
Protein Sequence Alignment and
Database Scanning

Geoffrey J. Barton

Laboratory of Molecular Biophysics
University of Oxford

Rex Richards Building
South Parks Road
Oxford OX1 3QU

U.K.

Tel: 0865-275368
Fax: 0865-510454

e-mail: gjb@bioch.ox.ac.uk

This is a preprint of the chapter in: Protein Structure prediction - a practical
approach, Edited by M. J. E. Sternberg, IRL Press at Oxford University Press,
1996, ISBN 0 19 963496 3. Please see that book for the final version.

Geoff J Barton
Author's present address:School of Life SciencesUniversity of DundeeDundee DD1 5EHScotland UKemail:  geoff@compbio.dundee.ac.uk



Contents

1 Introduction 3

2 Amino acid scoring schemes 3
2.1 Identity scoring : : : : : : : : : : : : : : : : : : : : : : : : : : 3
2.2 Genetic code scoring : : : : : : : : : : : : : : : : : : : : : : : : 4
2.3 Chemical similarity scoring : : : : : : : : : : : : : : : : : : : : 4
2.4 Observed substitutions : : : : : : : : : : : : : : : : : : : : : : : 4

2.4.1 The Dayhoff mutation data matrix : : : : : : : : : : : : : 5
2.4.2 PET91 - An updated Dayhoff matrix : : : : : : : : : : : 6
2.4.3 BLOSUM - matrix from ungapped alignments. : : : : : : 6
2.4.4 Matrices derived from tertiary structure alignments : : : : 6

2.5 Which matrix should I use? : : : : : : : : : : : : : : : : : : : : 7

3 Comparison of two sequences 8
3.1 Sequence comparison without gaps - fixed length segments : : : : 8

3.1.1 Correlation methods : : : : : : : : : : : : : : : : : : : : 9
3.1.2 Variable length segments : : : : : : : : : : : : : : : : : 10

3.2 Sequence comparison with gaps : : : : : : : : : : : : : : : : : : 10
3.2.1 Finding the best alignment with dynamic programming : : 10
3.2.2 Alternative weighting for gaps : : : : : : : : : : : : : : : 12

3.3 Identification of local similarities : : : : : : : : : : : : : : : : : 12
3.3.1 Finding second and subsequent best local alignments : : : 12

4 Evaluation of alignment accuracy 13
4.1 Predicting overall alignment accuracy : : : : : : : : : : : : : : : 13

4.1.1 Predicting quality using percentage identity : : : : : : : : 14
4.2 Predicting the reliable regions of an alignment : : : : : : : : : : : 14
4.3 Incorporating non-sequence information into alignment : : : : : : 16

5 Multiple sequence alignment 16
5.1 Extension of dynamic programming to more than two sequences : 17
5.2 Tree or hierarchical methods using dynamic programming : : : : 17
5.3 Extension of segment methods to multiple alignment : : : : : : : 18
5.4 Representation and analysis of multiple alignments : : : : : : : : 19

1



6 Database scanning 20
6.1 Basic principles of database searching : : : : : : : : : : : : : : : 20
6.2 Time considerations : : : : : : : : : : : : : : : : : : : : : : : : 21
6.3 Which database should I search? Local or network? : : : : : : : : 22
6.4 Searching with dynamic programming : : : : : : : : : : : : : : : 23

6.4.1 Scanning with parallel computers Prosrch, MPsrch and
others : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

6.5 Index methods : : : : : : : : : : : : : : : : : : : : : : : : : : : 24
6.5.1 Simple index for identical matching : : : : : : : : : : : : 24
6.5.2 Indexing with gaps - the FLASH algorithm : : : : : : : : 24

6.6 Approximations: The FASTP and FASTA algorithm : : : : : : : 25
6.7 Approximations: BLAST Basic Local Alignment Search Tool : : 26
6.8 Guidelines for Database Scanning : : : : : : : : : : : : : : : : : 27

7 Summary 29

8 Figure Legends 30
8.1 Figure 1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
8.2 Figure 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
8.3 Figure 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
8.4 Figure 4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
8.5 Figure 5 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
8.6 Figure 6 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
8.7 Figure 7 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31
8.8 Figure 8 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31
8.9 Figure 9 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31
8.10 Figure 10 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

2



1 Introduction

In the context of protein structure prediction, there are two principle reasons for
comparing and aligning protein sequences:

� To obtain an accurate alignment. This may be for protein modelling by
comparison to proteins of known three-dimensional structure.

� To scan a database with a newly determined protein sequence and identify
possible functions for the protein by analogy with well characterised pro-
teins.

In this chapter I review the underlying principles and techniques for sequence
comparison as applied to proteins and used to satisfy these two aims.

2 Amino acid scoring schemes

All algorithms to compare protein sequences rely on some scheme to score the
equivalencing of each of the 210 possible pairs of amino acids. (i.e. 190 pairs of
different amino acids + 20 pairs of identical amino acids). Most scoring schemes
represent the 210 pairs of scores as a 20�20 matrix of similarities where identical
amino acids and those of similar character (e.g. I, L) give higher scores compared
to those of different character (e.g. I, D). Since the first protein sequences were
obtained, many different types of scoring scheme have been devised. The most
commonly used are those based on observed substitution and of these, the 1976
Dayhoff matrix for 250 PAMS [1] has until recently dominanted. This and other
schemes are discussed in the following sections.

2.1 Identity scoring

This is the simplest scoring scheme; amino acid pairs are classified into two types:
identical and non-identical. Non-identical pairs are scored 0 and identical pairs
given a positive score (usually 1). The scoring scheme is generally considered
less effective than schemes that weight non-identical pairs, particularly for the
detection of weak similarities [2, 3]. The normalised sum of identity scores for
an alignment is popularly quoted as “percentage identity”, but this value can be
useful to indicate the overall similarity between two sequences, there are pitfalls
associated with the measure. These are discussed in section 4.1.1.
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2.2 Genetic code scoring

Whereas the identity scoring scheme considers all amino acid transitions with
equal weight, genetic code scoring as introduced by Fitch [4] considers the min-
imum number of DNA/RNA base changes (0,1,2 or 3) that would be required
to interconvert the codons for the two amino acids. The scheme has been used
both in the construction of phylogenetic trees and in the determination of ho-
mology between protein sequences having similar three dimensional structures
[5]. However, today it is rarely the first choice for scoring alignments of protein
sequences.

2.3 Chemical similarity scoring

The aim with chemical similarity scoring schemes is to give greater weight to
the alignment of amino acids with similar physico-chemical properties. This
is desirable since major changes in amino acid type could reduce the ability
of the protein to perform its biological role and hence the protein would be
selected against during the course of evolution. The intuitive scheme developed by
McLachlan [6] classified amino acids on the basis of polar or non-polar character,
size, shape and charge and gives a score of 6 to interconversions between identical
rare amino acids (eg F, F) reducing to 0 for substitutions between amino acids
of quite different character (eg. F, E). Feng et al. [3] encode features similar to
McLachlan by combining information from the structural features of the amino
acids and the redundancy of the genetic code.

2.4 Observed substitutions

Scoring schemes based on observed substitutions are derived by analysing the
substitution frequencies seen in alignments of sequences. This is something of
a chicken and egg problem, since in order to generate the alignments, one really
needs a scoring scheme but in order to derive the scoring scheme one needs the
alignments! Early schemes based on observed substitutions worked from closely
related sequences that could easily be aligned by eye. More recent schemes
have had the benefit of the earlier substitution matrices to generate alignments
on which to build. Long experience with scoring schemes based on observed
substitutions suggests that they are superior to simple identity, genetic code, or
intuitive physico-chemical property schemes.
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2.4.1 The Dayhoff mutation data matrix

Possibly the most widely used scheme for scoring amino acid pairs is that de-
veloped by Dayhoff and co-workers [1]. The system arose out of a general model
for the evolution of proteins. Dayhoff and co workers examined alignments of
closely similar sequences where the the likelihood of a particular mutation (e.
A-D) being the result of a set of successive mutations (eg. A-x-y-D) was low.
Since relatively few families were considered, the resulting matrix of accepted
point mutations included a large number of entries equal to 0 or 1. A complete
picture of the mutation process including those amino acids which did not change
was determined by calculating the average ratio of the number of changes a par-
ticular amino acid type underwent to the total number of amino acids of that type
present in the database. This was combined with the point mutation data to give
the mutation probability matrix (M ) where each element Mi;j gives the probab-
ility of the amino acid in column j mutating to the amino acid in row i after a
particular evolutionary time, for example after 2 PAM (Percentage of Acceptable
point Mutations per 108 years).

The mutation probability matrix is specific for a particular evolutionary dis-
tance, but may be used to generate matrices for greater evolutionary distances by
multiplying it repeatedly by itself. At the level of 2,000 PAM Schwartz and Day-
hoff suggest that all the information present in the matrix has degenerated except
that the matrix element for Cys-Cys is 10% higher than would be expected by
chance. At the evolutionary distance of 256 PAMs one amino acid in five remains
unchanged but the amino acids vary in their mutability; 48% of the tryptophans,
41% of the cysteines and 20% of the histidines would be unchanged, but only 7%
of serines would remain.

When used for the comparison of protein sequences, the mutation probability
matrix is usually normalised by dividing each element Mi;j by the relative fre-
quency of exposure to mutation of the amino acid i. This operation results in the
symmetrical “relatedness odds matrix” with each element giving the probability of
amino acid replacement per occurrence of i per occurrence of j. The logarithm of
each element is taken to allow probabilities to be summed over a series of amino
acids rather than requiring multiplication. The resulting matrix is the “log-odds
matrix” which is frequently referred to as “Dayhoff’s matrix” and often used at a
distance of close to 256 PAM since this lies near to the limit of detection of distant
relationships where approximately 80% of the amino acid positions are observed
to have changed [2].
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2.4.2 PET91 - An updated Dayhoff matrix

The 1978 family of Dayhoff matrices was derived from a comparatively small
set of sequences. Many of the 190 possible substitutions were not observed at
all and so suitable weights were determined indirectly. Recently, Jones et al. [7]
have derived an updated substitution matrix by examining 2,621 families of of
sequences in the SWISSPROT database release 15.0. The principal differences
between the Jones et al. matrix (PET91) and the Dayhoff matrix are for substi-
tutions that were poorly represented in the 1978 study. However, the overall
character of the matrices is similar. Both reflect substitutions that conserve size
and hydrophobicity, which are the principle properties of the amino aids [8]

2.4.3 BLOSUM - matrix from ungapped alignments.

Dayhoff-like matrices derive their initial substitution frequencies from global
alignments of very similar sequences. An alternative approach has been developed
by Henikoff and Henikoff using local multiple alignments of more distantly related
sequences [9]. First a database of multiple alignments without gaps for short
regions of related sequences was derived. Within each alignment in the database,
the sequences were clustered into groups where the sequences are similar at some
threshold value of percentage identity. Substitution frequencies for all pairs of
amino acids were then calculated between the groups and this used to calculate
a log odds BLOSUM (blocks substitution matrix) matrix. Different matrices are
obtained by varying the clustering threshold. For example, the BLOSUM 80
matrix was derived using a threshold of 80% identity.

2.4.4 Matrices derived from tertiary structure alignments

The most reliable protein sequence alignments may be obtained when all the pro-
teins have had their tertiary structures experimentally determined. Comparison of
three dimensional structures also allows much more distantly related proteins to be
aligned accurately. Analysis of such alignments should therefore give the best sub-
stitution matrices. Accordingly, Risler et al. [10] derived substitution frequencies
from 32 proteins structurally aligned in 11 groups. On similar lines, Overing-
ton et al. [11] aligned 7 families for which 3 or more proteins of known three
dimensional structure were known and derived a series of substitution matrices.
Overington et al. also subdivided the substitution data by the secondary structure
and environment of each amino acid, however this led to rather sparse matrices
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due to the lack of examples. Bowie et al. [12] have also derived substitution tables
specific for different amino acid environments and secondary structures.

2.5 Which matrix should I use?

The general consensus is that matrices derived from observed substitution data
(e.g. the Dayhoff or BLOSUM matrices) are superior to identity, genetic code or
physical property matrices (e.g. see [3]). However, there are Dayhoff matrices of
different PAM values and BLOSUM matrices of different percentage identity and
which of these should be used?

Schwartz and Dayhoff [2] recommended a mutation data matrix for the distance
of 250 PAMs as a result of a study using a dynamic programming procedure
[13] to compare a variety of proteins known to be distantly related. The 250
PAM matrix was selected since in Monte Carlo studies (see Section 4.1) matrices
reflecting this evolutionary distance gave a consistently higher significance score
than other matrices in the range 0-750 PAM. The matrix also gave better scores
when compared to McLachlan’s substitution matrix [6], the genetic code matrix
and identity scoring. Recently, Altschul [14] has examined Dayhoff style mutation
data matrices from an information theoretical perspective. For alignments that do
not include gaps he concluded, in broad agreement with Schwarz and Dayhoff,
that a matrix of 200 PAMS was most appropriate when the sequences to be
compared were thought to be related. However, when comparing sequences that
were not known in advance to be related, for example when database scanning, a
120 PAM matrix was the best compromise. When using a local alignment method
(Section 6.7) Altschul suggests that three matrices should ideally be used: PAM40,
PAM120 and PAM250, the lower PAM matrices will tend to find short alignments
of highly similar sequences, while higher PAM matrices will find longer, weaker
local alignments. Similar conclusions were reached by Collins and Coulson [15]
who advocate using a compromise PAM100 matrix, but also suggest the use of
multiple PAM matrices to allow detection of local similarities of all types.

Henikoff and Henikoff [16] have compared the BLOSUM matrices to PAM,
PET, Overington, Gonnet [17] and multiple PAM matrices by evaluating how
effectively the matrices can detect known members of a protein family from a
database when searching with the ungapped local alignment program BLAST [18].
They conclude that overall the BLOSUM 62 matrix is the most effective. However,
all the substitution matrices investigated perform better than BLOSUM 62 for a
proportion of the families. This suggests that no single matrix is the complete
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answer for all sequence comparisons. It is probably best to compliment the
BLOSUM 62 matrix with comparisons using PET91 at 250 PAMS, and Overington
structurally derived matrices. It seems likely that as more protein three dimensional
structures are determined, substitution tables derived from structure comparison
will give the most reliable data.

3 Comparison of two sequences

Given a scoring scheme, the next problem is how to compare the sequences, decide
how similar they are and generate an alignment. This problem may be subdivided
into alignment methods for two sequences, multiple alignment methods, and meth-
ods that incorporate additional non-sequence information, for example from the
tertiary structure of the protein.

The simplest two-sequence comparison methods do not explicitly consider
insertions and deletions (gaps). More sophisticated methods make use of dynamic
programming to determine the best alignment including gaps (see Section 3.2)

3.1 Sequence comparison without gaps - fixed length segments

Given two sequencesA andB of lengthm andn, all possible overlapping segments
having a particular length (sometimes called a ‘window length’) from A are
compared to all segments of B. This requires of the order of m� n comparisons
to be made. For each pair of segments the amino acid pair scores are accumulated
over the length of the segment. For example, consider the comparison of two
7-residue segments; ALGAWDE and ALATWDE using identity scoring. The
total score for this pair would be 1 + 1 + 0 + 0 + 1 + 1 + 1 = 5.

In early studies of protein sequences, statistical analysis of segment com-
parison scores was used to infer homology between sequences. For example,
Fitch [4] applied the genetic code scoring scheme to the comparison of � – and
� – haemoglobin and showed the score distribution to be non-random. Today,
segment comparison methods are most commonly used in association with a “dot
plot” or “diagram” [19] and can be a more effective method of finding repeats than
using dynamic programming.

The scores obtained by comparing all pairs of segments from A and B may
be represented as a comparison matrix R where each element Ri;j represents the
score for matching an odd length segment centred on residue Ai with one centred

8



on residue Bj . This matrix can provide a graphic representation of the segment
comparison data particularly if the scores are contoured at a series of probability
levels to illustrate the most significantly similar regions. Collins and Coulson
[20] have summarised the features of the “dot-plot”. The runs of similarity can
be enhanced visually by placing a dot at all the contributing match points in a
window rather than just at the centre.

McLachlan [6] introduced two further refinements into segment comparison
methods. The first was the inclusion of weights in the comparison of two segments
in order to improve the definition of the ends of regions of similarity. For example,
the scores obtained at each position in a 5-residue segment comparison might be
multiplied by 1,2,3,2,1 respectively before being summed. The second refinement
was the development of probability distributions which agreed well with experi-
mental comparisons on random and unrelated sequences and which could be used
to estimate the significance of an observed comparison.

3.1.1 Correlation methods

Several experimental, and semi-empirical properties have been derived associated
with amino acid types, for example hydrophobicity (e.g. [21]), and propensity to
form an � – helix (eg. [22]). Correlation methods for the comparison of protein
sequences exploit the large number of amino acid properties as an alternative to
comparing the sequences on the basis of pair scoring schemes.

Kubota et al. [23] gathered 32 property scales from the literature and through
application of factor analysis selected 6 properties which for carp parvalbumin
gave good correlation for the comparison of the structurally similar CE- and
EF-hand region Ca2+binding sites and poor correlation in other regions. They
expressed their sequence comparisons in the form of a comparison matrix similar
to that of McLachlan [6] and demonstrated that their method could identify an
alignment of � – lytic protease and Streptomyces Griseus protease A which agrees
with that determined from comparison of the available crystal structures.

Argos [24] determined the most discriminating properties from a set of 55 by
calculating correlation coefficients for all pairs of sequences within 30 families
of proteins that had been aligned on the basis of their three-dimensional struc-
tures. The correlation coefficients for each property were then averaged over all
the families to leave 5 representative properties. Unlike Kubota et al. [23], Ar-
gos applied the correlation coefficients from the five properties in addition to a
more conventional segment comparison method using the Dayhoff matrix scoring
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scheme. He also combined the result of using more than one segment length on a
single diagram such that the most significant scores for a particular length always
prevail.

3.1.2 Variable length segments

The best local ungapped alignments of variable length may be found either by
dynamic programming with a high gap-penalty, or using heuristic methods. Since
the heuristic methods are primarily used for database searching they are described
in Section 6.

3.2 Sequence comparison with gaps

The segment based techniques described in section 3.1 do not consider explicitly
insertions and deletions. Deletions are often referred to as “gaps”, while insertions
and deletions are collectively referred to as “indels”. Insertions and deletions are
usually needed to align accurately even quite closely related sequences such as
the � – and � – globins. The naive approach to finding the best alignment of
two sequences including gaps is to generate all possible alignments, add up the
scores for equivalencing each amino acid pair in each alignment then select the
highest scoring alignment. However, for two sequences of 100 residues there are
> 1075 alternative alignments so such an approach would be time consuming and
infeasible for longer sequences. Fortunately, there is a group of algorithms that
can calculate the best score and alignment in the order ofmn steps. These dynamic
programming algorithms were first developed for protein sequence comparison by
Needleman and Wunsch [13], though similar methods were independently devised
during the late 1960’s and early 1970’s for use in the fields of speech processing
and computer science [25].

3.2.1 Finding the best alignment with dynamic programming

Dynamic programming algorithms may be divided into those that find a global
alignment of the sequences and those that find local alignments. The difference
between global and local alignment is illustrated in Figure 11. Global alignment
is appropriate for sequences that are known to share similarity over their whole
length. Local alignment is appropriate when the sequences may show isolated

1Figure1.ps
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regions of similarity, for example multiple domains or repeats. Local alignment
is best applied when scanning a database to find similarities or when there is no a
priori knowledge that the protein sequences are similar.

There are many variations on the theme of dynamic programming applied to
protein comparisons. Here I give a brief account of a basic method for finding the
global best score for aligning two sequences. For a clear and detailed explanation
of dynamic programming see Sankoff and Kruskal [26].

Let the two sequences of length m and n be A = (A1; A2; : : : Am); B =
(B1; B2; : : : Bn) and the symbol for a single gap be �. At each aligned position
there are three possible events.

w(Ai; Bj) substitution of Ai by Bj .
w(Ai;�) deletion of Ai.
w(�; Bj) deletion of Bj .

The substitution weight w(Ai; Bj) is derived from the chosen scoring scheme
- perhaps Dayhoff’s matrix. Gaps � are normally given a negative weight often
referred to as the “gap penalty” since insertions and deletions are usually less
common than substitutions.

The maximum score M for the alignment of A with B may be represented as
s(A1:::m; B1:::n) . This may be found by working forward along each sequence
sucessively finding the best score for aligning A1:::i with B1:::j for all i; j where
1 � i � m and 1 � j � n. The values of s(A1:::i; B1:::j) are stored in a matrix H
where each element of H is calculated as follows:

Hi;j = max

8><
>:

Hi�1;j�1 + wAi;Bj

Hi;j�1 + wAi;�

Hi�1;j + w�;Bj

9>=
>;

The element Hm;n contains the best score for the alignment of the complete
sequences.

If the alignment is required as well as the best score, then the alignment path
may be determined by tracing back through theH matrix. Alternatively a matrix of
pointers is recorded to indicate which of the three possibilities was the maximum
at each value Hi;j .
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3.2.2 Alternative weighting for gaps

The above scheme showed a simple length-dependent weighting for gaps. Thus
two isolated gaps give the same score as two consecutive gaps. It is possible to
generalise the algorithm to allow gaps of length greater than 1 to carry weights
other than the simple sum of single gap weights [27]. Such gap weighting can give
a more biologically meaningful model of transitions from one sequence to another
since insertions and deletions of more than one residue are not uncommon events
between homologous protein sequences. Most computer programs that implement
dynamic programming allow gaps to be weighted with the form v+uk where k is
the gap length and v and u are constants� 0, since this can be computed efficiently
[28].

3.3 Identification of local similarities

Although segment based comparison methods (see section 3.1) rely on local com-
parisons, if insertions and deletions have occurred, the match may be disrupted for
a region of the order of the length of the segment. In order to circumvent these dif-
ficulties algorithms which are modifications of the basic global alignment methods
have been developed to locate common subsequences including a consideration
of gaps (e.g.[29, 30, 31]). For protein sequences, the most commonly used local
alignment algorithm that allows gaps is that described by Smith and Waterman
[30]. This is essentially the same as the global alignment algorithm described in
section 3.2.1, except that a zero is added to the recurrence equation.

Hi;j = max

8>>><
>>>:

Hi�1;j�1 + wAi;Bj

Hi;j�1 + wAi;�

Hi�1;j + w�;Bj

0

9>>>=
>>>;

Thus all Hi;j must have a value � 0. The score for the best local alignment
is simply the largest value of H and the coresponding alignment is obtained by
tracing back from this cell.

3.3.1 Finding second and subsequent best local alignments

The Smith-Waterman algorithm returns the single best local alignment, but two
proteins may share more than one common region. Waterman and Eggert [32]
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have shown how all local alignments may be obtained for a pair of sequences
with minimal recalculation. Recently, Barton [33] has described how for a simple
length dependent gap-penalty, all locally optimal alignments may be determined
in the order of mn steps without recalculation.

4 Evaluation of alignment accuracy

What is a good alignment? The amino acid sequence codes for the protein three
dimensional structure. Accordingly, when an alignment of two or more sequences
is made, the implication is that the equivalenced resdues are preforming similar
structural roles in the native folded protein. The best judge of alignment accuracy
is thus obtained by comparing alignments resulting from sequence comparison
with those derived from protein three dimensional structures. There are now
many families of proteins for which two or more members have been determined
to atomic resolution by X-ray crystallography or NMR. Accurate alignment of
these proteins by consideration of their tertiary structures [34, 35, 36] provides a
set of test alignments against which to compare sequence-only alignment methods.
Care must be taken when performing the comparison since within protein families,
some regions show greater similairty than others. For example, the core� – strands
and � – helices are normally well conserved, but surface loops vary in structure
and alignments in these regions may be ambiguous, or if the three-dimensional
structures are very different in a region, alignment may be meaningless. Accord-
ingly, evaluation of alignment accuracy is best concentrated on the core secondary
structures of the protein and other conserved features [37]; such regions may
automatically be identified by the algorithm of Russell and Barton [36].

4.1 Predicting overall alignment accuracy

It is important to know in advance what the likely accuracy of an alignment will be.
A common method for assessing the significance of a global alignment score is to
compare the score to the distribution of scores for alignment of random sequences
of the same length and composition. The result (the S.D. score) is normally
expressed in Standard Deviation units above the mean of the distribution.

Comparison of the S.D. score for alignment to alignment accuracy obtained by
comparison of the core secondary structures, suggests that for proteins of 100-200
amino acids in length, a score above 15.0 S.D. indicates a near ideal alignment,
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scores above 5.0 S.D. a “good” alignment where � 70% of the residues in core
secondary structures will be correctly equivalenced, while alignments with scores
below 5.0 S.D. should be treated with caution [37, 38].

Figure 22shows the distribution of S.D. scores for 100,000 optimal alignments
of length � 20 between proteins of unrelated three dimensional structure. From
Figure 23, the mean S.D. score expected for the comparison of unrelated protein
sequences is 3.2 S.D. with a S.D. of 0.9. However, the distribution is skewed with
a tail of high S.D. scores. In any large collection of alignments it is possible to
have a rare, high scoring alignment that actually shares no structural similarity.
For example, Figure 34 illustrates an optimal local alignment between regions of
citrate synthase (2cts) and transthyritin (2paba) which gives 7.55 S.D. though the
secondary structure of these two protein segments are completely different.

4.1.1 Predicting quality using percentage identity

Percentage identity is a frequently quoted statistic for an alignment of two se-
quences. However, the expected value of percentage identity is strongly dependent
upon the length of alignment [39] and this is frequently overlooked. Figure 45

shows the percentage identities found for a large number of locally optimal align-
ments of differing length between proteins known to be of unrelated three dimen-
sional structure. Clearly, an alignment of length 200 showing 30% identity is more
significant than an alignment of length 50 with the same identity. Applying this to
the alignment shown in Figure 36 shows that although the alignment scores over
7.0 S.D. it has a percentage identity that one would often see by chance between
unrelated proteins.

4.2 Predicting the reliable regions of an alignment

Although the overall accuracy of an alignment may be estimated from the SD
score (see section 4.1) this value does not indicate which regions of the alignment
are correct. Experience suggests that the reliable regions of an alignment are those
that do not change when small changes are made to the gap-penalty and matrix
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parameters. An alternative strategy is to examine the sub-optimal alignments of
the sequences to find the regions that are shared by sub optimal alignments within a
scoring interval of the best alignment. For any two sequences, there usually many
alternative alignments with scores similar to the best. These alignments share
common regions and it is these regions that are deemed to be the most reliable.
For example, the simple alignment of ALLIM with ALLM scoring 2 for identites,
1 for mismatch and -1 for a gap gives:

A L L I M
A L L M

with a score of 2 + 2 + 2 � 1 + 2 = 7. The sub optimal alignment:

A L L I M
A L L M

gives a score of 2 + 2 � 1 + 1 + 2 = 6 but shares the alignment of AL and
M with the optimal alignment. Rather than calculate all sub-optimal alignments,
Vingron and Argos [40] use an elegant and simple method to identify the reliable
regions in an alignment by calculating the comparison matrix H both forwards
and backwards and summing the two matrices. The cells in Hi;j that are equal to
the best score for the alignment delineate the optimal alignment path. Cells within
a selected value of the best score are flagged and reliable regions defined as those
for which there is no other cell Hi;k or Hl;j with k 6= j and l 6= i. The results of
the analysis are displayed in the form of a dot-plot with larger dots identifying the
reliable regions.

Although the details of his calculation differ from Vingron and Argos, Zuker
[41], produces a dot plot that highlights the regions where there are few alternative
local alignments. He also caters for optimal local alignments with gaps. Zuker
shows that the alignment of distantly related sequences such as Streptomyces
griseus proteinase A and porcine elastase may be clearly seen to be unstable with
many sub-optimal alignments close to the optimal.

Rather than use the dot-plot representation, Saqi and Sternberg [42] directly
determine alternative sub-optimal alignments. They first calculate the H matrix
and best path, then identify the cells that contributed to the best path and reduce
these by a preset value (usually 10% of the typical scoring matrix value). A new
H matrix is calculated and a new best path and alignment. This process is repeated
iteratively to generate a series of global sub-optimal alignments.

Investigating sub-optimal alignments by one or more of these methods allows:
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� The most reliable regions of an alignment to be identified and by inference
the overall quality of the alignment.

� Alternative alignments close to the optimum to be generated. These can be
useful when building three dimensional models of proteins by homology.

4.3 Incorporating non-sequence information into alignment

If the three dimensional structure of one of the proteins to be aligned is known,
then this information may be encoded in the form of a modified gap penalty
[37, 38, 43]. The penalty reduces the likelihood of insertions/deletions occurring
in known secondary structure regions, or conversely increases the likelihood of
placing gaps in known loop regions. This approach increases the usual accuracy of
alignment and has the additional bonus of reducing the sensitivity of the alignments
to changes in gap penalty [37].

A stricter constraint on the alignment is possible if specific residues are known
to be equivalent in the two proteins. The weight for aligning these specific residues
may be increased to force them to align. However, if this type of treatment is really
necessary, then it is likely that the alignment will have a low significance score
and must be treated with caution.

5 Multiple sequence alignment

So far I have only considered methods to align two sequences. However, when the
sequence data is available, a multiple alignment is always preferable to pairwise
alignment.

Techniques for the alignment of three or more sequences may be divided into
four categories.

� Extensions of pairwise dynamic programming algorithms.

� Hierarchical extensions of pairwise methods.

� Segment methods.

� Consensus or ’regions’ methods.
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Of these, the second is by far the most practical and widely used method.
Consensus methods are not greatly used for protein sequence alignment and so are
not discussed further.

5.1 Extension of dynamic programming to more than two se-
quences

Needleman and Wunsch [13] suggested that their dynamic programming algorithm
could be extended to the comparison of many sequences. Waterman et al. [27]
also described how dynamic programming could be used to align more than two
sequences. In practice, the need to store an N dimensional array (where N is
the number of sequences) limits these extensions to three-sequence applications.
In addition, the time required to perform the comparison of three sequences is
proportional to N 5. Murata et al. [44] described a modification of the Needleman
and Wunsch procedure for three sequences which ran in time proportional to N3;
unfortunately this approach required an additional three dimensional array thus
further limiting its application to short sequences. One of the earliest practical
applications of dynamic programming to multiple alignment was the work of
Sankoff et al. [45] who aligned nine 5S RNA sequences that were linked by an
evolutionary tree. Their algorithm which also constructed the protosequences at
the interior nodes of the tree was made computationally feasible by decomposing
the nine-sequence problem into seven three sequence alignments. The alignments
were repeatedly performed working in from the periphery of the tree until no
further change occurred to the protosequences.

5.2 Tree or hierarchical methods using dynamic programming

Practical methods for multiple sequence alignment based on a tree have been
developed in several laboratories [38, 46, 47, 48, 49]. The principle is that since
the alignment of two sequences can be achieved very easily, multiple alignments
should be built by the successive application of pairwise methods.

The steps are summarised here and illustrated in Figure 57:

� Compare all sequences pairwise. ForN sequences there are N � (N�1)=2
pairs.

7Figure5.ps
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� Perform cluster analysis on the pairwise data to generate a hierarchy for
alignment. This may be in the form of a binary tree, or a simple ordering.

� Build the multiple alignment by first aligning the most similar pair of se-
quences, then the next most similar pair and so on. Once an alignment of
two sequences has been made, then this is fixed. Thus for a set of sequences
A, B, C, D having aligned A with C and B with D the alignment of A, B, C,
D is obtained by comparing the alignments of A and C with that of B and D
using averaged scores at each aligned position.

This family of methods gives good usable alignments with gaps it can be
applied to large numbers of sequences, and with the exception of the initial pairwise
comparison step is very fast.

Although based on the successive application of pairwise methods, multiple
alignment will often yield better alignments than any pair of sequences taken in
isolation. This effect was illustrated by Barton and Sternberg [46] for the alignment
of immunoglobulin and globin domains. Figure 68 shows that for some alignment
pairs there is a marked improvement in accuracy over optimal pairwise aligment
(e.g. variable versus constant domains).

5.3 Extension of segment methods to multiple alignment

A naive extension of the segment comparison methods described in section 3.1 to
N sequences would require a number of comparisons in the order of the product
of the sequence lengths. Clearly, as with dynamic programming methods, such an
approach is not practical. Bacon and Anderson [50] reduced the magnitude of this
problem by considering the alignment in one specific order. Firstly sequence one
is compared to sequence two and the top M scoring pairs of segments are stored.
The next sequence is then compared to these top scoring segments, and the top
scoring segments from the three sequences are kept. This process is continued
and leads to a list of M alignments of top scoring segments from N sequences.
Bacon and Anderson also extended the statistical models of McLachlan [6] to
N sequences, and used this model as well as one based on random sequences
to assess the significance of the highest scoring segment alignment found. They
suggested that these techniques allow sequences to be objectively grouped, even
when most of the pairwise interrelationships are weak, and cite examples of

8Figure6.ps
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Figure 6 is currently not availble in this document.

Geoff J Barton
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applications to five Ribonucleases, three FAD-binding enzymes and five -cro
like DNA binding proteins. The Bacon and Anderson (1986) algorithm shows
considerable promise for the location of significant short sequence similarities.
However, the method does not provide an overall alignment of the sequences and
does not explicitly consider gaps. Johnson and Doolittle [51] reduce the number of
segment comparisons that must be performed by progressively evaluating selected
segments from each sequence within a specified ’window’. Their method generates
a complete alignment of the sequences with a consideration of gaps. Unfortunately,
time constraints limit its application to 4-way alignments whilst 5-way alignments
become unreasonably expensive for sequence lengths above fifty residues.

A variation on segment methods is employed by the alignment tool Macaw
[52]. Macaw applies the BLAST algorithm (see Section 6.7) to locate the most
significant ungapped similarities irrespective of length. This facility is coupled
with a flexible alignment display tool under Microsoft Windows. The program
works well for small numbers of sequences, but lacks the convenience of the
hierarchical dynamic programming methods (see section 5.2).

5.4 Representation and analysis of multiple alignments

How do we extract the maximum information from a multiple protein sequence
alignment?

When making a multiple sequence alignment a crude tree is normally gener-
ated. The tree shows the gross relationships between the sequences. It may show
that sequences A, D and C are more similar to each other than they are to B and
E. However, it does not show which individual residues have changed in order to
make A, D and C different from B and E. These residues may be the most im-
portant ones to investigate by site-directed mutagenesis. Livingstone and Barton
[53] have described a set-based strategy to identify such differences by comparing
pairs of groups of aligned residues. Their method automatically provides a text
summary of the similarities and a boxed and shaded or coloured alignment. An
example or the graphical output of this analysis is illustrated in Figure 79 for the
SH2 domain family.

Providing the alignment is accurate then the following may be inferred about
the secondary structure of the protein family:

9Figure7.ps
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� The position of insertions and deletions suggests regions where surface loops
exist in the protein.

� Conserved glycine or proline suggests a � – turn.

� Residues with hydrophobic properties conserved at i; i+ 2; i+ 4 separated
by unconserved or hydrophilic residues suggest a surface � – strand.

� A short run of hydrophobic amino acids (4 residues) suggests a buried
� – strand.

� Pairs of conserved hydrophobic amino acids separated by pairs of uncon-
served, or hydrophilic residues suggests an � – helix with one face packing
in the protein core. Likewise, an i; i+ 3; i + 4; i + 7 pattern of conserved
hydrophobic residues.

These patterns are not always easy to see in a single sequence, but given
a multiple alignment, they often stand out and allow secondary structure to be
assigned with degree of confidence. For example, patterns were used to aid the
accurate prediction of the secondary structure and position of buried residues for
the annexins and SH2 domains prior to knowledge of their tertiary structures
[54, 55, 56].

6 Database scanning

The techniques described in the previous sections all assume that we already have
two or more sequences to align. However, if we have just determined a new
sequence, then our first task is to find out whether it shares similarities with other
proteins that have already been sequenced. To do this we must compare our
sequence to the sequence database(s) using some computer algorithm. Any of the
methods described in the previous sections may be used, but database scanning
presents special problems that have led to the development of specialist algorithms.
In this section I will review the options and goals of these methods.

6.1 Basic principles of database searching

When scanning a database we take a query sequence, and use an algorithm to
compare the query to each sequence in the database. Every pair comparison yields
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a score where larger scores usually indicate a higher degree of similarity. Thus,
a scan of a database containing 60,000 sequences will typically provide 60,000
scores for analysis. If a local alignment method is used, then the total number
of scores may be much larger since more than one “hit” may occur with each
sequence. Figure 810 illustrates three score distributions from such a scan. The
dark shaded bars show scores with sequences known to be structurally related to
the query sequence whereas the light shaded bars show scores with proteins that
are thought not to be related to the query. A perfect database scanning method
would completely separate these two distributions as shown in Figure 8c11.
Normally, there is some overlap between the genuinely related and unrelated
sequence distributions as shown in Figures 8c and 8b12. There are a number of
methods for ranking and re-scaling the scores to improve separation and remove
artefacts due to different sequence lengths and compositions. In their most highly
developed form, these methods provide an estimate of the probability of seeing a
score by chance given a database of the size used and the query length. However,
regardless of the method of ranking, there are nearly always some proteins giving
scores in the overlap region that in fact are structurally related to the query. In
practice, since no method succeeds for all protein queries, the aim is to minimise the
overlap and ensure that potentially interesting similarities are scored high enough
that they will be noticed by the user. Of course, what constitutes an “interesting”
match is dependent upon the subjective biological context of the query.

6.2 Time considerations

In the early days of database scanning, the computer time required to execute
the scan was a major consideration. Today, the ready availability of cheap,
high performance computers means that computer resources are rarely a limiting
factor. In the early 1980s Computers with sufficient memory and processor speed to
compare a query to a database using dynamic programming were expensive shared
resources. Over the last 10 years, the speed of typical institutional computers has
increased by a factor of 70 while the sequence database has only grown by a factor
of 9. This disparity coupled with the dramatic fall in the cost of computing means
that it is currently feasible to perform protein database scans in a few hours on a

10Figure8.ps
11Figure8.ps
12Figure8.ps
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personal computer using dynamic programming algorithms [57].
For occasional use, high scanning speed is not essential. After all, if it has taken

months to obtain the sequence data, what is an few hours to check for similarities?
However, much greater speed is helpful when providing a national or regional
database scanning service and when carrying out analyses that require very large
numbers of sequences to be compared. For example, the comparison of a 25,000
sequence database to itself would require 4.5 months using dynamic programming
on a typical workstation [57]. The algorithms discussed in Sections 6.6 and 6.7
that make approximations, or implementations on specialist hardware may reduce
this time by a factor of 10-100.

6.3 Which database should I search? Local or network?

The answer to this question depends a little on why you are searching performing
the search. If you have just determined a new sequence then it is essential that
you search the most recent and up to date databases available to test if your new
protein is unique. Having the most up to date database is less important if the aim
is to gather a well known family of proteins together for multiple alignment as an
aid to modelling.

The nucleic acid and protein sequence databases are collated by EMBL in
Europe, the NCBI in the USA and the DDBJ in Japan. In addition, the NBRF
in the USA also provide a database of nucleic acid and protein sequences. The
databases are distributed on CD-ROM by EMBL, NCBI and NBRF organisations
and if you require a local database to scan, this is the preferred method of obtaining
it. Some of the database distributions include software for searching the databases
(e.g. NBRF-ATLAS program). The disks are normally updated every three
months but since over 1,000 new protein sequences are deposited per month, even
the current disk is out of date as soon as it arrives! To overcome this problem, the
database providers also maintain daily or weekly updates to the databases since the
last CD release. If searching with a newly determined sequence one should ideally
scan a database that includes all available sequences up to today and if nothing is
found, periodically rescan the updated database. Maintaining the regular updates
of the sequence databases is usually beyond the scope of an individual investigator,
however major data centres do maintain such updated databases and software for
searching them. Indeed, providing you have e-mail access to the Internet and are
prepared to accept the scanning tools provided by the database centre, then there
is no compelling reason for maintaining the databases locally. However, while
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network access to a database may provide the most up to date version of the data,
it does not necessarily give the most effective scanning method for your sequence.

6.4 Searching with dynamic programming

Dynamic programming requires a matrix of pair scores and a gap penalty and
will return the best score for aligning the two sequences (See section 3.2). Both
local and global alignment methods may be applied to database scanning, but local
alignment methods are more useful since they do not make the assumption that
the query protein and database sequence are of similar length.

Although it is feasible to use dynamic programming to search databases on a
desktop computer (Section 6.2) the technique has not generally been adopted for
database searching. This is mainly because fast implementations of the Smith-
Waterman and similar algorithms (e.g. see [33]) have not been widely available
until recently.

6.4.1 Scanning with parallel computers Prosrch, MPsrch and others

Collins et al. [15, 58] are responsible for much of the early work on scanning
sequence databases with dynamic programming. They implemented a variant
of the Smith and Waterman [30] algorithm on the parallel AMT-DAP computer.
This provided them with sufficient processing speed to not only record the top
scoring local alignment between the query and each sequence, but also to record
alternative local alignments. As such, the DAP implementation of local alignment
with gaps is currently the only program to provide this service on the Internet
(Send the text HELP to dapmail@biocomp.ed.ac.uk). Collins et al. [15, 59] also
provide a method to estimate the statistical significance of their alignments. They
fit a straight line to log(N), where N is the number of aligments with a given
score, versus score to the lower 97% of the top 16,384 alignments, then express
the score for alignment as a probability derived from the distance from this line.
This scoring method was used since there is currently no formal statistical method
of estimating the expected score for a local alignment with gaps. The Collins
et al approach provides a convenient way of correcting for changes in the score
distribution for unrelated alignments due to differences in composition and length
of the query sequence database.

A development of Collins’ work is a parallel Smith-Waterman implementation
for the MasPar range of massively parallel computers [60]. Scans can be made
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using this program using a service at EMBL Heidelberg (Send the text HELP to
BLITZ@embl-heidelberg.de). Unfortunately, the BLITZ service currently only
returns a single top scoring alignment, but like the DAP program it gives an
estimate of the alignment significance. A further Smith-Waterman implementation
(BLAZE) has been developed by Intelligenetics and is commercially available for
the MasPar. The GenQuest system at Oak Ridge National Laboratory USA,
also supports database searching with the Smith-Waterman algorithm using a
specialised parallel computing environment (send the text HELP to grail@ornl.gov
for instructions).

6.5 Index methods

6.5.1 Simple index for identical matching

Indexing has long been used for identifying identical ungapped regions in se-
quences. For example the SCAN facility in the PSQ and ATLAS programs
distributed with the NBRF-PIR databank allows the rapid identification of short
identical strings [61]. This is achieved by pre-processing the entire databank
once to identify the locations of all unique tripeptides. These data are stored in
a direct access file together with pointers to the sequence identifier codes. The
query peptide is also divided into a series of tripeptides and identification of the
sequence in the databank then becomes a simple matter of looking up the starting
positions of each peptide in the list held on file. There is a tradeoff with indexing
methods between the time and space taken to build and store the index and the
number of queries expected. Search times are usually very fast and involve a few
disk accesses, the drawback with simple indexes is that they are restricted to exact
matching without gaps.

6.5.2 Indexing with gaps - the FLASH algorithm

Recently, Rigoutsos and Califano of the IBM T. J. Watson Research Center have
extended the idea of indexing to allow for gaps and mismatches [62]. The indexes,
or lookup tables are highly redundant and based on a probabilistic model. As a
consequence the index files are very large and the problem is less one of absolute
CPU speed, and more a question of fast disk access. For example, the index for
SWISS-PROT release 25 requires 2.8 GBytes of disk space (I. Rigoutsos personal
communication). However, the Rigoutsos and Califano FLASH algorithm permits
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very rapid scans to be performed on protein databases with claimed sensitivity and
accuracy close to dynamic programming. The algorithm has been implemented
on a network of 7 non dedicated RISC workstations which provides sufficient
speed to service a searching facility via email (send the text SEND HELP to
dflash@watson.ibm.com for information). As databases grow in size with a large
amount unchanging, and the cost of disk storage falls, it seems likely that indexing
techniques will become increasingly important methods of searching.

6.6 Approximations: The FASTP and FASTA algorithm

The early personal computers had insufficient memory and were too slow to
carry out a database scan using dynamic programming. Accordingly, Wilbur and
Lipman [63] developed a fast procedure for DNA scans that in concept searches
for the most significant diagonals in a dot-plot. The initial step in the algorithm
is to identify all exact matches of length k (k–tuples) or greater between the two
sequences. Speed is achieved by employing a look up procedure. For example, for
proteins, if k = 3 then there are 8,000 (203) possible k-tuples and each element of
an arrayC of length 8,000 is set to represent one of these k-tuples. Sequence A is
scanned once and the location of each k-tuple inA is recorded in the corresponding
element of C . Sequence B is then scanned and by reference to C the location of
all k-tuple matches common to A and B may be identified. If two k-tuples are
present on the same diagonal then the difference between their starting position
(offset) is also the same, thus the diagonals with the most significant number of
matches may be identified. Since runs of identity are relatively rare even between
related proteins, Lipman and Pearson [64] first identified the five diagonals of
highest similarity with k set to 1, or 2. They then applied Dayhoff’s scoring
scheme (Section 2.4.1) to the amino acid pairs over these regions. The region
giving the highest score for the protein comparison was used to rank order the
sequences located in the databank for further study by more rigorous procedures.
Pearson and Lipman [65] have refined these ideas in the program FASTA. FASTA
saves the 10 highest regions of identity which are then re-scored with the PAM250
matrix (see Section 2.4.1). If there are several initial regions above a pre set cutoff
score then those that could form a longer alignment are joined, allowing for gaps
and a score initn is calculated by subtracting a penalty for each gap. initn is used
to rank the database sequences by similarity. Finally, dynamic programming is
used over a narrow region of the high scoring diagonal to produce an alignment
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with score opt. These steps are illustrated in Figure 913.
FASTA only shows the top scoring region, it does not locate all high scoring

alignments between two sequences. As a consequence FASTA may not identify
directly repeats or multiple domains that are shared between two proteins. The
FASTA software can be obtained by anonymous ftp from virginia.edu and a number
of sites offer searching facilities with FASTA (e.g. EMBL).

6.7 Approximations: BLAST Basic Local Alignment Search
Tool

BLAST [18] is a heuristic method to find the highest scoring locally optimal
alignments between a query sequence and a database. The important simplification
that BLAST makes is not to allow gaps, but the algorithm does allow multiple hits
to the same sequence. The BLAST algorithm and family of programs rely on work
on the statistics of ungapped sequence alignments by Karlin and Altschul [66].
The statistics allow the probability of obtaining an ungapped alignment (MSP
- Maximal Segment Pair) with a particular score to be estimated. The BLAST
algorithm permits nearly all MSP’s above a cutoff to be located efficiently in a
database.

The algorithm operates in three steps:

1. For a given word length w (usually 3 for proteins) and score matrix (see
Section 2) a list of all words (w-mers) that can can score> T when compared
to w-mers from the query is created.

2. The database is searched using the list ofw-mers to to find the corresponding
w-mers in the database (hits).

3. Each hit is extended to determine if an MSP that includes the w-mer scores
> S, the preset threshold score for an MSP. Since pair score matrices
typically include negative values, extension of the initial w-mer hit may
increase or decrease the score. Accordingly, a parameter X defines how
great an extension will be tried in an attempt to raise the score above S.

The steps involved in the BLAST algorithm are illustrated in Figure 1014.

13Figure9.ps
14Figure10.ps
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BLAST Algorithm
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from word list
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alignments that score greater than score threshold S.
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A low value for T reduces the possibility of missing MSPs with the required
S score, however lower T values also increase the size of the hit list generated
in step 2 and hence the execution time and memory required. In practice, the
BLASTP program used for protein searches sets compromise values of T and X
to balance the processor requirements and sensitivity.

BLAST is unlikely to be as sensitive for all protein searches as a full dynamic
programming algorithm. However, the underlying statistics provide a direct es-
timate of the significance of any match found. The program was developed at the
NCBI and benefits from strong technical support and continuing refinement. For
example, filters have recently been developed to exclude automatically regions of
the query sequence that have low compositional complexity, or short periodicity
internal repeats. The presence of such sequences can yield extremely large num-
bers of statistically significant but biologically uninteresting MSPs. For example,
searching with a sequence that contains a long section of hydrophobic residues
will find many proteins with transmembrane helices.

BLAST runs on virtually all types of computer (the program may be obtained
by anonymous ftp from ncbi.nlm.nih.gov). Parallel processing is also supported on
multi-processor computers such as the 4 or 8-processor Silicon Graphics POWER
series. Searches using BLAST may be conducted by email at NCBI (Send the text
HELP to blast@ncbi.nlm.nih.gov for instructions). Recently, specialist hardware
has been developed to implement the BLAST algorithm at even higher speed.
A network service based on these developments is available from the University
of North Carolina at Chapel Hill (Send the text HELP on the subject line to
bioscan@cs.unc.edu).

6.8 Guidelines for Database Scanning

Which is the best method for database scanning? Sadly, there is not a straight-
forward answer to this question. Attempts have been made to make comparisons
but the process is complicated by the difficulty of designing suitable test cases
and the number of adjustable parameters. The most effective method of assessing
the success of a scanning technique is to test its ability to find all the members
of a known protein family from the database of all known sequences (e.g. see
[67, 68]). The principle is simple:

� Record the identifier codes of all proteins known to be in the family.

� Select a member to scan with (the query).
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� Perform the scan using the method of choice.

� Count how many of the known members are found with higher scores than
known non-members.

A less strict criterion is to count the number of members that score as high
as the top 0.5% of the non-members in the databank [68]. The best scanning
method will give the most members before non-members. i.e. will have the
fewest false-positives. Of course, evaluation is not as simple as this appears.
First one must choose well characterised protein families with which to test. Do
we really know all the members? A high scoring non-member may in fact be a
previously undiscovered family member. Further difficulites arise for scans where
there are many false-negatives. If two methods both miss 30 known members,
are they missing the same 30? Ideally, evaluation should also explore alternative
parameter combinations, but this greatly increases the number of tests that need to
be done and complicates the data analysis. For example, if we consider scanning
with dynamic programming, then there is a choice of pair-score matrix and gap-
penalty, local or global alignment. The best gap-penalty depends on the matrix
in use. If both length-dependent and independent penalties are used, then the
number of alternative combinations increases dramatically. The best combination
of matrix and penalty may not be appropriate for other algorithms. BLAST does
not consider gaps, so the situation is a little easier and this feature was exploited
by Henikoff and Henikoff to evaluate different substitution matrices [16] however
we still have the choice of other parameters special to the BLAST algorithm.

When given a newly determined sequence, a search with BLAST or FASTA
will quickly tell you if a close homologue exists. Although a scan with full dynamic
programming takes longer on a local workstation, the turn-round time from email
servers such as BLITZ are similar to BLAST searches at NCBI. Accordingly, it
is worth scanning using one of these services as well. If no similar sequences are
found then alternative PAM matrices should be tried. Start with PAM120, then try
PAM250 and in each case vary the gap penalty around the minimum value of the
matrix. For PAM250 this is 8, values of 7-10 are worth trying. Care should always
be taken to consider the likely significance of an apparent match. The methods for
predicting the accuracy of alignment that are discussed in Section 4.1.
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7 Summary

In the early years of sequence searching, only a few specialised centres had access
to the necessary computing facilities and programming expertise to perform the
scans. In the early-mid 1980s, the availability of personal computers and software
that could perform useful analyses on them (e.g. FASTP) meant that it was
normally most efficient for searches to be performed locally. Today, the optimum
choice is again swinging towards databases maintained at a few centres, but now
fast networks and windowing workstations allow the user to use software locally
and be unaware that the search is being carried out on a computer in another
country. Perhaps the best example of this to date is the Entrez software [69]
available from the U.S. NCBI (Ask for information from info@ncbi.nlm.nih.gov).
Entrez provides a windowing interface to a database that integrates the nucleotide
and protein sequence databases with associated references and abstracts. Entrez
will either use the database on CD-ROM or alternatively, with suitable network
connection can interrogate the master database at the NCBI in Washington. While
Entrez does not provide searching facilities for a new sequence it stores pre-
computed similarities between pairs of sequences in the database. Thus, one can
quickly navigate between a protein name, the sequence, its close homologues, the
corresponding DNA sequence and all relevant publications. Network Entrez was
heavily used when compiling this Chapter!

The advantages of centralised databases for the user are:

� That he need only have a comparatively low-powered computer and network
connection.

� The database centres can keep the database up to date far more effectively
than the individual investigator.

� The centres can provide access to a range of software to interrogate the data,
either as a simple text search (e.g. find all entries with the word “kinase”)
or using sequence comparison algorithms. They can update the software as
new algorithms become available.

The drawback with a centralised service is that one has to accept the service
providers view of the best way to perform the search. However, with more database
centres giving public access to search facilities every year there is an increasing
choice of algorithms available.
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8 Figure Legends

8.1 Figure 1

Comparison of global and local alignment. Global alignment optimizes the align-
ment over the full length of the sequences A and B. Local alignment locates the
best alignment between sub-regions of A and B. There may be a large number of
distinct local alignments.

8.2 Figure 2

Distribution of S.D. scores obtained for 100,000 alignments of length > 20
between unrelated proteins. The S.D. scores were calculated from 100 random-
izations using a global alignment method [13], PAM250 matrix with 8 added to
each element, and length independent gap-penalty of 8.

8.3 Figure 3

A local alignment found between citrate synthase and transthyritin. The S.D.
score for this alignment is 7.55, its length is 54 residues and the identity is 25.9%.
Despite this apparently high similarity, the sequences are of completely different
secondary structure.

8.4 Figure 4

Plot of percentage identity versus alignment length for the 100,000 aligments from
Figure 2.

8.5 Figure 5

The stages in generating a multiple sequence alignment using a hierarchical method
(see text).

8.6 Figure 6

Comparison of alignment accuracy (as judged by comparison of alignments to
those generated by tertiary structure comparison) for optimal pairwise and hier-
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archical multiple alignment by the method of Barton and Sternberg [46]. Figure
adapted from [46].

8.7 Figure 7

SH2 domain analysis performed using the program AMAS [53]. The aim of this
analysis is to locate patterns of amino acid conservation within each sub-group of
related sequences and across all sequences in the set. The sequences are clustered
by their overall similarity, then a set-based method is used to find the positions
that have conserved physico-chemical properties within each group and between
pairs of groups. The conservation is summarised by colour coding the alignment
(shown here as grey shading). Pair conservation is summarised as a histogram.
The histogram helps to locate conservation patterns characteristic of � – helix and
� – strand. For full details see [53]. For details of how to obtain AMAS and
other programs from the author’s group please download the file README from
geoff.biop.ox.ac.uk.

8.8 Figure 8

Schematic representation of typical alignment score distributions resulting from a
database scan. The black bars represent proteins that are known to be similar to
the query sequence, the white bars are not related to the query. (a) shows a scan
that does not discriminate well, (c) shows perfect discrimination while (b) is the
more usual intermediary result of database searching.

8.9 Figure 9

Summary of the steps in the FASTA sequence comparison program.

8.10 Figure 10

BLAST Algorithm.
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