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An improved method of secondary structure prediction has
been developed to aid the modelling of proteins by homology.
Selected data from four published algorithms are scaled and
combined as a weighted mean to produce consensus
algorithms. Each consensus algorithm is used to predict the
secondary structure of a protein homologous to the target
protein and of known structure. By comparison of the
predictions to the known structure, accuracy values are
calculated and a consensus algorithm chosen as the optimum
combination of the composite data for prediction of the
homologous protein. This customized algorithm is then used
to predict the secondary structure of the unknown protein.
In this manner the secondary structure prediction is initially
tuned to the required protein family before prediction of the
target protein. The method improves statistical secondary
structure prediction and can be incorporated into more
comprehensive systems such as those involving consensus
prediction from multiple sequence alignments. Thirty one
proteins from five families were used to compare the new
method to that of Garnier, Osguthorpe and Robson (GOR)
and sequence alignment. The improvement over GOR is
naturally dependent on the similarity of the homologous
protein, varying from a mean of 3Vo to 7Vo with increasing
alignment significance score.
Key words : homology/prediction/secondary structure/sequence
alienment
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Introduction

Knowledge of a protein's tertiary structure is a fundamental guide
to the understanding of biological function. Such knowledge can
aid the design of inhibitors and transition state mimics (Richards,
1989; Sander and Smith, 1989). However, of rhe 40 000 proteins
currently sequenced only 1000 3-D structures have been deter-
mined by X-ray crystallography or NMR. Where a protein of
unknown 3-D structure shows clear homology to a protein of
known structure, this information gap can be bridged by applica-
tion of molecular modelling techniques (Blundell et al., 1987;
Swindells and Thornton, 1991).

The modelling procedure follows four basic steps: (i) sequence
alignment of the proteins of known and unknown 3-D structure,
(ii) substitution of side chains in the conserved core, (iii)
modelling of insertions and deletions and (iv) refinement of the
model. The critical first step in any modelling study is to obtain
an accurate alignment of the two protein sequences. When
sequence similarity is high, alignment is usually unambiguous
(Barton and Sternberg, 1987). However, when sequence
similarity is weak or bounded by large insertions and deletions,
an accurate alignment may be difficult to obtain. When
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performing a sequence alignment to a protein of known 3-D
structure, each aligned residue is being predicted to adopt a
specific conformation. At its simplest this may be viewed as the
prediction of the protein secondary structure as o-helix, 6-strand
and aperiodic (coil).

In this paper we are considering the most effective strategy
for predicting the secondary structure of a protein, given the
tertiary structure of at least one other member of the family. To
provide a benchmark for improvement we first assess the
accuracy of prediction by a conventional sequence alignment
method (Barton and Sternberg, 1987; Barton, 1990) and a de
novo secondary structure prediction method (Garnier et al.,
1978). We then show that a combined secondary structure predic-
tion method that is trained on a member of the protein family
provides a usefi.rl improvement in prediction accuracy for proteins
that show weak sequence similarity. When predicting something
as complex as protein secondary structure it is important to
correlate as much information as possible. This method optimizes
the prediction for one sequence from one, homologous, known
structure. Should both a known structure and multiple sequences
be available, e.g. the P450 superfamily, the weighted average
structure prediction (WASP) algorithm can replace any standard
algorithm in methods such as Zvelebrl et al. (1987), to take full
advantage of the available data. The WASP method is also
complementary to sequence alignment and even when the latter
is more accurate it can still play an important role in detecting
incorrect assignments.

Methods

Secondary structure definitions
The secondary structure used in this study was obtained from
the database program IDITIS (Oxford Molecular Ltd) using the
DSSP algorithm (Kabsch and Sander, 1983). To obtain a three
state assignment, a-helix (H), z'-helix (P) and 3/10 helix (G) were
classed as helix, extended (E) remained a class of its own and
turn (T), bridge (B), bend (S) and coil were combined to form
the coil class.

In the work presented here accuracy values are calculated using
equation (l). This states the percentage of residues correctly
predicted:

correct x lN
accur&cy :

seqlen

where corred is the number of residues correctly predicted and
seqlen is the number of residues in the sequence.

All alignments were performed using the AMPS package
(Barton and Sternberg,1987; Barton, 1990) and the alignment
scores are given as significance scores (SD) above the mean
obtained for random sequences of the same length and
composition (see Barton and Sternberg, 1987 for details). SD
score values can be converted into approximate percentage
identity values using Figure 1. Thirty-one proteins were compared
in five families: serine proteinases (nine), immunoglobulin
domains (eight), TIM barrels (four), dehydrogenases (four) and
viral coat proteins (frve) (Table I).
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Fig. 1. A plot to show the correlation between significance score (SD) and
percentage identity for 182 pairwise alignments of the proteins in Table I.

Results and discussion

Secondary structure prediction from sequence alignment

The sequences were aligned in pairs using the Needleman and
Wunsch (1970) algorithm with the 250 PAM matrix (Dayhoff,
1978) using a gap penalty and a constant of eight. The known
secondary structure of the two aligned proteins was superimposed
onto the alignment and an accuracy calculated for how well the
secondary structure of one protein was predicted by alignment
to the other.

The accuracy was calculated using equation (1), but with the
sequence length replaced by the number ofaligned residues. This
gives an accuracy 'for the residues predicted' and means that
gaps in the alignment are not counted as incorrect predictions.
The results (Figure 2 and Table tr) show a good correlation
between the two properties, in agreement with the more stringent
test of Barton and Sternberg (1987).

Below a score of2.5 SD the accuracy varies from 20to657o
withamean of 42% andastandarddeviation of l0%. From2.5
to 5 SD the range improves to between 40 and 657o with a mean
of 55% and standard deviation of 8%. By far the most significant
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change is on either side of the 5 SD score. Between 5 and 15
SD the accuracy range becomes 60-90%, the mean 75% and
the standard deviation falls to 6%. Fnally, the significance scores
above 15 SD occupy an accuracy range from 80 to 95% , having
a mean of 85% and a standard deviation of 4%. The above results
are also summarized in Table II.

When the alignment score is above 15 SD a protein can be
confidently modelled from the tetiary structure of an homologous
protein; the sequence alignment predicting at least four out of
every five residues correctly. In the significance score range
5 - 15 SD, the secondary structural blocks are normally conserved
although their lengths are known to be more variable. This is
reflected in the mean alignment accuracy which shows that at
least three out of five residues are correctly predicted. Modelling
below the 5 SD limit is speculative. Even when the proteins are
homologous and their core structures similar, there is a high
possibility that the number and arrangement of the secondary
structural blocks may have changed. An automatic sequence
alignment is no longer adequate to obtain confidently the core
structure of the unknown protein. Between 2.5 and 5 SD almost
one in two residues is incorrectly predicted. Fortunately, the
incorrect predictions are often localized into regions, however
it is necessary to identi$ these regions and correct them before
model building.

De novo secondary structure prediction

The most widely used algorithms are those which adopt the
statistical approach to secondary structure prediction, such as
Garnier et al. (1978) (GOR), Chou and Fasman (1978) (CF) and
Gascuel and Golmard (1988) (GG). Each algorithm bases its
prediction on similar information: the protein primary sequence
and, if knowledge of a homologous protein is available, the
approximate percentages of each class of secondary structure.

The most accurate of the above methods was that of GOR.
The results, obtained using the decision constants suggested in
Garnier et al. (1978), are given below (Table II). For the 3l
proteins used in this study the GOR prediction accuracy was in
the range 4A-'75%, with a mean of 57% and a standard deviation
o f  8 % .

Weighted cwerage structure prediction WASP)
The WASP program allows the secondary structure prediction
information from several standard methods to be combined into
a single prediction. In this case Garnier et al. (1978) (GOR),
Chou and Fasman (1978) (CF), Gascuel and Golmard (1988)
(GG) and Hopp and Woods (1981) (HW) were used. Knowing
the secondary structure of the homologous protein, it is possible
to select the optimum combination of standard algorithms to
predict it. Each secondary structure prediction is performed
independently, in this case using three standard algorithms per
class of secondary structure.

Coil (1) HW hydrophilicity parameters.
Coil (2) GOR coil parameters.
Coil (3) GG coil parameters.
Helix (l) CF helix parameters.
Helix (2) GOR helix parameters.
Helix (3) GG helix parameters.
Sheet (l) CF sheet parameters.
Sheet (2) GOR sheet parameters.
Sheet (3) GG sheet parameters.

It is the statistical information from these standard algorithms
which is used to form prediction profiles. The Hopp and Woods
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Table I. The proteins used in the study

Segment Length Reference

Trypsin
Alpha-lytic protease
Proteinase A
Proteinase B
Tonin
Trypsin
Native elastase
Rat mast cell protease
Hydrolase

FC fragment
FC fragment
FAB fragment
FAB fragment
FAB fragment
Immunoglobulin FAB
Immunoglobulin FAB
Immunoglobulin FAB
Glycolate oxidase
Triose phosphate isomerase
Typtophan synthase
o-Xylose isomerase
Glyceraldehyde dehydrogenase
Cytoplasmic malate dehydrogenase
Lactate dehydrogenase
ApoJiver alcohol dehydrogenase
Viral coat protein-mengo encephalomyocarditis
Rhinovirus
Tobacco necrosis virus
Tomato bushy stunt virus
Southem bean mosaic viral coat protein

ch2

ch3
chl
vh
V I

chl
vh
vl

A
A

o
A

Z J J

198
1 8 1
185
235
223
240
224
245
105
101
99

123
1 1 5
103
126
1t2
369
247
268
393
334
334
330
374
277
289
195
387
261

lsgt
2alp
2sga
3sgb
Iton
2pln
3est
1m7

4cha
1fc1

l fc1
lmcp
lmcp
lmcp
2fb4
2M
2fb4

lgox
Itim
lwsy
5xia
1gd1
4mdh
6ldh
8adh
2mev
2rsl
2srv
2tbv
4sbv

Read and Games (1988)
Fujinaga et al. (1985)
Moult er al. (1985)
Fujinaga et al. (1987)
Ashley and MacDonald (1985)
Marquart et al. (1983)
Radhakrishnan et al. (1987)
Reynolds et al. (1985)
Blow (1976)

Deisenhofer et al. (1976)
Deisenhofer et al. (1976)
Rudikoff et al. (1981)
Rudikoff et al. (1981)
Rudikoff et al. (1981)
Kratzn et al. (1989)

Kratzin et al. (1989)

Kratzin et al. (1989)

Lindqvist and Branden (1989)
Alber er al. (1981)

Hyde et ai. (1988)

Kenrick er al. (1987)

Branlant et al. (1989)
Birktoft er al. (1989)
Zapatero et al. (1987)
Colonna et al. (1986)

Luo et al. (1978)

Amold and Rossman (1990)
Liljas and Saandberg (1984)
Hopper er al. (1984)
Rossman et al. (1983)

hydrophilicity profile was calculated by taking a moving average
of seven residues and the CF profiles by a moving average of five.

The WASP profiles are then formed by summing a given
percentage of each standard profile. In Figure 3, four residues
of a protein primary sequence are shown with the associated
prediction profile values from each standard algorithm scaled
from 0 to 100. Below this is a WASP profile constructed from
25% Hw,50% GG uf i25% GOP*

When the WASP profiles are ffained on the homologous protein
they are generated by combination of the three algorithms in user
defined increments. For the results given here that increment was
4%, meaning the first WASP profile comprised 96To HW, 4%
GOR and 0% C'G and the second 92% HW,8% GOR and0%
GG etc. This means that a total of 253 (or 15 625) different
WASP profiles will be generated.

Having formed a WASP profile, a cut-off value is varied
between 0 and 100 in steps of 2. Residues that have a WASP
profile value greater than the cut-off value are predicted as
adopting the given secondary structure, those with a WASP
profile value equal or less are not predicted. Each WASp profile
therefore gives rise to 50 predictions, meaning that the entire
process will generate 50 x 15 625 (or 781 250) predictions of
the protein of known secondary structure.

Each WASP prediction is described by four parameters:
pgrcentage of algorithm-l, percentage of algorithm-2, percentage
of algorithm-3 and a cut-off value. From these numbers-a
prediction of a given secondary structure can be made. The
781 250 predictions are compared to the known structure of the
protein and the function given in equation (2) is evaluated.

training
accuracy

(correct - incorrect) x l 0 0 -
total

- total) (2)
(predicted

x 5 0
total

where correcl is the number of residues correctly predicted (or
true-positive predictions), incorrect is the number of residues
incorrectly predicted (false-negative and true-negative), total is
the number of residues known to have the given secondary
structure, and predicted is the number of residues predicted to
have the given secondary structure. The first part of the equation
returns a value of 100 for a completely correct prediction and
- 100 for one that is completely incorrect. As each secondary
structure is predicted independently the accuracies are biased by
the number of residues predicted to discourage total and zero
predictions. Ifthe number predicted is correctpredicted : total
and the bias is zero, otherwise a scaled value is subtracted based
on the modulus of the difference, making it the same for under-
and over-prediction. The equation was developed by visually
comparing known and predicted secondary structures on a
customized graphical interface (Boscott, 1990).

At the end of training there is a WASP profile and cut-offvalue
for each class of secondary structure and an associated training
accuracy from equation (2). After training, the WASP algorithms
are by definition as good as, or better than, the best composite
algorithm prediction. A qualitative exrmple of the result of
training is shown in Figure 4.

The WASP prediction accuracy is naturally limited by that of
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Prediction
Accuracy

Table II. The results of the secondary structure prediction methods

Method Significance Accuracy
score to training mean
protein (SD) (%)

Accuracy Accuracy
range standard
(%) deviation (%)100

90

80

70

60

50

40

30

20

GOR
Theroretical
maximum from WASP

WASP

Alignment

<2 .5
2 .5 -s
5 - 1 5

> 1 5
All values
<2.5

2 . 5 - 5
5 - 1 5

> 1 5

40-70 8

50-90 7
40-85 7
35-85 l0
45 -90 8
50-75 4
35 -90 8
20-6s 10
40-65 8
60-90 I
80-95 4

) t

66
61
59
64
64
62
/ <

55
75
85

Protein Sequence
(One letter code)

(1) Coil H.w.
(2) Coil G.G.
(3) Coil G.O.R.

2s% - (r)
s0% - (2)
2s% - (3)
W.A.S.P. - coil

Erin ry sequoncr

Pr.d ict ion by E.r .  /c . f  .
Pr.dlction by C.G.
Pr.d lct ion by G.O.R.

Xnorn rtructura

vf .A.S.P.  prcdict ion

l f , l .S.P.  pa! .not . r t

A

55

70
4 l

5514+
7012+
4ll4+
59

5914+
7512+
6514+
69

c
47
8E
1 '

4714+
8812+
1214+
74

5514+
8412+
8li4+
75

c E t E E n c c E l E E a c c c

c t f , B E C C C C I A S B E E C

50r (11 sr  (2)  3sr  (3)
cutoff 63t

D

55

84
8 l

P

59
75
65

Fig. 3. The formation of a WASP profile over four residues of a sequence
bycombining the prediction profiles from three standard algorithms in the
ratio 1:2:1.

E I I C R P I L D X A S I f T Y I

c t t E c c c c c E E E H l E s
c c c c B E E B B C C C C C C E
c c t t r l E E l E B E H C C C

.10 0 10 20 30

Fig. 4. A typical optimized WASP prediction by combination of three
algorithms.

the WASP parameters generated by training on the homologous
protein. This prediction is not mutually exclusive and a residue
can be predicted as adopting helical, extended and coil
conformations. Having profiles of all predicted states available
is useful when interpreting the prediction by eye. However, for
the purpose of evaluation, the following strategy was adopted
to give a unique prediction at each position. When a multiple
prediction occurred, the quantity in equation (3) was calculated
for each of the predicted classes of secondary sffucture. The class
with the maximum decision score was that chosen.

decision score : (profile value - cut-off value) x

percentaSe

whereprofile is the value of the WASP profile at a given residue,
cut-off is the prediction cut-off value and percentage is the
percentage of the given secondary sffucture in the training protein.

Having obtained a mutually exclusive secondary structure
prediction for the unknown protein the prediction can be further
optimized. This is done by comparing the percentage of each

(3)

the

the

A A
^ a

 Aa{^
 

^ ? l
fi^r
| r ^^^i i
la

l l ^ '
t t l

^m^t
^ l

a
I

^ t ^

^i^
l ^

Alignment S.D. Score
Fig. 2. The accuracy of secondary structure prediction by sequence
alignment plotted against the alignment SD score to the homologous protein.
One hundred and eighty-wo predictions were made from pairwise alignment
of the proteins in Table I.

the standard algorithms themselves. For example, if none of the

three algorithms predict a region to be helical, it is very unlikely
that the WASP prediction will be helical. Where the method
gains, is when the different algorithms are correct for different
regions of the protein, as is shown by example in Figure 4. The
four WASP parameters for each class of secondary structure
together with their respective training accuracies are then used
for prediction of the target protein.

The information used in prediction is as follows.

(i) The primary sequence of the unknown protein.
(ii) The percentages of helical, extended and coil residues in

the homologous protein.
(iii) The optimum WASP parameters for predicting

homologous protetn.
(iv) The training accuracy values from predicting

homologous protein.

To predict the secondary structure of the unknown protein,
each class of secondary structure is independently predicted using
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Fig. 5. The accuracy of secondary structure prediction by the WASP
method plotted against the alignment SD score to the homologous protein.
One hundred and eighty+wo predictions were made from pairwise alignment
of the proteins in Table L

secondary structure predicted to the known percentages in the
homologous protein. If there is a large discrepancy in any of the
values the amounts of secondary structure predicted can be easily
varied by movement of the cut-off values. This was again
automated by the following rules in which the 'required

percentage' of each secondary structure is that of the homologous
protein.

(i) If a secondary structure is over-predicted by more than I0%
of its required value the cut-off is incrementally increased.

(ii) If a secondary structure is under-predicted by more than
l0% of its required value and the required value is more
than 30%, the cut-off is incrementally reduced.

(iii) If a secondary structure is under-predicted by more than
l0% of its required value, the required value is more than
15% and the training accuracy is positive, the cut-off is
incrementally reduced.

Rule (iii) above is used to determine how accurately each of
the secondary structural classes is being predicted. It is often the

Secondary structure prediction by homologr

Prediction
Accuracy

E w.A,s.P.
r Allgnmfnt
o G,O.R

Alignment S.D. Score

Fig. 6. An interpolation through mean accuracy values for secondary
structure prediction by sequence alignment, WASP and GOR. The proteins
are given in Table I and the accuracy values in Table tr.

case where the percentage ofa given secondary structure is low
that its entire prediction is incorrect, e.g. helix prediction in some
serine proteinases. Where the accuracy of prediction for the
homologous protein is low the program will be less inclined to
over-predict that class of secondary structure.

The maximum accuracy that the WASP system can achieve
for any given protein is the prediction of the protein when trained
on itself. As stated above, predicting 3l proteins by training the
WASP system on homologous proteins gave a mean accuracy
of 62% and a standard deviation of 8%. The maximum possible
accuracy for WASP applied to these proteins is a mean of 66%
with a standard deviation of 7 % .

The results of the WASP predictions are shown plotted against
significance score in Figure 5 and summarized in Table tr. Below
an alignment score of 2.5 SD the WASP prediction accuracy
ranges from 40 to 85% with a mean of 6l% and a standard
deviation of 7 % . These values become slightly worse in the
2.5-5 SD bracket having a mean of 59% and a standard
deviation of l0%. It is reasonable to conclude that below 5 SD
the range is35-85%, the mean 6O% and the standard deviation
8%. Modelling between 5 and 15 SD gives accuracy values in
therange 45-X)%, withamean of &% andastandarddeviation
of 8%. Finally, above an alignment score of 15 SD the range
contracts to between 50 and 75%, the mean remains at64% and
the standard deviation falls to 4%. Code for the WASP svstem
is available by application to the authors.

302010
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Comparison of the WASP method to th.at of GOR

The WASP system first trains the prediction data from the GOR,
CF, GG and HW methods on a homologous protein. It then
assesses how well the homologous protein was predicted and uses
this information to modi$ the prediction of the target protein.
Based on the extra information used it is expected that WASP
should out-perform the component algorithms, as is the case.

The results of the prediction by CF, GG and HW were, on
average, worse than those of GOR. A comparison has therefore
been made between the WASP system and the best of its
component algorithms. The GOR predictions were further
improved by using decision constants given in the paper; these
were not used in the GOR data of the WASP system. The overall
mean for the WASP method, predicting the 3l proteins in Table
I from each other, is 62% compared to 57% for GOR.

The benefit of using the trained method is naturally dependent
on the sequence similarity of the homologous protein. When the
protein pair has a significance score less than 5 SD the mean
accuracy is 60%, 3% higher than GOR. From Figure 5 this
difference is not dependent on the six highest scoring points in
the bracket. Removal of these data points lowers both the GOR
and WASP accuracy by l%. When the alignment score exceeds
5 SD the average accuracy for the WASP method rises to 647o,
7% higher than that for GOR. The WASP system could not
achieve a mean accuracy greater than 66% using the combined
data for GOR, GG, CF and HW as this is a limit currently
imposed on the system by the accuracy of the composite data.

Table tr gives the mean accuracies, accuracy ranges and
standard deviations of the results from the GOR method, sequence
alignment and WASP system. Plotting the mean values of each
method (Figure 6) shows that WASP offers a small improvement
in prediction accuracy over both GOR and sequence alignment
when the training and test proteins have a similarity lower than
5 SD.

Summary

Our study of secondary structure prediction accuracy by sequence
alignment shows a good correlation with the signif,rcance score
of the alignment. These results can be used to support confidence
in homology modelling based on the result of the alignment. From
Figure 2 the threshold for a confident alignment is approximately
5 SD.

The accuracy of sequence alignment and that of secondary
structure prediction can be used to divide homology modelling
into two classifications. A 'confident' homology model can be
built with an alignment score greater than 5 SD which relies
primarily on the results of the sequence alignment. Between 2.5
and 5 SD a 'speculative' model can be inferred from a
combination of the two predictive methods, with greater weight
now being placed on the results of the secondary structure
prediction method.

The primary conclusion of this work is that the accuracy of
de novo secondary structure prediction for homology modelling
can be improved by training the prediction method on the
homologous protein, the mean increase in accuracy beingl%
in the confident region (alignment scores greater than 5 SD) and
3% inthe speculative region (alignment scores between 2.5 and
5 SD).

The weighted average structure prediction (WASP) method
appears capable of combining algorithms, training on a protein
of known structure and then predicting the secondary structure
of a homologous protein with a greater accuracy than any of the
constituent algori*rms. It is likely ttrat the accuracy of this method
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could be considerably increased by combining algorithms
developed for specific protein families, or groups of families.
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