next up previous
Next: About this document ... Up: No Title Previous: No Title

Bibliography

Chou & Fasman, 1974
Chou, P. Y. & Fasman, G. D. (1974).
Conformational parameters for amino acids in helical, $\beta$-sheet, and random coil regions calculated from proteins.
Biochem. 13, 211-222.

Clamp et al., 1998
Clamp, M. E., Cuff, J. A. & Barton, G. J. (1998).
Jalview - a java multiple sequence alignment viewer and editor.
http://barton.ebi.ac.uk/.

Crawford et al., 1987
Crawford, I. P., Niermann, T. & Kirchner, K. (1987).
Prediction of secondary structure by evolutionary comparison: application to the alpha subunit of tryptophan synthase.
Proteins, 2, 118-129.

Cuff & Barton, 1998
Cuff, J. A. & Barton, G. J. (1998).
Evaluation and improvement of multiple sequence methods for protein secondary structure prediction.
Proteins, submitted.

Edwards & Perkins, 1996
Edwards, Y. J. K. & Perkins, S. J. (1996).
Assessment of protein fold predictions from sequence information: The predicted $\alpha/\beta$ doubly wound fold of the von Willebrand factor type A domain is similar to its crystal structure.
J. Mol. Biol. 260, 277-285.

Frishman & Argos, 1997
Frishman, D. & Argos, P. (1997).
Seventy-five percent accuracy in protein secondary structure prediction.
Proteins, 27, 329-335.

Garnier et al., 1978
Garnier, J., Osguthorpe, D. J. & Robson, B. (1978).
Analysis and implications of simple methods for predicting the secondary structure of globular proteins.
J. Mol. Biol. 120, 97-120.

King & Sternberg, 1996
King, R. D. & Sternberg, M. J. E. (1996).
Identification and application of the concepts important for accurate and reliable protein secondary structure prediction.
Prot. Sci. 5, 2298-2310.

Lim, 1974
Lim, V. I. (1974).
Algorithms for prediction of $\alpha$ helices and $\beta$ structural regions in globular proteins.
J. Mol. Biol. 88, 873-894.

Livingstone & Barton, 1994
Livingstone, C. D. & Barton, G. J. (1994).
Secondary structure prediction from multiple sequence data: blood clotting factor xiii and yersinia protein tyrosine phosphatase.
Int. J. Pept. Prot. Res. 44, 239-244.

Livingstone & Barton, 1996
Livingstone, C. D. & Barton, G. J. (1996).
Identification of functional residues and secondary structure from protein multiple sequence alignment.
Meth. Enz. 266, 497-512.

Rose, 1978
Rose, G. D. (1978).
Prediction of chain turns in globular proteins on a hydrophobic basis.
Nature, 272, 586-591.

Rost & Sander, 1993
Rost, B. & Sander, C. (1993).
Prediction of protein secondary structure at better than 70% accuracy.
J. Mol. Biol. 232, 584-599.

Rost et al., 1994
Rost, B., Sander, C. & Schneider, R. (1994).
Redefining the goals of protein secondary structure prediction.
J. Mol. Biol. 235, 13-26.

Russell & Barton, 1993
Russell, R. B. & Barton, G. J. (1993).
An SH2-SH3 domain hybrid.
Nature, 364, 765.

Russell et al., 1992
Russell, R. B., Breed, J. & Barton, G. J. (1992).
Conservation analysis and structure prediction of the SH2 family of phosphotyrosine binding domains.
FEBS Letters, 304, 15-20.

Salamov & Solovyev, 1995
Salamov, A. A. & Solovyev, V. V. (1995).
Prediction of protein secondary structure by combining nearest- neighbor algorithms and multiple sequence alignments.
J. Mol. Biol. 247, 11-15.

Wilmot & Thornton, 1988
Wilmot, A. C. M. & Thornton, J. M. (1988).
Analysis and prediction of the different types of beta-turn in proteins.
J. Mol. Biol. 203, 221-232.

Zvelebil et al., 1987
Zvelebil, M., Barton, G., Taylor, W. & Sternberg, M. (1987).
Prediction of protein secondary structure and active sites using the alignment of homologous sequences.
J. Mol. Biol. 195, 957-961.



james@ebi.ac.uk