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Introduction

The first step in solving the phase problem by molecular replacement is to identify
a suitable structure to use as a search object. If ab initio structure prediction
techniques were able to provide an accurate three dimensional model of a protein
from the amino acid sequence, then this would be a straightforward task.
Fortunately for the protein crystallographer, ab initio methods are still some way
from providing this ultimate solution! However, there are a number of powerful
techniques available to detect similarity between a protein sequence and a protein
of known three dimensional structure. Some methods improve the sensitivity and
selectivity of conventional sequence alignment methods by incorporating
secondary or tertiary structural information from the protein of known structure.
However, it can be difficult to decide when any given method is indicating genuine
structural similarity, or merely a spurious match. Accordingly, in this article, | first
briefly review the range of available methods and show their relative success in
identifying the globin fold. | then describe an analysis that identifies the limits of
detection for a standard pairwise sequence comparison method. For more detailed
information on current sequence/structure comparison algorithms see volume 183
(1990) of Methods in Enzymology.

Overview of Methods
The available comparison techniques may be loosely divided into five categories

of increasing complexity and sensitivity. In practice there is a lot of overlap between
the methods in categories 2-5.

1L Pairwise sequence comparison.

2. Pairwise sequence comparison with secondary/tertiary structure
information.

3 Multiple alignment comparison with/without secondary structure
information.

4. Flexible patterns and templates.

B Environment specific weighting and optimal threading.

(6.  Three dimensional structure prediction!)

Pairwise sequence comparison may be applied to any two protein sequences.
A pair score matrix is chosen that assigns a weight to the alignment of all possible
pairs of amino acids, (e.g. AA might score 10 whilst AK scores -5), aligning any
residue with a gap is assigned a negative value. A dynamic programming algorithm



(e.g. see Needleman & Wunsch 1970) is normally used to find the best alignment of
the two sequences including a consideration of insertions and deletions. Although
robust, the standard pairwise alignment methods take no account of secondary or
tertiary structural constraints, e.g. insertions and deletions generally do not occur
in the core of the protein. If we know the structure of one of the proteins, the
position of the gaps can be encoded in the comparison to avoid core secondary
structures. This approach yields alignments that are more consistent with structural
features than straightforward sequence-only methods (Barton & Sternberg 1987a).

Often, the protein with which we are searching can be unambiguously aligned to
other members of its family. The resulting multiple alignment may then be used as
a more sensitive probe of other family members. The sensitivity is improved, since
positions important to the protein fold (e.g. buried hydrophobic residues) are given a
higher weight, and variable regions are given a lower weight when aligning to a
further sequence. As with pairwise comparison, this method may be combined with
secondary structural information. An extension of the multiple alignment method is
to abstract only the most highly conserved regions into a flexible pattern (Barton,
1990, Barton & Sternberg 1990) or template (Bashford et al., 1987; Taylor, 1986)
that encodes the conserved secondary structures and other important features. As |
will show in the next section, flexible patterns can yield great sensitivity and
selectivity.

Environment specific weights are derived by studying the preferred
environment, (i.e. exposed/buried, polar/non-polar contacts, secondary structure
preference etc.) of each amino acid type, these weights are then applied to each
residue in the protein of known three-dimensional structure to define a structural
profile. Conventional dynamic programming is used to determine which proteins of
unknown structure give the best alignment with the profile. Published accounts
suggest, rather disappointingly, that environment weight methods give similar
performance to conventional sequence comparison techniques (Bowie et al. 1991;
Overington et al. 1992). Pairwise potentials take the idea of encoding the local
environment a stage further. A residue-residue pair potential is derived from
proteins of known structure, the sequence of unknown structure is then fitted to the
core of the known structure and the lowest energy threading determined. Thisis a
difficult optimization process that can not be solved by conventional dynamic
programming techniques. However, preliminary results suggest this method has
promise for detecting proteins that have similar folds, yet rather dissimilar
sequences (e.g. two "Rossmann” beta/alpha/beta folds).

Evaluation of comparison methods

One approach to evaluating comparison methods is to select a well characterised
protein family, then scan the entire sequence databank for members of that family.
The globins provide a good test case with over 300 protein sequences known, and
with representatives of diverse families with known crystal structures. Figure 1
illustrates the comparative success of different techniques for detecting the globin
fold. In the databank scanned, there were 345 complete globin sequences, the
query sequence or pattern was compared to all sequences (>6000) in the databank
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Figure 1
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and the resulting scores ranked. The results are presented as three values -
number of globins before first non-globin, number of globins in top 500 scoring
sequences, and number of globins not found in the top 500. These values give a
measure of the selectivity and sensitivity of the different methods. Moving from the
bottom of Figure 1, the methods get progressively better as more information is
included in the scan. Starting with the simple, but fast FASTP algorithm (Lipman &
Pearson, 1985), through Needleman & Wunsch (1970) (NW) , NW with secondary
structural information, structurally derived multiple alignment and multiple alignment
with secondary structure information, to flexible pattern, the methods improve. A
flexible pattern derived from a single sequence and secondary structure does
slightly worse than that derived from 7 structures, whilst adding a further sequence
to the pattern recovers the sensitivity. Finally, deriving a pattern from an
automatically determined alignment is slightly less specific than the structurally
based alignment (see Barton & Sternberg, 1990 and Barton, 1990, for further
details and discussion).

Guidelines for interpreting pairwise sequence alignments

Multiple alignment and flexible pattern comparisons provide good discrimination
for the encoded protein fold. However, these techniques are not as frequently used
as traditional methods. It is therefore important to have clear guidelines for
interpreting conventional pairwise sequence alignments. For example, if | am given
an alignment of two protein sequences that shows 32% identity, should | believe that
the two proteins share similar folds? This question applies equally whether the
proteins are of known or unknown structure. The following study was performed to
establish general guidelines for the structural interpretation of sequence alignments.

Figure 2 illustrates the flow of the analysis. 477 chains from the Brookhaven
PDB were grouped into two sets. Set 1 contained 89 unrelated protein chains
selected from proteins known to have different folds. Set 2 comprised 57 distinct



/ Local Alignment Study \

Frookhaven 3D Structuﬂ Secondary
— | Structure

(477 Chains)

Figure 3

EXAMPLE LOCAL ALIGNMENT
SHOWING SECONDARY STRUCTURE

Cluster Analysis

CCCCCCCHHHEH HCHHHHHHHEHHEHHHHHH
45 RFKHLKTEAEMK ASEDLKKHGVTVLTALGA 74

: 57 Families Xk . % % %k kkk k Kk X
89 Unrelated Chains 73 RFPEFRDENIRAVAIENLKKRGIDALVVIGG 103
(> 1 member)

CCHHHHCHHHRHHHHHHHHHHCCCEEEEEEC

T (Sperm whale myoglobin and
Compare All Pairs Compare Pairs E.coli phosphofructokinase)
(3916) Within Families

&

l Alignment length (including gaps) = 31
S Al Lckalt Number of aligned positions = 30
g " Save All Locall
. . y = 61
Optimal Alignments Optimal Alignmeﬁ TOTAL SCORE
160 000 (length > 15) PERCENTAGE IDENTITY = 35.5
/ PERCENTAGE ACCURACY = 50.0

K ANALYSIS J

Figure 2

families with each family made up of at least two proteins. The secondary structure
of all proteins was defined by the Kabsch & Sander (1983) program DSSP. The 89
unrelated protein sequences were then compared pairwise using a variant of the
Smith-Waterman (1981) local similarity dynamic programming algorithm, scoring
conservative substitutions with Dayhoff's matrix. This algorithm can locate all locally
optimal alignments between two protein sequences and resulted in 160,000
alignments of length > 15 . For each alignment, the statistics shown in Figure 3 for
two unrelated proteins were calculated . A similar process was also performed
within each of the 57 families in Set 2.

The alignments obtained between the 89 unrelated proteins provide a set of
scores and accuracies against which any sequence comparison may be measured.
Figures 4a and 4b illustrate a plot of percentage accuracy against percentage
identity for the unrelated and related proteins respectively. There is no correlation
between the percentage identity and accuracy for proteins of unrelated structure.
Indeed, local alignments of unrelated proteins can show up to 45% identity when
optimally aligned, and many related pairs show less than this value! This would
suggest that it is impossible to say whether or not our 32% identity alignment
indicates structural similarity. Of course, the situation is not as bad as Figure 4
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Figure 4a (Unrelated Proteins)
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suggests, since both percentage identity (Sander & Schneider, 1991) and
percentage accuracy are strongly length dependent as is illustrated by Figures 5a
and 5b. Figure 5a shows that 32% identity will be often seen by chance for
alignments of < 100 residues, yet is comparatively rare above 100 residues. A
typical protein sequence alignment of 150 residues that gives 32% identity over its
entire length will, according to this plot, show that the two proteins share similar
secondary structures. The data shown in Figure 5a and similar plots for other
scoring strategies may be used to correct for the length dependency in the scoring
scheme. Having corrected for the length effects, we can then compare the
discriminating power of the different approaches. Table 1 shows the count of the
number of protein pairs that we know share similar folds, yet give a corrected score
lower than known unrelated pairs of proteins.

Table 1.
Length Corrected Scoring Scheme Number
Percentage Identity 1280
Dayhoff Score 865
S.D. Score 846
Figure 7
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As one might expect, a scoring scheme that takes into account conservative
substitutions (Dayhoff Score) performs somewhat better than the percentage identity
scheme. The S.D. score is often calculated to estimate the similarity between
protein sequences. This is done by first optimally aligning the two sequences, then
shuffling the sequence orders, and re-aligning 100 or more times. The mean and
standard deviation of the shuffled sequence alignment scores is then used to
normalise the alignment score of the native sequences. S.D. scores also show a
length dependency which is corrected forin Table 1. However, it is interesting to
plot the raw S.D. scores against accuracy of alignment as shown in Figure 6a/b. It
has long been known that S.D. scores higher than 5-6 are required to illustrate a
genuine relatedness, or structural similarity (Barton & Sternberg, 1987b, Dayhoff,
1978), and Flgure 6 graphically illustrates this phenomena. The mean S.D. score
for unrelated proteins is close to 3.0 and not 0.0 as it would be if protein sequence
alignments were random. Some scores for the unrelated proteins are as high as 7.5
as for the example in Figure 7. Clearly, although these sequences give an S.D.

score of 7.55, the value of 26% identity in 54 residues is insignificant according to
Figure 5a.

Summary

Protein sequence comparison methods can be sensitive and selective tools for
detecting proteins of known structure that share a similar fold to a protein
undergoing crystallographic analysis. The analysis presented here, in particular
Figures 5 and 6 should be useful when assessing the suitability of a protein as a
search object for molecular replacement.
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