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Chapter 1

Introduction and Overview

1.1 Preface to Version 4.4 - Tom Walsh

The changes in this release are:

1. The biggest change is that STAMP 4.4 is now licensed under the GNU
General Public License.

2. The manual has been updated to reflect some minor changes in the
STAMP output format.

3. The source code has been modified to remove references to obsolete header
files and allow STAMP to be compiled on Mac OS X.

4. Mac OS X has been added as a build target.

5. The bundled SCOP domain databases have been updated to SCOP re-
lease 1.75.
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1.2 Preface to Version 4.2 - Rob Russell

First, a big acknowledgement to Steve Searle (European Bioinformatics In-
stitute) for getting STAMP to run (finally) under OSF and 64 bit machines
generally. Also thanks to Andrew Torda (Australian National University,
Canberra), Dave Schuller (University of California-Irvine), Mike Tennant
(SmithKline Beecham Pharmaceuticals, Harlow, UK), Asim Siddiqui (LMB,
Oxford) G.P.S. Raghava (LMB, Oxford), and James Cuff (EBI) for their help
and various painstaking trawls through my spaghetti code.

Apart from bugs, etc., the noticeable changes are:

1. STAMP now reads compressed PDB and DSSP files. It will also look for
files that are stored in a Brookhaven-style directory structure (e.g. distr/mb/pdb4mbn.ent).

2. Output is now flushed (fflush) during scanning. Purely a cosmetic thing
for those who want up to the minute output when the program is running.

3. AVESTRUC now has an option to calculate an average for all aligned
positions. It also now outputs values to the temperature factor fields in the
PDB output to denote those averaged positions corresponding to structurally
equivalent regions (blue in RASMOL colouring by temperature) and those
equivalenced fortuitously (red). It will also highlight positions showing iden-
tical or conserved residue character.

4. PDBSEQ has some new options, including the ability to output sepa-
rate files for each domain, and now outputs a sensible description of the
protein by considering the TITLE, COMPND and SOURCE entries in each
PDB file. Note that the default format is now FASTA.

5. DSTAMP has been changed dramatically, and is now (I think) much
more useful. The input files for ALSCRIPT are now much prettier, includ-
ing cylinders/arrows for helices/strands and colouring/fonting according to
residue property conservation within the sequence alignment. It can also be
used on alignments not derived using STAMP (i.e. from GCG, AMPS etc.).

6. STAMP now appears to run smoothly under OSF. Once again thanks
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to Steve Searle. Versions have also been compiled and tested on IRIX, So-
laris and Linux.

7. CLUS2BLC and SMSF2BLC have been replaced by a general alignment
conversion program written in Perl (ACONVERT). More details are given
below. Note that this is a general alignment conversion utility that might be
useful in contexts other than STAMP.

8. The significance of sequence identity following structural alignment is
now estimated according to Murzin (1993), JMB, 230, 689-694.

9. Three new programs have been added to the package (see specific in-
structions below):

MERGETRANS allows one to combine transformations from a variety of dif-
ferent sources (i.e. ALIGNFIT and STAMP). It either uses a user-specified
identifier to link the two files (i.e. one found in both files) or the first common
identifier if none is specified.

MERGESTAMP. Like MERGETRANS this program permits one to merge
various kinds of STAMP data. However, it considers more than merely the
transformations, and attempts to combine the alignments as well. It can be
used in exactly the same way as MERGETRANS (i.e. to combine files that
contain only transformations), but will also attempt to merge alignments
in the file, if they are present. The alignments must be in BLOCK format
(see the depths of the manual for details, and for how to convert things like
Clustal or MSF into BLOCK format). MERGESTAMP can combine files
that do not contain transformations as well (i.e. those that contain only
alignments), and can thus be used for sequence data handling as well.

EXTRANS allows one to select and extract particular domains from a trans-
formation file.
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1.3 Overview

STAMP is a package for the alignment of protein sequences based on three–
dimensional (3D) structure. It provides not only multiple alignments and the
corresponding ‘best-fit’ superimpositions, but also a systematic and repro-
ducible method for assessing the quality of such alignments. It also provides
a method for protein 3D structure data base scanning. In addition to struc-
ture comparison, the STAMP package provides input for programs to display
and analyse protein sequence alignments and tertiary structures. Please note
that, although STAMP outputs a sequence alignment, it is a program for 3D
structures, and NOT sequences. If you are after a multiple sequence align-
ment for proteins of unknown 3D structure, stop reading now and contact
GJB for information about AMPS, which can be used to perform multiple
sequence alignments, or see www.jalview.org for GJB’s latest methods for
this problem.

Comparison of 3D structures is a complicated business, particularly if one
wants to do unusual things (i.e. reverse a strand direction, swap two seg-
ments of a structure around, only consider equivalent structures of greater
than 10 residues, etc.). Complicated things are possible with STAMP but as
a consequence, the method is very complex. Please be patient, and read this
manual carefully.

Alternatively, if you only want to do fairly straightforward things,
such as align a set of structures or search a database of structures
for similarities, you can skip the remainder of this chapter and
go straight to the next one (Chapter: 2), which contains a few
worked examples that should demonstrate how to use STAMP in
a black-box way.

1.4 Background

The aim of this work was to provide a set of multiple sequence alignments
derived from structure alone. These alignments have obvious uses which have
been described elsewhere [1, 2]. Numerous other means of deriving such align-
ments have been presented, but, at the time of the development of STAMP,
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only one had been applied to alignments of more than two sequences, and
no systematic method for assessing the quality of the alignments had been
provided. These, then, were the goals of this work.

At the heart of the method is the Argos & Rossmann [3] equation for ex-
pressing the probability of equivalence of residue structural equivalence:

Pij = exp
d2

ij

−2× E2
1

exp
s2

ij

−2× E2
2

where dij is the distance between Cα atoms for residues i and j, and sij is a
measure of the local main chain conformation. A detailed description of this
equation, and how it has been applied to multiple structures is given in [1].

STAMP makes extensive use of the Smith-Waterman (SW) algorithm [4,
5, 6]. This is a widely used algorithm which allows fast determination of the
best path through a matrix containing a numerical measure of the pairwise
similarity of each position in one sequence to each position in another se-
quence. Within STAMP, these similarity values correspond to modified Pij

values (above).

The result of the SW algorithm applied to a matrix of modified Pij val-
ues is a list of residue equivalences. From this list we may obtain a set of
equivalenced Cα positions. These are used to obtain a best fit transformation
and RMS deviation by a least squares method [7, 8]. This transformation
can be applied in the relevant way to yield two new sets of coordinates for
which calculation (and correction) of Pij values, the SW path finding and
the least squares fitting can be repeated in an iterative fashion until the two
sets of coordinates, and the corresponding alignment, converge on a single
solution.

This strategy has proved successful in the generation of tertiary structure-
based multiple protein sequence alignment for a wide variety of diverse pro-
tein structural families [1, 9, 10, 11, 12]. The method can accurately superim-
pose and obtain alignments for families of proteins as structurally diverse as
the greek key β sandwich folds (e.g. immunoglobulin domains, CD4, PapD
chaperonin, azurin, superoxide dismutase, actinotaxin, prealbumin, etc.), the
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aspartic proteinase N– and C–terminal lobes, the Rossmann fold domains,
the globin folds (including phycocyanins and colicins), and many others.

It is important to remember that this method assumes overall topological
similarity, and will not, without explicit intervention, be able to superim-
pose/align structures with common secondary structures in similar orienta-
tions, but different connectivity or topologies (such as the different types of
four helix bundle proteins: up-down-up-down with up-up-down-down).

Two measures of alignment confidence are provided [1]

1. A structural similarity Score (Sc) is defined in order that overall align-
ment quality and structural similarity can be compared across a wide range
of protein structural families. These are defined below.

2. A measure of individual residue accuracy P ′
ij is defined in order that

residue equivalences can be normalised with respect to both the number of
structures in an alignment and the length of the structures being aligned.

Alignments having a structural similarity Score Sc between 5.5 and 9.8 imply
a high degree of structural similarity and almost always suggest a functional
and/or evolutionary relationship. Values between 2.5 and 5.5 correspond to
more distantly related structures, and do not always imply a functional or
evolutionary relationship. Values less than 2.0 generally indicate little overall
structural similarity.

Stretches of three or more aligned positions with P ′
ij values greater than

6.0 generally correspond to genuine topological equivalences, values between
4.0 and 6.0 are equivalent > 50% of the time, and values less than 4.0 are
generally not equivalent. Stretches of residues having P ′

ij > 6.0 generally
correspond to regions of conserved secondary structure within a family of
structures being compared. For multiple alignments, an alternative and more
effective way of assessing residue-by-residue equivalence is provided in POST-
STAMP (see below).

Both of these measures are referred to repeatedly below. For a more de-
tailed description of their derivation please refer to [1]. In addition, RMSD
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is used to refer to the root mean square deviation between atoms selected for
a fit. The CUTOFF refers the lowest allowable P ′

ij for the program to use a
particular pair of residues in a fit (called ‘C‘ in [1]).

1.5 A brief description of the package

What follows is a brief overview of each application of STAMP. A detailed
description of each of these can be found in later sections.

1.5.1 Initial superimposition

The structure comparison algorithm of Argos & Rossmann [3], which is the
method used by STAMP, requires that the protein structures being compared
are approximately superimposed initially. If not then structural similarity
may be undetected, and reliable superimpositions and alignments unattain-
able. This is a very important thing to remember about STAMP. If initial
superimpositions do not yield high enough scores (i.e. Sc < 2.0) or if the
structures are generally different, STAMP will warn you by printing ‘LOW
SCORE’ warnings in its output.

The STAMP package provides three methods of arriving at an initial su-
perimposition. The first of these is to make use of an alignment derived on
the basis of sequence. The program ALIGNFIT requires that the sequences
extracted from the PDB files (using the program PDBSEQ) are aligned ver-
tically in AMPS block format (see format and examples below); one can use
AMPS or another method of aligning sequences. The ACONVERT program
is included in the distribution to faciliate converting alignments to AMPS for-
mat from other formats; it also possible to use Jalview (www.jalview.org) to
perform the conversion. STAMP compares all possible pairs of structures by
performing a least squares fit on all equivalenced Cα atoms. Once all pairwise
comparisons are compared, the program makes use of a tree to superimpose
multiply all coordinates following the tree. Thus the final superimposition
output is the best possible fit of the structure given the alignment. For an
example where ALIGNFIT is used to provide an initial superimposition, re-
fer to the alignment of the serine proteinases in Chapter 2.
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In instances where multiple sequence alignment is inaccurate, ALIGNFIT
may still be used, though the initial superimpositions may not be accurate
enough for STAMP to find structural similarity. In such cases, the best
way to arrive at initial superimpositions is to use the SCAN option within
STAMP. This option compares a query domain against a database of tar-
get domains and generates a set of superimpositions of the target domains
onto the query domain. This set of superimpositons constitutes a multiple
aligment that can be used by STAMP as an initial alignmnent. This works
particularly well when structures are very diverse. For an example, see the
alignment of the aspartyl proteinase N– and C– terminal lobes in Chapter 2.

1.5.2 Pairwise comparisons and alignments (PAIRWISE)

Given a suitable initial superimposition of structures, the best way to ob-
tain a multiple alignment and superimposition of a diverse family of domains
is to follow a hierarchy of similarity. This allows most similar domains to
be compared/aligned first, and only makes comparisons/alignments between
distantly related domains at a later time in the procedure.

Pairwise comparisons are an ideal way to obtain such a hierarchy. The PAIR-
WISE options in STAMP will result in all N × (N − 1)/2 comparisons being
performed and will output a matrix of pairwise similarities. This can then
be used to produce a dendrogram, or tree, from which multiple alignments
and superimpositions may be generated.

1.5.3 Multiple alignment (TREEWISE)

Given the initial set of superimpositions, and a set of PAIRWISE similarity
scores, the TREEWISE option will perform all alignments that are possible
given a dendrogram generated by considering the PAIRWISE scores. Statis-
tics, transformations and alignments are output at each stage of the hierarchy
so that a continuum of structure variation can be observed (i.e. the output
will become more and more structurally varied as the search progresses).

Note that by default, STAMP performs both PAIRWISE and TREEWISE
procedures together.
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1.5.4 Structure database scanning (SCAN)

It is often desirable to compare a particular domain or protein structure to a
database of known 3D structures in order that structurally similar proteins
may be found.
Given a single protein domain (a query) and a list of domains to which it
is to be compared (a database), STAMP can be used to perform all possible
comparisons of the query to the database structures. The initial superim-
position problem is solved by attempting more than one initial fit with each
database structure. This can be done in one of two ways, which are named
FAST and SLOW, for the obvious reasons.

In FAST mode, fits are performed by laying query sequence onto the database
structure starting at every ith position, where i is an adjustable parameter
usually set to five (i.e. the sequence is laid onto the 1st, 6th, 11th, etc. po-
sition). Diagramatically, this looks like:

Q=query, D=database

Fit 1 Q -------

D -----------

Fit 2 Q -------

D -----------

Fit 3 Q -------

D -----------

<etc.>

This approach is fine if the query is a single domain, and there is a strong
similarity in the database structure. However, if similarity is weaker, or if
the query contains multiple domains ( in which case it is advisable to split
the query into multiple domains, if possible), then SLOW mode will perform
more fits by sliding query and database sequences along each other like:

Q=query, D=database

Fit 1 Q -------
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D -----------

Fit 2 Q -------

D -----------

Fit 3 Q -------

D -----------

<etc.>

Fit N-2 Q -------

D -----------

Fit N-1 Q -------

D -----------

Fit N Q -------

D -----------

In this approach, initial superimpositions are calulated using many more frac-
tions of query and database structure, making detection of weak similarities
more likely.

The residues that are equivalenced by either FAST or SLOW procedures
are used to perform an initial fit, which is refined by the conformation-based
and distance-based fit used during PAIRWISE/TREEWISE comparison of
distantly related structures. If a high enough similarity score (Sc) is found
after these three steps, then the transformation is saved for further analysis.
The output from SCAN mode is directly readable by STAMP so that once
a list of domains similar to one’s query is obtained, multiple alignment (ie.
PAIRWISE and TREEWISE) can be performed.

The program PDBC can be used to generate a list of protein domains given
a set of PDB identifier codes, and the program SORTTRANS can be used
to sort the output from SCAN, and remove any redundancies.

The Sc values output in SCAN mode differ slightly from those output during
a PAIRWISE comparison. The correction introduced to correct the SW Score
according to the length of the sequence lengths is removed. During multiple
alignment the start and end points of the domains to be superimposed should
be known; thus one can penalise all positions which are not involved in the
alignment. During a scan, however, it is desirable to detect sub alignments of
the two structures being compared Thus, the Sc for scanning may be defined
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in one of three ways (a=query, b=database, p=path, i=insertion, L=length):

Scheme 1

Sc =

(
Sp

Lp

)(
Lp − ia

La

)(
Lp − ib

Lb

)
As for multiple structure alignment. As discussed, this is generally not the
best way to compare a query to the database, since one would not usually
wish to penalise insertions or omitted missing segments within the database
structure (due to truncation values, etc.). However, this scheme may be use-
ful if one is scanning a database of structures known to exhibit a particular
fold (i.e., if one is merely after accurate superimpositions for a family of
known structures; see Chapter 2).

Scheme 2

Sc =

(
Sp

Lp

)(
Lp − ia

Lp

)(
Lp − ib

Lp

)
La and Lb have been replaced by Lp to removed any dependence on query or
database structure length. The second two terms lower the score if gaps in
the path are placed in the query (a) or database structure (b). This avoids
a consideration of length, but will allow short stretches of structural equiva-
lences to score highly.

Scheme 3

Sc =

(
Sp

Lp

)(
Lp − ia

La

)
Only penalises insertions in the query sequence. If a small fraction of the
query sequence is in the actual path, then Sc drops. This scheme is most
useful if one wants only similarities to the entire protein under consideration,
since it penalises any omissions from the query structure.

Scheme 4

Sc =

(
Sp

Lp

)(
Lp − ib

Lb

)

14



The opposite of 3. Only penalises insertions in the database sequence. If a
small fraction of the database sequence is in the actual path, then Sc drops.
This scheme may be useful if one is scanning with a collection of secondary
structure elements, since gaps are to be expected within the query (i.e. since
the loops have been omitted).

Scheme 5

Sc =

(
Sp

Lp

)
Raw score, no length requirement, will report even short alignments between
similar sub–structures. This scheme may be useful for the search for short
stretches of structural similarity, such as supersecondary structures.

Scheme 6

Sc =
(

Sp

La

)(
La − ia

La

)
Vaguely similar to Scheme 3, but this only scores hits favourably if they
involve a significant fraction of the query structure (i.e. similarities only
containing part of the query will not stand out). This is useful when one is
comparing a particular domain to a database and is not interested in local
similarities. This is the default for scanning.

For the most part, all of these scoring schemes will yield similar numbers
for very similar structures. However, when more distantly related structures
are compared, it becomes more useful to use a scheme specific to the par-
ticular problem (i.e., whether one wishes to scan with secondary structures
only, when one is after only very similar structures, etc.).

Schemes are specified by the STAMP parameter SCANSCORE (see below).
If you’re not sure which scoring scheme to use then you should just use the
default scheme.

1.5.5 Displaying STAMP output (VER2HOR, DSTAMP,
GSTAMP)

There are several ways to view STAMP alignments in a more readable form
than the BLOCK output format. The output files can be read by the

15



Jalview alignment editor (available from http://www.jalview.org). Alter-
natively, BLOCK format files can be converted to other alignment formats
using the ACONVERT tool as discussed previously.
In addition, the STAMP package contains additional programs for converting
STAMP output into a horizontal alignment format and creating input files
suitable for creating figures of multiple sequence and structure alignments:
VER2HOR reads STAMP output files and displays the alignments in a hor-
izontal text format.
DSTAMP converts BLOCK format files into input for GJB’s program ALSCRIPT,
which can then be used to generate figures of alignments in Postscript format.
Details of DSTAMP and how to obtain ALSCRIPT are given in CHAPTER
VI. DSTAMP determines reliable regions given a set of criteria, and high-
lights sequence and secondary structure accordingly.

GSTAMP reads STAMP outputs and creates input suitalbe for creating
molecular graphics figures using Per Kraulis’ program MOLSCRIPT. One
simply runs TRANSFORM on a STAMP alignment file, and then run GSTAMP
on the same file to create a MOLSCRIPT input file which will produce sep-
arate Postscript files for each aligned structure, with structurally equivalent
regions shown as ribbons, the rest as Cα trace.

1.6 Some comments on interpreting structural

similarities

There is a wealth of literature on the nature of protein structural similarities,
and this manual is not the place to review them. If you want to look into
the subject, then I would refer you to some of my papers [11, 13, 14] and
references therein.

An important aspect of assessing the meaning of structural similarity is
discerning whether a similarity between proteins in the absence of obvious
sequence identity implies a common evolutionary acestor, and usually an as-
sociated similarity in molecular function. Some studies have found that it is
possible to discern homology by the analysis of the sequence identity calcu-
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lated following protein structure alignment. Note that this is a very different
identity than that quoted during typical sequence comparison (e.g. BLAST,
FASTA, SSEARCH, etc). During sequence comparison, the reported % iden-
tity is the result of optimising the alignment of two sequences, thus numbers
as high as % 20-30 are possible for proteins that are definitely not homolo-
gous (i.e. those having different tertiary folds). However, if an alignment has
been derived without consideration of the amino acid sequence, then lower
% identities can still be significant. See Russell et al. , 1997, and Murzin,
1993 for examples, and more details.

STAMP reports both the % identity from structure comparison, defined as
the precentage residue identities (m) within structurally equivalent residues
(n), and an estimate of the statistical significance (reported as P (m)) of a
given a particular combination of m and n. The latter is described in Murzin
(1993). Values of P (m) smaller than about 10−3 very often indicate that
the pair of proteins belong to the same protein superfamily, which implies a
common ancestor, and more importantly very often indicates a similarity in
molecular function. Specifically, the P (m) is calculated for a p = 0.1; please
see Murzin (1993) for a more thorough explanation of this calculation.

1.7 The programs contained within the pack-

age

STAMP consists of the main program (usually referred to as STAMP) and
several sub-programs. Briefly, the programs are:
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STAMP Main program, does PAIRWISE, tree
construction, TREEWISE and SCAN modes.

ALIGNFIT Given a list of domains and a multiple sequence
alignment outputs an initial transformation.

PDBC Finds and reports information about PDB files
given a four (PDB) code and/or chain identifier.

TRANSFORM Given a list of transformations, outputs the
corresponding set of coordinates.

SORTTRANS Sorts the output from SCAN, and removes repeated
transformations.

PDBSEQ Given a list of domains, extracts the corresponding
sequences from the PDB files.

VER2HOR Given a STAMP alignment file, outputs an easy to read
text version of the alignment for quick analysis.

DSTAMP Given a STAMP alignment file, outputs commands for
GJB’s program ALSCRIPT (alignment to Postscript).

GSTAMP Given a STAMP alignment file, outputs commands for
Per Kraulis’ MOLSCRIPT program.
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The programs contained within the package (continued):

AVESTRUC Given a STAMP alignment file, generates an average
set of main chain or C alpha coordinates for the
structural family.

POSTSTAMP Reanalyses a STAMP alignment file (provides a more
accurate set of equivalences for alignments of more
than one structure).

PICKFRAME Given a transformation, transforms all other domains
onto another (specified by the user).

MERGETRANS Given two transformation files, merges them by centering
on a common identifier, either the first common one found
or one specified by the user.

MERGESTAMP Given two files containing alignments or transformations or both
merges them by centering on a common identifier, either the first
common one found or one specified by the user.

EXTRANS Given a transformation file and a list of domain identifiers
it will output a new transformation file containing only the
domains given

ACONVERT General alignment format conversion utility.
STAMP CLEAN Tidies up STAMP alignments to remove nonsensical gaps
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Chapter 2

Worked examples

The examples described below show how to apply STAMP to particular
problems. However, by far the most common thing you might want to do
with STAMP is to pairwise or multiply align a set of structures. Originally,
STAMP was intended to align closely similar structures that you had al-
ready collected together - for this reason, we talk first about this way of
using STAMP (See section:2.2). We recommend you work through this ex-
ample as it introduces STAMP concepts and files. However after developing
the SCAN option in STAMP we found that the best way to start a multiple
struture alignment was to gather structures or structural domains firstly by
carrying out a STAMP scan. So, we recommend that unless you already have
a set of very similar structures to align, you follow the SCAN example (See
section: 2.4) to gather and orientate domains for multiple structure align-
ment.

2.1 Setup of examples

The installation and configuration of STAMP are explained in Chapter 5. To
run the worked examples you need only install STAMP and set the STAM-
PDIR environment variable as described below. It is not necessary to edit
the configuration files.
All example output files may be found in the directory examples/ in the
STAMP installation directory. There are four sub-directories in the exam-
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ples directory corresponding to each of the four protein structure familes
discussed in the examples below (s prot/, ac prot/, ig/, globin/).

Before beginning you should set the STAMPDIR environment variable to
the name of the directory containing the various STAMP defaults files. This
directory is called defs/ within the STAMP installation directory. It contains
files containing default parameters and rules for finding PDB and DSSP files.
It is not necessary to edit these files to run the examples. The files are as
follows:

1. STAMPDIR/stamp.defaults contains default values for STAMP command
line parameters. Values in this file can be overridden by specifying options
on the command line.
2. The file STAMPDIR/pdb.directories file contains a set of patterns which
STAMP uses to find PDB files. This makes it possible for STAMP to use
PDB files located in multiple directories and having various combinations of
filename prefixes and suffixes.
3. STAMPDIR/dssp.directories is similar to pdb.directories but is used by
STAMP to locate files containing secondary structure assignments for PDB
structures generated using the DSSP program.

2.2 Multiple alignment using an initial mul-

tiple sequence alignment

Mammalian and Bacterial Serine Proteinases
(This example is discussed in Russell & Barton, (1992).)

Despite a pronounced functional similarity (a highly conserved catalytic
triad), this family of proteins shows little overall sequence similarity. Indeed,
sequence alignment methods generally fail to provide an accurate alignment
of these protein sequences. In situations like these, STAMP can be used to
provide an accurate alignment of protein sequences based on a comparison of
3D structure. This can often reveal regions of weak sequence similarity that
are not detectable during a comparison of sequence. The files for this exam-
ple are in the directory examples/s prot in the STAMP installation directory.
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The procedure in this example is to create a multiple sequence alignment
which is fed into the ALIGNFIT program to create an initial rough multiple
structure alignment which can then be refine by STAMP.
The list of the domains to be aligned is given in the file s prot.domains. The
sequences are extracted from the PDB files by using the domain file with
PDBSEQ:

pdbseq -f s_prot.domains > s_prot.seqs

This produces the file s prot.seqs. This file is used to generate a multiple
alignment using AMPS, the alignment being stored in the file s prot amps.align.
This file is in AMPS format, which is the only format that ALIGNFIT can
read. However, alignments in other formats can be converted to AMPS
format using the Jalview (www.jalview.org) or ACONVERT program. For
example, if the alignment had been in Clustal W format it could have been
converted by running:

aconvert -in c -out b < sprot_clw.aln > s_prot_amps.align

Running:

aconvert -h

will list the command-line arguments that ACONVERT accepts.
Now that we have the multiple alignment, we can run ALIGNFIT on it:

alignfit -f s_prot_amps.align -d s_prot.domains -out s_prot_alignfit.trans

giving the output:

ALIGNFIT R.B. Russell 1995

Reading in block file...

Blocfile read: Length: 261

Reading in coordinate descriptions...

Reading coordinates...

Checking for inconsistencies...

Doing pairwise comparisons...

Doing treewise comparisons...

ALIGNFIT done.

Look in the file s_prot_alignfit.trans for output and details
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The final transformation is in the file s prot alignfit.trans.

This provides an initial set of transformations for use by STAMP. To run
STAMP type:

stamp -l s_prot_alignfit.trans -prefix s_prot

This should produce the following output on the terminal:

STAMP Structural Alignment of Multiple Proteins

Version 4.4 (May 2010)

by Robert B. Russell & Geoffrey J. Barton

Please cite PROTEINS, v14, 309-323, 1992

Sc = STAMP score, RMS = RMS deviation, Align = alignment length

Len1, Len2 = length of domain, Nfit = residues fitted

Secs = no. equivalent sec. strucs. Eq = no. equivalent residues

%I = seq. identity, %S = sec. str. identity

P(m) = P value (p=1/10) calculated after Murzin (1993), JMB, 230, 689-694

(NC = P value not calculated - potential FP overflow)

No. Domain1 Domain2 Sc RMS Len1 Len2 Align NFit Eq. Secs. %I %S P(m)

Pair 1 4chaa 3est 7.74 1.15 239 240 242 217 214 20 41.59 84.58 1.32e-33

Pair 2 4chaa 2ptn 7.81 0.97 239 223 234 206 203 20 47.78 91.63 8.32e-43

Pair 3 4chaa 1ton 6.92 1.19 239 227 241 191 189 19 40.21 89.42 8.18e-28

Pair 4 4chaa 3rp2a 7.46 1.09 239 224 235 203 199 18 37.19 85.43 6.38e-24

Pair 5 4chaa 2pkaab 7.28 1.14 239 232 241 203 202 20 37.13 90.10 6.62e-25

Pair 6 4chaa 1sgt 7.09 1.26 239 223 239 197 191 20 36.13 90.05 2.86e-22

Pair 7 4chaa 2sga 3.64 1.66 239 181 240 109 101 15 28.71 84.16 8.84e-08

Pair 8 4chaa 3sgbe 3.62 1.56 239 185 240 105 95 15 26.32 85.26 3.48e-06

<etc.>

Reading in matrix file s_prot.mat...

Doing cluster analysis...

Cluster: 1 ( 2ptn & 2pkaab ) Sc 8.50 RMS 1.07 Len 232 nfit 216

See file s_prot.1 for the alignment and transformations

Cluster: 2 ( 2sga & 3sgbe ) Sc 8.36 RMS 0.65 Len 191 nfit 166

See file s_prot.2 for the alignment and transformations

Cluster: 3 ( 1ton & 2ptn 2pkaab ) Sc 9.03 RMS 0.73 Len 239 nfit 205

See file s_prot.3 for the alignment and transformations

Cluster: 4 ( 3rp2a & 1ton 2ptn 2pkaab ) Sc 8.73 RMS 0.93 Len 242 nfit 206

See file s_prot.4 for the alignment and transformations

Cluster: 5 ( 3est & 3rp2a 1ton 2ptn 2pkaab ) Sc 8.51 RMS 1.13 Len 258 nfit 208

See file s_prot.5 for the alignment and transformations

Cluster: 6 ( 4chaa & 3est 3rp2a 1ton 2ptn 2pkaab ) Sc 8.18 RMS 1.01 Len 260 nfit 201

See file s_prot.6 for the alignment and transformations

Cluster: 7 ( 2alp & 2sga 3sgbe ) Sc 8.35 RMS 1.06 Len 203 nfit 168

See file s_prot.7 for the alignment and transformations
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Cluster: 8 ( 1sgt & 4chaa 3est 3rp2a 1ton 2ptn 2pkaab ) Sc 7.70 RMS 1.11 Len 267 nfit 190

See file s_prot.8 for the alignment and transformations

Cluster: 9 ( 1sgt 4chaa 3est 3rp2a 1ton 2ptn 2pkaab & 2alp 2sga 3sgbe ) Sc 4.78 RMS 1.82 Len 292 nfit 122

See file s_prot.9 for the alignment and transformations

The various fields describe details of the pairwise and treewise comparisons:
Sc, RMS deviation, the alignment length (Align), the length of each structure
in residues (Len1, Len2), the number of atoms used in the RMS fit (Nfit), the
number of equivalent secondary structure elements (Secs), and the number
of equivalent residues (see above, Eq.).

STAMP will also produce several files:

s prot.mat – a file containing the information used to derive the structural
similarity tree (i.e. the output from the PAIRWISE) mode. This is an upper
diagonal matrix containing the pairwise Sc values.

s prot.N – a series of files containing transformations and alignments cre-
ated by running the TREEWISE mode in STAMP. Each file corresponds
to a node in the similarity tree (i.e. a cluster), where two groups of one
or more structures have been combined to form an alignment and transfor-
mations. The higher the value of N the more structurally dissimilar the
proteins contained in the file are. Highly similar structures are clustered
(aligned/superimposed) at an early stage in the program’s run, with more
distantly related structures being clustered towards the end.

The top of each s prot.N file contains the information needed to generate
superimposed coordinates using TRANSFORM. For example, running:

transform -f s_prot.9 -g -o s_prot.pdb

will create a PDB file containing all of the structures from the alignment in
s prot.8.
After these details, various details of the similarity (RMS deviation, Sc value,
etc) are given. The bottom portion of the file contains the structural align-
ment in STAMP format. Positions that do not include gaps contain infor-
mation as to the degree of local structural similarity, such as the distance
between (averaged) Cα atoms, and the P ′

ij value.
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Methods for displaying sequence alignments and structures are described
below.

2.3 Database Scanning

Database scanning within STAMP is unpublished, apart from a brief descrip-
tion in a figure legend [16], but it has been fairly well tested since version
2.0. Indeed, two novel similarities have resulted in publications [9, 16].

Immunglobulin domain

One example of a scan is given. The light chain variable domain of the
immunoglobulin 2FB4 is used to scan a small database of other protein do-
mains containing both a diverse collection of related folds (greek key folds,
including azurin, superoxide dismutase, CD4, etc.), and completely unrelated
folds (such as globins). See the directory examples/ig for this example.

The 2FB4 domain is described in 2fb4lv.domain. To scan this against the
database type:

stamp -l 2fb4lv.domain -s -n 2 -slide 5 -prefix 2fb4lv_stamp -d some.domains -cut

‘-s’ specifies the SCAN mode ‘-slide’ describes how many residues to slide
the query sequence (2fb4lv) along each sequence in the file some.domains to
provide each initial fit (i.e. the sequence of 2fb4lv is layed on top of each
database sequence at postions 1, 6, 11, etc.). ‘-cut’ tells the program to
cut down each domain read in from some.domains according to where the
similarity is found. If it is not specified, the output will contain domain de-
scriptors identical to those found in ‘some.domains’. When one is comparing
a single-domain query to a database structure having multiple domains, it is
desirable to do this. Try running it both ways (with and without -cut) and
look at the output to see the difference. (e.g. CHAIN A is converted to A
1 to A 60 in one descriptor in the SCAN output and A 120 to A 175
in another, since there are two repeats of the query domain in the database
structure).
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The above run should write the following to the standard output (again,
ignoring the header):

STAMP Structural Alignment of Multiple Proteins

Version 4.4 (May 2010)

by Robert B. Russell & Geoffrey J. Barton

Please cite PROTEINS, v14, 309-323, 1992

Results of scan will be written to file 2fb4lv_stamp.scan

Fits = no. of fits performed, Sc = STAMP score, RMS = RMS deviation

Align = alignment length, Nfit = residues fitted, Eq. = equivalent residues

Secs = no. equiv. secondary structures, %I = seq. identity, %S = sec. str. identity

P(m) = P value (p=1/10) calculated after Murzin (1993), JMB, 230, 689-694

(NC = P value not calculated - potential FP overflow)

Domain1 Domain2 Fits Sc RMS Len1 Len2 Align Fit Eq. Secs %I %S P(m)

Scan 2fb4lv 2fb4lc 1 4.317 2.120 111 105 127 55 46 8 10.87 78.26 1.00e+00

Scan 2fb4lv 2fb4l 1 9.799 0.001 111 166 111 111 111 11 100.00 97.30 0.00e+00

Scan 2fb4lv 1mcplv 1 7.848 1.165 111 113 116 96 95 0 49.47 40.00 2.05e-22

Scan 2fb4lv 1mcphv 1 6.921 1.500 111 122 126 85 81 0 30.86 34.57 1.44e-07

Scan 2fb4lv 1cmsC 1 2.507 1.639 111 148 157 28 24 4 4.17 62.50 1.00e+00

Scan 2fb4lv 3cd4 1 5.939 1.334 111 166 114 78 75 12 20.00 76.00 4.10e-03

Scan 2fb4lv 2hhbb 0 0.000 100.000 111 146 0 0 75 0 0.00 0.00 1.00e+00

Scan 2fb4lv 3dpa 0 0.000 100.000 111 166 0 0 75 0 0.00 0.00 1.00e+00

Scan 2fb4lv 3sgbe 0 1.940 2.313 111 166 204 25 17 3 5.88 88.24 1.00e+00

Scan 2fb4lv 1acx 1 4.152 2.454 111 108 133 57 43 4 16.28 72.09 7.26e-02

Scan 2fb4lv 2abxa 0 0.000 100.000 111 74 0 0 43 0 0.00 0.00 1.00e+00

Scan 2fb4lv 1l01 0 0.000 100.000 111 164 0 0 43 0 0.00 0.00 1.00e+00

Scan 2fb4lv 2azaa 1 4.063 2.463 111 129 134 49 35 5 14.29 82.86 1.00e+00

Scan 2fb4lv 1rnt 0 1.503 2.545 111 104 148 17 13 3 15.38 69.23 1.00e+00

Scan 2fb4lv 2sodo 1 3.611 2.365 111 151 158 42 32 8 9.38 71.88 1.00e+00

Scan 2fb4lv 2pcy 1 3.788 2.052 111 99 125 47 39 6 30.77 79.49 2.27e-04

Scan 2fb4lv 8atca 0 0.000 100.000 111 166 0 0 39 0 0.00 0.00 1.00e+00

See the file 2fb4lv_stamp.scan

where all of the fields are as for the PAIRWISE mode, save for Fits, which
indicates the number of fits that were saved to the file ‘2fb4lv stamp.scan’.
Note that for domain descriptors (see some.domains) containing two Ig type
folds (e.g. 2fb4l, 1cd4, etc.) that more than one fit has been saved, since the
search found both of the Ig type folds in each of these two proteins. Not also
that ‘Fits’ is zero for several of the examples, indicating that the no similarity
was found within these proteins. Where more than one Fit is output for a
domain in the database, the best Sc, RMS etc. are reported.

2fbjlv stamp.scan will contain all the transformations output during the scan.
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Several of these will be redundant, since it is possible for a particular match
to be found twice. To remove repeated transformations, or those not consid-
ered interesting, run the program SORTTRANS on the output.

sorttrans -f 2fb4lv_stamp.scan -s Sc 2.0 > 2fb4lv_stamp.sorted

This sorts the input file by Sc values, and leaves only those non-redundent
domain descriptions having an Sc ≥ 2.0. A cutoff of 2.0 is generally a good
choice pairwise comparisons with a score lower than this tend to produce
poor quality alignments.

sorttrans -f 2fb4lv_stamp.scan -s rms 1.5 > 2fb4lv_stamp.sorted

sorts the input file by RMSD values, and leaves only those domain descrip-
tions having an RMSD ≤ 1.5 Å. Despite its predominance in the literature,
RMSD is not a very good means of measuring structural similarity, since low
RMSDs can usually be obtained for any two structures if one considers a
small enough set of residues.

sorttrans -f 2fb4lv_stamp.scan -s nfit 40 > 2fb4l_stamp.sorted

sorts the input file by the number of atoms used in the final fitting, and
leaves only those domain descriptions where nfit ≥ 40.

sorttrans -f 2fb4lv.scan -s n_sec 6 > 2fb4lv_stamp.sorted

sorts the input file by the number of equivalent secondary structures, and
leaves only those having 6 or more secondary structures equivalent.

Combinations of these can be used to select out interesting domains from a
scan output. Probably the best combination involves Sc and nfit (ie. score
and nfit), since large structures can give fortuitously large Sc values with
very few fitted atoms.

The final output is in the file 2fb4lv stamp.sorted. This is the result of
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the first example (i.e. -s Sc 2.0). Note that several structures similar to
the Ig type domain have been detected, and appear (according to Sc) in the
order one might expect from knowledge of the 3D structures, sequences and
functions of these proteins.

The output from scanning can be used as input for other modes of the pro-
gram Once you have performed a scan, and have sorted the ‘hits’ down to
an interesting set, you can then use the output from scan as the input for a
multiple alignment. This is discussed in the next section.

2.4 Using SCAN mode as the starting point

for multiple alignment

In certain instances initial fits based on multiple sequence alignment will be
far from accurate, such that even an initial conformation based fit will not
be able to correct the poor initial superposition, and even genuine structural
homology will be missed. In these instances it is possible to make use of the
SCAN mode to provide a more accurate initial superimposition.

To do this one need only select one representative of the domains to be su-
perimposed and use this domain in a sensiitve scan of the other domains. By
applying the same techinques as used for the scan with the Ig light variable
domain (see the previous section) one can create a set of transformations
of the searched domains onto the query domain. This set of transforma-
tions constitutes a rough multiple structure alignment which can be used by
STAMP as the starting point for an accurate alignment.

Aspartic Proteinase Domains

The output files for this example are in the directory examples/ac prot.
In this example the aspartyl proteinase N– and C–terminal lobes are aligned.
The N–terminal domain of 1CMS (in the file 1cmsN.domain) is used as the
query domain to scan a list of aspartyl proteinase N– and C– terminal do-
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mains (ac prot.domains). Running:

stamp -l 1cmsN.domain -n 2 -s -slide 5 -d ac_prot.domains -prefix ac_prot

should produce:

STAMP Structural Alignment of Multiple Proteins

Version 4.4 (May 2010)

by Robert B. Russell & Geoffrey J. Barton

Please cite PROTEINS, v14, 309-323, 1992

Results of scan will be written to file ac_prot.scan

Fits = no. of fits performed, Sc = STAMP score, RMS = RMS deviation

Align = alignment length, Nfit = residues fitted, Eq. = equivalent residues

Secs = no. equiv. secondary structures, %I = seq. identity, %S = sec. str. identity

P(m) = P value (p=1/10) calculated after Murzin (1993), JMB, 230, 689-694

(NC = P value not calculated - potential FP overflow)

Domain1 Domain2 Fits Sc RMS Len1 Len2 Align Fit Eq. Secs %I %S P(m)

Scan 1cmsN 1cmsN 1 9.800 0.000 175 175 175 175 175 18 100.00 94.86 0.00e+00

Scan 1cmsN 1cmsC 1 3.214 2.065 175 148 204 68 62 11 19.35 83.87 1.11e-02

Scan 1cmsN 4apeN 1 8.209 1.300 175 178 182 162 159 15 30.82 87.42 2.82e-13

Scan 1cmsN 4apeC 1 3.420 1.948 175 152 205 70 67 13 14.93 79.10 6.11e-02

Scan 1cmsN 3appN 1 7.976 1.280 175 174 183 157 157 19 29.30 90.45 1.01e-11

Scan 1cmsN 3appC 1 3.269 2.068 175 149 205 68 59 12 13.56 81.36 1.00e+00

Scan 1cmsN 2aprN 1 8.435 1.075 175 178 178 164 162 15 33.33 85.80 4.60e-16

Scan 1cmsN 2aprC 1 3.304 1.973 175 147 200 67 64 13 18.75 76.56 1.37e-02

Scan 1cmsN 4pepN 1 8.836 0.930 175 173 174 169 169 15 57.99 83.43 3.00e-53

Scan 1cmsN 4pepC 1 3.223 2.105 175 152 206 68 57 10 21.05 85.96 6.17e-03

See the file ac_prot.scan

The file ac prot.scan will contain all 10 domains superimposed onto 1cmsN.
Note that we haven’t run the program with the ‘-cut’ option, since the file
ac prot.domains contains an assignment of domains. Running SORTTRANS
removes any redundancies:

sorttrans -f ac_prot.scan -s Sc 2.5 > ac_prot.sorted

and running STAMP will generate the multiple alignment as described for
the examples above.

stamp -l ac_prot.sorted -prefix ac_prot
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2.5 Generating a set of superimposed structues

The TRANSFORM program included in the STAMP package can be used
to generate sets of superimposed structures from the output of a STAMP
multiple alignment run. For example, the output from the multiple alignment
in the previous section can be fed into TRANSFORM as follows:

transform -f ac_prot.9 -g -o ac_prot.pdb

This will read in the files, transform the coordinates and save them to the
file ac prot.pdb (with each chain labelled starting with a different letter).

2.6 Alignment without an initial multiple align-

ment using ROUGHFIT

This method described in this section, where the ROUGHFIT mode is used
to create an initial alignment, was the one originally used in STAMP for
cases where an initial multiple sequence alignment was not available. The
SCAN mode (see the aligning section on aligning protease domains) now
makes it possible to create a reasonable starting alignment even for cases
where an accurate alignment based on sequence is impossible. Apart from
cases where the structures are homologous or of very similar length, using
the SCAN mode generally produces better results than using ROUGHFIT.
Accordingly, ROUGHFIT is deprecated in favour of using SCAN mode as a
starting point. It documented here for the sake of completeness.
This method avoids having to create an initial multiple sequence alignment
and tends to work for homologous proteins, or those having very similar
lengths despite no sequence similarity.

Globins

Since the globin sequences are of similar length an initial superimposition
accurate enough to proceed with STAMP can be obtained by merely aligning
the N-terminal ends of the sequences and using whatever equivalences result
to obtain an initial superimposition. The command ROUGH (ROUGHFIT
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procedure) is used. In addition, an initial conformation based fit is per-
formed in order that any inaccuracies in this initial superimposition may be
corrected. See the directory examples/globins.
To run STAMP in this example, type:

stamp -l globin.domains -rough -n 2 -prefix globin

This should produce the following on the standard output (ignoring the
header):

STAMP Structural Alignment of Multiple Proteins

Version 4.4 (May 2010)

by Robert B. Russell & Geoffrey J. Barton

Please cite PROTEINS, v14, 309-323, 1992

Running roughfit.

Sc = STAMP score, RMS = RMS deviation, Align = alignment length

Len1, Len2 = length of domain, Nfit = residues fitted

Secs = no. equivalent sec. strucs. Eq = no. equivalent residues

%I = seq. identity, %S = sec. str. identity

P(m) = P value (p=1/10) calculated after Murzin (1993), JMB, 230, 689-694

(NC = P value not calculated - potential FP overflow)

No. Domain1 Domain2 Sc RMS Len1 Len2 Align NFit Eq. Secs. %I %S P(m)

Pair 1 2hhbb 2hhba 8.19 1.38 146 141 147 136 135 7 44.44 82.96 4.82e-25

Pair 2 2hhbb 2lhb 7.11 1.39 146 149 151 127 127 7 26.77 86.61 4.90e-08

Pair 3 2hhbb 4mbn 8.06 1.38 146 153 151 141 139 8 25.18 87.05 1.57e-07

Pair 4 2hhbb 1ecd 6.89 2.04 146 136 144 127 119 7 20.17 86.55 3.91e-04

Pair 5 2hhbb 1lh1 5.89 2.39 146 153 155 120 110 6 17.27 80.91 6.62e-03

Pair 6 2hhba 2lhb 6.54 1.66 141 149 150 122 119 7 34.45 88.24 3.97e-13

Pair 7 2hhba 4mbn 7.78 1.39 141 153 148 136 133 8 27.07 87.97 1.51e-08

Pair 8 2hhba 1ecd 6.61 2.18 141 136 145 124 118 8 17.80 87.29 3.47e-03

Pair 9 2hhba 1lh1 5.95 2.20 141 153 153 117 106 6 14.15 82.08 4.45e-02

Pair 10 2lhb 4mbn 7.13 1.23 149 153 149 131 130 8 25.38 90.77 2.82e-07

Pair 11 2lhb 1ecd 6.42 1.93 149 136 145 124 123 8 18.70 87.80 1.34e-03

Pair 12 2lhb 1lh1 5.74 2.11 149 153 155 117 105 6 19.05 85.71 2.04e-03

Pair 13 4mbn 1ecd 7.46 1.64 153 136 145 134 132 8 21.21 87.88 6.21e-05

Pair 14 4mbn 1lh1 6.76 2.35 153 153 155 135 133 6 17.29 84.21 3.35e-03

Pair 15 1ecd 1lh1 5.96 2.59 136 153 149 121 114 6 15.79 87.72 1.62e-02

Reading in matrix file globin.mat...

Doing cluster analysis...

Cluster: 1 ( 2hhbb & 2hhba ) Sc 8.19 RMS 1.38 Len 147 nfit 136

See file globin.1 for the alignment and transformations

Cluster: 2 ( 4mbn & 2hhbb 2hhba ) Sc 8.96 RMS 1.31 Len 151 nfit 138

See file globin.2 for the alignment and transformations

Cluster: 3 ( 1ecd & 4mbn 2hhbb 2hhba ) Sc 8.35 RMS 1.81 Len 146 nfit 128

See file globin.3 for the alignment and transformations
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Cluster: 4 ( 2lhb & 1ecd 4mbn 2hhbb 2hhba ) Sc 8.24 RMS 1.23 Len 152 nfit 120

See file globin.4 for the alignment and transformations

Cluster: 5 ( 1lh1 & 2lhb 1ecd 4mbn 2hhbb 2hhba ) Sc 7.70 RMS 2.46 Len 160 nfit 121

See file globin.5 for the alignment and transformations

where the output and files are as described for the serine proteinase example
above, with ‘s prot’ replaced with ‘globin’.

-rough performs the initial superimpositions (ROUGHFIT) and -n 2 means
that the conformation biased fit will be performed before the final fit. This
conformation biased fit is usually necessary when the initial superimpositions
are approximate.

ROUGHFIT will not always work. Note that in this example all the pairwise
Sc values are above 5.6, suggesting strong structural similarity. If when using
the ROUGHFIT option you find low Sc values (the program will flag the val-
ues with the message ‘LOW SCORE’), this usually means that ROUGHFIT
hasn’t managed to generate a good enough starting superimposition, and you
should try using SCAN mode to generate an initial alignment, as described
in the previous section.

2.7 Protein domain databases

The program PDBC may be used to output a set of STAMP readable domain
descriptions. Given a list of four letter brookhaven codes and an optional
set of chains. This will only work if you have a suitable ‘pdb.directories’ file.
See the chapter on installation for details on how to do this.

pdbc -d 2hhba >! globin_fold.domains

pdbc -d 2hhbb >> globin_fold.domains

pdbc -d 4mbn >> globin_fold.domains

pdbc -d 1lh1 >> globin_fold.domains

pdbc -d 1cola >> globin_fold.domains

pdbc -d 1cpca >> globin_fold.domains

will produce the following output (ignoring comments, which are specified
by a ‘%‘ in column 0):

/(PDB PATH)/pdb2hhb.ent 2hhba { CHAIN A }

/(PDB PATH)/pdb2hhb.ent 2hhbb { CHAIN B }
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/(PDB PATH)/pdb4mbn.ent 4mbn { ALL }

/(PDB PATH)/pdb1lh1.ent 1lh1 { ALL }

/(PDB PATH)/pdb1col.ent 1cola { CHAIN A }

Where (PDB PATH) denotes the location of the relevant PDB file on your
system. Note that your PDB files may be called (code).pdb instead, or may
follow some other convention. This is OK, see Chapter 5 (installation) for
details as to setting this up.

Note that there doesn’t need to be a filename in the domain file. One can
merely leave it as ‘Unknown‘ or some other string (i.e. not empty spaces),
and the programs will try and find where the file corresonding to the four
letter code is one your system. In other words, the files given in this distri-
bution should work on your system, provided that you have all the PDB files.

Note that PDBC can be used to probe information about a PDB entry by
using the ‘-q’ option. Try it and see. This is a good test of whether STAMP
has been set up properly on your system. If you just want to test where
STAMP is looking for PDB and DSSP files, then use the ‘-m’ (minimal) op-
tions. This just reports PDB/DSSP files if found and exits.

STAMP database comparisons are computationally intensive, so it is pru-
dent to avoid comparisons that are redundant (e.g. multiple mutants or
binding studies of the same protein, T4 lysozyme for example).

The STAMP distribution contains a series of non-redundant databases de-
rived by a parsing of the SCOP database. These are located in the ‘STAM-
PDIR’ directory. The files are derived from SCOP release 1.75. The files
were created using the scop2stamp program, which can be found in the ‘bin/’
directory of the STAMP installation. Running ‘scop2stamp’ without argu-
ments will list the options that this program accepts.
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Domain database N Description
scop.dom 109747 All PDB domains classified in SCOP
scop species.dom 13816 One representative per species of each SCOP protein.
scop prot.dom 9621 One representative of each SCOP protein
scop fam.dom 3883 One representative of each SCOP family
scop supf.dom 1950 One representative of each SCOP superfamily
scop fold.dom 1190 One representative of each SCOP fold

The complete set of SCOP domains contains a high degree of redundancy.
The amount of time required to search it will depend on your particular sys-
tem but you should expect it to take on the order of 20 hours of CPU time on
the current generation of processors. If you have access to multiple CPUs, it
is possible to divide the database into subsets, search the individual subsets
in parallel on multiple CPUs, and then aggregate the search outputs into a
single results file which can be filtered using SORTTRANS in the usual way.

2.8 Generating transformed coordinates us-

ing TRANSFORM

The program TRANSFORM can be used with any STAMP alignment file
containing domain descriptions to output a set of PDB format files for dis-
play or further analysis. For example, running:

transform -f globin.5

should write the following to the standard output:

TRANSFORM R.B. Russell, 1995

Using PDB files

Files will not include heteroatoms

Files will not include waters

Domain 1, 1lh1 => to 1lh1.pdb

Domain 2, 2lhb => to 2lhb.pdb

Domain 3, 1ecd => to 1ecd.pdb

Domain 4, 4mbn => to 4mbn.pdb

Domain 5, 2hhbb => to 2hhbb.pdb

Domain 6, 2hhba => to 2hhba.pdb

A set of PDB format files containing the superimposed coordinates is gen-
erated. Running the program as shown above will produce one PDB file for
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each domain identifier. If one wishes to look at the superimposed structures
together (in the same file), then the option -g (i.e. graphics) can be used:

transform -f globin.5 -g -o globins.pdb

which should output the following:

TRANSFORM R.B. Russell, 1995

Using PDB files

Files will not include heteroatoms

Files will not include waters

All coordinates will be in file globins.pdb

Domain 1, 1lh1 => to globins.pdb (chain A)

Domain 2, 2lhb => to globins.pdb (chain B)

Domain 3, 1ecd => to globins.pdb (chain C)

Domain 4, 4mbn => to globins.pdb (chain D)

Domain 5, 2hhbb => to globins.pdb (chain E)

Domain 6, 2hhba => to globins.pdb (chain F)

This options puts transformed coordinates for each domain into one file (spec-
ified by -o, in this example it is ‘globins.pdb’). Each domain will be labelled
sequentially with a different chain identifier (i.e. A, B, C, etc.). Note that
only ‘globins.pdb’ is included in the example directory.

By default, TRANSFORM does not include heteroatoms in the output. If
you wish heteroatoms to be included, then add the -het option to the trans-
form command. If you wish waters to be included in the file add the -hoh
option. Note that heteroatoms/waters are sometimes included that fall out-
side the range of your domain descriptor. This may seem silly, but it is
difficult to determine which heteroatoms are associated with which residues
given PDB format.

2.9 Generating averaged coordinates

It may also be useful to have a set of averaged coordinates derived from a
protein structural family. This makes it possible to see what portions of the
structure are common to all members of the family (i.e. the common core).
The program AVESTRUC takes the output from STAMP (i.e. an aligned
family of protein structures), and generates a PDB file containing averaged
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coordinates for the common core as identified by STAMP. For example, to
generate the averaged coordinates for the aspartic proteinase domains one
needs to type:

avestruc -f ac_prot.8 -o ac_prot_ave.pdb

The file ac prot ave.pdb will contain a set of averaged Cα atoms taken by
averaging the coordinates for those positions within the file ac prot.8 that
are found to be structurally equivalent. To obtain a poly Alanine set of co-
ordinates (i.e. including main chain and Cβ coordinates), type:

avestruc -f ac_prot.8 -o ac_prot_ave.pdb -polyA

Note that this will only work if all main chain atoms are found in the file
(i.e. it won’t work if the PDB files contain only Cα atoms).

A useful feature in AVESTRUC that was added in STAMP version 4.1 is
the use of the -ident and -cons options. The program now labels all residues
in the averaged model as ‘UNK’. If positions are totally conserved across
all structures in the averaged model, the ‘-ident’ option will name residues
accordingly. The -cons option will label residues additionally as conserved in
character if all amino acids in the set have the following properties:

SMA small
TIN tiny
POL polar
HYD hydrophobic
POS positive
NEG negative
CHA charged
ARO aromatic
ALI aliphatic
BRA Cβ branched

See Taylor (1986) for a description of amino acid properties.

Another feature is that the temperature factors reflect whether postions are
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structurally conserved, or simply fortuitously aligned. If you add the option
‘-aligned’ to the command line, all positions that are not matched to a gap
will be considered in the generation of the averaged model. If you then colour
your model according to temperature in a structure viewer, the blue regions
will correspond to those that are structurally equivalent (as you have defined
or by default) whereas the red regions will show those that are simply in the
same position in the sequence alignment.

2.10 Displaying/processing the output

2.10.1 POSTSTAMP

There is something inherently wrong with the way STAMP assigns equiva-
lences within multiple alignments. It considers an average set of Cα coor-
dinates and uses an average set of probabilities to derive equivalences when
more than two structures are involved, and as a consequence, it sometimes
appears to go wrong during this process. Usually this is only when very
distantly related proteins are being considered. A fix to this problem is to
consider each pair of structures within the alignment separately, and to re-
calculate the raw Rossmann and Argos probabilities. One need then define
positions as structurally equivalent when all pairs of structures have a Pij

value larger than a cutoff at a particular residue position.

For example, for ten structures, there are (10 × 9/2) = 45 pairs. For a
position to be structurally equivalent across all members of the family, Pij

should be ≥ 0.5 for all 45 pairs.

POSTSTAMP does just this. It adds two new STAMP format fields to a
STAMP alignment file: one tells whether the above is true (1) or false (0)
for each position (i.e. is each position structurally equivalent across all mem-
bers of the family); the second tells how many pairwise comparison have Pij

greater than or equal to the cutoff (e.g. 0.5).

For example,

poststamp -f globin.5 -min 0.5
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Creates a file globin.5.post, containing the above data for a Pij value of 0.5.

2.10.2 STAMP CLEAN

When aligning more than one structure, STAMP will usually create align-
ments that are fairly meaningless within regions that are not structurally
equivalent across all structures. Such regions may have meaning for particu-
lar sub-families of structures, but for the purposes of display, are nonsensical.
STAMP CLEAN is a useful program that takes a STAMP alignment file and
‘cleans up’ such gaps. To run the program, for example (using the POST-
STAMP output file generated above):

stamp_clean globin.5.post 3 > globin.5.clean

will create a file globin.5.clean where all gaps not lying within structurally
equivalent regions, and having fewer than 3 aligned residues in a row (i.e
blocks where all sequences are not aligned with gap) are shortened to their
minimum length.

2.10.3 Displaying text alignments

There are two ways to display STAMP alignments in a horizontal format.
The first is simply to use ACONVERT to change the STAMP block file for-
mat into another format such as MSF or Clustal. The format would be:

aconvert -in b -out c < <stamp alignment file>

Where ‘-out c’ denotes Clustal format.

ACONVERT does not use any of the STAMP specific parts of the alignment
(i.e reliable structural equivalences, etc.). There is a program specifically
designed for displaying these data in a vertical format. VER2HOR takes a
STAMP alignment file and outputs a horizonal text format. For example, to
display the globin alignment, one needs to type:

ver2hor -f globin.5.clean
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to give (see examples/globin/globin.5.ver2hor):

VER2HOR R.B. Russell, 1995

Prints STAMP alignments in horizontal format

for quick viewing

Reading Alignment...

Blocfile read: Length: 163

Getting STAMP information...

6 STAMP fields read in for 163 positions

Processing the alignment...

Output:

Very reliable => Pij’ >=6 for stretches of >=3

Less reliable => Pij’ >=4.5 for stretches of >=3

Post reliable => All Pij’ > stamp_post parameter for stretches >=3

Number 10 20 30 40 50

1lh1 gaLTESQAALVKSSWEEfnanipKHTHRFFILVLEIAPAAKDLFSFLkg

2lhb pivdtgsvapLSAAEKTKIRSAWAPvystyeTSGVDILVKFFTSTPAAQEFFPKFkg

1ecd LSADQISTVQASFDKv kGDPVGILYAVFKADPSIMAKFTQFag

4mbn vLSEGEWQLVLHVWAKveadvaGHGQDILIRLFKSHPETLEKFDRFkh

2hhbb vhLTPEEKSAVTALWGKvn vdEVGGEALGRLLVVYPWTQRFFESFgd

2hhba vLSPADKTNVKAAWGKvgahagEYGAEALERMFLSFPTTKTYFPHF

1lh1_dssp ----HHHHHHHHHHHHHhhtthhHHHHHHHHHHHHH-GGGGGG-TTTtt

2lhb_dssp ---sss------HHHHHHHHHHHHHhhhthhHHHHHHHHHHHHH-GGGGGG-GGGtt

1ecd_dssp --HHHHHHHHHHHHTt tT-HHHHHHHHHHH-HHHHTT-TTTtt

4mbn_dssp --HHHHHHHHHHHHHGg--hhhHHHHHHHHHHHHHHHHHGGGG----s

2hhbb_dssp ----HHHHHHHHHHHTT-- hhHHHHHHHHHHHHHSGGGGGG-GGG--

2hhba_dssp ---HHHHHHHHHHHHHhggghhHHHHHHHHHHHHH-GGGGGG-TTS

Very similar ----------1111111111111110----0111111111111111111111111--

Less similar ----------1111111111111110----0111111111111111111111111--

Post similar ----------1111111111111110----0111111111111111111111111--

<etc.>

The sequences are displayed, as are the DSSP secondary structures and three
measures of similarity (explained at the top of the output). the display
of secondary structures can be suppressed using the option ‘-sec false’; a
summary of the secondary structures (an average) can be displayed by using
the ‘-secsum true’ option. The column width can be modified by using ‘-
columns <value>’. The remaning parameters are as for DSTAMP (see next
section).
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2.10.4 Pretty Alignments via ALSCRIPT

DSTAMP generates input files for GJBs ALSCRIPT program. Given a
STAMP alignment file, DSTAMP can be run to create a fairly pretty align-
ment. Detailed descriptions of the parameters are given below. As a quick
example, using the globin example,

dstamp -f globin.5.clean -prefix globin_align

will create a file called:

globin_align.als

Which contains a set of ALSCRIPT commands. To get a pretty Postscript
alignment, one needs to run alscript:

alscript globin_align.als

The file globin align.ps will be created, and is previewable or printable on a
Postscript printer. And is shown in Figure 1.

By default, residues occuring within structurally equivalent regions will be
boxed in the sequence alignment. Helices and strands will appear as cylin-
ders and arrows (coil/turn regions are not shown). Conserved residues will
be in inverse text, positions showing a conservation of polar character will be
in bold, those showing conservation of hydrophobic character will be shaded
and those showing a conservation of small size will be shown in a smaller
font. It is possible to modify the output format (paramaters are described
in a Chapter 4). I would also recommend only using the DSTAMP output
as a starting point, and refine the ALSCRIPT file yourself to give the best
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alignment. The automated procedure can give some ugly results.

Figure 1 Globin alignment as discussed in the text.

2.10.5 Pretty Structures via MOLSCRIPT

GSTAMP can be used to display the structurally equivalences found by
STAMP. It works by creating an input file for MOLSCRIPT [18] (contact
Per Kraulis to obtain a copy).

As for DSTAMP, a detailed description of parameters is given later. Here is
a quick example, using the first globin alignment (i.e. containing only two
structures).

First one needs to generate transformed PDB coordinates using the program
TRANSFORM:

transform -f globin.5.clean

This will create 2 PDB files with coordinates superimposed: 2hhbb.pdb and
2hhba.pdb.
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gstamp -f globin.5.clean

This reads in the six structures and the alignment and outputs six molscript
files called (domain identifier).molscript.

One must then run molscript on each of these files that one wants to display.
For illustration, we will run two very distantly related globins:

molscript < 1lh1.molscript > 1lh1.ps

molscript < 2hhba.molscript > 2hhba.ps

To give the two postscript files are shown in Figure 2.

Figure 2 Superimpositions of globin 1lh1 (left) and 2hhba (right).

By default, GSTAMP will show equivalent helix, strand and coil residues as
MOLSCRIPT α helix, β strand and coil, with un-equivalent regions being
shown as Cα trace.

At best, GSTAMP will give only a starting point for further refinement.
Invariably, one will need to modify the orientation of the image for the best
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view, and probably need to tweak the assignments of helix and strand to
look clear; MOLSCRIPT will not work, for example, if one has very short
β strands.
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Chapter 3

Input and Output format for
all programs

3.1 Describing domain structures

Every entry in a STAMP input file is called a ‘domain’. This term is a bit of
a misnomer, since ‘domains’ needn’t be single domains (though it is usually
best to do structure comparisons at the domain level).

The problem of defining domains such that a wide variety of possibilities
may be used (e.g. all the coordinates in a PDB file, one chain, bits of one
chain, two chains, one chain and bits of another, etc) is solved by defining a
domain by: 1) a file, 2) an identifier, and 3) a list of ‘objects’, from the file, to
be included in the domain. An object is defined as a run of Cα coordinates,
and a domain may contain more than one object.

Domains are stored in STAMP in files which may contain one or more of
such domain definitions.

The format of these files must be as follows:

<file name> <identifier label> { <objects> }

or,
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<file name> <identifier label> { <objects> [RETURN]

R11 R12 R13 V1

R21 R22 R23 V2

R31 R32 R33 V3 }

<file name> is the full name (including path) of the PDB file in which the
coordinate information is to be found. If you don’t know the precise location
of the file, then just call it UNK or something (i.e. not a blank), and the
programs should be able to find the appropriate PDB file using the domain
identifier field. Note that finding the PDB file using the identifier relies on
a set of rules defined in the pdb.directories configuration file (see Chapter 5
for details of the location of the file, its format and how STAMP uses it to
locate PDB files).

<identifier label> is a short name to be used by the program. eg. 4mbn1.
The domain identifiers in a STAMP input file must be unique.

DSSP secondary structure files can only be found by STAMP by using the
domain identifier in a similar fashion as described for PDB files above. Again,
see Chapter 5 for details of how this works.
<objects> are coordinate descriptions, and may be one of three types:

1. ALL

all Cα’s from the file.

2. CHAIN X

only Cα’s labeled as chain X.

3. <chain1> <number1> <insert1> to <chain2> <number2> <insert2>

e.g. B 20 _ to B 67 P

only Cα’s between (and including) the two full brookhaven
residue names (chain, number, insertion code; the ‘ ‘ character denotes a
space)

N.B. THERE MUST BE AT LEAST ONE SPACE BETWEEN THE VAR-
IOUS FIELDS. Combinations of these are allowed within one domain, e.g. ‘
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CHAIN A B 1 to B 65 ‘

R11 → R33 and V1 → V3 are a rotation matrix and translation vector,
respectively.

Thus, a full description of three domains might look something like this:

/data/newpdb/pdb/pdb1ton.ent 1ton { ALL

0.9876 0.34 0.543 19.23

1.0 2.34 0.98473332 1.0

0.023 0.94 4.345 20.0 }

/data/newpdb/pdb/pdb2kai.ent 2kai_Kallikrien { CHAIN X CHAIN Y }

/data/newpdb/pdb/pdb3sgb.ent 3sgbe_SGprotease { E 20 _ to E 160 P

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0 }

Note the spaces. There must be spaces separating each keyword or datum
to be read, even between the braces. For example:

/data/newpdb/pdb/pdb3sgb.ent 3sgb_protease{E 20 _ to E 160P}

would not be allowed.

In the second domain (Kallikrein) the transformation will be set equal to
the identity matrix with a translation of zero, since none has been supplied.

The domains must be listed at the start of a file (ie. nothing must come
before them in a file), but anything may come afterwards, provided that it
contains no braces (ie. { or }) unless they are on lines containing ‘%‘ in the
first column.

It is possible to reverse the direction of an object in a domain description.
For example, if one has two objects, one can reverse the direction of one or
more of these by placing the word ”REVERSE” in front of the object, e.g.:

/data/newpdb/pdb/pdb4mbn.ent { REVERSE _ 1 _ to _ 20 _ _ 21 _ to _ 120 _ }
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3.2 Transformations

Transformations, which may or may not be included in the domain definition
given above are in the sense:

Xnew | R11 R12 R13 | Xold V1

Ynew = | R21 R22 R23 | Yold + V2

Ynew | R31 R32 R33 | Zold V3

or

Xnew = (R11*Xold + R12*Yold + R13*Zold) + V1

Ynew = (R21*Xold + R22*Yold + R23*Zold) + V2

Znew = (R31*Xold + R32*Yold + R33*Zold) + V3

If initial transformations are obtained in some other way (eg. those taken
from a PDB file) they may be passed to STAMP if they are in the above
format. As far as I can make out, this is the standard used in the PDB, but
one can never be sure.

If no transformation is given, then the domain is assigned a unity rotation
matrix and zero translation vector.

3.3 Sequence format

When necessary, STAMP programs read sequence information in NBRF
(PIR) format. For example, user defined secondary structure assignment
might be supplied in a file that looks like:

>Tonin

Tonin secondary structure Author’s assignments

----EEEEE-----EEEEEE-- <etc.> --HHHH---*

>Kallikrien

Kallikrien secondary structure -- visual inspection

----EEEEEEEE---E-EEEEE--- <etc.> --GGHHHH---*

>SGprotease

S. Griseus protease secondary structure.

----EEEEE---EEEE-EEEEEEEE--- <etc.> --GGHGHG---*
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This is essentially NBRF (PIR) format. Note the position of the asterix.
Comments must be limited to the single line between the >identifier and the
start of the sequence string.

3.4 Multiple alignment format

STAMP alignment output consists first of a list of domain descriptions and
relevant transformations. After this an alignment may or may not be output.

Multiple alignments are displayed as follows (see STAMPDIR/examples/globin stamp trans.6):

/data/newpdb/pdb/pdb1lh1.ent 1lh1 { ALL

1.00000 0.00000 0.00000 0.00000

0.00000 1.00000 0.00000 0.00000

0.00000 0.00000 1.00000 0.00000 }

/data/newpdb/pdb/pdb2hhb.ent 2hhba { CHAIN A

0.71639 0.34414 0.60691 19.45435

<Etc.>

-0.31092 -0.94263 0.12159 68.85890 }

Alignment Score Sc = 7.665619

Alignment length Lp = 156

RMS deviation after fitting on 116 atoms = 2.434597

Secondary structures are from DSSP

>1lh1 (cluster A) sequence

>2hhba (cluster B) sequence

>2hhbb (cluster B) sequence

>4mbn (cluster B) sequence

>1ecd (cluster B) sequence

>2lhb (cluster B) sequence

>space

>1lh1_dssp (cluster A) secondary structure from DSSP

>2hhba_dssp (cluster B) secondary structure from DSSP

>2hhbb_dssp (cluster B) secondary structure from DSSP

>4mbn_dssp (cluster B) secondary structure from DSSP

>1ecd_dssp (cluster B) secondary structure from DSSP

>2lhb_dssp (cluster B) secondary structure from DSSP

#T -- ’1’ = used in the final fit

#P -- averaged Pij

#A -- distance between averaged CA atoms in angtroms

#G -- $P_{ij}{\prime}$ value

ABBBBB ABBBBB use Pij Distance $P_{ij}{\prime}$

* iteration 1

P

I

V
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D

T

G

S

V

G V A - - -

AVHV P ---- -

LLLLLL ------ 1 0.50337 1.90006 6.98400

TSTSSS ------ 1 0.49631 2.00483 6.88900

EPPEAA HHHHHH 1 0.55533 1.89926 7.68300

SAEGDA HHHHHH 1 0.60834 1.80863 8.39600

QDEEQE HHHHHH 1 0.70134 1.64212 9.64700

AKKWIK HHHHHH 1 0.75434 1.52204 10.36000

ATSQST HHHHHH 1 0.75137 1.51092 10.32000

LNALTK HHHHHH 1 0.80831 1.36142 11.08600

VVVVVI HHHHHH 1 0.85737 1.21626 11.74600

KKTLQR HHHHHH 1 0.83537 1.27448 11.45000

<Etc.>

ITNKGI HHHHHH 1 0.85737 1.04393 11.74600

VVADML HHHHHH 1 0.84332 1.11847 11.55700

ILLIIL HHHHHH 1 0.81232 1.20349 11.14000

KTAAFR HTHHHH 1 0.80035 1.22529 10.97900

KSHASS HTTHHT 1 0.73137 1.29476 10.05100

EKKKKA HTTHHT 1 0.60031 1.66495 8.28800

M Y H H

D K H H

D E H H

A L H H

*

The ‘>’ and ‘#’ characters tell the routines that read alignments what is to
be contained in each field. A ‘>’ character denotes a character string which
is to be displayed vertically, and a ‘#’ character denotes a string of numbers
to be displayed separated by spaces. Thus in the above example we have 13
character strings vertically (6 amino acid sequences, 1 string of spaces and
6 DSSP assignments) and 6 numeric fields (corresponding to various details
from STAMP) specified. The actual alignment will be contained within ‘*’
characters as shown. Accordingly, no occurrence of ‘>’, ‘#’ and ‘*’ charac-
ters should occur outside of these contexts.

The As and Bs just above the ‘*’ symbol refer to the members of the two
cluster (branches) which are brought together during this alignment.

Briefly, the numeric fields are:
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#T 1 or 0, 1 shows those residues used to determine the fit of the two
sets of structures.

#P averaged Rossmann and Argos Pij value

#A distance between averaged Cα atoms

#G corrected Pij value (Pij′)

Note that the program POSTSTAMP adds two new fields:

#B 1 if all pairiwse Pij ≥ the user defined minimum, 0 otherwise

#R the total number of pairwise comparisons having Pij ≥ the cutoff out of
N × (N − 1)/2

3.5 Output from STAMP database scanning

mode

Output from STAMP scans consists of a list of domains and a corresponding
set of scores, lengths and other numbers that can be used to sort and under-
stand the output.

The format is as follows (see examples/ig/stamp scan.trans):

% Output from STAMP scanning routine

%

% Domain 2fb4lv was used to scan the domain database:

% some.domains

% 1 fits were performed

% Fit 1 E1= 20.000, E2= 3.800, CUT= 1.000

% Approximate fits (alignment from N-termini) were performed

% at every 10 residue of the database sequences

% Transformations were output for Sc= 2.000

%

% Domain used to scan

# Sc= 10.000 RMS= 0.01 Len= 999 nfit= 999 Seqid= 100.00 Secid= 100.00 q_len= 111 d_len= 111 n_sec= 100 n_equiv 999 fit_pos= _ 0 _

./pdb2fb4.ent 2fb4lv { L 1 _ to L 109 _ }

# Sc= 4.332 RMS= 1.556 len= 123 nfit= 57 seq_id= 21.82 sec_id= 74.55 q_len= 111 d_len= 105 n_sec= 10 n_equiv= 55 fit_pos= L 110 _

/db/pdb_all//2fb4.pdb 2fb4lc_1 { L 110 _ to L 214 _
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-0.69582 -0.69016 0.19878 132.36090

-0.57870 0.37482 -0.72430 67.11302

0.42538 -0.61902 -0.66021 109.94639 }

# Sc= 9.799 RMS= 0.001 len= 111 nfit= 111 seq_id= 100.00 sec_id= 97.30 q_len= 111 d_len= 216 n_sec= 11 n_equiv= 111 fit_pos= L 1 _

/db/pdb_all//2fb4.pdb 2fb4l_1 { CHAIN L

1.00000 0.00001 -0.00002 0.00194

-0.00001 1.00000 0.00000 0.00193

0.00002 -0.00000 1.00000 -0.00027 }

# Sc= 7.842 RMS= 1.128 len= 116 nfit= 95 seq_id= 48.94 sec_id= 86.17 q_len= 111 d_len= 113 n_sec= 11 n_equiv= 94 fit_pos= L 1 _

/db/pdb_all//1mcp.pdb 1mcplv_1 { L 1 _ to L 113 _

-0.54068 0.77937 0.31662 37.59489

0.79918 0.35840 0.48255 0.56629

0.26261 0.51394 -0.81664 -33.14809 }

<etc.>

(note that the lines beginning with ‘#’ symbols have been wrapped here) ‘%‘
denotes a comment, and ‘#’ denotes numbers corresponding to the domain
description described below (both will be ignored by all programs except for
SORTTRANS, which uses the ‘#’ fields to sort and interpret the data.

‘Sc’ is the STAMP Score for the comparison of the query to each database
sequence. ‘RMS’ is the RMS difference between equivalenced atoms, ‘len’ is
the alignment length, ‘nfit’ is the number of atoms used during the final fit of
the two domains, ‘seq id’ and ‘sec id’ are the sequence and secondary struc-
ture identities, ‘q len’ and ‘d len’ are the lengths of the query and database
structure (in residues), ‘n sec’ is the number of equivalenced secondary struc-
tures, and ‘n equiv’ are the number of residues found within stretches of 3
or more having P ′

ij ≥ 6. These fields are used during any run of SORT-
TRANS to sort and remove redundant/poor superimpositions. ‘fit pos’ is
the Brookhaven numbering of the position in the database sequence to which
the query’s N-terminal end was aligned for the initial fit. The transformation
supplied is that for the superimposition of the database structures onto the
query.

3.6 Output to standard output or log file

STAMP now keeps fairly quiet during its running, updating the user only
after a pairwise/treewise/scan comparison has been compeleted. You can get
lots of other output by using the -V (verbose) option. If you want a lot of
output to be written to a file instead of the standard output, you can use -V
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in conjunction with -logfile <file name>.
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Chapter 4

Summary of STAMP
parameters

4.1 Main program (STAMP)

The format for running STAMP is:

stamp -l <starting domain file> -s -o <output file> -P <parameter file>

-n <1 or 2 fits> -d <database file for scans>

-slide <slide value>

-pen1 <gap penatly 1> -pen2 <gap pentalty 2>

-prefix <output file prefix>

-V

-rough

-cut

-<parameter> <value>

If you have old STAMP parameter files, they can be read by using the com-
mand stamp -P <parameter file>. This means that the old file can be read
in exactly the same way as for version 2.0.

In general, all commands can be specified by -<parameter> <value>. For
example, ‘-first pairpen 0.5’. However, I have made some abbreviations for
frequently used commands, these are:

-l <starting domain file> same as -listfile <list file>

-o <output file> same as -logfile <output file>

-n <1 or 2> same as -npass <1 or 2>

-pen1 <gap penalty 1> same as -first_pairpen <gap penalty 1>
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-pen2 <gap penalty 2> same as -second_pairpen <gap pentalty 2>

-prefix <output prefix> same as -transprefix <output prefix>

-s same as -scan true

-d <database file> same as -database <database file>

-slide <slide parameter> same as -scanslide <slide parameter>

-cut same as -co true

-rough same as -roughfit true

Default parameters are always looked for in the file STAMPDIR/stamp.defaults.
You can personalise this is as you like, but I would recommend using the de-
faults, unless you have a thorough understanding of the method. The values
described below were essentially chosen to mimic the successful and well-
tested parameters [1].

I would recommend using the command line parameters. The commands,
and their arguments are given below. The command line parameters are
case insensitive. To use a parameter one need only type ‘-<parameter>
<value>’ or use on of the short forms listed above.

STAMP can also be supplied with a parameter file. Parameters in a pa-
rameter file can be supplied in the format:

<Parameter> <Value> <Optional Comments> [return]

eg.

PAIRWISE Yes Perform pairwise calculations

E1 3.8

E2 3.8

CUTOFF 4.5

The input is read in an open format. Generally, data are expected to be sepa-
rated by spaces or return characters. The number and position of spaces, tabs
and returns generally should not matter with the exception of PDB format,
which is read as the fixed format described in the brookhaven documentation.

The possible parameters are listed below. Strings, characters, floats and
integers are as expected (though strings may not contain spaces). Boolean
variables may be set by any of the following:
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TRUE == TRUE, True, T, true, Yes, YES, yes, Y, 1

FALSE == FALSE, False, F, false, No, NO, n, 0

LOGFILE <string>
This is the file into which the log is to be written. If ‘stdout’ is supplied then
the information is written to the standard output.
Default LOGFILE = stdout

LISTFILE <string> (or ‘-l <string>’ or ‘-f <string>’)
This is the name of a file that contains the location and description of the
domains to be analysed and, if desired, an initial transformation.
Default LISTFILE = domain.list

SECTYPE <integer>
This must be set to 0 (no secondary structure assignment) or to one of the
following values:

SECTYPE = 1 Output from Kabsch and Sander’s DSSP program [19].
SECTYPE = 2 Secondary structure summary format. A string of residue
by residue secondary structure assignments for each domain is to be read in
from SECFILE in the format specified in the previous chapter.

Note that it is not possible to mix assignments. This is probably not a
very realistic thing to do anyway, since assignments can differ substantially.
If you really want to do this, then the only possible way is to set SECTYPE
= 3, and define each secondary structure independently in SECFILE.
Default SECTYPE = 1 (for DSSP).

SECFILE <string>
The file from which user specified secondary structure assignments are to be
read (ie. SECTYPE = 2 only).
Default SECFILE = stamp.sec

PAIRWISE <boolean>
If TRUE, then pairwise comparisons are to be performed for each possible
pair of domains described in LISTFILE. A matrix of pairwise (Sc) scores will
be output (to MATFILE).
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Default PAIRWISE = TRUE

N.B. Many of the following parameters also apply to TREEWISE and SCAN
comparisons. For clarity they are discussed here in the PAIRWISE compar-
ison context.

NPASS <1 or 2> (or ‘-n <1 or 2>’)
Whether one or two fits are to be performed. The idea is that the initial
fit can be used with a conformation biased set of parameters to improve
the initial fit prior to fitting using distance and conformation parameters.
The parameters described below are called ‘first ’ and ‘second ’ accordingly.
When NPASS = 1, then only the ‘second ’ (or unprefixed) parameters are
used. Default NPASS = 1

SW <0 or 1>
If set to 0, then the entire M x N matrix will be calculated and used during
the Smith Waterman path finding routine. If set to 1, then a corner cutting
routine will be used (to save time). Note that corner cutting will nullify many
of the parameters specified in [1], and recommended only for SCAN mode.
Accordingly, corner cutting parameters are specified below (after SCAN).

PAIRPEN <float> (or ‘-pen1 <float>’/ ‘-pen2 <float>’)
(first PAIRPEN)
(second PAIRPEN)
Smith-Waterman gap penalty to be used during the fitting. second PAIRPEN
and PAIRPEN are equivalent. (PAIRPEN is also relevant to treewise fitting)
Defaults PAIRPEN = second PAIRPEN = 0.0 first PAIRPEN = 0.0

E1 <float>
E2 <float>
(first E1,first E2)
(second E2,second E2)

Rossmann and Argos parameters to be used during the fitting. Rossmann
and Argos suggested that E1 = E2 = 3.8 lead to good superimpositions,
and further suggested that E1 = 20.0 and E2 = 3.8 would relax the distance
requirement, and allow poor initial superimpositions to be improved. The
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defaults are defined accordingly.
Defaults:
E1 = second E1 = 3.8
E2 = second E2 = 3.8
first E1 = 20.0
first E2 = 3.8

I would not recommend modifying these parameters, since I really don’t
know what changing them will do. If it ain’t broke, don’t fix it as my father
would say.

NA <float>
NB <float>
NASD <float>
NBSD <float>
NSD <float>
NMEAN <float>

Parameters used to define Pij′ and Sc values. These are defined in [1]. I
wouldn’t change these.

Defaults:
NA = -0.9497
NB = 0.6859
NASD = -0.4743
NBSD = 0.01522
NMEAN = 0.02
NSD = 0.1

CUTOFF <float>
(first CUTOFF)
(second CUTOFF)
This is the minimum Pij′ value allowed for atoms to be used for a least
squares fit. Equivalences above this value will be used to determine a trans-
formation and RMS deviation.
Defaults:
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CUTOFF = second CUTOFF = 4.5
first CUTOFF = 1.0

PAIRALIGN <boolean>
If true, then each final pairwise alignment will be output to the log file.
Default PAIRALIGN = FALSE

COLUMNS <integer>
Number of sequence positions to be displayed per line when either PAIRALIGN,
SCANALIN or TREEALIGN is set to TRUE.
Default COLUMNS = 80

SCORETOL <float>
This is the percent Sc difference that will result in convergence being reached.
In other words, if 100× abs|Sc −Sc,old|/Sc,old ≤ SCORETOL then the fitting
will be considered done.
Default SCORETOL = 1.0

MAXPITER <integer>
The maximum number of iterations allowed during the pairwise comparisons.
This prevents a particular fit, which jumps between two values rather than
converging, from lasting indefinitely.
Default MAXPITER = 10

MATFILE <string>
This is the file which contains an upper diagonal matrix consisting of the
pairwise Scores (either 1/RMS, or Sc) for each comparison. It may then be
used to derive a tree, if desired, for treewise analysis.
Default MATFILE = <stamp prefix>.mat

ROUGHFIT <boolean> (or ‘-rough’ to set to TRUE)
If set to TRUE, then an initial rough superimposition will be performed by
aligning the N-terminal ends of the sequences and fitting on whatever atoms
this process equivalences. Probably this is too crude for structures that differ
quite a bit, but if they are very similar, one can use this to avoid having to

58



perform a multiple sequence alignment.

TREEWISE <boolean>
If TRUE, then a treewise comparison is performed by following a derived
hierarchy. Reads in the matrix file specified (either created by PAIRWISE
or some other method), derives a tree (dendrogram), and does a tree-based
alignment.
Default TREEWISE = TRUE

TREEPEN <float>
(first TREEPEN)
(second TREEPEN)
Value subtracted from the Pij′ matrix at positions where a residue is to be
aligned with a gap. For details see [1].
Defaults TREEPEN = second TREEPEN = 0.0 first TREEPEN = 0.0

MAXTITER <int>
As for MAXPITER, but applied to the treewise case.
Default MAXPITER = 10

TREEALIGN <boolean>
As for PAIRALIGN, only for treewise comparisons.
Default TREEALIGN = TRUE

STAMPPREFIX <string> (or ‘-prefix <string>’)
This is the name of the family of files that will be produced from a multiple
alignment. The files will be named STAMPPREFIX.<N>, where N is the
number of the cluster after which the alignment has been derived. There are
always one fewer clusters than their are domains being compared.
Default STAMPPREFIX = ‘stamp trans’

SCAN <boolean> (or simply ‘-s’ to set true)
If TRUE, then SCAN mode is selected. TREEWISE and PAIRWISE are
set to FALSE. The first domain described in LISTFILE (the query) is used
to scan all the domains listed in DATABASE. The parameters for scanning
are described below. The output of a SCAN run appears in the file called
STAMPPREFIX.scan.
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Default SCAN = FALSE

DATABASE <string> (or -d <string>)
The list of domains to be compared with the query during a scan.
Default DATABASE = domain.database

MAXSITER <int>
As for MAXPITER and MAXTITER, but for scanning. Equivalent within
the program to MAXPITER.
Default MAXSITER = 10

SCANALIGN <boolean>
As for PAIRALIGN and TREEALIGN, but for scanning. Equivalent within
the program to MAXPITER.
Default SCANALIGN = FALSE

SCANSCORE <integer>
Specifies how the Sc value is to be calculated. This depends on the particular
application. The values are described in the first chapter.

As a general rule of thumb, use SCANSCORE=6 for large database scans,
when you are scanning with a small domain, and wishing to find all examples
of this domain – even within large structures. Use SCANSCORE=1 when
you wish to obtain a set of transformations for a set of domains which you
know are similar (and have defined fairly precisely as domains rather than
the larger structure that they may be a part of).
Default SCANSCORE = 6

SKIPAHEAD <boolean>
If set to TRUE, then the program will skip over all hits. In other words,
if a similarity is found with a particular starting fit position, then the next
fit position will be the last residue of the similar region. This is not always
desirable, since there can be more than one hit within repetetive structures,
such as α/β barrels.
Default SKIPAHED = TRUE

OPD <boolean>

60



Means “One Per Domain”. When the first hit for a domain is found during a
SCAN (i.e. with Sc above SCANCUT), the rest of the comparisons involving
that domain are skipped. Means that multiple matches involving the probe
and database structures will be missed.
Default OPD = FALSE

SCANCUT <float>
If SCANMODE = 1, then Sc must be >= SCANCUT in order for a trans-
formation to be output.
Default SCANCUT = 2.0

SCANSLIDE <integer> (or ‘-slide <integer>’) This is the number of residues
that a query sequence is ‘slid‘ along a database sequence to derive each ini-
tial superimposition. Initially, the N–terminus of the query is aligned to
the 1st residue of the databse, once this fit has been performed and refined,
and tested for good structural similarity, the N–terminus is aligned with the
1+<SCANSLIDE>th position, and the process repeated until the end of the
database sequence has been reached.
Default SCANSLIDE = 5

SCANTRUNC <boolean>
If TRUE, then sequences from DATABASE that are more than SCANT-
RUNCFACTOR x the length of the query sequence are truncated to this
size. This saves a lot of CPU time, as comparisons between things that are
vastly different in size are largely meaningless. Moreover, since most scans
will be done with discrete domains, then this allows separate domains in large
proteins to be compared to the query separately.
Default SCANTRUNC = TRUE

SCANTRUNCFACTOR <float>
The largest size of sequence which may be compared to the query sequence
(expressed as SCANTRUNCFACTOR x query sequence length). Structures
in the DATABASE that are larger than this will be truncated to this size if
SCANTRUNC = TRUE.
Default SCANTRUNCFACTOR = 2.0

SLOWSCAN <boolean>
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If set to TRUE, then the SLOW method of getting the initial fits for scanning
will be used (See chapter 1).
Default SLOWSCAN = FALSE

MIN FRAC <float>
This is the minimum ratio of database length/query length to be allowed. In
other words, if a database structure is too small (ie. if database length/query
length < MIN FRAC), then the comparison will be skipped. Whether to use
this or not depends on whether or not one is interested in sub alignments
where only a part of the query structure is used. The default implies that all
comparisons will be performed.
Default MIN FRAC = 0.001

SECSCREEN <boolean>
If TRUE, then an initial comparison between query and DATABASE sec-
ondary structure assignments (if available) is performed. A secondary struc-
ture distance is defined by:

Dsec =
√

(‖Qh −Dh‖2 + ‖Qb −Db‖2)

where Qh and Qb are the percent of Helix and Beta structure in the query,
and Dh and Db are the same for the database sequence. If Dist is larger than
a threshold (SECSCREENMAX) then the comparison will be ignored.
Default SECSCREEN = true

SECSCREENMAX <float>
This is the maximum value of Dist (above) tolerated. If Dist is larger than
SECSCREENMAX then the comparison is ignored. For screening to be ef-
fective, it is important that secondary structure assignments are accurate
(preferably done using the same program).
Default SECSCREENMAX = 60.0 (this is very lenient; 40 is usually safe)

CCFACTOR <float>
Corner cutting factor. This is approximately the maximum number of gaps
to be tolerated in any pairwise comparison. Only used if SW = 1. For a
more detailed explanation, refer to [6] (pp 279 – 281).
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Default CCFACTOR = 30.0

CCADD <boolean>
If TRUE, then the difference between query and database sequence lengths
will be added to CCFACTOR. Probably this is only realistic when SCANT-
RUNC is set TRUE.
Default CCADD = FALSE

PRECISION <integer>
Since STAMP works as much as possible with integers, this is what all float-
ing point values are multiplied by during conversion. A value of 1000 has
never presented us with any problems.
Default PRECISION = 1000

MAX SEQ LEN <integer>
The maximum length of alignment tolerated. The program ought to inform
you when this value is surpassed.
Default MAX SEQ LEN = 1500

4.2 Summary of parameters for other pro-

grams

4.2.1 PDB checker (PDBC)

This is a simple program which looks for the location of a four letter PDB
code (using the list of directories, prefixes and suffixes supplied in the file
./pdb.directories or if this does not exist STAMPDIR/pdb.directories) There
are several options:

pdbc -q <four letter code>

will merely report useful information (number of atoms, the occurence of
HETATM, resolution, etc.) about each chain found in the PDB file which
corresponds to the four letter code supplied.
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pdbc -d <four letter code>[<chains to be considered>]

this outputs a domain description (or more than one if more than one chain is
given. Sequential use of this program can be used to create a list of domains
for use in scanning.

pdbc -m <four letter code>

this will just report the location of PDB and DSSP files. Good for a quick
test of whether PDB codes can be found in the files specified in STAMPDIR.

Output is to standard output.

4.2.2 PDBSEQ

This program takes a list of protein domains (ie. a LISTFILE) and outputs
a series of sequences derived from the described PDB files. The format is:

pdbseq -f <domain file> [-min <val> -max <val> -separate

-foramt <fasta> -v -tl <max title length>]

‘-min/max <val>’ specify the minimum/maximum sequence length to be
output. If the length of a sequence is less than min or greater than max,
the sequence will be skipped (useful particularly if one wants to ignore very
short PDB sequence, such as peptide inhibitors, etc.).

The output is in NBRF (PIR) format, and is written to the standard output.
Using ‘-format <fasta> will make the output as FASTA format.

The option ‘-separate’ will produce files for each domain in the input file.
These files are named ‘ID’.seq.

The program outputs a title line that attempts to describe the protein se-
quence according to the definitions given in the PDB file. The TITLE,
COMPND and SOURCE lines are strung together (in that order). The
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option -tl ¡number¿ (tl = title limit) specifies the maximum length of this
string. This description will always be postfixed (after a “:”) by the range
of residues considered (i.e. All, Chain a, etc.).

4.2.3 ALIGNFIT

ALIGNFIT takes a multiple sequence alignment of proteins of known 3D
structures and uses it to superimpose them. It requires two files: an AMPS
multiple sequence alignment (block format), and a domain description file.
An optional parameter file may be supplied; if none is given the program
simply uses default parameters.

The format is:

alignfit -a <AMPS file> -d <domain file>

(-P <optional parm file> -<parameter> <value>)

-P can be used to read in an old ALIGNFIT parameter file (version 3.0 and
earlier) The possible parameters, and their defaults are (names are case in-
sensitive):

PAIRWISE <boolean>
If TRUE, then pairwise comparisons will be performed to derive a matrix
(MATFILE).
Default PAIRWISE = TRUE

TREEWISE <boolean>
If TRUE, then treewise comparisons will be performed to derive a final trans-
formation.
Default TREEWISE = TRUE

MATFILE <string>
The file into which the results of PAIRWISE are output.
Default MATFILE = alignfit.mat

MAX SEQ LEN <integer>
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The maximum length of alignment to be tolerated.
Default is 3000

For most purposes, the default parameters should suffice. Note that one can
use ACONVERT to convert CLUSTAL and MSF formats to block format,
so that one can use alignments created using other programs (e.g. PILEUP,
CLUSTAL, etc.) as a starting point for superimposition.

4.2.4 VER2HOR

This program provides a horizontal alignment given a STAMP alignment file
(i.e. a text alignment written to the standard output). The format is:

ver2hor -f <stamp alignment file> [ -columns <width> ]

‘-columns’ specifies the number of columns to be used in the alignment out-
put. This program is explained by example in the Worked Examples chapter.
It also accepts most DSTAMP (see below) commands (i.e. those that are rel-
evant to text output) from the command line.

4.2.5 DSTAMP

This program provides input for ALSCRIPT [20], GJB’s program for the dis-
play of multiple sequence alignments. To get a copy of this program, contact
GJB at the address at the front this manual.

The format is:

dstamp -f <STAMP alignment file> -prefix <output prefix>

(-<parameter> [<value>])

where <parameter> is one of the many parameters described below. The
new command line argument -P reads in parameter files, so if you have old
DSTAMP files, they can still be read in this way.

The parameters for DSTAMP, and their defaults, are (parameter names are
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case insensitive):

prefix <string>
Prefix specifying the name of the alscript (.als) and postscript files (.ps) to
be generated.
Default prefix = ‘alscript’

t <character>
The type of STAMP data to be used (ie. the first letter that occurs after the
‘#’ characters in STAMP multiple alignment output). Default t = ‘G’

c <float>
The minimum (or maximum in the case of RMS deviation) value to make a
position considered as reliably aligned.
Default c = 6.0

w <integer>
The minimum length of a stetch of reliable regions to be allowed.
Default w = 3

ignore <integer>
This is the number of sequences that can be ignored during the calculation
of residue or residue-property conservation (i.e. if ignore = 1 you allow one
‘error’ in one sequence during the calculation of conserved positions).

colour
Boolean parameter. If specified, the output will be in colour (via alscript).

motif
Boolean parameter. If specified, then a motif is written in the space between
the sequence alignment and the aligned secondary structures.

The output is an ALSCRIPT command file.
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4.2.6 SORTTRANS

This program takes the output from a scan, and cleans and sorts the output.
It removes repeated transformations by a simple least squares comparison
of the matrices and vectors for those transformations which have the same
identifier.

The format is:

sorttrans -f <scan output file> -s <keyword> <cutoff> [-t -i]

-f reads output from STAMP scanning, -s tells the program how to sort the
output. The keyword tells which method to use. There are 8 possible key-
words:

Sc sort by Sc

rms RMS deviaition

nfit number of fitted atoms

len alignment length

frac nfit/len

q_frac nfit/q_len (q_len = length of query structure)

d_frac nfit/d_len (d_len = length of database structure)

n_sec number of equivalent secondary structure elements

seq_id percent sequence identity

sec_id percent secondary structure identity

sorted transformations are written to the standard output.
The option -i ==> identifiers only. Consider only the best transformation
per identifier.

The option -n ==> ignore domain descriptors. This means that only the
filename and the transformations are used. This is useful if you have different
domain names attributed to the same region of the structure.

4.2.7 TRANSFORM

This program takes a transformation file, either from ALIGNFIT, STAMP,
or SORTRANS and outputs a series of PDB format files containing the spec-
ified coordinates transformed as specified in the given file.
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The format is:

transform -f <transformation file> [ -g -het -hoh -o <output file> ]

options:

‘-het’ Include hetero atoms. Hetero atoms are normally not included in the
output.
‘-hoh’ Include waters.

‘-g’ Graphics output. This mode puts all transformed coordinates into a
single PDB file, and labels the chains for domains sequentially (after their
order in the transformation file) with A, B, C.. etc. This allows fast analysis
of the structures graphically (i.e. using Rasmol) since one need only colour
each chain a different colour to see the superimposition. The default file for
writing the coordinates using this mode is ‘all.pdb’, but this can be changed
(see below).

‘-o <output file>’ When using ‘-g’, this option allows the specification of
a file to contain the transformed coordinates. The default is ‘all.pdb’

The PDB files will be named <identifier>.pdb (except when running using
the ‘-g’ option).

4.2.8 PICKFRAME

It is often the case that one wishes a particular protein structure to be the
‘parent’ of the superimposition, i.e. the structure that is un-transformed.
Accordingly, the program PICKFRAME allows one to select a particular
reference frame for a particular domain identifier. Given a transformation
file and an identifier, the program will set the selected identifier’s transforma-
tion to the unit matrix and zero vector, and transform the other structures
accordingly. This is useful if one wishes to combine different transformation
files (i.e. if a multidomain protein has two domains, with each being similar
to a separate domain).
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The format is:

pickframe -f <transformation file> -i <domain identifier>

The output will be to the standard output (i.e. one need just pipe the results
into a file).

This program is very useful if one wishes to superimpose STAMP results
for two different domains from the same protein. Since one can just make
all transformations relative to the PDB file containing the two domains, and
then combine the output into one transformation file.

4.2.9 MERGETRANS & EXTRANS

Sometimes one has several transformations and wants to combine them. For
example, one may have transformations from an ALIGNFIT run (i.e. taken
from a multiple alignment) and those from a STAMP run and want to com-
bine them, since they have at least one domain in common. This would avoid
having to run the more time-consumming STAMP program on things where
similarity was obvious (i.e. clear sequence homologues). MERGETRANS
allows this to be done.
The format is:

mergetrans -f1 <transformation file1> -f2 <transformation file2> [-i <domain identifier>]

If an identifier is given, then that identifier will be used to link the two files
(provided it can be found in both). Otherwise the program will simply search
for the first identifier that is exactly in common across the two transforma-
tion files.

One may also wish to extract particular transformations from a file. To
do this, use EXTRANS as follows:
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extrans -f <transformation file> -i <id1> <id2> <id3> ... <idN>

A new transformation file will be output to the standard output containing
only those domains that have been input on the command line.

4.2.10 MERGESTAMP

Sometimes one has several files containing transformations or alignemnts or
both and wants to combine them. Alignments/transformations from STAMP
may need to be combined with (for example) an alignment of a single PDB se-
quence with it’s homologues from a sequence database search, etc. MERGES-
TAMP does just this. It is essentially an extension of MERGETRANS.

The format is:

mergestamp -f1 <transformation file1> -f2 <transformation file2> [-i <domain identifier>]

If an identifier is given, then that identifier will be used to link the two
files (provided it can be found in both). Otherwise the program will sim-
ply search for the first identifier that is exactly in common across the two
transformation/alignment files.

4.2.11 AVESTRUC
For various reasons, it is often useful to derive ‘average‘ structures (i.e. for
homology modelling, molecular replacement search objects, etc.). STAMP
output provides an obvious starting point for obtaining an average structure.
AVESTRUC reads in a STAMP alignment file, and generates another PDB
file containing averaged coordinates (either as C alpha or as a polyalanine
structure).

The format is:

avestruc -f <STAMP alignment file>

[ -polyA -c <STAMP char> -t <threshold> -w <window> -aligned ]
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‘-f’ specifies the file to be considered. Note that this MUST BE a STAMP
alignment file, containing both transformations and a sequence alignment.
It will not work on transformation files lacking sequence alignment data or
STAMP data.

‘-polyA’ generate polyalanine model, the default is a C alpha model

‘-c <STAMP char>’ ‘-t <threshold>’ ‘-w <window>’
these three parameters tell the program how to define structurally equiva-
lent residues. ‘STAMP char’ is the label of the STAMP field specified by
the ‘#’ character in the alignment file. ‘threshold’ is the minimum (or maxi-
mum in the case of RMS deviation) value of the specified STAMP parameter
tolerated, and ‘window’ tells the minimum number of residues over which
this must be true for structural equivalence. This is less complicated than it
sounds.

The default is as described in [1]:
STAMP char = ‘G’ (i.e. Pij′)
threshold = 6.0
window = 3
(i.e. stretches of three or more residues having Pij′ > 6.0 are considered
equivalent)

‘-aligned’ this flag will generate an averaged position for all positions struc-
tures are present at a position (i.e. positions not containing any gaps are
deamed equivalent). The temperature factor will then distinguish between
genuine structural equivalences and fortitously aligned residues.

‘-ident’ ‘-cons’ these flags will name residues either as a single amino acid
type (ident) or a conserved type (cons) according to the sequence alignment.
See the appropriate sections in the preceding chapter for a further explana-
tion.

4.2.12 GSTAMP

Like DSTAMP, this program takes STAMP output and translates it in to
input for another program, namely Per Kraulis’ program MOLSCRIPT. The
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program allows one to create multiple molscript files (i.e. one for each struc-
ture in the STAMP alignment file), or a single molscript file for an aver-
age structure. Appropriate PDB files for these alternatives must be gener-
ated by using TRANSFORM and AVESTRUC, respectively, prior to running
MOLSCRIPT.

When multiple structure are considered, structurally equivalent regions (spec-
ified as for AVESTRUC) are shown as MOLSCRIPT helix, strand or coil.
Non-structurally equivalent regions are shown as Cα trace. For an example
of how this looks, see Figure 1 [11] or Figure 1 in [12].

The rest is up to you. Once MOLSCRIPT input files have been generated,
they can be modified to suit your particular display needs (i.e. using colour,
etc.).

The format is:

gstamp -f <STAMP alignment file>

[ -c <STAMP char> -t <threshold> -w <window> -aligned -a -cons ]

-f, -c, -t, -w and -aligned is as for AVESTRUC and DSTAMP.

-a specifies that an average structure is to be used.

-cons specifies how the secondary structures are to be define in the MOLSCRIPT
files. By default, structures are displayed as helix or strand only if all struc-
tures are helix or strand at the positions. ‘- cons’ means that structures are
displayed as helix or strand if the majority of structures are helix or strand
at the positions. In both cases, the remaining structures are drawn as ‘coil’.

BUG: sometimes GSTAMP will output single residue strands for Molscript
input. It is therefore necessary to modify the Molscript output to correct the
odd mistake (single residue strands produce funny pictures in my version of
MOLSCRIPT — try it and see).
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4.2.13 STAMP CLEAN

This program allows you to tidy up gaps that are not meaningful in the
context of a multiple sequence alignment derived from structure. In other
words, regions that are not similar across all members of a structural family
can be ‘cleaned’ to remove isolated residues aligned in the middle of nowhere.
Note that one doesn’t always want to do this (since the sub-alignments can
be meaningful).

The format is:

stamp_clean <stamp alignment file> <minimum segment length> > <output file>

The <minimum segment length> is the minimum number of residues that
is to be considered significant. I always use 3, since this means that short
stretches of 1-2 residues that are surround by gaps (i.e. in any sequence) are
‘cleaned’. Try it and see what I mean.

4.2.14 Converting alignment formats using ACONVERT

ACONVERT is a utility for interconverting alignment formats. It can be
found installed as bin/aconvert in the STAMP installation directory. The
typical usaage is:

aconvert [-in <type> -out <type>] < <input file> > <output file>

where ‘type’ is one of ‘c’, ‘m’, ‘b’, ‘f’, ‘p’, which denote CLUSTAL, MSF,
AMPS/BLOCK, FASTA and PIR format respectively. If no ‘-in’ argument
is given, the program tries to guess the format, though note that this can
sometimes fail (the program will usually issue an error in this case). For
examplle to convert a STAMP alignment into CLUSTAL format, one would
run :

aconvert -in b -out c < stamp_trans.10 > stamp_trans.10.aln

74



Chapter 5

Installation

5.1 Compiling/running

STAMP requires an ANSI C compiler (e.g. GCC) for installation.

STAMP is distributed as a gzipped tar file, which must be uncompressed
and untarred to create the installation directory.

On most Unix and Unix-like systems, one can install STAMP with:

gunzip STAMP.tarfile.gz

tar -xvf STAMP.tarfile

cd stamp

./BUILD <system type> (e.g. BUILD sgi)

should work.

The systems that are available are:

linux (should also work on Cygwin and MinGW)
osx (Mac OS X) sgi (IRIX64 version 6.2)
mips4-sgi (IRIX64 R10K version 6.2)
dec (OSF1 version 4.0)
sun (SunOS sol4 5.5.1)
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All of these are specified by a makefile in the src/ sub–directory. If your
system isn’t one of the above, then you can probably just use the one that
is nearest, and edit the makefile accordingly.

Note that there are several precompiled executables in the distribution. Files
found in the directories bin/linux, bin/osx, bin/sgi, bin/sun and bin/dec.
You will overwrite these if you attempt a ‘BUILD’ as discussed above. Only
the Linux and OS X binaries are current.

The built executables are copied into the directory bin/<system-type>, which
should be added to your to your PATH environment variable, or linked/copied
to some central directory, such as /usr/local/bin.

5.2 Configuring STAMP

To use STAMP, the user must set the environment variable STAMPDIR to
the full path of the subdirectory ‘/defs’ in which the installation was made.
The directory containing the STAMP binaries, which is STAMPDIR/bin
should also be included in the user’s PATH environment variable.

STAMP reads PDB coordinate information and DSSP secondary structure
assignments. Thus, you should have copies of the PDB and DSSP files for the
structures in which you are interested (although DSSP files are not strictly
required).

STAMP input files do not require that the full paths of the PDB / DSSP files
being loaded should be specified. As an alternative to a full path, STAMP
can find PDB and DSSP files for a domain by using only the domain iden-
tifier and sets of patterns defined in the files ‘STAMPDIR/pdb.directories’
and ‘STAMPDIR/dssp.directories’. The format of each line in these files is:

<directory> <prefix> <suffix> [RETURN]

76



For example, the default pdb.directories file looks like this:

_ _ _

./ _ _

./ _ .pdb

./ _ .pdb.Z

./ _ .pdb.gz

./ pdb .ent

STAMP searches for the PDB/DSSP files corresponding to a domain by
taking the first four characters of the domain identifier as a PDB code and
combining the code with each of patterns in turn to construct a test file name.
If the test file exists, then that is used as the source of PDB coordinates or
DSSP records. The fields in the pattern on each line are:
1. Directory path
2. File prefix
3. File suffix
If a field has the value ‘ ’, then it is ignored when creating a test filename.
For example, suppose STAMP is searching for the PDB file for a domain
with the identifier 4chaa. Using the default pdb.directories file, STAMP will
attempt to open the following sequence of files:
4cha ./4cha ./4cha.pdb.Z ./4cha.pdb.gz ./pdb4cha.ent
The first file which it finds will be loaded to find coordinates for the domain.
If you specify the full path to the PDB files in a STAMP input file, or the
PDB files are in the directory in which you run STAMP, then the default
pdb.directories file will be sufficient and you need not modify it.
A recent modification (version 4.2) is to look in each of the ‘distr’ type sub-
directories for filenames. Some people store PDB files in a format, e.g.

<directory>/ab/pdb1abc.ent

Where the two letter sub-directory name corresponds to the second two
characters in the four letter PDB code (i.e. ignoring the leading number).
STAMP now handles these file types. If you just specify the top directory,
the program will explore suitable two-letter sub-directories corresponding to
each file it is looking for.
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dssp.directories contains a description as to where possible DSSP files may
be found. The format is as for pdb.directories, e.g.

_ _ _

./ _ .dssp

./ _ .dssp.Z

For example, the DSSP file for 4mbn might be found in the file ./4mbn.dssp

STAMP now reads compressed files (.Z or .gz suffixes). In order for this
to work properly, you must have the programs zcat (.Z) and gunzip (.gz)
installed on your system.

5.3 Getting other programs

There are several other programs that are useful to have when using STAMP:

DSSP – Definition of Secondary Structure in Proteins, Kabsch & Sander.
Contact
http://swift.cmbi.kun.nl/gv/dssp/
Note that this is the WWW page for both the program and a database of
precomputed DSSP files corresponding to PDB entries.

Jalview – a cross-platform multiple alignment editor.
WWW page: http://www.jalview.org

ALSCRIPT – displays alignments in PostScript format, contact GJB (see
address above)
WWW page: http://www.compbio.dundee.ac.uk/

MOLSCRIPT – displays PDB structures in PostScript format, contact:
http://www.avatar.se/molscript/
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Chapter 6

Some of our studies involving
STAMP

STAMP has been used in numerous published studies. Several novel simi-
larities uncovered by STAMP have appeared in the literature: the similarity
between the SH2 domain and domain II of E. coli biotin operon protein [9];
the similarity between HIV matrix protein p17 and Interferon gamma [16]
and numerous others [12, 21, 22].

STAMP has also aided several other investigations into protein structure.
STAMP alignments have been used to determine the best accuracy of sec-
ondary structure prediction from multiple sequence alignment [10]. It has
been used to investigate the conservation of various protein structural fea-
tures across structural similar (but apparently non-homologous) proteins
[11, 13] and has been used for several investigations into protein domain
structure [12, 23, 24].

STAMP has also proved extremely useful when assessing the results of pro-
tein structure prediction by fold recognition [25, 26, 27].

Most recently, STAMP has been used to investigate various aspects of pro-
tein function and evolution, in addition to doing large scale superimpositions
of the entire protein database according to SCOP [13, 14], and problems
associated with alignments for protein comparative modelling [28].
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