Vol.7. no1 1991
Pages 85 - 88

Scanning protein sequence databanks using a
distributed processing workstation network

Geoffrey J.Barton

Abstract

The programme pscan has been developed to distribute protein
databank scans over a network of computers that share a
common filesystem. pscan may be used in conjunction with most
conventional sequence comparison programmes with few
modifications. In test runs using the Smith—Waterman dynamic
programming algorithm, the time required to scan a 6858
sequence databank using a query sequence 740 residues long
was reduced from ~ 50 min for a single processor, to ~11
minutes for five processors. Accordingly, pscan provides a low-
cost, portable alternative to dedicated parallel processing
computers.

Introduction

The identification of homology between a newly determined
sequence and well-characterized proteins in the databank is one
of the most powerful tools for the prediction of protein structure
and function. Any algorithm developed for the comparison of
two sequences, (e.g. see Needleman and Wunsch, 1970; Sellers,
1974; Smith and Waterman, 1981) may be applied to a databank
scan; however, the most rigorous methods have traditionally
not been used due to their heavy CPU requirements. Instead,
ingenious techniques have been devised to allow the high-speed
scanning of large databanks on small computers (e.g. see
Lipman and Pearson, 1985; Pearson and Lipman, 1988), but
these methods make approximations, and as a result can miss
important relationships that are detected by the rigorous
dynamic-programming algorithms (Barton and Sternberg, 1990,
Barton, 1990). The recent development of high-performance,
low-cost Unix workstations (e.g. the Sun Microsystems
SPARCstation 1) make the use of rigorous methods feasible
with current protein databanks and typical length queries. For
example, a scan of the 16 524 sequence NBRF-PIR (National
Biomedical Research Foundation—Protein Identification
Resource) databank (v. 24, main and new entries), with a 141
residue query, using the Smith —Waterman algorithm (Smith
and Waterman, 1981), requires <30 min CPU time, while a
750 residue query needs < 100 min.

With the stimulus of projects to map and sequence complete
genomes, the size of sequence databanks will grow at an
increasing rate. As a consequence, still greater speed will be

Laboratory of Molecular Biophysics, The Rex Richards Building, South Parks
Road, Oxford OX1 3QU, UK

necessary to maintain current scan times, and permit the
application of yet more sophisticated analytical techniques. One
route to this goal exploits dedicated parallel processing
hardware. For example, Coulson ef al. (1987) describe the use
of the AMT-DAP (active memory technology— Distributed
array processor), a SIMD (single instruction multiple data)
parallel processing machine, to provide significant speed
improvements over conventional serial processors for databank
scanning. SIMD machines perform the same operation
simultaneously on data distributed over a large number of simple
processors (e.g. add 1 to each element of an array). In contrast,
a MIMD (multiple instruction multiple data) architecture parallel
processing machine (e.g. an array of INMOS transputers) allows
sophisticated operations to be run asynchronously on a number
of processors.

While dedicated parallel processing hardware can give
significant increases in speed for suitable algorithms,
considerable effort must be expended to adapt existing software
to take full advantage of the specific machine architecture. This
often leads to fast, but non-portable code. A network of work-
stations that share common file storage can be used as a simple
MIMD machine. A system of this type has the advantage that
code written to run on a single workstation need not be modified
significantly to run on multiple processors.

In this paper the programme pscan, which utilizes a network
of workstations as a MIMD computer for protein databank
scanning, is described. pscan can be used to run most
conventional sequence comparison programmes on a network
with minimal modifications to the scanning programme, and
gives speedup factors approximately linear with processor
number.

Algorithm

A simple strategy for sequence scanning on a network of
processors is to predivide the databank into sections, one for
each processor. A controlling programme resides on one
processor, which when asked to execute the scan, sends a
command to each processor on the network, instructing it to
compare the query sequence to its local fragment of databank.
The control programme monitors the remote processors, and
when all are finished, merges the results into a single file.
Clearly, if one processor takes appreciably longer to complete
its job than the rest, the speedup is reduced. In order to minimize
this problem, the databank file must be split into CPU-equivalent

© Oxford University Press

85



G.J.Barton

chunks. However, this split must be repeated every time a new
databank release is obtained, or the number of processors is
changed. Furthermore, on a system in which the load on each
host may vary due to other users, it is impossible to predict
the subdivision of the databank that would ensure all processors
are occupied throughout the scan. In order partially to
circumvent these problems, this basic strategy was modified
so that the databank fragments (chunks) are created at run-time.

In order to make best use of the available machines, the
controlling programme should be tightly coupled to the scanning
programmes on each processor. Small numbers of sequences
would be sent to each remote node for scanning, and the CPU
status and number of active processes continuously monitored.
In this way, the programme could rapidly accommodate
changing loads on individual processors and optimize the CPU
power available. While such a system may be possible to
implement on a workstation network, it would require machine-
specific, system-level programming. In order to develop a
system that is generally applicable to networked computers
running NFS (network file system), the programme pscan was
written to require only the basic remote-shell command ‘rsh’
that is common to systems running NFS protocols. This takes
the form ‘rsh host command’ where ‘host’ is the name of the
processor on which the ‘command’ is to be executed.

In outline, pscan creates a mini-databank of C sequences for
each processor. The programme starts the scans on each remote
machine, then monitors the status of the remote jobs at pre-
determined intervals. When a remote process has finished,
pscan creates a new mini-databank of C sequences for that
machine. This operation is repeated until the databank is
exhausted. Finally, once all sequences have been scanned, the
results obtained by each processor are merged. By feeding each
processor C sequences at a time, the problem of a heavy load
on one processor excessively slowing the complete scan is
reduced. However, the value of C (chunk size) must be adjusted
to be small enough to cope with uneven processor loading, yet
large enough to avoid excessive overheads in starting processes.

Programme details

pscan requires at least two computers connected on a network,
a protein sequence databank file and a query sequence file. In
addition, a hosts file is provided that identifies the working
directory, and names of the processors that are to be utilized
in the scan. Each hostname is accompanied by a factor by which
the basic number of sequences, C, sent to that processor is
multiplied. This allows the scan to be shared more efficiently
where the available processors are of different speeds. The same
mechanism may also be used to balance the scan where there
are known to be heavily and lightly loaded processors on the
same network.

pscan is supplied with two additional parameters. The chunk
size (C) is the number of sequences to be sent to a host in each
job, while the sleep time is the time in seconds that pscan waits

between checks of which hosts have completed their chunk.

pscan first initializes output files and status files for each
processor. The status files are the mechanism through which
pscan and the remote hosts communicate. On initialization, each
status file contains the string ‘Finished’, the alternative state
being ‘Running’.

Once initialization is complete, the main programme loop
begins:

(i) The status files are read in turn, and a list of those that
signal ‘Finished’ (i.e. all on the first pass) is created.

(i) The list created in (i) is examined, and for each processor
(*hostX”) that is ‘Finished’, the next chunk of sequences
is read from the databank, then written to the host specific
sequence file. The scanning programme is then executed
for each processor that has Finished, by using the Unix
remote-shell command (‘rsh’). Once the remote host
process has started, the hosts status file is updated to
‘Running’.

(iii) The programme that executes on the remote processor
updates its status file to Finished when its scan is complete,
thus signalling to pscan that it is ready for another chunk
of sequences.

(iv) Items (i)—(iii) are repeated until the databank file is
exhausted. Once all processors have Finished, the
individual hostX.out files are sorted and merged.

The scanning programme may be any conventional databank-
scanning programme that takes a query sequence, a databank
file, and produces output for each query versus databank-entry
comparison. However, the scanning programme must be
modified to accept the host name (e.g. ‘host3’) as a parameter,
and on completion of its scan, to update the hostX.status file
to ‘Finished’. If the source code for the scanning programme
is not available, then an intermediary programme can be written
which when executed by pscan, constructs the necessary
commands for the scanning programme, then executes the
scanning programme, before finally updating the hostX .status
file. In this way, any suitable sequence analysis software may
be adapted to run distributed over a network via pscan.

Implementation and availability

The programme pscan is written in C for the Sun-4 architecture
running SunOS 4.0.3 and NFS. However, the programme
should run with little modification on any Unix system that
supports NFS, and provides a C library function to execute a
Unix command from within a C programme.

The source code of and details of the implementation of pscan
are available to academic users on a variety of media, or via
electronic mail.

Evaluation and discussion

As a test, two proteins, human «-haemoglobin (HAHU: 141
residues) and human annexin 6 (A6H: 740 residues) were

86



Databank scanning using distributed processing

scanned against the NBRF-PIR main databank (v. 24.0, 6858
sequences) using the programme sw (G.J.Barton, unpublished)
that implements the Smith—Waterman (1981) local similarity
algorithm. For each protein, scans were performed with from
one to five processors, while the chunk size for each scan was
varied from 25 to 2500 sequences for A6H and from 100 to
2500 for HAHU. The workstation network consisted of a 16
M.I.P.S. (millions of instructions per second) file-server, three
12.5 M.I.P.S. workstations, and two 16 M.L.P.S. workstations.
Normally, the file-server on a network of this type is not used
for compute-intensive tasks; accordingly, in order to establish
the maximum gains possible by this method, pscan was executed
alone on the file-server, while sw was run on the 12.5 M.I.P.S.
machines (1 —3 processors), leaving only scans with four and
five processors making use of the two 16 M.L.P.S. workstations.
In practice, pscan requires very little CPU time and system
overheads, and may be run on a processor that also executes
the scanning programme (see below). As far as possible, the
test runs were performed when all processors were lightly
loaded.

For each test run, a speedup ratio was calculated by dividing
the elapsed time for.a scan using sw on a single 12.5 M.I.P.S.
processor (HAHU, 626 s; A6H, 2912 s) by the elapsed time
required by the multiprocessor scan. Elapsed times were used
since these give a fairer estimate of the advantage in using the
distributed processing system than would summing the CPU
times for individual processors.

Figure 1 illustrates the relationship between the speedup ratio
and chunk size for each combination of processors and

& @ (A) 1 Host (HAHU)
a———2 (B) 2 Hosts "
—— (C) 3 Hosts "
#*—— (D) 4 Hosts "
+—— (E) 6 Hosts "
»———x (F) 1 Host (A6H)
—— (G) 2 Hosts "

~— ——-+ (H) 3 Hosts "

Speedup v Chunk Size

4.5

o— ——« (I) 4 Hosts "

4 —— (J) 5 Hosts *
«— (K) 3 Hosts (HAHU)
*——= (L) 3 Hosts (ABH)

ol
n
1

Speedup Ratio

T T T J
[¢] 500 1000 1600 2000 2500

Chunk Size (Sequences)

Fig. 1. The relationship between the speedup ratio obtained using pscan with
15 processors running the Smith — Waterman algorithm (programme sw) (Smith
and Waterman, 1981), and the number of sequences sent to each processor
in each job (chunk size, C). Runs A—E were performed with human o-
haemoglobin (141 residues), while F—J used human annexin 6 (740) residues.
The sleep time was set to 5 s for runs A—E and 10 s for runs F—J. Chunk
sizes sent to the 16 M.I.P.S. machines were increased by a factor of 1.3. Runs
K and L show speedup factors obtained for runs using three processors, where
pscan shared one processor with sw jobs (see text).

sequence. The uniprocessor scans (A and F) illustrate the
additional overhead introduced by running pscan when
compared to sw on its own. At a chunk size of 100, and a
sequence length of 141 (scan A), the speedup ratio is reduced
from 1.0 to 0.6. This reflects the cost incurred by pscan in
creating the local chunk-sized databank files, starting the sw
process and monitoring the hostX.status file. As the chunk size
is increased, the number of processes that must be started during
the course of a scan is reduced. This is seen in an improve-
ment in the speedup ratio to 0.9 at a chunk size of 2500. With
the longer query sequence (scan F), the ratio of sw CPU time
to pscan CPU time is increased, leading to the higher observed
speedup ratios (0.8 at 100 residues; 0.96 at 2500 residues). This
effect is also observed for scans with more than one processor.
The scans performed with more than one processor (B—D,
F—L) show similar overall behaviour with respect to chunk
size. A low speedup ratio is observed below a chunk size of
~ 200, this rises to a maximum between ~ 200 and 500, before
falling again for chunk sizes >3500. The reduction in
performance for larger chunk sizes is due to poor phasing of
the remote processor jobs. Since each individual chunk requires
a significant proportion of the total scan time to complete, if
the last databank chunk is sent to a processor shortly before
all other processors complete their tasks, there is a period at
the end of the scan when only one processor is active.
Unfortunately, it was not possible to dedicate all workstations
on the network to this study. As a consequence, the speedup
values for four and five-processor scans show major fluctuations
due to transient high loading on one or more of the processors.
This phenomenon is particular marked for chunk sizes > 500
sequences due to the phasing problem outlined above.
Figure 1 shows that using two or more processors provides
a useful improvement in execution time for the scan. For
example, with the 740 residue query (A6H), a chunk size of

Best Speedup v Number of Processors

6.0

4,04

Speedup Ratio

HAHU — 141 Residues
a———a ABH — 740 Residues

1.0

0.0 T T
1 2 3 4 4]

Number of Processors

Fig. 2. Data from Figure 1 for the best speedup factor obtained for each sequence
scan and number of processors. The upper line shows the values expected for
a perfect parallel processing machine.

87



G.J.Barton

300 and three processors, the speedup factor is 2.8. This reflects
a reduction in overall elapsed time from 48.5 to 17.2 min, while
with five processors (speedup of 4.5), the time is reduced to
10.7 min. It may be argued that the test runs were actually
performed using N + 1 processors, since pscan was executed
on a machine that did not run sw. However, runs K and L were
performed with pscan resident on one 12.5 M.L.P.S. work-
station, while this workstation and two additional 12.5 M.L.P.S.
hosts ran sw. Clearly, there is little advantage in running pscan
on a separate processor.

Figure 2 illustrates the relationship between the best speedup
obtained (regardless of chunk size) and the number of
processors. Adding more processors is beneficial, however: as
the number of processors increases, the speedup gained per
processor diminishes. This effect is due to the greater likelihood
as processors are added that more than one processor will
simultaneously finish its chunk and be waiting for a new job.
The problem could be countered by increasing the sophistica-
tion of the strategy for checking the hostX.status files, e.g. by
using previous cycles to predict which hosts are likely to finish
in the next cycle, and only checking those. It should be noted
that this effect is actually larger for four and five processors
than is suggested by Figure 2 since runs D, F, I and J include
the two faster (16 M.I.P.S.) workstations.

The current version of pscan has been used by the author
for large numbers of database scanning problems with few
difficulties. However, in its current form, the programme will
loop indefinitely if one processor node fails. This is a weakness
of the strategy that would preclude the use of the programme
to provide a general database-scanning service to inexperienced
users. The simplest method of overcoming this problem would
be to monitor the time required by each processor to complete
a chunk as described above. If a processor is detected as taking
a predetermined proportion longer to complete than anticipated,
then its job could be resubmitted to another processor on the
network. This would enable the scan to complete, albeit with
the sacrifice of potential duplication in the sequences scanned.
A more complete solution to failure recovery would require
pscan to check which sequences sent to a node have not been
processed. Once the database is exhausted, any unprocessed
sequences could then be redistributed over the functional
processors in order to complete the scan. Although more
elegant, this solution would necessitate a more sophisticated
mode of reading the database to allow direct access to individual
sequence entries.

Conclusions

In this paper, a programme has been described that allows
conventional sequence databank-scanning software to be
distributed over a network of workstations. The best speedup
factors obtained using the Smith —Waterman algorithm (Smith
and Waterman, 1981) with a query length of 141 residues, were:
two processors, 1.72; three processors, 2.36; four processors,

3.1; five processors, 3.73. With the more compute-intensive
query of 740 residues, these factors improved to 1.98, 2.79,
3.64 and 4.52 respectively. The programme therefore gives
greatest benefit for large problems.

While only one conventional single-pair protein sequence
comparison algorithm has been discussed in this paper, the
method could be readily applied to the more sensitive (and
equally compute intensive) multiple alignment and flexible
pattern-matching techniques (Barton and Sternberg, 1987;
Barton and Sternberg, 1990; Barton, 1990), DNA and protein
structure-scanning problems.

The distributed processing strategy described in this paper
is unlikely to be as fast as machine-specific code written for
a dedicated parallel processing computer. However, the
approach requires minimal reprogramming to distribute existing
algorithms, and has the advantage of giving a significant speedup
on the type of low-cost computers that are becoming the
mainstay of many departmental computing facilities.

Acknowledgements

The author thanks the Royal Society for the support of a University Research
Fellowship, the Oxford Centre for Molecular Sciences for the use of computing
facilities, Professor L.N.Johnson for her encouragement, and Dr D.Barford
for his comments on the manuscript.

References

Barton,G.J. (1990) Protein multiple sequence alignment and flexible pattern
matching. Methods Enzymol., 183, 403 —428.

Barton,G.J. and Sternberg,M.J.E. (1987) A strategy for the rapid multiple
alignment of protein sequences: confidence levels from tertiary structure
comparisons. J. Mol. Biol., 198, 327—337.

Barton,G.J. and Sternberg,M.J.E. (1990) Flexible protein sequence patterns—a
sensitive method to detect weak structural similarities. J. Mol. Biol., 212,
389-402.

Coulson,A.F.W., Collins,J.F. and Lyall,A. (1987) Protein and nucleic acid
sequence database searching: a suitable case for parallel processing. Comput.
J., 30, 420—424.

Lipman,D.J. and Pearson,W.R. (1985) Rapid and sensitive protein similarity
searches. Science, 227, 1435-1441.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the
search for similarities in the amuno acid sequence of two proteins. J. Mol.
Biol., 48, 443453,

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence
comparison. Proc. Natl. Acad. Sci. USA, 85, 2444 —2448.

Sellers,P.H. (1974) On the theory and computation of evolutionary distances.
SIAM J. Appl. Math., 26, 787—793.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular
subsequences. J. Mol. Biol., 147, 195—-197.

Received on August 27, 1990; accepted on September 25, 1990

Circle No. 13 on Reader Enquiry Card

88



