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Abstract

This paper provides a detailed description of a database of protein struc-
ture implemented in the logic programming language PROLOG. The data-
base allows flexible access to structural information at the atom, residue,
secondary structure and topology levels of the protein structural hierarchy.
An extended version of the Kabsch and Sander algorithm for secondary
structure definition has been implemented in PROLOG, forming an integral
part of the database. For protein structure analysis, the PROLOG system
shows significant advantages in flexibility over conventional programming
languages such as Fortran, and Relational Database Managements Systems
using SQL.



1 Introduction

Comparative analysis of the protein three-dimensional structures determined by X-
ray crystallography or NMR, furthers our understanding of the factors influencing
the native protein fold and suggests rules to guide the prediction of structure
and function from the amino acid sequence. Traditionally, these analyses have
been performed with bespoke Fortran programs that access flat files of coordinate
data. Attention has focussed recently on using commercial Relational Database
Management Systems (RDBMS) to store the coordinate and derived structural
information (e.g. torsion angles, accessibilities, secondary structure, etc.) whilst
making use of the SQL language to query the data [1, 2]. However, both traditional
Fortran and RDBMS are limited by the inflexibility of the data storage format and
the query language. Whilst in principal all queries can be answered through a
conventional programming language such as Fortran or C, the effort involved in
coding the question can be formidable. Furthermore, if the first question leads on
to another, then a similar programming project must be undertaken to answer the
follow-up query. In contrast, the RDBMS systems provide ready access to simple
queries of the data without the need for complex programming. Unfortunately,
the query language SQL can only represent simple tabular data structures, and the
underlying relational model, though well suited to tables of names and addresses,
wages etc., does not cope well with the naturally sequential protein structural data.

Gray et al. [3] have described an object-oriented database of protein structure.
Their system explores the advantages of a system developed in the logic pro-
gramming language Prolog. The relational data structures and unification based
retrieval used by Prolog provide flexible ways of accessing structural data, and Pro-
log’s symbolic (rule-based) programming style enables many aspects of structure
analysis to be represented directly.

Our work on representing protein structures in Prolog described in this paper
has developed out of the successful initial investigations into using logic program-
ming techniques to represent and search for topological motifs [4]. Subsequent
studies have made use of symbolic logical descriptions of protein structures during
protein structure prediction [5], as a common platform in the PAPAIN project to
develop a knowledge-based environment for the interpretation of protein sequence
data [6], and for the prediction of protein topology [7]. Here, we extend the original
representation of protein structure which was centered around protein topology, to
include more detailed structural information. Particular attention has been paid to
the representation of hydrogen bonding patterns, and the systematic classification



of protein secondary structure using Kabsch and Sander’s definitions [8].

1.1 The Brookhaven Protein Data Bank

All protein structural data was extracted from the Brookhaven Protein Data Bank
(PDB) [9]. The PDB acts as a repository for macromolecular structure information,
primarily the results of X-ray crystallographic analysis. Each molecular structure
(e.g. a protein structure) is stored in an individual flat file. The file entry contains
the ���	�
�	� coordinates in a Cartesian coordinate system for every atom in the
structure. Additional information regarding the experimental procedure used is
also included together with the source of the biological material that has been
analysed.

1.2 Introduction to Prolog, System, Syntax and Hardware

All programming was performed using the commercially available Quintus Prolog
system (Release 2.4.2). General details of the Prolog language may be found in
the book Programming in Prolog (Clocksin, W. F. and Mellish, C. S, Springer-
Verlag, FRG, 1981). Briefly, Prolog stores facts and deductive rules in a database,
where the facts are equivalent to a collection of relations in a relational database.
The Prolog interpreter when presented with a query (or goal as it is often called)
searches the database of facts and rules to see if any of the facts and rules match
the query. If there are facts that match, then the variables in the query are unified
with the constant symbols in the fact(s). If there is a rule whose consequent (the
head of the rule) matches the query, then the interpreter proceeds by attempting to
recursively prove the subgoals of the rule. Specific examples relevant to the protein
structure information stored in our database are described below. The database
system was originally developed on a Sun 3/50 workstation with 4MBytes of
memory. The current installation is running on a Sun SPARCstation 1 with
12MBytes of memory.

1.3 Chain, Residue and Protein Naming Conventions

A protein coordinate entry (file) as listed in the Brookhaven Protein Data Bank
(PDB) is uniquely identified by a 4 or 5 character code starting with an integer, for
example, 1FB4 is the code for an immunoglobulin Fab fragment. However, any
given entry may contain multiple protein chains, and these are usually the basic



unit of protein structure. If more than one chain exists in an entry, the PDB assign
a single character code to each chain. For example, the entry 1FB4 contains two
chains labelled L and H.

One often wishes to reference an individual chain rather than the whole protein
entry. Accordingly, when converting the PDB to Prolog clauses, a two-level
naming convention was adopted. Each Entry is identified by the PDB code (e.g.
1fb4) and each chain belonging to an entry is identified by the PDB code with the
chain identifier code appended (e.g. 1fb4l). If an entry has a single chain that does
not have a chain identifier, then the chain is simply identified by the PDB code
alone. The PDB code and chain codes are linked by the Prolog clause chain/2
as described below.

Residue numbers are represented by two-element lists (e.g. [37,a], [37,b],
[38,-]) in order to accommodate the insertion characters that allow homologous
structures to be numbered in a manner consistent with the ‘parent’ structure. For
example, all serine proteinase enzymes (trypsin, elastase etc. ) are numbered
according to the structure of chymotrypsinogen, which was the first member of
the family to be solved by X-ray crystallography. Although this simplifies cross-
referencing between different proteins in the same family, the flexibility creates
difficulties when searching for residues � amino acids before, or after the current
position.

2 Simple Prolog Clauses Describing Brookhaven Entries

A Fortran program (BRKSEQ), reads the PDB files and processes the necessary
information to describe each protein entry by up to eleven different types of Prolog
clauses:

header(Ident,List).
compnd(Ident,List).
source(Ident,List).
resolution(Ident,R).
chain(Ident,Chcode).
nchains(Ident,N).
chain_range(Chcode,[Cstart,CstartIN],[Cend,CendIN]).
chain_length(Chcode,Len).



residues(Chcode).
no_mainchain(Chcode).
no_sidechains(Chcode).

not all clauses need be present for a particular entry, as shown for the Immun-
oglobulin structure 2fb4.

header(2fb4,[immunoglobulin,18-apr-89,2fb4]).
compnd(2fb4,[immunoglobulin,fab]).
source(2fb4,[human,(homo,sapiens),myeloma,patient,kol,serum]).
resolution(2fb4, 1.900).
nchains(2fb4, 2).
chain(2fb4,2fb4l).
chain_range(2fb4l,[ 1,-],[ 214,-]).
chain_length(2fb4l, 216).
residues(2fb4l).
chain(2fb4,2fb4h).
chain_range(2fb4h,[ 1,-],[ 221,-]).
chain_length(2fb4h, 229).
residues(2fb4h).

The header, compnd, source and resolution clauses are extracted
directly from the information stored at the beginning of every PDB file. The
Ident is the PDB identification code for the protein (e.g. 9lyz), List is a
Prolog list containing textual information, and R is the resolution of the structure
in Ångstroms. The remaining seven clauses are derived from an analysis of the
PDB ATOM records. The chain clauses link the PDB identification code to the
chain code Chcode whilst nchains simply lists how many chains are present
in the PDB entry. The nchains clause is included for simplicity, though is
strictly unnecessary since a Prolog rule could be used to count the number of
chain clauses present for each protein. For every chain clause, there is one
chain range clause which specifies the starting and ending residue numbers
of the chain. Similarly, there is a chain length clause that states the number
of residues present in the chain (this clause is essential due to the alphanumeric



residue numbering scheme used by the PDB). The residues clause identifies a
chain as having amino acid residues other than UNK (or X), whilst the presence of
no mainchain or no sidechains clauses for a chain shows that the protein
entry is incomplete (some PDB entries only contain mainchain, or �� atoms).

2.1 Using the PDB Information

There are 7102 clauses defining the November 1990 release of the Brookhaven
PDB. These provide a very simple database that may be read directly into the
Prolog system and interrogated by writing simple Prolog queries. For example,
the following query, also known as a goal could be typed in at the Prolog prompt
(| ?-).

| ?- resolution(PID,R),R < 2, R > 0,chain(PID,CID),residues(CID).

The query will return the protein identifier (PID), chain identifier (CID) and
crystallographic resolution (R) for each chain in the databank whose entry is less
than 2 Å resolution and has amino acid residues deposited.

The Prolog interpreter attempts to satisfy this query as follows. Firstly Prolog
looks in its database for facts called resolution. The first fact is found and
the variables PID and R unified with the arguments of the clause. The value of
R is then tested to see if it is less than 2. If it is, then the test is made to see if
R is greater than zero. If this succeeds, then a chain clause is looked up in the
database that unifies with the current value of PID. Finally, if the chain clause is
found, a residues clause is looked up in the database that unifies with the value
of CID.

The query can fail at any stage. For example, if no residues fact is found
that contains the current CID, then the goal fails. Prolog then starts a process of
backtracking to search for a possible solution. The interpreter would first look for
another chain fact. If present, then this would unify CID with the value shown
in the chain fact, again the database would be checked for a corresponding
residues clause. If all elements of the query succeed, then the values of
PID,CID and R are displayed. The entire query may be forced to search for



alternative solutions by typing a semicolon. For example, the following are the
first three solutions to the query shown.

| ?- resolution(PID,R),R < 2, R > 0,chain(PID,CID),residues(CID).

PID = CID = 1alc,
R = 1.7 ; %First solution found - type ’;’

% to force backtracking
PID = 1amt,
R = 1.5,
CID = 1amta ; %Second solution - type ’;’ again for next solution

PID = 1amt,
R = 1.5,
CID = 1amtb % ... and so on ...

If we often want to select protein chains by the criteria shown in this query, it
is simple to build the query into a general purpose Prolog rule. For example, the
rule called select chains:

Comments start with a %
select_chains(Rmin,Rmax,CID):-

resolution(PID,R), % look up resolution
R < Rmax, % resolution below Rmax
R > Rmin, % resolution above Rmin
chain(PID,CID), % find a chain iden-

tifier for this PID
residues(CID). % check the chain has residues

We can now type:

| ?- select_chains(0,2,CID).



at the prolog prompt to find out which chains satisfy our criteria. Having
established this new rule, we can then use it in further queries. For example:

| ?- select_chains(2,3,CID),chain_length(CID,Len),Len >= 150.

will return the chain identifier and length for chains belonging to entries that
are of between 2 and 3 Å resolution and where the chain length is at least 150
amino acids.

2.2 Getting All Solutions

As stated, the example queries require interactive prompting by typing a semicolon,
to return more than one solution. However, there are two methods by which Prolog
can return all possible solutions to a particular query. The first is to put the built-in
predicate (also called a procedure) fail. at the end of the query. This forces
backtracking whenever it is encountered. In order that the results of each solution
to the query are recorded, some write statements must be added. For example:

| ?- select_chains(2,3,CID),chain_length(CID,Len),Len >= 150,
write(CID),nl,
write(Len),nl,fail.

will print the values of chain identifier and length that satisfy the query. The
nl predicate simply places a carriage-return character after each write. Part of the
output of this query looks like this:

8at1c
310
8atca
310
8atcc
310



A more useful type of output would be to write out the results in a form that
can be directly re-used by Prolog as a set of clauses. For example:

| ?- select_chains(2,3,CID),chain_length(CID,Len),Len >= 150,
writeq(special_chains(CID,Len)),writeq(.),nl,fail.

the writeq predicate makes sure that all syntax is correctly observed. Part
of the output resulting from this query is shown below and can be read back into
Prolog for further processing:

special_chains(5acn,754).
special_chains(5adh,374).
special_chains(5at1a,310).
special_chains(5at1c,310).
special_chains(5tln,316).

In this example, there is no real advantage in writing the results in this form
since the original query is very quickly evaluated. However, for a complex query
where Prolog may take several minutes to find all solutions, it makes sense to save
intermediate results in this form. This is particularly true in the analysis of protein
structure, where one question frequently leads to another and the results of the first
question are necessary to solve the following question.

An alternative way to return all solutions to a query is to make use of the Prolog
built-in procedure bagof. This is an extremely flexible procedure that returns
the results of a query in the form of a Prolog list. For example, the previous query
could be expressed as:

| ?- bagof(special_chains(CID,Len),
(select_chains(2,3,CID),chain_length(CID,Len)),L)

and will return the variableL as a list containingspecial chains(CID,Len)
clauses. Normally, this is the method of choice since it gathers all solutions into
an easily manipulated list structure. This example required 0.08 seconds to scan a
database containing 501 entries on a Sun SPARCstation 1.



3 Derived Information

So far we have described an extremely simple database of protein structure-related
information and shown how Prolog can be used to query the data. This simple
database forms a hub of basic facts around which the more detailed structural data
of our system are organised.

Although PDB coordinate files contain the ���	�
�	� coordinates of individual
atoms in a protein, one frequently does not require this level of detail. It is
often sufficient to consider the structure at the level of the amino acid residues.
For example, one may be interested in the secondary structure of a particular
residue, ( � – , � – or turn), the accessibility to solvent, the ����� angles and so
on. The Kabsch and Sander secondary structure definition program DSSP [8],
reads a Brookhaven coordinate file and generates a file of definitions for the
secondary structure of the protein. In addition to defining the structural state of
each residue, DSSP also generates a table containing the main chain hydrogen
bonds, accessibility, ����� angles and �� coordinates together with other relevant
information. Accordingly, the table provides an invaluable reference source of
residue-level information for the protein. Simply converting these tables to Prolog
clauses allows the power of Prolog to be used in queries of the data. A sample of
the table output by DSSP is shown here:

1 1 A V 0 0 139 0, 0.0 2,-0.6 0, 0.0 130, 0.0 0.000 360.0 360.0 360.0 130.6 6.9 17.8 4.7
2 2 A L - 0 0 19 125,-0.1 122, 0.0 126,-0.1 5, 0.0 -0.711 360.0-142.7 -80.5 121.9 10.6 17.9 4.2
3 3 A S > - 0 0 44 -2,-0.6 4,-2.0 1,-0.1 -1, 0.0 -0.301 27.8-105.5 -71.3 164.8 12.3 19.8 7.0
4 4 A P H > S+ 0 0 98 0, 0.0 4,-2.4 0, 0.0 -1,-0.1 0.880 125.4 55.4 -62.3 -35.0 15.3 22.0 6.2
5 5 A A H > S+ 0 0 59 1,-0.2 4,-2.4 2,-0.2 -3, 0.0 0.907 104.9 52.7 -65.0 -41.5 17.5 19.4 7.7
6 6 A D H > S+ 0 0 15 1,-0.2 4,-2.3 2,-0.2 -1,-0.2 0.918 109.0 50.3 -56.3 -42.8 15.9 16.9 5.2
7 7 A K H X S+ 0 0 46 -4,-2.0 4,-2.5 1,-0.2 -2,-0.2 0.881 109.2 50.2 -64.7 -36.2 16.7 19.2 2.4
8 8 A T H X S+ 0 0 90 -4,-2.4 4,-2.0 1,-0.2 -1,-0.2 0.910 111.6 49.6 -63.3 -42.7 20.4 19.6 3.5

The program BRKSAND converts this table format into Prolog clauses, one
for each residue. For example:

ks( 1,2hhb,2hhba,[ 1,-],V,-,[-,-,-],[ 0, 0,-],
139,[ 0, 0.0],[ 2,-0.6],[ 0, 0.0],[ 130, 0.0],[ 0.000, 360.0, 360.0],[ 360.0, 130.6],[ 6.9, 17.8, 4.7]).
ks( 2,2hhb,2hhba,[ 2,-],L,-,[n,-,-],[ 0, 0,-],

19,[ 125,-0.1],[ 122, 0.0],[ 126,-0.1],[ 5, 0.0],[-0.711, 360.0,-142.7],[ -80.5, 121.9],[ 10.6, 17.9, 4.2]).
ks( 3,2hhb,2hhba,[ 3,-],S,-,[n,-,-],[ 0, 0,-],

44,[ -2,-0.6],[ 4,-2.0],[ 1,-0.1],[ -1, 0.0],[-0.301, 27.8,-105.5],[ -71.3, 164.8],[ 12.3, 19.8, 7.0]).
ks( 4,2hhb,2hhba,[ 4,-],P,H,[p,-,-],[ 0, 0,-],

98,[ 0, 0.0],[ 4,-2.4],[ 0, 0.0],[ -1,-0.1],[ 0.880, 125.4, 55.4],[ -62.3, -35.0],[ 15.3, 22.0, 6.2]).
ks( 5,2hhb,2hhba,[ 5,-],A,H,[p,-,-],[ 0, 0,-],

59,[ 1,-0.2],[ 4,-2.4],[ 2,-0.2],[ -3, 0.0],[ 0.907, 104.9, 52.7],[ -65.0, -41.5],[ 17.5, 19.4, 7.7]).
ks( 6,2hhb,2hhba,[ 6,-],D,H,[p,-,-],[ 0, 0,-],

15,[ 1,-0.2],[ 4,-2.3],[ 2,-0.2],[ -1,-0.2],[ 0.918, 109.0, 50.3],[ -56.3, -42.8],[ 15.9, 16.9, 5.2]).
ks( 7,2hhb,2hhba,[ 7,-],K,H,[p,-,-],[ 0, 0,-],

46,[ -4,-2.0],[ 4,-2.5],[ 1,-0.2],[ -2,-0.2],[ 0.881, 109.2, 50.2],[ -64.7, -36.2],[ 16.7, 19.2, 2.4]).
ks( 8,2hhb,2hhba,[ 8,-],T,H,[p,-,-],[ 0, 0,-],



The general form of a ks fact is as follows:

ks(N,PID,CID,RNUM,AA,SS,CLAD,BPSHEET,ACC,NHO1,ONH1,NHO2,ONH2,TKA,PHIPSI,XYZ).

where:

N unique atom identifier in this entry (integer)
PID Protein identifer code (char-
acter string)
CID Chain identifer code ( " " )
RNUM residue number List: [integer,character in-
sert code]
AA amino acid code (Uppercase character - cys in bridge

is lowercase)
SS secondary structure (Uppercase character)
CLAD [chirality,ladder1,ladder2] where

chirality = n (-
ve), p (+ve)

ladder1/2 = up-
percase character
BPSHEET [BP1,BP2,SHeet] BP1/2 give values of N for bridges, Sheet is

a character that la-
bels the sheet
ACC accessibility (Angstroms**2) (int)
NHO1/2,
ONH1/2 [Ndiff,energy] Ndiff is the difference in N value to the Hbond

partner, energy is the energy (kcal/mol) (int,real)
TKA Angles: [TCO,KAPPA,ALPHA] (All real numbers)
PHIPSI [PHI,PSI] phi,psi angles (both real)
XYZ [X,Y,Z] coordinates of this CA atom (all reals)

For details of the specific structural meaning of each of these values, see
Kabsch and Sander [8].



The first argument in the ks/16 clause is a unique numeric residue number,
where the numbers run consecutively from the beginning of the protein entry. This
numbering scheme overcomes the difficulties associated with the standard PDB
numbering system, by allowing simple questions of the form, ‘what is the residue
4 amino acids N-terminal of residue 37 to be readily answered.

If the ks clauses for a protein are loaded into the Prolog system, then queries
may be made. For example, to find the names of residues with accessibilities������� ˚ "! and with positive � angles one could type:

| ?- ks(_,_,_,_,AA,_,_,_,ACC,_,_,_,_,_,[PHI,_],_),ACC < 100, PHI >0.

Clearly, this is a rather cumbersome interface to the data. In order to simplify
this sort of query, a set of high level procedures have been written to allow different
aspects of the data to be extracted. The procedure get/4 allows a particular field
to be returned:

| ?- get(N,CID,Entry,Value)

N and CID are the unique residue number and chain identifier. Entry is one
of the strings: ks number, protein identifier, residue number,
amino acid, amino, accessibility, hbondNO1, hbondON1, hbondNO2,
hbondON2, hbonds, tka, phipsi, xyz, x,y,z, sec. These val-
ues follow the arguments of the ks procedure, hbonds causes backtracking
through all four hbond types that are stored, whilst amino acid converts the
code letters for residues involved in disulphide bridges into the normal amino acid
codes. Value holds the returned value of the procedure.

For example, to perform the same query as above we would type:

| ?- get(N,CID,accessibility,ACC),ACC < 100, get(N,CID,phipsi,[PHI,_]),PHI > 0.

which reads, ‘Look up an accessibilty value, if this value is less than 100 then
look up the value of � for the residue, if this is greater than 0, then display the
result.



Frequently, one requires a range of values that start and end at particular
residues in the protein chain. The getR procedure performs this task. For
example:

| ?- getR(2,10,1fb4l,amino_acid,AA)

which will return the value for AA of:

AA = [S,V,L,T,Q,P,P,S,A]

The getR procedure can be used for far more complex queries. For example,
the following query will find the sequence, accessibility and summary of secondary
structure for all pentapeptides that have a mean accessibilty of less than ��� ˚ "! .

CID = 1fb4l, %just set the chain to 1fb4l for now
kchain_range(S,E,CID), %find the start (S) and end (E) residue numbers
SM1 is S - 1, %find S - 1 number
LST is E - 4, %find the last possible START for a pentapeptide
next1(SM1,START,LST), %on backtracking this procedure re-
turns START as

%successive values from SM1 to LST.
END is START + 4, %specify the last residue of the pentapeptide
getR(START,END,CID,accessibility,ACC), %get the accessibil-
ities for this

%pentapeptide
mean(MEAN,ACC), %find the mean accessibility
MEAN < 10, %test if mean is < 10 for this pentapeptide,
getR(START,END,CID,amino_acid,AA), %look up the amino acid sequence
getR(START,END,CID,sec,SEC), % and summary of sec-
ondary structure
write_list([CID,START,END,ACC,AA,SEC,MEAN]). %write out the in-
formation we want



This query produces the following output:

1fb4l 32 36 [9,34,0,0,1] [I,T,V,N,W] [S,-,-,E,E] 8.79999
1fb4l 33 37 [34,0,0,1,0] [T,V,N,W,Y] [-,-,E,E,E] 7.0
1fb4l 34 38 [0,0,1,0,34] [V,N,W,Y,Q] [-,E,E,E,E] 7.0
1fb4l 35 39 [0,1,0,34,2] [N,W,Y,Q,Q] [E,E,E,E,E] 7.39999
1fb4l 72 76 [2,34,0,4,1] [A,S,L,A,I] [E,E,E,E,E] 8.2
1fb4l 85 89 [10,9,0,11,0] [S,D,Y,Y,C] [S,E,E,E,E] 6.0
1fb4l 86 90 [9,0,11,0,0] [D,Y,Y,C,A] [E,E,E,E,E] 4.0
1fb4l 87 91 [0,11,0,0,0] [Y,Y,C,A,S] [E,E,E,E,E] 2.2
1fb4l 88 92 [11,0,0,0,1] [Y,C,A,S,W] [E,E,E,E,E] 2.4
1fb4l 89 93 [0,0,0,1,0] [C,A,S,W,N] [E,E,E,E,E] 0.2
1fb4l 90 94 [0,0,1,0,34] [A,S,W,N,S] [E,E,E,E,T] 7.0
1fb4l 98 102 [14,5,11,11,2] [S,Y,V,F,G] [E,E,E,E,B] 8.59999
1fb4l 134 138 [3,7,0,0,0] [A,T,L,V,C] [E,E,E,E,E] 2.0
1fb4l 135 139 [7,0,0,0,2] [T,L,V,C,L] [E,E,E,E,E] 1.8
1fb4l 136 140 [0,0,0,2,0] [L,V,C,L,I] [E,E,E,E,E] 0.4
1fb4l 137 141 [0,0,2,0,13] [V,C,L,I,S] [E,E,E,E,E] 3.0
1fb4l 177 181 [2,0,1,0,5] [A,A,S,S,Y] [E,E,E,E,E] 1.6
1fb4l 178 182 [0,1,0,5,2] [A,S,S,Y,L] [E,E,E,E,E] 1.6

and required 18 seconds to complete on a Sun SPARCstation 1. Loading the
protein into the Prolog system (consultation) required an additional 14 seconds.

4 Secondary Structure Definition

The Kabsch and Sander [8] secondary structure definition algorithm follows a
strict hierarchy of structural sub-types. However, the ks clauses store only the
summary of the structure thus loosing the underlying information that goes to
make up the defined secondary structure. For example, to define an � – helix, the
DSSP algorithm first finds all main chain hydrogen bonds between residues # and
#�$&% . These residues are then said to form a four turn. A minimal helix is then
defined in terms of two overlapping four turns, finally a helix is defined as at least
two overlapping minimal helices. When the secondary structural state of a residue



is simplified to a single character such as ‘H’, the reason for that residue being
defined as ‘H’ (i.e. hydrogen bonds, turns and minimal helices) is lost. Similarly,
the possibility of a residue belonging to more than one structural class, for example
both '�(*) – and � – helix, is not allowed by the ks summary.

Prolog is a rule based language and the Kabsch and Sander definitions are
a set of simple hierarchical rules. Accordingly, it is a relatively straightforward
matter to implement the secondary structure definition rules in Prolog. Having the
structure definitions expressed as Prolog rules enables queries to be formulated at
each level of the definition hierarchy.

4.1 Helix definitions

In order to illustrate the definition of secondary structure using Kabsch and
Sander’s rules the complete Prolog code for the definition of helix structure is
shown here. The basic building block for the definition of a helix is the kturn
rule. This looks up the hydrogen bonding information stored in the ks clauses
and if an #+�,#-$/. pattern with an energy of at least -0.5 KCal is seen, then a turn is
defined.

/* kturn rule*/

kturn(N,N3,CID,Type):-
ks(N,_,CID,_,_,_,_,_,_,_,[B1,E1],_,[B2,E2],_,_,_),
turn_type(NN,Type),
N3 is N + NN,
B1A is N + B1,
B2A is N + B2,
check_bond(N3,[B1A,E1],[B2A,E2]).

/* turn_type facts */

turn_type(3,three_turn).
turn_type(4,four_turn).
turn_type(5,five_turn).
turn_type(6,six_turn).



/* check_bond rules */

check_bond(N3,[N3,E1],_):-
E1 =< -0.5.

check_bond(N3,_,[N3,E2]):-
E2 =< -0.5.

The kturn rule operates by first looking up the unique residue number, offset
and energy of the two hydrogen bonds listed as O-HN hydrogen bonds for that
residue. A turn type is then looked up (e.g. three turn) to obtain the required
offset for a hydrogen bond (in this example, 3). The check bond rule is then
used to see if a hydrogen bond exists between the current residue and one three
further down the polypeptide chain.

Given the kturn, the definition of a minimal helix is readily expressed as:

minimal_helix(N,N2,CID,Type):-
kturn(N,Nend2,CID,Type),
NM1 is N - 1,
kturn(NM1,_,CID,Type),
N2 is Nend2 - 1.

Prolog rules then define the start and end points of a helix:

helix_start(N,CID,Type):-
minimal_helix(N,_,CID,Type),
NM1 is N - 1,
\+ in_minimal_helix(NM1,CID,Type). % \+ means ’not’

helix_end(N,CID,Type):-
minimal_helix(_,N,CID,Type),
NP1 is N + 1,
\+ in_minimal_helix(NP1,CID,Type).



in_minimal_helix(N,CID,Type):-
nonvar(N), %must call with N instantiated
minimal_helix(N1,N2,CID,Type), %i.e. N must have a value before
N >= N1, % the call.
N =< N2,
!. %succeed only once.

The rule in minimal helix succeeds once if the residue number is found
within a minimal helix. The helix start rule reads ‘residue � is the first
residue in a helix if it is the first residue in a minimal helix, and residue �10 � is
not in a minimal helix’. Similarly for the helix end rule.

Three helix type facts link the different types of turn with '-(*) – , � – and
five- helix names.

helix_type(three_turn,three_ten).
helix_type(four_turn,alpha).
helix_type(five_turn,five).

Finally, we can write the helix rule by making use of the helix start
and helix end rules.

helix(N1,N2,CID,Htype):-
helix_start(N1,CID,Type),
find_helix_end(N1,CID,Type,N2),
helix_type(Type,Htype).

find_helix_end(N,CID,Type,N2):-
helix_end(N2,CID,Type),
N2 > N,
!.



The helix rule reads ‘find the start of a helix, find the first end of helix that
follows this start, then look up the helix type.’

The Prolog rules for helix, make up the computer program that defines helix
structures. However, a feature of Prolog is that any rule can be replaced by a
collection of facts. For example, the kturn rule can be replaced or augmented
by facts that are specific to a particular protein:

kturn(416,419,1fb4h,three_turn).
kturn(418,421,1fb4h,three_turn).
kturn(418,422,1fb4h,four_turn).
kturn(430,434,1fb4h,four_turn).
kturn(430,435,1fb4h,five_turn).
kturn(431,434,1fb4h,three_turn).

these facts may then be used in exactly the same way as the general purpose
rule with the same name and number of arguments. In this way, if a rule is
particularly time consuming to evaluate, it need only be evaluated once for the
protein, then stored as a set of facts. Other rules that subsequently make use of
the rule need only look up the corresponding facts in the database, rather than
repeat the time-consuming rule evaluation. This principal is similar to storing
intermediary results in a conventional Fortran or C program. The difference in
Prolog is that the routines that access the pre-calculated data are identical to those
that access the routines that initially calculated the data.

4.2 Beta Structure Definitions

Kabsch and Sander define all beta structure in terms of ‘bridges’ which are either
parallel or antiparallel. Where two or more bridges of the same type are consecut-
ive, the structure is termed a ladder. Finally, overlapping ladders are amalgamated
into sheets. Additional complications arise because ladders may have discontinu-
ities in them, and ladders may consists of just a single bridge. These aspects of
protein structure make the coding of beta-structure in Prolog a little less straight-
forward than for helix.

In finding the sheets in a protein, the following steps are performed:

2 Define the parallel and antiparallel bridges.



2 Define start and end points of ladders.

2 Build ladders of that consist of two or more consecutive bridges.

2 Identify ladders that consist of a single bridge (bridge ladder).

2 Locate ladder pairs that are linked by a � – bulge.

2 Identify � – sheets in terms of the ladders that make them up.

2 Identify � – strands by examining the sheets.

The general Prolog rules developed for � – structure are:

bridge(I-J,CID1,CID2,Btype)
ladder_start(A-B,CID1,CID2,Btype)
ladder_end(A-B,CID1,CID2,Btype)
ladder(BridgeList,CID1,CID2,Ltype)
bridge_ladder(ladder([A-B],CID1,CID2,Type))
bulge_linked_ladders(Ladder1,Ladder2)
l_sheet(PID,LadderList,Type)
strand(NumberList,CID)
s_sheet(PID,StrandList,Type)

Where I-J is a pair of residue identifiers from chains CID1, CID2 re-
spectively. Btype is the bridge type, either parallel or antiparallel.
BridgeList is a Prolog List containingbridge/4 facts. Similarly, LadderList
is a list of ladder/4 definitions, whilst NumberList is a list of residue numbers.
The bulge linked ladders/2 rule identifies two ladders that are linked by
a � – bulge.

Examples of these facts specific to the protein 1fb4 are shown here:

bridge(200-205,1fb4l,1fb4l,antiparallel)
bridge(228-340,1fb4h,1fb4h,parallel)

ladder([4-101,4-102,4-103],1fb4l,1fb4l,parallel)



ladder([35-90,36-89,37-88,38-87,39-86],1fb4l,1fb4l,antiparallel)

l_sheet(1fb4,
[ladder([4-101,4-102,4-103],1fb4l,1fb4l,parallel),
ladder([8-106,9-106,10-107,11-108,12-109,12-110],1fb4l,1fb4l,parallel),
ladder([35-90,36-89,37-88,38-87,39-86],1fb4l,1fb4l,antiparallel),
ladder([36-49,37-47,38-46],1fb4l,1fb4l,antiparallel),
ladder([85-107,86-106,87-105],1fb4l,1fb4l,antiparallel),
ladder([89-102,90-101,91-100,92-99,93-98],1fb4l,1fb4l,antiparallel)
],mixed)

s_sheet(1fb4,
[strand([4],1fb4l),
strand([8,9,10,11,12],1fb4l),
strand([35,36,37,38,39],1fb4l),
strand([46,47,48,49],1fb4l),
strand([85,86,87,88,89,90,91,92,93],1fb4l),
strand([98,99,100,101,102,103],1fb4l),
strand([105,106,107,108,109,110],1fb4l)
],mixed)

Two alternative representations of a � – sheet are shown. The first consists
of the list of ladder clauses that are used in the definition of the sheet. This
representation immediately shows which residues are involved in the sheet and
what their hydrogen bonding partners are. The sheet type is also defined as one
of pure parallel, pure antiparallel, or mixed, depending upon the type of ladders
in the sheet. Having established the sheet definition, it is possible to define the� – strands that make up the sheet and consequently to define the second alternative
sheet fact. This shows a list of strand definitions in place of the ladder definitions.

The time required to calculate all secondary structure definitions for a protein
is dependent upon the number of residues present, and the total secondary structure
content. Some typical examples are: 1fb4 (Immunoglobulin) a � protein of 445
residues in total takes 50 seconds (including consultation time); 1mbn (Myoglobin)
an all � protein of 153 residues takes 25 seconds on a SPARCstation 1.



5 Interface to TOPOL Topology Reasoning Rules

The TOPOL system for reasoning about protein topology in Prolog [4] makes use
of the secondary structure definitions as deposited in the Brookhaven Protein Data
Bank. In order that the TOPOL rules may be applied to Kabsch and Sander derived
secondary structure definitions and to allow access to the angle and accessibility
information, several rules were developed.

Kabsch and Sander helix definitions allow a residue to belong to more than
one type of helix. Thus, it often occurs that a region of � – helix will overlap
with a region of ' (3) – helix at the C-terminal end of the � – helix. TOPOL expects
residues to belong to only one secondary structure. Accordingly, where overlaps
occur, the helix definitions are compressed into a single thelix definition. For
example:

thelix(186,191,1fb4l,[
helix(189,191,1fb4l,three_ten),
helix(186,191,1fb4l,alpha)

])

shows the starting and ending residue numbers for the concatenated helix, the
chain identifier, then a list of the helix definitions that overlap.

Strands are simply identified by their start and end residue numbers, rather
than a list of all residues in the strand. In addition, regions of polypeptide that are
neither in strand, nor helix are defined as the structuretloop. The TOPOL clauses
follows/2, is parallel to/2 and is antiparallel to/2 are then
defined in terms of the tstrand, tloop and thelix clauses. For example:

follows(tstrand(175,184,1fb4l),tloop(172,174,1fb4l))

specifies that the given tstrand follows the tloop in the structure, as will
be self evident from the residue numbers.

The full interface to TOPOL includes calls from Prolog to Fortran routines to
fit straight lines through helices and strands and to calculate overlaps, distances
and angles. The details of this interface are under further development and will
be described elsewhere.



6 Extensions to Kabsch and Sander Secondary Struc-
ture Definitions

6.1 Extending 4 – strands

The basic Kabsch and Sander definitions for beta structure require that a residue
must be involved in two hydrogen bonds (or bordered by residues involved in two
hydrogen bonds) in order to be classified as in a ‘bridge’. Only residues in bridges
can be built into ladders, and hence into sheets. However, residues frequently
make a single hydrogen bond at the end of a ladder and would traditionally be
considered as part of the sheet. The ladder extension clause:

ladder_extension(L2,ladder(L1,CID1,CID2,Type)).

succeeds if the ladder may be extended to either the ‘left’ or ‘right’ end. L2
is the list L1 with the additional hydrogen bonded residue pair appended to the
appropriate end or ends.

When Type 5 antiparallel, the extension is straightforward, eg: 20-119,21-118
might be extended to 19-120,20-119,21-118, or similarly at the right hand end.
However, when Type 5 parallel, there is a problem, since the additional residue
at the end of the ladder will be hydrogen bonded to a residue already in the ladder.
As a consequence, the extended ladder list (L2) will contain a two references to
a single residue on one strand. Eg. 20-90,21-91,22-92 is extended at the right
hand end to: 20-90,21-91,22-92,22-93, or possibly: 20-90,21-91,22-92,23-92.
Similarly at the left hand end.

6.2 Sub-classifying 4 – strands

� – strands may be sub-classified according to their position within the sheet.
For example, a strand may be hydrogen bonded on both sides (a mid-strand),
or only on one side (an edge-strand). In addition, the strand may be parallel or
antiparallel to both its neighbours, or parallel to one and antiparallel to the other.
The strand type clause subclassifies � – strands according to these criteria:



strand_type(tstrand(X,Y,CID),Sub_type) % head of the gen-
eral rule

strand_type(tstrand(323,323,1fb4h),edge_antiparallel) % a spe-
cific example

6.3 Scanning More than One Protein

The examples have so far assumed that the ks clauses for only one protein are
resident in the Prolog database. However, a query should be able to be applied to
more than one protein at a time. One approach to this problem would be to load
ks clauses into memory for all proteins to be studied. An alternative approach
is to arrange for Prolog to access the clauses as they reside on disk, rather than
reading them into memory. This dilemma is central in the design of large Prolog
systems and is a subject of continuing research, some solutions are raised in the
discussion.

The limited memory of the Sun-3/50 workstation on which our system was
originally developed eliminated the possibility of reading data on all proteins
into the Prolog system. Accordingly, a simple solution was adopted whereby
each protein is loaded in turn for analysis. In order to economise on disk space,
the secondary structure definitions for each protein are not pre-calculated, but
performed ‘on the fly’ as the query is executed. The scan with/2 facts, and
get protein/2 rules manage this operation. For example:

scan_with(helix,ScanList), Plist = [1fb4,1sgt,4fxn],member(PID,Plist),
get_protein(PID,ScanList),
list of goals using helix definitions go here,
fail.

The scan with fact returns a list of procedures that are to be executed by
the get protein procedure. In this example, the ScanList returned would
take the value of [kturn, minimal helix, helix start, helix end,helix], specifying
the rules for structural units that are to be used. Plist is simply a list of the
identifiers for the proteins that are to be analysed. The member/2 rule returns



successive members of the Plist on backtracking, and thus feeds each value of
PID in turn to the get protein/2 procedure.

A call to get protein first loads the ks clauses for the specified protein,
then loads the general rules for helix definition (kturn, minimal helix, etc...). All
solutions to these general rules are then found for the protein and the specific
structural facts asserted into the Prolog database. Having loaded all specific facts
for the protein, the particular goals that require the secondary structure definitions
are executed.

7 All Atom Representation in Prolog

Although many questions may be answered by regarding the protein structure at the
residue level, some analyses require access to the individual atomic coordinates.
For example, the location of close approaches between residue sidechains to
identify hydrophobic or electrostatic interactions. The analysis of all atoms creates
several additional complications:

2 The need to cope with a greatly increased diversity of atom labelling.

2 Keep record of which atoms belong to which residue and distinguish between
atoms that are in the protein chain, and those that are not.

2 Cope with non-protein atoms and groups that are often part of a Brookhaven
coordinate entry: eg. water molecules, haeme, carbohydrate etc...

2 Combinatorial problems: Eg. searching for all close approaches is time
consuming because there roughly 10x as many atoms as 6� atoms...

2 Storage and memory problems: Full coordinate sets take up a lot of space.

A simple strategy for the representation of all-atom sets in Prolog was adopted,
whereby each atom is represented by a Prolog fact of the form:

brk(I,RN,IN,ATYPE,CID,RTYPE,ATTYPE,XYZ)



where I is the atom number, RN is the residue number (eg. 2), IN is the residue
number insertion code (eg. "-" for no insertion code); ATYPE is either atm, or
het , for protein ATOM or HETATM records; CID is the chain identifier code (eg.
"1fb4l"); RTYPE is the amino acid type in three letter code (eg. val); ATTYPE is
the atom type as a list including the atom insertion code (eg. [cg1,-]) and XYZ
is the atomic coordinates as a list. In the current implementation, the temperature
factor, occupancy and footnote fields are not included.

The PDB CONECT records are converted to bond clauses where each clause
has the form:

bond(I,J,Type)

signifying a bond between atoms I and J of type Type. Type may be one of
the following:

covalent
hbond da (I is donor, J is acceptor in hydrogen bond)
saltb neg (I is negative partner in salt bridge)
hbond ad (I is acceptor)
saltb pos (I is positive partner)

This format of a PDB entry may be used directly for analysis in Prolog. For
example, given the rule rdist/3 which returns the linear distance between two
points in space, we can readily calculate distances between any pair of atoms,
simply by typing:

| ?- brk(I,RN1,IN1,ATYPE1,CID1,RTYPE1,ATTYPE1,XYZ1),
brk(J,RN2,IN2,ATYPE2,CID2,RTYPE2,ATTYPE2,XYZ2),
J > I,
rdist(XYZ1,XYZ2,Distance).

which returns as the first solution:

I = RN1 = RN2 = 1,



IN1 = IN2 = -,
ATYPE1 = ATYPE2 = atm,
CID1 = CID2 = 5chaa,
RTYPE1 = RTYPE2 = cys,
ATTYPE1 = [n,-],
XYZ1 = [40.935,13.504,1.417],
J = 2,
ATTYPE2 = [ca,-],
XYZ2 = [40.345,14.599,2.14],
Distance = 1.43871

It is a simple matter to restrict the distance search to all atoms of a particular
type. For example, to search for close approaches between cys sulphur atoms:

| ?- brk(I,RN1,IN1,ATYPE1,CID1,cys,[sg,_],XYZ1),
brk(J,RN2,IN2,ATYPE2,CID2,cys,[sg,_],XYZ2),
J > I,
rdist(XYZ1,XYZ2,Distance),
Distance < 5.

I = 6,
RN1 = 1,
IN1 = IN2 = -,
ATYPE1 = ATYPE2 = atm,
CID1 = CID2 = 5chaa,
XYZ1 = [37.649,15.819,1.913],
J = 893,
RN2 = 122,
XYZ2 = [36.339,14.497,2.687],
Distance = 2.01565

or perhaps, to identify close approaches between water molecules and glutam-
ate residues and write out the findings in a Prolog clausal form.



brk(I,RN1,IN1,het,CID1,hoh,ATTYPE1,XYZ1),
brk(J,RN2,IN2,atm,CID2,glu,ATTYPE2,XYZ2),
rdist(XYZ1,XYZ2,Distance),Distance < 3,
writeq(water_glu(water(I,[RN1,IN1],ATTYPE1,CID1),

glu(J,[RN2,IN2],ATTYPE2,CID2),Distance)),
nl,fail.

water_glu(water(3603,[554,-],[o,-],5chaa),glu(123,[20,-],[oe1,-
],5chaa),2.93873)
water_glu(water(3606,[557,-],[o,-],5chaa),glu(2264,[70,-],[cb,-
],5chab),2.98971)
water_glu(water(3638,[589,-],[o,-],5chaa),glu(1898,[21,-],[ca,-
],5chab),2.76785)
water_glu(water(3638,[589,-],[o,-],5chaa),glu(1899,[21,-],[c,-
],5chab),2.90702)
water_glu(water(3638,[589,-],[o,-],5chaa),glu(1902,[21,-],[cg,-
],5chab),2.49055)
water_glu(water(3644,[595,-],[o,-],5chaa),glu(492,[70,-],[cb,-
],5chaa),2.85485)
water_glu(water(3648,[599,-],[o,-],5chaa),glu(551,[78,-],[cb,-
],5chaa),2.77389)
water_glu(water(3663,[614,-],[o,-],5chaa),glu(2263,[70,-],[o,-
],5chab),2.87087)
water_glu(water(3680,[631,-],[o,-],5chaa),glu(1895,[20,-],[oe1,-
],5chab),2.3201)
water_glu(water(3723,[674,-],[o,-],5chaa),glu(120,[20,-],[cb,-
],5chaa),2.8711)
water_glu(water(3723,[674,-],[o,-],5chaa),glu(125,[21,-],[n,-
],5chaa),2.8872)
water_glu(water(3724,[675,-],[o,-],5chaa),glu(2121,[49,-],[oe2,-
],5chab),2.20559)

Consulting (loading into the Prolog system) the 3719 brk/8 clauses for
protein 5cha took 46 seconds. The query then required 75 seconds to run. When
the brk/8 clauses were compiled into the Prolog system, the execution time was



reduced to 30 seconds. Unfortunately compilation required 162 seconds, leading
to a net loss in overall execution time.

The ease with which these simple queries can be executed in Prolog, belies the
complications that would be necessary to provide such flexibility in a conventional
Fortran or C program. As for Prolog, the conventional program would first have to
read in the complete dataset into the chosen internal representation of the data. A
general purpose command parser would need to be written to enable the operator
to tell the program which comparison was required. A general selection routine
would also be required to enable the operator to choose which subset of atoms are
required for the comparison. Whilst all these routines could certainly be provided
in a Fortran program, Prolog provides a far more concise route to such analyses.

8 Discussion

In this paper we have described the use of Prolog to represent and manipulate
protein structure and illustrated the use of the system to refine the Kabsch and
Sander definitions of � – structure. As it stands, the system is a practical tool that
offers flexible access to structural information at all levels of the protein structural
hierarchy. The system is fast enough to enable scans to be made of subsets of
the database at the residue level, however, for simple queries, the time required to
load each protein into Prolog (consultation) dominates the scan time. For example,
although 18 minutes was required to scan 94 proteins for the amino acid sequence
Gly-Gly and return the secondary structure summary and accessibility for the
residues, 94% of the time was used for consultation. The time required to consult
all 525 proteins in the current databank at the residue level is approximately 90
minutes, whilst scanning with all atoms would require approximately 5 hours
consultation time on a SPARCstation 1.

There are a number of possible ways in which the consultation time could be
reduced. The most common, and that usually offered by Prolog vendors is an
interface to a relational database such as Oracle. These interfaces are described as
providing a loose coupling to Prolog, since they effectively replace the standard
file-based methods of retrieving Prolog facts (ground clauses) into the Prolog
internal database. Access to SQL is provided from within Prolog, and these
hybrid database/Prolog systems have been shown to be effective when Prolog is
used to simplify access to an underlying database, or where the database retrievals
are infrequent. A number of examples of this approach can be found in [10] and



[11].
Although the loosely coupled interface to an RDBMS provides an engineered

solution to the problem of managing large collections of data from a Prolog
programming environment, a much better solution is to use a tightly coupled
approach. Tight coupling between logic programming languages and large storage
management systems exist in the class of systems called deductive databases [12]
or expert databases [13] These systems are programming and data management
systems based on principles of symbolic logic and do not require the user to access
data via a standard query language such as SQL. The database and the deductive
engine co-exist using common storage and execution models. This is a much more
satisfactory approach, and in our view the best suited to applications in protein
sequence and structure analysis.

Object-oriented databases (OODB) are perhaps a better known way to combine
a computational paradigm with a database. OODBs combine the object-oriented
programming style of specifying methods, and passing messages to activate meth-
ods stored in objects to manipulate data stored as properties of objects. In OODBs
the object classes, objects and methods are maintained in a persistent storage sys-
tem. A good example of the use of OODBs in the domain of protein structure is
that of Gray et al. [3] who implemented their OODB in Prolog augmented with a
custom-built object storage module. Although OODBs and deductive databases
aim to deliver similar functionality to the user, the deductive database approach
is more suitable for the development of knowledge-based systems because both
data representation and the computational paradigm are based on well-founded
theories of symbolic logic. Data and rules of deduction can also be freely inter-
mixed whereas no equivalent theoretical basis exists for OODB and the traditional
distinction between data and program in imperative programming languages is
preserved.

Putting the database scanning problem to one side, the examples shown in this
paper illustrate that Prolog is a useful tool for the analysis of protein structure. Once
the relevant Prolog clauses have been loaded, queries regarding one protein can be
evaluated in a few seconds. Indeed, it is possible to browse the protein structure,
examining distances, angles, hydrogen bonds etc. with a simplicity that would be
difficult to rival by conventional programming means. Unfortunately, in order to
take advantage of these benefits with the current implementation,one needs to learn
Prolog, and even seasoned "C" or Fortran programmers usually find this a barrier.
The provision of a toolkit of high level functions specifically aimed at protein
structure analysis, for example, torsion angle/distance calculation, extraction of



helices etc. greatly reduces this barrier. Alternatively, the use of higher level
languages developed with a particular problem domain in mind (e.g. Daplex,
[3]) can ease the transition to Prolog-like systems. Ultimately, developments to
graphical interfaces which can allow inexperienced users access to data structures
describing complex concepts such as protein topology [14] will provide flexible
access to Prolog-level queries.
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