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The past year has seen a consolidation of protein secondary structure
prediction methods. The advantages of prediction from an aligned family of
proteins have been highlighted by several accurate predictions made,blind,,
before any X-ray or NMR structure was known for the family. New techniques
that apply machine learning and discriminant analysis show promise as

alternatives to neural networks.
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Introduction

By far the most accurate method of predicting the
secondary (and tertiary) structure ofa globular protein is
by alignment of the sequence to a homologue of known
three-dimensional structure. If the sequence similarity
is high enough to ensure reliable alignment, then the
mean accuracy of prediction of three states (helix, strand
or Soil) is 88% [1..]. In contrast, until recently, the
accuracy of prediction without homology was around
sMO%. With the rapid growth in protein sequence
data available and the requirement to infer protein
conformation and function from sequence, a pressing
need has developed for more accurate methods for
protein structure prediction. Fortunately, the expansion
in the databases has also meant that it is now common
for predictions to be made for proteins that are members
of large families of sequences. When accurate multiple
alignments ofthe members ofthese families can be made,
the evolutionary information present in the alignment
can be used to identify which residues are of key
importance to the fold and function of the protein.
Effective exploitation of this information has led to a
significant increase in the accuracy ofsecondary srrucrure
prediction methods so that today it is often possible to
identify correctly the majoriry of the secondary suucrure
elements in a protein. Here I will discuss work on
protein secondary structure prediction published in this
area between late 1993 and February 1995.

The rationale behind prediction methods

Perhaps the most widely used secondary structure
prediction method over the past 15 years is that
developed by Garnier, Osguthorpe and Robson (known
as the GOR method [2,3.]). Although Robson and
colleagues recognized the importance of evolutionary
information &om protein families [2], in the late 1970s
studies of aligned families were hampered by lack of

data, so the idea could not be exploited fully. In the
1980s Zvelebil et al. [4] capitalized on new techniques
for multiple sequence alignment [5] and the increased
database, to extend the GOR method to use aligned
sequence data. This gave an increase in accuracy of 9%o,
but the available data still limited testing to 11 families.
Over the past five years, with an increasing number of
suitable protein families to work with, several groups
have devised secondary structure prediction methods
that exploit multiple sequence aligrments [6,7.,8-10].
Of necessiry many methods are developed and tested
on proteins of known tertiary structure. If the test is to
be objective, the prediction method must be automaric
and have parameters that can be optimized against a
training set of proteins. Testing is on a group of proteins
that are not homologous to the training set. The most
exciting test, however, is to predict the structures of
proteins for which no experimental structure is known.
When making such 'blind' predictions it is possible
to bring additional information from spectroscopy or
other experimental techniques to bear on the prediction.
Many such predictions have now been made and
evaluated in the light of the subsequently determined
protein structures [11..]. The results have been very
encouraging, with predictions that correctly locate the
position and rype of most of the core secondary
structures in the protein f11..,121.

During the review period blind predictions of ryrosine
phosphatases [13..], factor XIIIa [13..], isopenicillin
N synthase [14-], the pleckstrin homology (PH)
domain [15',16] and matrix metalloproteinases [17.]
have been published and can now be compared with
experimentally determined structures (see annotations
[ 1 3", 1 4.., I 5.,1. 6,77.1). Predictions for serine/threonine
phosphatases [18], isoprenyl diphosphate synthases [19],
von Willebrand factor type A domain [20.], integrin
cr-subunit N-terminal domain [21], prion protein [22.]
and the proteasome 123..1 aweit testing by comparison
with structures yet to be determined by X-ray or NMR
methods.
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lmproving secondary structure predictions

Accuracy
One problem that has arisen is how to evaluate
secondary structure predictions. For prediction of a
single protein sequence one might expect the best
residue by residue accuracy to be 100%. It is not
possible to define the secondary structure of a protein
exactly, however. There is always room for alternative
interpretations of where a helix or strand begins or ends
so failure of a prediction to match exactly the secondary
structure definition is not a disaster [24.]. The problem
of evaluation is more complicated for prediction from
multiple sequences, as the prediction is a consensus
for the family and so is not expected to be 100% in
agreement with any single family member. The expected
range in accuracy for a perfect consensus prediction is
a function of the number, diversity and length of the
sequences. Russell and I have calculated estimates of this
range [1 1"].

Simple residue by residue percentage accuracy has long
been the standard method of assessment of secondary
structure predictions. Although a useful guide, high
percentage accuracies can be obtained for predictions
of structures that are unlike proteins. For example,
predicting myoglobin to be entirely helical (no srrand or
coil) will give over 80Yo accuracy but the prediction is
of little practical use. Rost et al. 125..1and Wang [26]
explore these problems and suggest some alternative
measures of predictive success based on secondary
structure segment overlap. Although such measures help
in an objective assessment of the prediction, there is no
complete substitute for visual inspection. By eye, serious
errors stand out and predictions of structures that are
unlike proteins are usually recognizable. By eye, it is also
straightforward to weight the importance of individual
secondary structures. For example, prediction of what is
in fact a core strand to be a helix would seriously hamper
attempts to generate the correct tertiary structure of the
protein from the predicted secondary structure, whereas
prediction of a non-core helix as coil may have little
impact on the integriry of the tertiary structure.

'Predictable' regions of secondary structure
When recent predictions are examined in the light of
the corresponding experimentally determined structures,
the results look good. In general, the regions predicted
with the highest confidence measure are also the most
accurate. For example, Livingstone and I [13..] assigned
47% of the ryrosine phosphatase structure with high
confidence. Within these regions 88% of the residues
were correctly predicted. Interestingly, these figures
agree with Rost and Sandert observation that 4O%o
of a sequence will be predicted with >88% accuracy
by their method [1..]. This agreement suggests that
there is a core of 'predictable' regions in a protein.
Examination of six blind predictions shows that the
most accurately predicted regions are those that have

clear periodicity in conservation, where conserved
positions either alternate (p-strand) or have a l, 4,
5, 8 pattern characteristic of one face of an tt-helix
(CD Livingstone, personal communication). Problems
remain with buried c-helices that comprise short runs
of conserved hydrophobic amino acids. These often look
like potential p-strands and can mislead both automatic
and manual predictive methods.

Evolutionarily conserved residues and prediction
The improvements in the accuracy of secondary struc-
ture prediction that are seen when multiple alignments
are used stem from the observation that positions in
an alignment where the identiry of the amino acid
residue varies slowly during the course of evolution
are important to the stability of the fold or the protein
function. Patterns of conservation can be discerned by
eye, but ideally automatic protocols should be used
to improve objectivity. Over the past year Benner
and colleagues 127.1 have described their heuristics for
the prediction of secondary structure and exposure of
amino acid residues to solvent. Rost and Sander [1..]
have updated their automatic neural network prediction
method to include explicit gaps and conservation while
Blundell's group [28.-30.] have explained their ap-
plication of environment-dependent substitution tables
to the prediction and orientation of a-helices [28.],
and to more general secondary structure prediction
[29',30'1. The study of substitution tables is particularly
appealing as it has a direct relationship to the underlying
evolutionary processes that lead to change in proteins.

Prediction from single sequences
Although the emphasis in the review period has
been on the development and application of multiple
sequence data to prediction, some new methods for
prediction from single sequences have been described
137',32",33,34..,35.]. Of these, the work of Solovyev
and Salamov [32"] is particularly promising. Unlike
most prediction schemes, which predict at the level of
single residues, they apply linear discriminant analysis
to assign segments of secondary structure. The overall
accuracy when subjected to a fulljackknife test, in which
each protein is removed from the training set in turn, is
a respectable 65%o, with especially high accuracy for long
cr-helices and p-strands.

Structural class prediction
If the structural class of a protein (a, p, a/p, or o+P) is
known then the secondary structure prediction problem
is simplified. Clearly, ifit is known that a protein contains
only p-strands, then there is no need to consider a-helix!
Spectroscopic data can be used to good effect to infer
the structural class. Such data were used for the prion
protein [22'l and von Willebrand factor predictions [20.]
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but ideally one would like to predict the structural
class from sequence data alone. Rost and Sander [1..]
showed that their neural network method correcdy
identifies the structural class of 75% of the proteins of
a 250-member set, and Chou and Zhang [36.], using
a new approach that calculates Mahalanobis distances in
amino acid composition space, claim a remarkable 94.7%
accuracy for the structural classification of 131 proteins
and 100% accuracy for classification of cr- and p-class
proteins.

Conclusions

The review period has seen consolidation of techniques
to predict protein secondary structure from multiply
aligned sequences. Predictions by both automatic and
semi-automatic methods now reach accuracies of around
7O% for three-state assignments (helix, p-strand and coil)
and over 80% for regions assigned with high confidence.
Assessment of predictions made blind suggests that the
regions most accurately predicted are those that exhibit
characteristic patterns of conservation for cr-helix and
p-strand. Reliable predictions are also made for variable
loops as these regions tolerate insertions and deletions
that can be identified easily from a multiple alignment.

Current secondary structure predictions are good
enough to provide a starting point for tertiary structure
prediction or for searching libraries of known struc-
tures to find topologies consistent with the secondary
structure and other restraints [37..]. Such techniques
complement methods of fold recognition based either on
threading (for a review, see [38]) or on the recognition
of distant sequence similarities [39]. Secondary strucure
prediction is not yet perfect, but is now accurate enough
to be taken seriously as a tool to assist in the design of
experiments to probe protein structure and function.

References and recommended reading

Papers of particular interest, published within the annual period of
review, have been highlighteO as:
. of special interest
" of outstanding interest

1. Rost B, Sander C: Combining evolutionary information and
" neural networla to predict protein sccondary slruclurc.

Proteins 1994, 19:55-7 2.
The latest in a long line of papers describing Rost and Sander's neural net-
work method for secondary structure prediction from aligned sequences.
The method is reviewed and recent developments that include position
dependent conservation weights and explicit consideration of gaps are
described. This paper also shows that the accuracy of prediction of
protein structural class by the algorithm is similar to that obtained from
circu lar dichroism spectra.

2. Carnier J, Osguthorpe DJ, Robson B: Analysis of the
accuracy and implication of simple methods for predicting
thc secondery structurc of globular proleins. I Mol Biol 1978,
12O:97-'120.

3. Ellis LBM, Milius RP: Valid and invalid implcmcntations of
. GOR secondary structurc prcdictions. Comput Appl Biosci'1994, 10:341-348.
The Carnier, Osguthorpe and Robson (COR) algorithm for protein
secondary struclure prediction has been one of the most widely us€d
methods since its description in 1978. This paper points out that many
of the available implementations of the original COR algorithm are
incorrect and provides some simple test data to check a COR program.
Conect implementations give accuracies up to l3 percentage points
higher than incorrect ones.

4. Zvelebil MJJM, Barton CJ, Taylor WR, Sternberg MJE: Prediction
of protein secondary structurc and activc sites using the
alignment of homologous sequences. J Mol Biol 1987,
195:957-961.

5. B-arton CJ, Sternberg M.JE: A strategy for the rapid multiple
alignment of protein sequences: confidence levels irom tertiiry
structure comparisons. I Mol Biol 1987,198:327-337.

6. Rost B, Sander C: Prediction of protein secondary slructurc
at better than 70 percent accuracy. I Mol Biol i993,
232:584-599.

7. Rost B, Sander C, Schneider R: PHD - an automatic mail
. server for protein secondary structure prediction. Comput Appl

Biosci 1994,10:53-60.
One of the strengths of the Rost and Sander prediction method is that
anyone with an email account can use it to predict secondarv structure.
This paper describes how the email server is implemented and provides
some useful guidelines on how to make best use of the server.

8. Benner 5A: Patterns of divergence in homologous proteins as
indicators of tertiary and quaternary structu;e. Adv Enzyme
Regul 1 989, 28:21 9-236.

9. Barton CJ, Freemont PF, Newman R, Crumpton M: Scquence
analysis of the annexin super gene family of proteins. fur /
Biochem 1991, 198:749-760.

10. Levin JM, Pascarella S, Argos B Carnier J: Quantification of
secondary struclure prediction improvement using multiple
afignments. Prctein Eng 1993, 6:849-854.

11. Russell RB, Barton CJ: The limits of protein secondary structure
" prediction accuracy from multiple sequence alignment. / Mol

Biol 1993, 234:951-957.
A prediction of the consensus secondary structure for a family of
sequences is unlikely to agree 100% with every member of the family.
This paper determines the scatter in accuracy expected for secondaiy
structure predictions of families composed of sequences of varying
lengths and similarity. The paper summarizes the results of blind
predictions performed up to 1993.

12. Benner SA, Cerloff DL, Jenny TF: Prediaing p?otein cryslal-
structures. Science 1994, 265:1642-1644.

13. Livingstone CD, Barton CJ: Secondary structure prediction
.! from multiple sequence data - blood.clotting iactor-Xlll

and Yersinia protcin-tyrosine.phosphatase, tnt J Pept prctein
Res 1994, 44:239-244.

Blind predictions made for two protein families for which X-ray
struclures are now known are reported. Conventional single-sequence
secondary-structure prediction methods were combined with an analysis
of residue conservation patterns. Factor Xllla is a difficult challenge for
prediction because it is a large (674 residue) multidomain protein. and
comparatively few homologous sequences are available. The overall
accuracy for this prediction was 617o, but the 32% of the structure
that we predicted with confidence showed 83% accuracv. The wrosine
phosphaiase prediction fared bener, with 1 4 of the I 7 regular secondary
structures being correctly located and an overall accuracy of 76% when
compared to the refined 2.3A structure for the human enzvme. Note:
the appendix to this paper includes a comparison of the prediction to an
early 2.8 A structure of the human tyrosine phosphatase. The secondary
structures were not as well resolved in this structure and the agreement
with the prediction was 680lo.

14. Benner SA, Jenny TF, Cohen MA, Connet CH: Prcdicting the
" conformation of proteins from sequcnces. Progress and future

progress. Adv Enzyme Regul 1994,34:269-353.
An appendix to this paper describes (in approximately 44 pages)
predictions for isopenicillin N synthase and related proteins. The X-ray
structure of a member of this family has recently been determined. The
preferred consensus secondary structure prediction for the family showed
l0 secondary structures with confidence, of which eight were correct



Protein secondary structure prediction Barton 375

in type and position and two cr-helices were incorrectly predicted as
p-strand. Of the 12 more problematic regions predicted, nine were
correct in type, two were incorrectly predicted to be p.strand where
there is in fact coil and one region was predicted to be cr-helical when
the actual secondary structure was a p-strand followed by an cr-helix.
Three p-strands (one of which is a core secondary structure) and two
short cr-helices were incorrectly predicted as coil.
'15. 

Musacchio A, Gibson T, Rice B Thompson J, Saraste M: The
. PH domain: a common piece in thc structural patchwork of

signaf f ing proteins. Trends Biochem Sci 1 993, 1 8:343-348.
This article includes a prediction of the consensus secondarv structure
of 45 pleckstrin homology (PH) domains. The prediction is very similar
to that obtained by Jenny and Benner [16] and agrees well with the
experimentally determined structure, which contains seven p-strands and
a C-terminal a-helix. Both predictions miss a second a-helix between
p-strands 3 and 4, but this cr-helix is probably not present in all members
of the familv.

16. Jenny TF, Benner SA: A prediction of the secondary structure
of the pleckstrin homology domain. Proteins 1994,2O1-3.

17. Hodgkin EE, Cilman lC, Cilbert RJ: Retrospective analysis of
. a secondary structurc prediction - the catalytic domain of

matrix metalloproteinascs. Protein Sci 1994, 3:984-986.
This secondary structure prediction was performed before the first tertiary
structure of a member of the family was known. Unfortunately the paper
did not reach print before the first structure was published. This short
note compares the blind prediction with the crystal structure and shows
that all five p-strands and three a-helices were correctly predicted, but
one additional p-strand was predicted that is not seen in the structure.

18. Barton CJ, Cohen PTW, Barford D: Conscrvation analysis
and structure prediction of the protein serine/threonine
phosphatascs - sequcnce similarity with diadenosine te-
traphosphatasc trom Eschuichia coli suggests homology to the
protcin phosphatases. fur J Biochem 1994,22O:225-237,

19. Chen A, Kroon PA, Poulter CD: lsoprenyl diphosphate
synthases: protein sequence comparisons, a phylogeietic tree,
and predictions of secondary structurc. Protein Sci '1994,

3:600-607.

20.  Perkins SJ,  Smith KF, Wi l l iams SC, Har is Pl ,  Chapman D, Sim
r RB: The secondary structurc of the von.Wllebrand-factor

type-A domain in factor.b of human-complement by
Fourier-transform infrared-spectroscopy - its oicurrence in
collagen type-V|,. type-Vll, type.Xll and type.Xtv the integrins
and other proteins by averaged structure predictions. / Mol
Biol 1994, 238:1 04-1 1 9.

In this paper analysis of the secondary structure content of a von
Willebrand factor type A domain obtained by Fourier transform infrared
spectroscopy is used to predict occurrence of the domain in other
pfoteins, by using the averaged COR (Carnier, Osguthorpe and Robson)
algorithm for predictions on 75 sequences. The X-ray structure of a
von Willebrand domain is expectd to be determined this year, so this
prediction should be evaluated shortly.

21 . Tuckwell DS, Humphries MJ, Brass A: A secondary structure
model of thc intcgrin a-subunit N-terminal domain based on
anafysis of multiple alignments. Cell Adhes Commun 1994,
2:385-402.

22. Huang ZW, Cabriel JM, Baldwin MA, Fletterick RJ. Prusiner SB,
. Cohen FE: Proposed 3-dimensional structurc for thc cellular

prion protein. Proc Natl Acad Sci USA 1994,91:7139-7143.
The authors apply a variety of secondary structure prediction methods
to a family of prion sequences. In combination with spectroscopic data
the prediction methods suggest rhat the protein has a four-helix core.
Application of combinatorial packing algorithms suggest alternative four-
helix bundle models for the prion protein.

23. Lupas A, Koster AJ, Walz J, Baumeister W: Prcdicted sccondary
" structule of thc 20-S protcasomc and model structurc of the

putativc peptide channcl, FEBS Lett 1994,354:45-49.
In this paper most current secondary structure prediction algorithms are
applied to a muhiple alignment of proteasome sequences and the results
combined into a consensus prediction. A three-dimensional model of the
N-terminal region based on the prediction is proposed and shown to fit
data from electron microscopy studies. An experimentally determined
tertiary structure for the proteasome complex should be available this
year from the same group.

24. Jenny TF, Benner SA: Evaluating prcdictions of sccondary
. structure in proteins. Biochem Biophys Res Commun 1994,

2fi) :149-155.
The authors discuss a variety of issues and highlight the point that
definitions of secondary structures vary. Thus, no consensus prediction
will match an individual protein, so accuracy will never be 100%.

25. Rost B, Sander C, Schneider R: Redcfining the goals of protcin
" secondary structure prediction. I Mol Biol 1994, 235:13-26.
Residue by residue accuracies do not give a strong indication of whether
the pattern of secondary structures predicted agrees well with reality. This
paper describes a variety of'segment' scoring schemes that attempt to get
around this oroblem.

26. Wang ZX: Assessing the accuracy of protcin secordary
structure. Nature Struct Biol 1994, 3:145-146.

27. Benner SA, Badcoe l, Cohen MA, Cerloff DL: Bona-fidc
o prediction of aspects of protein conformation - assigning

interior and surface residucs from pattcms of variation anii
conservation in homologous protein sequencq, I Mol Biol
1994, 235:926-958.

A lengthy paper that details the approach taken by Benner and colleagues
for analyzing families of proteins to predict secondary structure and
accessibility of amino acid residues to solvent. The proposed heuristics
are evaluated by application to seven protein families.

28. Donnelly D, Overington JB Blundell TL: The prcdiction and
. orientation of a-heliccs from scquence alignments - thc

combined usc of cnvironmcnt-dependent substitution tables,
Fourier-transform methods and helix capping ru\u, protein Eng
1994, 7:645-653.

The authors describe the specific application of amino acid substitution
tables to tt-helix prediction (see also [29.,30.]). Predictions for several
all a-helical proteins are made. The method also suggests which face of
the helix should pack in the core of the protein.

29. Wako H, Elundell TL: UsG of amino.acid environment.dcpcn-
. dent substitution tables and conformational propensltie3 in

structurc prediction from aligrred scqucnccs of homologous
proteins. 1, Solvcnt acccssibility classes. ,l Mol Biol 1994,
238:682492.

The authon describe a procedure to predict classes of solvent
accessibility of amino acid residues from aligned protein sequences.
The assumption is that a given residue will have a different pattern of
substitution during the course of evolution if buried when compared to
the same residue in an exposed enviroment. This paper builds on the
extensive work by Blundell and colleagues on deriving substitution tables
for amino acids in many different structural environments. The method
givesTTo/o accuracy, but unfortunately this figure is based on predictions
for only l3 protein families, See also [28.,30.].

30. Wako H, Elundell TL: Use of amino.acid environment.dcpcn.
o dent substitution tables and conformational propensitics in

stru(ture prediction from aligned sequcnces of homologous
proteins, 2. Sccondary structurcs. J Mol Biol 1994,
238:693-708.

An extension of the accessibility class predictions described in [29.] to
a full secondary structure prediction method. The method is automated
but the reasoning that leads to a predioion can be extracted. The method
gives a mean three state (helix, sheet and coil) accuracy o( 69o/o, but again
this figure comes from predictions on only 13 families.

31. Ceourjon C. Deleage C: SOPM - a sclf-optimizcd mcthod
. for protein sccondary structurc prcdiction. Protein Eng 1994,

7:1 57-164.
This novel prediction method is based on sequence similarity. A protein is
compared with a database of proteins of known structure and the subset
of most similar proteins selected. The parameters are then optimizsed
to give the best prediction of the secondary structure of the proteins in
this subset and these parameters are applied to predicting the secondary
structure of the protein of interest. The method gives 69% accuracy on
a database of 239 protein chains; however, the database contains many
similar protein sequences, some with pairwise identities of >30%. h will
be interesting to see how the method performs on a non-homologous
dataset.

32. Solovyev V Salamov AA: Predicting o-hclix and ftstrand
" setm€nts of globular proteins. Comput Appl Biosci 1994,

10:661-669.
This unique method applies linear discriminant analysis to the secondary
structure prediction problem. Rather than initially predicting the
conformation of single residues, the method aims to predict segments



376

as either cr-helix or p-strand. The overall three state (helix, sheet and
coil) accuracy of this method (without multiple alignments) on the same
dataset used by Rost and Sander [6] is 65.1%. A simple extension
to multipfe alignments raises the accu,acy to 68.20/0. This paper also
gives a nice lu.mmary of alternative methods to evaluate predictions and
includes a table that compares the results of many cunent methods.

33. Wintjens RT, Rooman MJ, Wodak SJ: ldentification of short turn
moti6.in proteins using sequence and structure fingerprints.
lsr J Chem 199a,34:257-269.

34. Sternberg M.lE, King RD, Lewis RA, Muggleton S: Application
" of nrachinc leaming to structural moletular-biology. ehilos

Trans R Soc Lond [Biol] 1994, 344:365-371.
Although neural network technrques have been applied very successfully
to secondary structure prediction, it is difficult to extract explanations
from a network of why a particular residue has been assigned to the
given class of secondary structure. In contrast, the machine learning
technigues discussed in this article seek to derive rules automaticalli
from a set.o{ specific observations (e.g. the location of hydrophobic
amino acids). Such rules provide understandable explanations of a
parlicular prediction. Applications to drug design are alio discussed.

35. Zimmermann K: When awaitint bio-Champollion - dynamic-
. proEFgming regularization of the protein secondary structure

predictions. Protein Eng 1994, 7:1197-1202.
A systematic procedure to make secondary structure predictions reflect
more accurately actual proteins is described. This systematically cleans
up predictions by any probabilistic method to remove prediitions of
unrealistically short p-strands and a-helices.

36. C-_hou KC,- Zhang CT: Prcdicting protein-folding types by
o distance functions that makc allowances for 

-amino-acii

interactaons, J Eiol Chem 1994, 269:22014-22020.
The amino acid composition of a protein can be represented in 20
dimensional space where each dimension represents the frequency
of occurrence of an amino acid. The distance between proteins i;

this compositional space gives a measure of their similarity. There
are many dif{erent ways of_calculating distances, the simplest being
the linear distance that rs famiiar from everyday life; however, thii
does not take into account sca(er in the data, oi correlations (e.g. a
protein containing many alanines may contain few aspartates). Here,
distance measurements that take correlations into account are usd.
High accuracy for class prediction is claimed, but the testing set contains
homologous proteins and it is not clear if a full iackknife iest has been
performed.

3!. Russell RB, Copley RR, Barron CJ: Protein fold recognition
" from. secondary structure assignments. ln IEEE proc&dings

of the 28th Annual Hawaii tnternational Conference 6n
System Sciences, vol 5. Edited by Hunter L, Shriver BD. Los
Alamitos: Institute for Electrical and Electronic Engineers, press;
I  995 :302 -31  1 .

Apreliminary account is given of a new technique to identify potenrial
folds for a protein given the secondary structure and restiaints. The
method searches a database of the three-dimensional structure of
domains to find domains that are consistent with the secondary structure
prediction and any distance restraints. The technique allows foi deletions
of complete secondary structures from either the query protein or the
database and so may find similarities between proteins that share linle
sequence similarity.

38. Rooman MJ, Wodak SJ: Generating and testing protein folds.
Cun Opin Struct Eiol 1993, 3:247-259.

39. Taylor WR: Protdrstructure modeling from remole sequence
similarity. ) Biotxhnol 1994, 35:281-291.

GJ llarton, Laboratory of Molecular l}ophysics, Rex l\ichards
Iluilding, South Parks Road, Oxford OXI 3QU, UK.
E-mail: geoff@biop.ox.ac.uk


