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Protein secondary structure prediction

Geoffrey ] Barton
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The past year has seen a consolidation of protein secondary structure

prediction methods. The advantages of prediction from an aligned family of

proteins have been highlighted by several accurate predictions made ‘blind’,

before any X-ray or NMR structure was known for the family. New techniques

that apply machine learning and discriminant analysis show promise as
alternatives to neural networks.
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Introduction

By far the most accurate method of predicting the
secondary (and tertiary) structure of a globular protein is
by alignment of the sequence to a homologue of known
three-dimensional structure. If the sequence similarity
is high enough to ensure reliable alignment, then the
mean accuracy of prediction of three states (helix, strand
or Coil) is 88% [1°]. In contrast, until recently, the
accuracy of prediction without homology was around
50-60%. With the rapid growth in protein sequence
data available and the requirement to infer protein
conformation and function from sequence, a pressing
need has developed for more accurate methods for
protein structure prediction. Fortunately, the expansion
in the databases has also meant that it is now common
for predictions to be made for proteins that are members
of large families of sequences. When accurate multiple
alignments of the members of these families can be made,
the evolutionary information present in the alignment
can be used to identify which residues are of key
importance to the fold and function of the protein.
Effective exploitation of this information has led to a
significant increase in the accuracy of secondary structure
prediction methods so that today it is often possible to
identify correctly the majority of the secondary structure
elements in a protein. Here I will discuss work on
protein secondary structure prediction published in this
area between late 1993 and February 1995,

The rationale behind prediction methods

Perhaps the most widely used secondary structure
prediction method over the past 15 years is that
developed by Garnier, Osguthorpe and Robson (known
as the GOR method [2,3%]). Although Robson and
colleagues recognized the importance of evolutionary
information from protein families [2], in the late 1970s
studies of aligned families were hampered by lack of

data, so the idea could not be exploited fully. In the
1980s Zvelebil et al. [4] capitalized on new techniques
for multiple sequence alignment [5] and the increased
database, to extend the GOR. method to use aligned
sequence data. This gave an increase in accuracy of 9%,
but the available data still limited testing to 11 families.
Over the past five years, with an increasing number of
suitable protein families to work with, several groups
have devised secondary structure prediction methods
that exploit multiple sequence alignments [6,7¢,8—10)].
Of necessity, many methods are developed and tested
on proteins of known tertiary structure. If the test is to
be objective, the prediction method must be automatic
and have parameters that can be optimized against a
training set of proteins. Testing is on a group of proteins
that are not homologous to the training set. The most
exciting test, however, is to predict the structures of
proteins for which no experimental structure is known.
When making such ‘blind’ predictions it is possible
to bring additional information from spectroscopy or
other experimental techniques to bear on the prediction.
Many such predictions have now been made and
evaluated in the light of the subsequently determined
protein structures [11°*]. The results have been very
encouraging, with predictions that correctly locate the
position and type of most of the core secondary
structures in the protein [11°°,12].

During the review period blind predictions of tyrosine
phosphatases [13**], factor XlIla [13¢], isopenicillin
N synthase [14*°], the pleckstrin homology (PH)
domain [15°,16] and matrix metalloproteinases [17°]
have been published and can now be compared with
experimentally determined structures (see annotations
[13°,14%¢,15°,16,17¢]). Predictions for serine/threonine
phosphatases [18], isoprenyl diphosphate synthases [19],
von Willebrand factor type A domain [20°], integrin
a-subunit N-terminal domain [21], prion protein [22°]
and the proteasome [23°¢] await testing by comparison
with structures yet to be determined by X-ray or NMR
methods.
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Improving secondary structure predictions

Accuracy

One problem that has arisen is how to evaluate
secondary structure predictions. For prediction of a
single protein sequence one might expect the best
residue by residue accuracy to be 100%. It is not
possible to define the secondary structure of a protein
exactly, however. There is always room for alternative
interpretations of where a helix or strand begins or ends
so failure of a prediction to match exactly the secondary
structure definition is not a disaster [24¢]. The problem
of evaluation is more complicated for prediction from
multiple sequences, as the prediction is a consensus
for the family and so is not expected to be 100% in
agreement with any single family member. The expected
range in accuracy for a perfect consensus prediction is
a function of the number, diversity and length of the
sequences. Russell and I have calculated estimates of this
range [11°°].

Simple residue by residue percentage accuracy has long
been the standard method of assessment of secondary
structure predictions. Although a useful guide, high
percentage accuracies can be obtained for predictions
of structures that are unlike proteins. For example,
predicting myoglobin to be entirely helical (no strand or
coil) will give over 80% accuracy but the prediction is
of little practical use. Rost ef al. [25°%] and Wang [26]
explore these problems and suggest some alternative
measures of predictive success based on secondary
structure segment overlap. Although such measures help
in an objective assessment of the prediction, there is no
complete substitute for visual inspection. By eye, serious
errors stand out and predictions of structures that are
unlike proteins are usually recognizable. By eye, it is also
straightforward to weight the importance of individual
secondary structures. For example, prediction of what is
in fact a core strand to be a helix would seriously hamper
attempts to generate the correct tertiary structure of the
protein from the predicted secondary structure, whereas
prediction of a non-core helix as coil may have little
impact on the integrity of the tertiary structure.

‘Predictable’ regions of secondary structure

When recent predictions are examined in the light of
the corresponding experimentally determined structures,
the results look good. In general, the regions predicted
with the highest confidence measure are also the most
accurate. For example, Livingstone and I [13*¢] assigned
41% of the tyrosine phosphatase structure with high
confidence. Within these regions 88% of the residues
were correctly predicted. Interestingly, these figures
agree with Rost and Sander’s observation that 40%
of a sequence will be predicted with >88% accuracy
by their method [1°*]. This agreement suggests that
there is a core of ‘predictable’ regions in a protein.
Examination of six blind predictions shows that the
most accurately predicted regions are those that have

clear periodicity in conservation, where conserved
positions either alternate (B-strand) or have a 1, 4,
5, 8 pattern characteristic of one face of an d-helix
(CD Livingstone, personal communication). Problems
remain with buried a-helices that comprise short runs
of conserved hydrophobic amino acids. These often look
like potential B-strands and can mislead both automatic
and manual predictive methods.

Evolutionarily conserved residues and prediction

The improvements in the accuracy of secondary struc-
ture prediction that are seen when multiple alignments
are used stem from the observation that positions in
an alignment where the identity of the amino acid
residue varies slowly during the course of evolution
are important to the stability of the fold or the protein
function. Patterns of conservation can be discerned by
eye, but ideally automatic protocols should be used
to improve objectivity. Over the past year Benner
and colleagues [27°] have described their heuristics for
the prediction of secondary structure and exposure of
amino acid residues to solvent. Rost and Sander [1°]
have updated their automatic neural network prediction
method to include explicit gaps and conservation while
Blundells group [28°-30°] have explained their ap-
plication of environment-dependent substitution tables
to the prediction and orientation of O-helices [28°],
and to more general secondary structure prediction
[292,30°]. The study of substitution tables is particularly
appealing as it has a direct relationship to the underlying
evolutionary processes that lead to change in proteins.

Prediction from single sequences

Although the emphasis in the review period has
been on the development and application of multiple
sequence data to prediction, some new methods for
prediction from single sequences have been described
[31°,32°%,33,34¢*,35°]. Of these, the work of Solovyev
and Salamov [32°¢] is particularly promising. Unlike
most prediction schemes, which predict at the level of
single residues, they apply linear discriminant analysis
to assign segments of secondary structure. The overall
accuracy when subjected to a full jackknife test, in which
each protein is removed from the training set in turn, is
a respectable 65%, with especially high accuracy for long
o-helices and B-strands.

Structural class prediction

If the structural class of a protein (¢, B, a/B, or a+p) is
known then the secondary structure prediction problem
is simplified. Clearly, if it is known that a protein contains
only B-strands, then there is no need to consider o-helix!
Spectroscopic data can be used to good effect to infer
the structural class. Such data were used for the prion
protein [22°] and von Willebrand factor predictions [20°]
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but ideally one would like to predict the structural
class from sequence data alone. Rost and Sander [1°*°]
showed that their neural network method correctly
identifies the structural class of 75% of the proteins of
a 250-member set, and Chou and Zhang [36°], using
a new approach that calculates Mahalanobis distances in
amino acid composition space, claim a remarkable 94.7%
accuracy for the structural classification of 131 proteins
and 100% accuracy for classification of - and B-class
proteins.

Conclusions

The review period has seen consolidation of techniques
to predict protein secondary structure from multiply
aligned sequences. Predictions by both automatic and
semi-automatic methods now reach accuracies of around
70% for three-state assignments (helix, B-strand and coil)
and over 80% for regions assigned with high confidence.
Assessment of predictions made blind suggests that the
regions most accurately predicted are those that exhibit
characteristic patterns of conservation for o-helix and
PB-strand. Reliable predictions are also made for variable
loops as these regions tolerate insertions and deletions
that can be identified easily from a multiple alignment.

Current secondary structure predictions are good
enough to provide a starting point for tertiary structure
prediction or for searching libraries of known struc-
tures to find topologies consistent with the secondary
structure and other restraints [37°*]. Such techniques
complement methods of fold recognition based either on
threading (for a review, see [38]) or on the recognition
of distant sequence similarities [39]. Secondary structure
prediction is not yet perfect, but is now accurate enough
to be taken seriously as a tool to assist in the design of
experiments to probe protein structure and function.
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