible procedure that returns the results of a query in the form of a prolog list.
For example, the previous query could be expressed as:

| ?- bagof (special_chains(CID,Len),
(select_chains (2,3, CID) , chain_length (CID, Len)) , L)

and will return the variable L as a list containing special_chains (Cf D, Len) clauses. Normally, this is the
method of choice since it gathers all solutions into an easily manipulated list structure. This example required
0.08 seconds to scan a database containing 501 entries on a sun spARCstation 1.

743

744 G. J. B*rouandC. J. Rewmrcs

DERTVED INFORMATION

So far we have described an extremely simple database of protein structure-related information and
shown how Prolog can be used to query the data. This simple database forms a hub of basic facrs around which
the more detailed structural data of our system are organisid.

Although PDB coordinate files contain the c, y, z coordinates of individual atoms in a protein, one
frequently does not require this level of detail. It is often sufficient to consider the structure at the level of the
amino acid residues. For example, one may be interested in the secondary structure of a particular residue,
(a-, B-ot turn), the accessibility to solvent, the Qlrlt angles and so on. ih. Kabsch and Sander secondary
structure definition prognm DssRS reads a Brookhaven coordinate file and generates a file of definitions
for the secondary structure of the protein. In addition to defining the structural state of each residue, DSSP
also generates a table containing the main chain hydrogen bonds, accessibility, sl$ angles and cocoordinates
together with other relevant information. Accordingly, the table provides an invaluable reference source of
residue-level information for the protein. Simply converting these tables to holog clauses allows the power of
Prolog to be used in queries of the data. A sample of the table outpur by DSSp is shown here:

1 1 A V o o 1 3 9 O , O . O 2 , _ 0 . 6 o , o . o 1 3 0 , o . o
0 . 0 0 0 3 6 0 . 0 3 6 0 . 0 3 6 0 . 0 1 3 0 . 6 6 . 9 1 7 . 8 4 . 7

2 2 A L - o o 1 9 1 2 5 , _ 0 . ! t 2 2 , 0 . 0 1 2 6 , _ 0 . 1 5 , 0 . 0- 0 . 7 1 1 3 6 0 . 0 - 1 4 2 . 7 - 8 0 . 5 1 2 1 . 9 1 0 . 6 L 7 . g 4 . 2
3 3 t s

- 0 . 3 0 1 2 7 . 8 - 1 0 5 . 5 - 7 1 . 3 1 6 4 . 8 L 2 . 3 1 9 . 8 7 . o
4 4 A P E > S + O 0 9 8 0 , 0 . 0 4 , - 2 . + O , O . O - 1 , - 0 . 1

0 . 8 8 0 1 2 5 . 4 5 5 . 4 - 6 2 . 3 - 3 5 . 0 1 5 . 3 2 2 . 0 6 . 2
5 5 A l E > S + o o 5 9 L , - 0 . 2 4 , - 2 . 4 2 , _ O . 2 _ 3 , 0 . 0

0 . 9 0 7 1 0 4 . 9 5 2 . 7 - 6 5 . 0 - 4 1 . 5 L 7 . 6 1 9 . 4 7 . 7
6 6 A D E > s + 0 o 1 5 L , _ O . 2 4 , _ 2 . g 2 , _ 0 . 2 _ ! , _ 0 . 2

0 . 9 1 8 1 0 9 . 0 5 0 . 3 - 5 6 . 3 - 4 2 . 8 1 5 . 9 1 6 . 9 8 . 2
7 7 A K f , X S + o o 4 6 - 4 , - 2 . 0 4 , - 2 . 5 1 . , - 0 . 2 - 2 , _ O . 2

0 .881 109 .2 60 .2 -64 .7 -36 .2 16 .7 Ls .2 2 .4
8 8 A T E X S + 0 o 9 0 - 4 , - 2 . 4 4 , - 2 . O L , _ O . 2 _ ! , _ o . 2

0 . 9 1 0 1 1 1 . 6 4 9 . 6 - 6 3 . 3 - 4 2 . 7 2 0 . 4 1 9 . 6 3 . 5

The program BRKSAND converts this table format into holog clauses, one for each residue. For
example:

h s (1 , 2 h h b , 2 h h b a , [1 , -] , v , - , f - , - , - 1 , I o , o , -] ,
1 3 9 , [0 , 0 . 0] , [2 , - 0 . 6] , I O , O . O] , [1 3 0 , o . o] , I o . o o o , 3 6 0 . 0 , 3 6 0 . 0] , I
3 6 0 . 0 , 1 3 0 . 6 1 , t 6 . 9 , L 7 . 8 , 4 . 7 D .

ks (2 ,2hhb ,2hhba , [2 , -7 ,L , - , [n , - , -] , I o , o , -] ,
1 9 , f 1 2 8 , - 0 . L) , L t 2 2 , o . o l , [1 2 6 , - 0 . 1] , I s , 0 . 0] , [- 0 . 7 t 1 , 3 6 0 . 0 , _ 1 4 2 . 7] , I- 8 0 . 5 , 1 2 1 . 9 1 , [1 0 . 6 , 1 7 . 9 , 4 . 2 D .

k s (3 , 2 h h b , 2 h h b a , [3 , -] , S , - , [n , - , -] , I o , o , -] ,
4 4 , 8 - 2 , - 0 . 6 1 , [4 , - 2 . 0) , 1 1 , - 0 . 1] , [- 1 , O . O] , [- O . g O 1 , 2 7 . 8 , _ 1 0 5 . 5] , I- 71 . 3 , 164 . 8 l , I L2 .3 , 19 .8 , 7 . o]) .

ks (4 ,2hhb ,2hhba , [4 , -] , p , f l , [p , - , -] , I o , o ,_] ,
9 8 , [0 , 0 . 0] , f q , - 2 . 4 J , 1 o , o . o l , [- 1 , - 0 . 1] , [0 . 8 8 0 , L 2 s . 4 , s E . 4] , I- 6 2 . 3 , - 3 5 . 0 1 , [1 5 . 3 , 2 2 . O , 6 . 2]) .

t s (5 , 2 h h b , 2 h h b a , [5 , -] , A , n , [p , - , -] , I o , o , _ i ,
5 9 , [1 , - 0 . 2] , [4 , - 2 . 4) , 1 2 , - O . 2 J , l - 3 , o . o] , [0 . 9 0 7 , 1 0 4 . 9 , 5 2 . 7) , 1- 6 s . 0 , - 4 1 . s 1 , [1 2 . s , 1 9 . 4 , 7 . 2 D .

k s (6 , 2 h h b , 2 h h b a , [6 , -] , D , H , [P , - , -] , I o , O , _] ,
1 5 , [1 , - 0 . 2] , [4 , - 2 . 3] , [2 , - 0 . 2 7 , 1 - 1 , - 0 . 2] , [0 . 9 1 8 , 1 0 9 . 0 , 5 0 . 3] , I- 5 6 . 3 , - + Z . g l , [1 5 . 9 , 1 6 . 9 , 5 . 2]) .

h s (z , 2 h h b , 2 h h b a , I z , -] , N , H , [p , - , -] , I o , o , -] ,
4 6 , [- 4 , - 2 . 0] , [4 , - 2 . 6) , 1 1 , - 0 . 2] , [- 2 , - 0 . 2) , [0 . 8 8 1 , 1 0 9 . 2 , 5 0 . 2] , I- 6 4 . 7 , - g 0 . z l , [1 6 . 7 , t 9 . 2 , 2 . 4)) .

k s (8 , 2 h h b , 2 h h b a , [8 , -] , T , H , [p , - , -] , I o , o , -] ,

-

PROLOG Approach to analysing protein structure 745

The general form of a ks fact is as follows:

ks (l { ,P ID ,C ID ,R I { ITH ,AA ,SS,CLAD,BPSHEET,ACC,NHO1,0NH1,NH02 ,ONH2,TKA,PHIPSI ,XYZ) .

where:

- l{ unique atom identif ier in this entry (integer)
PID Protein identifer code (character string)
CID Chain identifer code (',

")
RNUM residue number List: [integer,character insert code]
AA anino acid code (Uppercase character - cys in bridge

is lowercase)
SS secondary structure (Uppercase character)
CLAD lchi ra l i ty , ladder l , ladder2] where

chi ra l i ty = n (-ve) , p (+ve)

Ladderl/2 = uppercase character
BPSHEET [BP1,BP2,SHeet] BPt /2 g ive va]ues of N for br idges, Sheet is

a character that labels the sheet
ACC accessib i t i ty (Angstrorns**2) (in t)
NHo1 /2 ,
oNH!/2 haitt,energyJ Ndiff is the difference in N value to the Hbond

partner, energy is the energy (kcal/mo1) (int,real)
TKA Angles: IICO,KAPPA,ALPHA] (A11 real nurnbers)
PHIPSI IPHI,PSI] phi ,ps i angles (both real)
XYZ [X,Y,Z] coordinates of th is CA atom (a1] reals)

For details of the specific structural meaning of each of these values, see Kabsch and Sander.8
The first argument in the ks/16 clause is a unique numeric residue number, where the numbers run

consecutively from the beginning of the protein entry. This numbering scheme overcomes the difficulties
associated with the standard PDB numbering system, by allowing simple questions of the form, 'what is the
residue 4 amino acids N-terminal of residue 37' to be readily answered.

If the ks clauses for a protein are loaded into the holog system, then queries nay be made. For example,
- to find the names of residues with accessibilities < 1004,' and with positive / angles one could type:

I z - k s (- , - , - , - , A A , - , - , - , A c c , _ , _ , _ , _ , _ , [p H r , _] , _) , A c c < 1 0 0 , p H r > 0 .

Clearly, this is a rather cumbersome interface to the data. In order to simplify this sort of query, a set
of high level procedures have been written to allow different aspects of the data to be extractod. The procedure
get / 4 allows a particular field to be returned:

| ? - ge t (N ,C ID ,En t r y ,Va lue)

N and CID are the unique residue number and chain identifier. Entry is one of the snings: ks-number,
prote in- ident i f ier , res idue-nurnber, amino-acid, amino, accessib i l i ty , hbondN01, hbond0N1,
hbondN02, hbond0N2, hbonds, tka, phips i , xyz, x , ! ,2 , sec. Thesevaluesfo l lowthe arguments
ofthe ks procedure, hbonds causes backtracking through all four hbondtypes that are stored, whilst amino-acid
converts the code letters for residues involved in disulphide bridges into the normal amino acid codes. Value
holds the returned value of the procedure. For example, to perform the same query as above we would type:

| ? - ge t (N ,C ID ,access ib i l i t y ,ACC) ,AcC < 100 , ge t (l f ,C ID ,ph ips i , [pH I ,_]) , pH I > o .

746 G. J. Banrouand C. J. R,c,wrfi.rcs

which reads, '[ook up an accessibilty value, if this value is less than 100 then look up the value of @ for the
residue, if this is greater than 0, then display the result.'

Frequently, one requires a range of values that start and end at particular residues in the protein chain.
The getR procedure performs this task. For example:

| ? - ge tR(2 , !O,1 fb4 l ,amino_ac id ,AA)

which will return the value for AA of:

A A = [S , V , L , T , Q , P , P , S , A]

The getR procedure can be used for far more complex queries. For example, the following query will
find the sequence' accessibility and summary of secondary structure for all peniapeptides that have a mean
accessibilty of less than 1042.

CID = 1fb41,
kchain_range (S, E, CID) ,
SI l l is S - 1,
L S T I s E - 4 ,
nex t l (S [1 ,STABT,LST) ,

' l just set the chain to 1fb4l for nort
%find the start (S) and end (E) residue nunbers
% f i n d S - l n u r n b e r
%find the last possible START for a pentapeptide
%on backtracking this procedure returns START as
T.successive values from SM1 to LST.

END is START + 4, %specify the last residue of the pentapeptide
getR(srART,El{D,CrD,accessib i l i ty ,ACC) ,

, l ,get the accessib i l i t ies for th is
%pentapeptide

rnean(HEAN,ACG), i l f ind the nean accessibil i ty
MEAI{ < 10, 7.test if nean is < 10 for this pentapeptide,
getR(START,END,CfD,amino_acid,AA), Z.Iook up the anino acid sequence
getR(START,EI{D,CID,sec,SEC)., % and summary of secondary structure
wr i te_l is t ([c ID,START,END,Acc,AA,sEc,MEAN]) . %wri te out the in fornat ion we $ant

This query produces the following output:

1 f b 4 1 3 2 3 6 [9 , 3 4 , 0 , 0 , 1] [r , T , v , l l , l {] [s , _ , _ , E , E] g . T g g g g
1 f b 4 1 3 3 3 7 [3 4 , 0 , 0 , 1 , 0] [T , V , N , h ' , y] [_ , _ , E , E , E] 7 . 0
1 f b 4 1 3 4 3 g [0 , 0 , 1 , 0 , 3 4] [V , N , W , y , q] [_ , E , E , E , E] Z . O
1 f b 4 t 3 5 3 9 [0 , 1 , 0 , 3 4 , 2 1 [N , l { , y , q , q 1 [E , E , E , E , E] 7 . 3 g 9 g 9
1 f b 4 t 7 2 7 6 1 2 , 3 4 , 0 , 4 , !) [A , S , L , A , r] [E , E , E , E , E] A . Z
1 f b 4 1 g 5 g g I t 0 , g , 0 , 1 1 , 0] [s , D , y , y , c] [s , E , E , E , E] 6 . 0
1 f b 4 1 8 6 g 0 [9 , 0 , 1 1 , 0 , 0] [D , y , y , c , A] [E , E , E , E , E] + . 0
1 f b 4 1 g 7 g 1 [0 , t t , 0 , 0 , 0] [y , y , c , A , S] [E , E , E , E , E J Z . Z
1 f b 4 1 g g 9 2 [1 t , 0 , 0 , 0 , 1] [y , c , A , s , L t] [E , E , E , E , E] Z . +
1 f b 4 t 8 9 9 3 [0 , 0 , 0 , 1 , 0] [C , A , S , } I , N] [E , E , E , E , E] O . Z
1 f b 4 1 9 0 9 4 [0 , 0 , 1 , 0 , 3 4] [A , S , W ,] l , s l [E , E , E , E , T] Z . O
1 f b 4 1 9 g 1 0 2 [t + , s , ! ! , 7 7 , 2 f [S , y , v , F , c] [E , E , E , E , B] a . s g g g g
1 f b 4 1 1 3 4 1 3 8 [3 , 7 , 0 , 0 , 0] [A , T , L , V , C] [E , E , E , E , E] 2 . 0
1 f b 4 t 1 3 5 1 3 9 1 7 , O , O , O , 2 f [T , L , V , C , L] [E , E , E , E , E] 1 . 8
1 f b 4 1 1 3 6 1 4 0 [0 , 0 , 0 , 2 , 0] [L , v , c , L , r J [E , E , E , E , E] 0 . 4
1 f b 4 r t 3 7 t 4 7 [0 , 0 , 2 , 0 , 1 3] [V , C , L , r , s] [E , E , E , E , E] S . O
1 f b 4 t t 7 7 1 , 9 7 [2 , 0 , 1 , 0 , 5] [A , A , S , S , y] [E , E , E , E , E] r . e
1 f b 4 1 7 7 9 ! 8 2 [0 , 1 , 0 , 5 , 2] [A , S , S , y , L] [E , E , E , E , E] r . o

and required 18 seconds to complete on a Sun SPARCstation 1. Loading the protein into the prolog system(consultation) required an additional 14 seconds.

-

PROLOG Approach to analysing protein structur€

SECONDARY STRUCTURE DEFINITION

The Kabsch and Sander8 secondary structure definition algorithm follows a strict hierarchy of structural

sub-types. However, the ks clauses store only the summary of the structure thus losing the underlying information

that goes to make up the defined secondary structure. For example, to define an a-helix, the DSSP algorithm

first finds all main chain hydrogen bonds between residues i and i + 4. These residues are then said to form a

four turn. A rninimat helix is then defined in terms of two overlapping four turns, finally a helix is defined as at

least two overlapping minimal helices. When the secondary structural state of a residue is simplified to a single

character such as 'H', the reason for that residue being defined as 'H' (i.e. hydrogen bonds, turns and minimal

helices) is lost. Similarly, the possibility of a residue belonging to more than one structural class, for example

both 3ro-and a-helix, is not allowed by the ks summary.
Prolog is a rule based language and the Kabsch and Sander definitions are a set of simple hierarchical

rules. Accordingly, it is a relatively staightforwardmatter to implement the secondary structure definition rules

in Prolog. Having the structure definitions expressed as Prolog rules enables queries to be formulated at each

level of the definition hierarchy.

Helix definitions
In order to illustrate the definition of secondary structure using Kabsch and Sander's rules the complete

Prolog code for the definition of helix structure is shown here. The basic building block for the definition of

a helix is the kturn rule. This looks up the hydrogen bonding information stored in the ks clauses and if an

i,i + n pattern with an energy of at least -0.5 KCal is seen, then a turn is defined.

/* kturn rule*/

k tu rn(N,N3, CID,Type) : -

k s (N , - , c r D r - , - , - , - , - , - , - , [8 1 , E 1 1 , - , [B 2 , E 2 f , - , - r -) ,
turn-type (NN , Type) ,
N 3 i s g + N N ,
B l A i s N + 8 1 ,
B2A is l i l + 82,
check-bond(i l3, [B1A,E1] , [B2A,E2]) .

/* turn-type facts */

turn-type (3, three-turn) .
turn-type (4, four-turn) .
turn-type (5, f ive-turn) .
turn-type (6 , s ix-turn) .

/x check-bond rules */

check-bond(N3, [! I3 ,E1] , -) : -

E 1 = < - 0 . 5 .
check-bond(l '13,- , [N3,82]) : -

E 2 = < - 0 . 5 .

The kturn rule operates by first looking up the unique residue number, offset and energy of the two

hydrogen bonds listed as O-HN hydrogen bonds for that residue. A turn type is then looked up (e.9. three-turn)

to obtain the required offset for a hydrogen bond (in this example, 3). The check-bond rule is then used to see

if a hydrogen bond exists between the current residue and one three further down the polypeptide chain.

Given the kturn, the definition of a minimal helix is readily expressed as:

747

748 G. J. BemoxandC. J. Rewmrcs

nininal_helir (l{,1f 2, CID, Type) : -
kturn (l{, l{end2, CID, Type),
I{H1 is }l - 1,
k turn(l {M1, _, CID,Type),
l{2 is l lend2 - 1.

Prolog rules then define the start and end points of a helix:

helix-start (l{, CID, Type) : -

nininal_helir (l{, _ , CID, Type) ,
I{H1 is I{ - 1,
\+ in-nininal_helir(l{1,t1 ,CID,Type). % \+ neans ,not,

helix-end (l l, CID, Type) : -

nininal_helix (_ , l{, CID, Type) ,
i lP1 is I{ + 1,
\+ in_nininal_helix(lfp1, CID,Type) .

in-nininal_hetix (l{, CID, Type) : -

nonvar(I {) ,
nininal-helix (t{1 ,l{2 , CID, Type) ,
I [)= I [1 ,
!f =(I[2 1
! .

%must call with I{ instantiated
%i.e. I { nust have a value before
l, the cal1.

%succeed only once.

The rule in-mininal-helix succeeds once if tho residue number is found within a minimal helix. The
helix-start rule reads 'residue N is the first residue in a helix if it is the first residue in a minimal helix, and
residue N - 1 is not in a minimal helix.' Similarly for the helix-end rule.

Three herix-type facts link the different types of turn with 3ro -, o -and five-helix names.

helix_type(three_turn,three_ten) .
helix_type (four_turn, alpha) .
helix-type (five_turn, five) .

Finally' we can write the helix rule by making use of the helix-start and helix-end rules.

hel ix(t{1, l {2, CfD, Htype) : -
helix-start ([1 , CID, Type) ,
f ind_helix_end (l{1 , CID, Type ,l{2) ,
helix-type (Type, Iltype) .

f ind-helix_end (l{, CID, Type, I{2) : -
helix_end (1f2, CfD, Type) ,
I{2 > }I,
! .

The helix rule reads 'find the start of a helix, find the first end of helix that follows this starr, rhen look
up the helix type.'

The holog rules for helix, make up the computer progam that defines helix structures. However, a
feature of Prolog is that any rule can be replaced by i collection of facts. For example, the kturn rule can be
replaced or augmented by facts that are specific to a particular protein:

-

PROLOG Approach to analysing proein structurc

kturn(416, 419, 1fb4h, three_turn) .
kturn (418, 421, Lfb{h, three-turn) .
kturn (418, 422, lfb4}l.,f our-turn) .
kturn (430 ,434, 1fb4h, four-turn) .
kturn(430,435, 1fb4h, f ive_turn) .

-
kturn (43t ,434,1fb4h, three-turn) .

these facts may then be used in exactly the same way as the general purpose rule with the same name and number
'

of arguments. In this way, if a rule is particularly time consuming to evaluate, it need only be evaluated once for
the protein, then stored as a set of facts. Other rules that subsequently make use of the rule need only look up
the corresponding facts in the database, rather than repeat the time-consuming rule evaluation. This principal
is similar to storing intermediary results in a conventional Fortran or C program. The difference in Prolog is
that the routines that access the pre-calculated data are identical to those that access the routines that initially
calculated the data.

B eta Structure D efinitions
Kabsch and Sander define all beta structure in terms of 'bridges' which are either parallel or antiparallel.

Where two ormore bridges of the same type are consecutive, the stmcture is termed a ladder. Finally, overlapping
ladders are amalgamated into sheets. Additional complications arise because ladders may have discontinuities
in them, and ladders may consists of just a single bridge. These aspects of protein structure make the coding of
beta-structure in Prolog a little less straightforward than for helix.

In finding the sheets in a protein, the following steps are performed:

o Define the parallel and antiparallel bridges.

o Define start and end points of ladders.

r Build ladders of that consist of two or more consecutive bridges.

r Identify ladders that consist of a single bridge (bridgeJadder).

o Locate ladder pairs that are linked by a B -bulge.

o Identify B-sheets in terms of the ladders that make them up.

o Identify B-strands by examining the sheets.

The general Prolog rules developed for B-structure are:

br idge (I-J , CIDl , CID2 , Btype)
Iadder_start (A-B, CID ! ,cID2, Btype)
ladder-end(A-8, CIDl , CID2 , Btype)
ladder (Bridgel ist , CID 1 , CID2 , Ltype)
bridge-ladder (ladder (tA-Bl , CID 1 , CID2 , Type))
bulge-l inked-ladders (Ladder1, Ladder2)
1-sheet (PID, Ladderlist , Type)
strand (l{umberlist , CID)
s-sheet (PID , Strandlist , Type)

where I-J is a pair ofresidue identifiers from chains cIDl , CID2, respectively. Btype is the bridge type, either
paral1el or ant iparallel. Bridgeli st is a Prolog List containing bridge/4 facts. Similarly, Ladderlist is
a list of ladder/4 definitions, whilst Numberlist is a list of residue numbers. The bulge-linked-tadders/2
rule identifies two ladders that are linked by a B-bulge.

Examples of these facts specific to the protein 1fb4 are shown here:

749

-

750 G. J. BemoNand C. J. Rlwrlrcs

bridge (200-205 , 1fb41 , 1fb4l , ant iparallel)
bridge (228-340, 1f b4h, 1f b4h, paral1el)

Iadder([4-101,4-LO2,4-1,O3], 1fb41, 1fb41,paral1el)
ladder ([35-90 ,36-89 ,37-88 , 38-87 , 39-86] , 1fb41 , 1fb41 , antiparal lel)

1-sheet (1fb4 ,
l ladder([4-101 ,4-!02,4-!03] , 1fb41,1fb4l,paral1e1) ,
l a d d e r ([8 - 1 0 6 , 9 - 1 0 6 , 1 0 - 1 0 7 , 1 1 - 1 0 8 , 1 2 _ 1 0 9 , t 2 _ t L o f , 1 f b 4 1 , 1 f b 4 1 , p a r a 1 I e 1) ,

ladder ([3s-90 , 36-99 ,37-88 , 3g-87 ,39-86] , 1fb41 , 1fb41 , ant iparalrer) ,
Iadder([36-49,32-47,38-46] , 1fb4l, 1fb4l, antiparal lel) ,
ladder ([85-107,86-106,87-105] , 1 fb41, 1 fb4 l ,an t ipara l Ie l) ,
ladder ([89- 102, 90- 10 1 , 9 1 - 1oo, 92-99 , 93-98] , 1 f b4r , 1 f b41, an t ipara l le r)

l , n i x e d)

s_sheet (1fb4,

lstrand([4] ,1fb41) ,
s t rand([9 ,9 , 10 , LL ,1 ,2 j , t fb4 l) ,
s t r a n d ([3 S , 3 6 , 3 7 , 3 8 , 3 9] , 1 f b 4 1) ,
strand(146,47 ,49,491 ,1fb41) ,
s t r a n d ([8 5 , 9 6 , 8 7 , 9 8 , 9 9 , g o , g 1 , 9 2 , 9 3] , t f b 4 1) ,
s t rand([9g , gg , 100, 101 , 102, 103] , 1 fb41) ,
s t rand([105, 106, 107, 108, 109, 110] , 1 fb41)

l , n i x e d)

Two alternative representations of a B-sheet are shown. The first consists of the list of ladder clauses
that are used in the definition of the sheet. This representation immediately shows which residues are involved
in the sheet and what their hydrogen bonding partners are. The sheet type is also defined as one of pure parallel,
pure antiparallel, or mixed, depending upon the type of ladders in the sheet. Having established the sheet
definition, it is possible to define the B-strands that make up the sheet and consequentiy to define the second
alternative sheet fact. This shows a list of strand definitions in place of the ladder difinitions.

The time required to calculate all secondary structure definitions for a protein is dependent upon the
number of residues present, and the total secondary structure content. Some typical examples are: lfb4
(Immunoglobulin) a p protein of 445 residues in total takes 50 seconds (including consultarion time); lmbn
(Myoglobin) an all o protein of 153 residues takes 25 seconds on a SPARCsration 1.

INTERFACE TO TOPOL TOPOLOGY REASONING RULES

The ToPoL system forreasoning about protein topology in Prolog4 makes use of the secondary structure
definitions as deposited in the Brookhaven hotein Data Bank. In order that the TOPOL rules may be applied
to Kabsch and Sander derived secondary sffucture definitions and to allow access to the angle and accessibility
information, several rules were developed.

Kabsch and Sander helir definitions allow a residue to belong to more than one type of helix. Thus,
it often occurs that a region of o-helix will overlap with a region oi 3,0-h"li* at the C-ierminal end of the
o-helix. TOPOL expects residues to belong to only one secondary structure. Accordingly, where overlaps
occur, the helix definitions are compressed into a single thelix definition. For example:

t h e l i x (1 8 6 , 1 9 1 , 1 f b 4 1 , I
he l i x (189, 191, 1 fb4] , th ree_ten) ,
hel ix (186, 191 , 1fb41 , alpha)

l)

-

PROLOG Approach to analysing protein structure

shows the starting and ending residue numbers for the concatenated helix, the chain identifier, then a list of the
helix definitions that overlap.

Strands are simply identified by their start and end residue numbers, rather than a list of all residues in
the strand. In addition, regions of polypeptide that are neither in strand, nor helix are defined as the structure
tloop. TheTOPOLclausesfollows/2, is-para11eI-to/2and is-antiparal-l-el-l"o/2 arethendefined
in terms of the tstrand, tloop and thelix clauses. For example:

fo l tows(ts t rand(175, 184, 1 fb41) , t loop(172,L74,1 fb41))

specifies that the given tstrand follows the tloop in the structure, as will be self evident from the residue
numbers.

The full interface to TOPOL includes calls from Prolog to Fortran routines to fit straight lines through
helices and strands and to calculate overlaps, distances and angles. The details of this interface are under further
development and will be described elsewhere.

EXTENSIONS TO KABSCH AND SANDER SECONDARY STRUCTURE DEFINITIONS

Extending B-strands
The basic Kabsch and Sander definitions for beta structure require that a residue must be involved in

two hydrogen bonds (or bordered by residues involved in two hydrogen bonds) in order to be classified as in a
'bridge'. Only residues in bridges can be built into ladders, and hence into sheets. However, residues frequently
make a single hydrogen bond at the end of a ladder and would traditionally be considered as part of the sheet.
The ladder-extension clause:

Iadder-extension (L2, ladder (L1, cID 1, cID2, Type)) .

succeeds if the ladder may be extended to either the 'left'or'right' end. L2 is the list Ll with the additional
hydrogen bonded residue pair appended to the appropriate end or ends.

When Type : antiparallel, the extension is straightforward, e.g.: ?-0-ll9,2l-718 might be extended to
L9-120,20-119,21-118, or similarly at the right hand end. However, when Type = parallel, there is a problem,

since the additional residue at the end of the ladder will be hydrogen bonded to a residue already in the
ladder. As a consequence, the extended ladder list (L2) will contain two references to a single residue on one
strand. E.g. 20-90,21-97,22-92 is extended at the right hand end to: 20-90,21-9L,22-92,22-93, or possibly:
20-90,21-91,22-92,23-92; and similarly for the left hand end.

S ub - cla s sifyin g P -stands
p-strands may be sub-classified according to their position within the sheet. For example, a strand

may be hydrogen bonded on both sides (a mid-strand), or only on one side (an edge-strand). In addition, the
strand may be parallel or antiparallel to both its neighbours, or parallel to one and antiparallel to the other. The
strand-type clause subclassifies 0-strands according to these criteria:

strand- type(ts t rand(X,Y,CID),Sub-type) % head of the general ru le

st rand- type(ts t rand(323,323,1fb4h),edge-ant ipara l le l) 7 . a speci f ic exarnple

Scanning More than One Protein
The examples have so far assumed that the ks clauses for only one protein are resident in the Prolog

database. However, a query should be able to be applied to more than one protein at a time. One approach to

this problem would be to load ks clauses into memory for all proteins to be studied. An alternative approach is

to arrange for holog to access the clauses as they reside on disk, rather than reading them into memory. This

75r

-

7s2 G. J. B*roNandC. J. Rlwrl.lcs

dilemma is central in the design of large Prolog systems and is a subject of continuing research, some solutions
are raised in the discussion.

The limited memory of the Sun-3/50 workstation on which our system was originally developed elimi-
nated the possibility of reading data on all proteins into the Prolog system. Accordingly, a simple solution was
adopted whereby each protein is loaded in turn for analysis. In order to economize on aist space, the second.ary
structure definitions for each protein are not pre-calculated, but performed 'on the fly' as thi query is executed.
The scan-with/2 facts, and get-protein/2 rules manage this operation. Forexample:

scan-with(hel ix,Scanl ist) , pl ist = [1fb4,1sgt,4fxn] ,mernber(pID,pI ist) ,
get_protein (Pf D, Scanl ist) ,
l ist of goals using hel ix def ini t ions go here,
fa i l .

Thescan-withfactreturnsalistofproceduresthataretobeexecutedbytheget-proteinprocedure. In
this example, the scanlist returned would take the value of [kturn, minimal-helix, helix-start, helix-end,helix],
specifying the rules for structural units that are to be used. Plist is simply a list of the identifiers for the proteins
that are to be analysed. The member /2 rule returns successive members of the prist on backracking, and thus
feeds each value of PID in turn to the get_pr oteit/2 procedure.

A call to get-protein first loads the ks clauses for the specifiedprotein, then loads the general rules for
helix definition (kturn, minimal-helix, etc....). All solutions to these general rules are then found for the prorein
and the specific structural facts asserted into the Prolog database. Having loaded all specific facts for the protein,
the particular goals that require the secondary structure definitions are executed.

ALL ATOM REPRESENTATION IN PROLOG

Although many questions may be answered by regarding the protein structure at the residue level, some
analyses require access to the individual atomic coordinates. For example, the location of close approaches
between residue sidechains to identify hydrophobic or electrostatic interactions. The analysis of all atoms creates
several additional complications:

o The need to cope with a greatly increased diversity of atom labelling.

o Keep record of which atoms belong to which residue and distinguish between atoms that are in the protein
chain, and those that are not.

o Cope with non-protein atoms and groups that are often part of a Brookhaven coordinate entry: e.g., water
molecules, haeme, carbohydrate erc....

o Combinatorialproblems: E.g. searching for all close approaches is time consuming because there roughly
10x as many atoms as Coatoms...

o storage and memory problems: Full coordinate sets take up a lot of space.

A simple strategy for the representation of all-atom sets in kolog was adopted, whereby each atom is
represented by a Prolog fact of the form:

brk (I, BlI, IN, ATYPE, CID, RTYPE, ATTypE, XyZ)

where I is the atom number, RN is the residue number (e.g.2), rN is the residue number insertion code (e.g. "-"
for no insertion code); ATYPE is either atn, or het , for protein ATOM or HETMM records; crD is the chain
identifier code (e.9. "1fb4l"); RTYPE is the amino acid type in three letter code (e.g. val); ATTypE is rhe atom
type as a list including the atom insertion code (e.g. [cg1 , -J) and XyZ is the atomic coordinates as a list. In the
current implementation, the temperature factor, occupancy and footnote fields are not included.

The PDB CONECT records are converted to bond. clauses where each clause has the form:

-

PROLOG Approach to analysing protcin structurc

bond(I , J ,Type)

signifying a bond between atoms I and J of type Type. Type may be one of the following:
covalent

hbond-da (I is donor, J is acceptor in hydrogen bond)
saltb-neg (I is negative parmer in salt bridge)

- hbond-ad (I is acceptor)
saltb-pos (I is positive partner)

This format of a PDB entry may be used directly for analysis in Prolog. For example, given the rule
rdist/3 which returns the linear distance between two points in space, we can readily calculate distances
between any pair of atoms, simply by typing:

I ? - b rK(I ,R I {1 , I i l1 ,ATYPEl ,CID1,RTYPEl ,ATTYPEI ,XYZ1) ,
brk (J, Rlf 2, Il{2, ATYPE2, CID2, RTYPE2, ATTYPE2,XYZ2),
J) I ,
rdist (XYZ1 , XYZ2 , Distance) .

which returns as the first solution:

I = RN1 = Rl{2 = 1,
I N 1 = I l { 2 = - ,
A T Y P E 1 = A T Y P E 2 = a t m ,
C I D 1 = C I D 2 = S c h a a ,
R T Y P E 1 = R T Y P E 2 = c y s ,
ATTYPE1 = [n,-] ,
XYZI = [40 .935, 13 .504, L .4L7] ,
J = 2 ,
ATTypE2 = [ca,_J,
x Y Z 2 = [4 0 . 3 4 5 , 1 4 . 5 9 9 , 2 . 1 4 f ,
Distance = 7,43871

It is a simple matter to restrict the distance search to all atoms of a particular type. For example, to search
for close approaches between cys sulphur atoms:

| ? - b rk (I ,R l {1 , f } I1 ,ATypEl ,c ID1 ,cys , [sg , _ f , xyz !) ,
brk (J, Ri l2, I l Iz, ATypE2,cID2, cys, [sg, _),xyz2),
J) I ,
rdist (XYZI,XY 22, Di st ance),
Distance (5.

I = 6 ,
R N 1 = 1 ,
I l { 1 = I l { 2 = - ,
A T Y P E 1 = A T Y P E 2 = a t r n ,
C I D 1 = C I D 2 = S c h a a ,
X Y Z 1 = [e 2 . 0 + 9 , 1 5 . 8 1 9 , 1 . 9 1 3] ,
J = 8 9 3 ,
P"N2 = L22,
X\22 = [36 .339 ,1 .4 .497 ,2 .6871 ,
D is tance = 2 .01565

753

754 G. J. BenroxandC. J. Rewrncs

or perhaps, to identify close approaches between water molecules and glutamate residues and write out the
findings in a Prolog clausal form.

brk (I , R l { 1 , I l { 1 , he t , c ID 1 , hoh, ATTypEl , XyZ 1) ,
b rk (J ,R l I2 , IN2, a tn ,CID2,g lu ,ATTYPE2,XyZ2) ,
rd is t (XyZf ,XYZ2,D is tance) ,D is tance (3 ,
wr i teq(water -g lu (water (I , IRUl . , IN1] ,ATTYPE1,CID1) ,

g l u (J , [R N 2 , r N 2] , A T T y p E 2 , c r D 2) , D i s t a n c e)) ,
n 1 , f a i 1 .

wate r -g ru (wa te r (3603 , [554 , -1 , [o , -] ,Schaa) ,g ru (123 , l 2o , - f , [oe1 , -] , schaa) , 2 .9gg73)
wa te r_g lu (wa te r (3606 , [557 , -] , [o , -] ,Schaa) , gLu (2264 , [70 , -] , [cb , -] ,Schab) , 2 .ggg7L)
water-g lu(water(3638, [589,-1 , [o , -] ,Schaa),g lu(1ggg, l2 t , - f , [ca, -1 ,schab) ,2.767gs)
wa te r -g lu (wa te r (3638 , [589 , -] , [o , -] ,Schaa) ,g lu (1899 , l z t , - 1 , [c , -] , schab) , 2 .90702)
ra te r -g lu (wa te r (3638 , [589 , -] , [o , -] ,Schaa) ,g1u (1902 ,12 t , -1 , [cg , - J ,Schab) ,2 .490ss)
wa te r_g lu (ua te r (3644 , [595 , -] , [o , -] ,Schaa) ,g lu (492 , [70 , -] , l cb , -] ,Schaa) ,2 .gS4gS)
wa te r -g lu (wa te r (3648 , [599 , -] , [o , -] ,Schaa) ,g lu (S5 l , [78 , -] , [cb , -] ,Schaa) , 2 .TT3gg)
wa te r_g1u (wa t€ r (3663 , [614 , -1 , [o , -] ,Schaa) ,g1u (2263 , [zo , -1 , [o , -] ,Schab) , 2 .g7oa7)
wa te r -g ru (wa te r (3680 , [631 , -] , [o , -] , schaa) ,g1u (189s , [20 , -] , [oe1 , -] , schab) , 2 .g2o r)
wa te r -g1u (wa te r (3723 ,1674 , - l , [o , -] ,Schaa) ,g1u (120 , [20 , -] , [cb , -] ,Schaa) , 2 .B7 t t)
wa te r -g1u (wa te r (3723 , [674 , -] , [o , -] ,Schaa) ,g Iu (12S , l 2L , -1 , [n , -] ,Schaa) ,2 .eBT2)
rater-g1u(water(3724, [675,-] , [o , -] ,Schaa) ,g] rv(2t2r , [49,-] , loe2,- l ,schab),2.20ss9
)

Consulting (loading into the holog system) the 3719 brk/8 clauses for protein Scha took 46 seconds.
The query then required 75 seconds to run. When the brk/8 clauses were compiled into the Prolog system, the
execution time was reduced to 30 seconds. Unfortunately compilation required 162 seconds, leading ro a ner
loss in overall execution time.

The ease with which these simple queries can be executed in Prolog, belies the complications that would
be necessary to provide such flexibility in a conventional Fortran or C program. As for Prolog, the conventional
program would first have to read in the complete dataset into the chosen internal representation of the data.
A general purpose command parser would need to be written to enable the operator to tell the program which
comparison was required. A general selection routine would also be required to enable the operator to choose
which subset of atoms are required for the comparison. Whilst all these routines could certainly be provided in
a Fortran program, Prolog provides a far more concise route to such analvses.

DISCUSSION

In this paper we have described the use of Prolog to represent and manipulate protein srructure and
illustrated the use of the system to refine the Kabsch and Sander definitions of B-structure. As it stands, the
system is a practical tool that offers flexible access to structural information at all levels of the protein structural
hierarchy. The system is fast enough to enable scans to be made of subsets of the database at the residue level,
however, for simple queries, the time required to load each protein into Prolog (consultation) dominates the
scan time. For example, although 18 minutes was required to scan 94 proteins for the amino acid sequence
Gly-Gly and return the secondary structure summary and accessibility for the residues , 94Vo of the time was
used for consultation. The time required to consult all525 proteins in the current databank at the residue level
is approximately 90 minutes, whilst scanning with all atoms would require approximately 5 hours consultation
time on a SPARCstation t.

There are a number of possible ways in which the consultation time could be reduced. The most common,
and that usually offered by Prolog vendors is an interface to a relational database such as Oracle. These interfaces

--

PROLOC Approach to analysing protein structure

are described as providing a loose coupling to Prolog, since they effectively replace the standard file-based
methods of retrieving Prolog facts (ground clauses) into the Prolog internal database. Access to SQL is provided
from within Prolog, and these hybrid database/Prolog systems have been shown to be effective when holog is
used to simplify access to an underlying database, or where the database retrievals are infrequent. A number of
examples ofthis approach can be found.lo' ll

Although the loosely coupled interface to an RDBMS provides an engineered solution to the problem of
managing large collections of data from a Prolog programming environment, a much better solution is to use a
tightly coupled approach. Tight coupling between logic programming languages and large storage management
systems exist in the class of systems called deductive databasesl2 or expert databases.l3 These systems are
programming and data management systems based on principles of symbolic logic and do not require the user
to access data via a standard query language such as SQL. The database and the deductive engine co-exist using
common storage and execution models. This is a much more satisfactory approach, and in our view the best
suited to applications in protein sequence and structure analysis.

Object-oriented databases (OODB) are perhaps a better known way to combine a computational paradigm
with a database. OODBs combine the object-oriented programming style of specifying methods, and passing
messages to activate methods stored in objects to manipulate data stored as properties of objects. In OODBs
the object classes, objects and methods are maintained in a persistent storage system. A good example of the
use of OODBs in the domain of protein structrue is that of Gray et al. 5 who implemented their OODB in
Prolog augmented with a custom-built object storage module. Although OODBs and deductive databases aim
to deliver similar functionality to the user, the deductive database approach is more suitable for the development
of knowledge-based systems because both data representation and the computational paradigm are based on
well-founded theories of symbolic logic. Data and rules of deduction can also be freely intermixed whereas
no equivalent theoretical basis exists for OODB and the traditional distinction between data and program in
imperative programming languages is preserved.

Putting the database scanning problem to one side, the examples shown in this paper illustrate that
Prolog is a useful tool for the analysis of protein structure. Once the relevant Prolog clauses have been loaded,
queries regarding one protein can be evaluated in a few seconds. Indeed, it is possible to browse the protein
structure, examining distances, angles, hydrogen bonds e/c. with a simplicity that would be difficult to rival by
conventional programming means. Unfortunately, in order to take advantage of these benefits with the current
implementation, one needs to learn Prolog, and even seasoned "C" or Fortran programmers usually find this a
barrier. The provision of a toolkit of high level functions specifically aimed at protein structure analysis, for
example, torsion angle/distance calculation, extraction ofhelices etc. greatly reduces this barrier. Alternatively,
the use of higher level languages developed with a particular problem domain in mind (e.g. Daplex,r) can
ease the transition to Prolog-like systems. Ultimately, developments to graphical interfaces which can allow
inexperienced users access to data structures describing complex concepts such as protein topologyla will
provide flexible access to Prolog-level queries.

REFERENCES

Islam, S. A.; Sternberg, M. J. E. "A Relational Database of Protein Structures Designed for Flexible
Enquiries about Conformation". P rot ei n Eng. 1989, 2, 431,442.

Huysmans, M.; Richelle, J.; Wodak, S. J. "SESAM: A Relational Database for Sffucture and Sequence of
Macromolectles" . P ro t ei ns : Struc t., F unct., G e net. 1991, I 1, 59-7 6.

Gray, M. D.; Paton, N. W.; Kemp, G. J. L.; Fothergill, J. E. "An Object Orientated Database for Protein
S tructure Analysis'. P rot ein Eng. 1990, 3, 235-243.

Rawlings, C. J.; Taylor, W. R.; Nyakairu, J.; Fox, J.; Sternberg, M. J. E. "Reasoning about Protein Topology
Using the L,ogic Programming Language PROLOG". J. Mol. Graph.1985, 3, 151-157.

Clark, D. A.; Barton, G. J.; Rawlings, C. J. "A Knowledge-Based Architecture for Protein Sequence
Analysis and Structure Prediction". 1990, J. Mol. Graph.8,94-lO7 .

7s5

1 .

3.

5 .

756 G. J. BmroxandC. J. Rewmscs

6. Clark, D. A.; Rawlings, C. J.; Barton, G. J. "Knowledge-Based Orchestration of Protein Sequence Analysis
and Knowledge Acquisition for hotein Structure Prediction". Proc. Am. Assoc. Anif. Intet. March 1990.

7. Clark, D. A.; Shirazi, J.; Rawlings, C. J. "Protein Topology Prediction through Constraint-Based Search
and the Evaluation of Topological Folding Rules". Protein Eng. in press.

8. Kabsch, W.; Sander, C. "Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-
Bonded and Geometrical Features". Biopolymers 1983, 22, 257 7 -2637 .

9. Bernstein, F. C.; Koetde, T. F.; Williams, G. J. B.; Meyer, E. F.; Brice, M.D.; Rodgers, J. R.; Kennard, O.;
Shimanouchi, T.; Tasumi, M. "The Protein Data Bank: A Computer-Based Archival File for Macromolecular
Structures". J. Mol. Biol.1977, 112,535-542.

10. Gray, P. M. D.; Lucas, R.J. Prolog andDatabases. Ellis Horwood, Chichester, 1988.

11. Deen, S. M.; Thomas, G. P. Data and Knowledge Base Integration. Pitman, London, 1990.

12. Grant, J.; Minker, J. "Deductive database theories'. Krcwledge Engineering Review 1989,4,267-304.

13. Kerschberg,L. Expert Database Systems. BenjamirVCummings, Menlo Park, California, 1986.

14. Seifert, K. L.; Rawlings, C. J. GNPE: A graphical Interface to a knowledge based system which reasons
about proteintopology, pages 391-406. Cambridge Press, 1988.

*1

