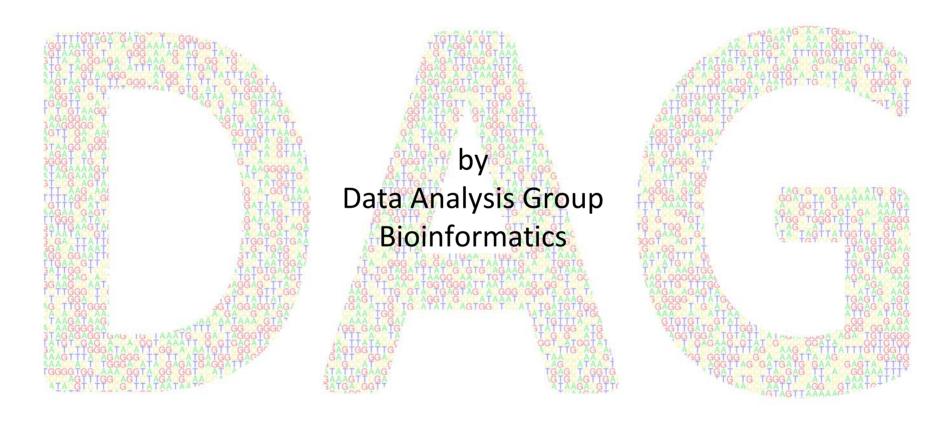
Bioinformatics series

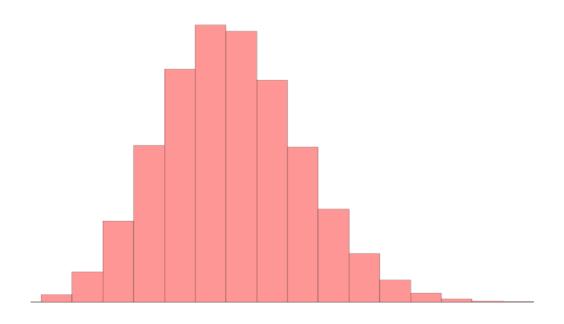
Everything you always wanted to know about statistics*



^{*}but were afraid to ask

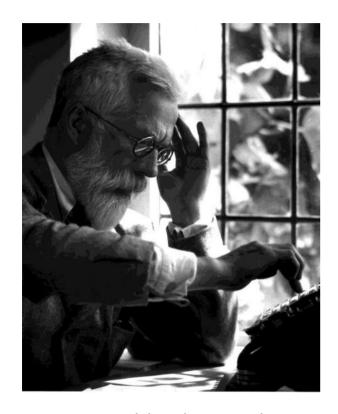
Tea and independence or understanding Fisher's exact test

Marek Gierliński Data Analysis Group Bioinformatics



Fisher's exact test 23 February 2010 3/26

Ronald Fisher



Sir Ronald Aylmer Fisher (1890-1962)

Rothamsted Experimental Station (Hertfordshire)

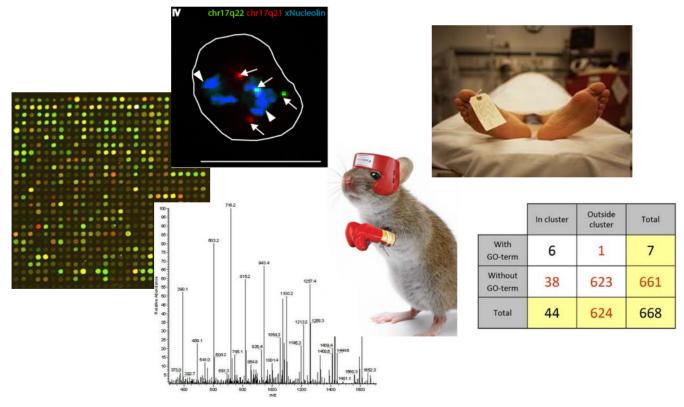
The appreciation of tea

Milk first

Tea first

Typical application

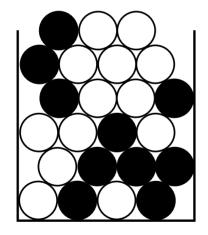
- Dichotomous categorical variable, e.g., success or failure
- Compare observed and estimated success rate
- E.g., enrichment analysis
- Various biological applications: microarray, proteomics, etc.



Let's draw some balls

Draw *n* balls without replacement

removing balls changes probability!



Urn with *N* balls *m* of them white

What is the probability of finding exactly *k* white balls?

6/26

Binomial coefficient

■ "n choose k"

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- In combinatorics it is the number of possible k-element subsets of an nelement set
- From a 5-element set there are 10 possible 3-element subsets

$$\binom{5}{3} = \frac{5!}{3! \times 2!} = \frac{120}{6 \times 2} = 10$$

What are your chances of winning the national lottery?

$$\binom{49}{6}$$
 = 13,983,816

Set of 5 elements

All possible 3-element subsets

- 123
- 145
- 124
- 234
- 125
- 235
- 134
- 245
- 135
- 345

Count all the possibilities

Draw 3 balls. What is the probability of finding exactly 2 whites among them?

All: sets of 3 balls

Good: sets of 2 whites and 1 black

2 whites out of 3

$$N_{\text{black}} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2$$

$$N_{\text{white}} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3$$

$$N_{\text{good}} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 6$$

$$N_{\rm all} = \binom{5}{3} = 10$$

$$P = \frac{N_{\text{good}}}{N_{\text{all}}} = \frac{6}{10} = 0.6$$

Hypergeometric probability

- N balls, m of them white
- Draw n balls
- What is the probability of finding exactly k white balls in the draw?

$$P(X = k) = \frac{\binom{m}{k} \binom{N - m}{n - k}}{\binom{N}{n}} =$$

$$= \frac{ \left(\begin{array}{c} \text{Number of ways} \\ \text{for } k \text{ whites} \end{array} \right) \left(\begin{array}{c} \text{Number of ways} \\ \text{for } n-k \text{ blacks} \end{array} \right) }{ \left(\begin{array}{c} \text{Number of ways} \\ \text{for } n \text{ balls} \end{array} \right)} =$$

$$= \frac{ \left(\begin{array}{c} \text{Number of ways} \\ \text{for } k \text{ whites } \mathbf{and} \ n-k \text{ blacks} \end{array} \right) }{ \left(\begin{array}{c} \text{Number of ways} \\ \text{for } n \text{ balls} \end{array} \right) }$$

	Drawn	Not drawn	Total
White	k	m – k	m
Black	n – k	N+k-n-m	N – m
Total	n	N – n	N

Contingency table

Hypergeometric probability

- 36 balls, 20 of them white
- Draw 10 balls
- What is the probability of finding exactly 8 white balls in the draw?

$$P(X=k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}} = \frac{\binom{20}{8}\binom{16}{2}}{\binom{36}{10}}$$

	Drawn	Not drawn	Total
White	8	12	20
Black	2	14	16
Total	10	26	36

$$= \frac{ \left(\begin{array}{c} \text{Number of ways} \\ \text{for 8 whites} \end{array} \right) \left(\begin{array}{c} \text{Number of ways} \\ \text{for 2 blacks} \end{array} \right) }{ \left(\begin{array}{c} \text{Number of ways} \\ \text{for 10 balls} \end{array} \right) } = \frac{125,970 \times 120}{254,186,856} =$$

$$= \frac{\left(\begin{array}{c} \text{Number of ways} \\ \text{for 8 whites and 2 blacks} \end{array}\right)}{\left(\begin{array}{c} \text{Number of ways} \\ \text{for 10 balls} \end{array}\right)} = \frac{15,116,400}{254,186,856} = \underline{0.059}$$

Hypergeometric distribution

If sums are fixed (yellow fields), the cells in the table follow hypergeometric distribution

$$P\begin{bmatrix} 0 & 20 \\ 10 & 6 \end{bmatrix} = 0.000032 \qquad P\begin{bmatrix} 6 & 14 \\ 4 & 12 \end{bmatrix} = 0.28$$

$$P \begin{bmatrix} 6 & 14 \\ 4 & 12 \end{bmatrix} = 0.28$$

$$P\begin{bmatrix} 1 & 19 \\ 9 & 7 \end{bmatrix} = 0.00090 \qquad P\begin{bmatrix} 7 & 13 \\ 3 & 13 \end{bmatrix} = 0.17$$

$$P \begin{bmatrix} 7 & 13 \\ 3 & 13 \end{bmatrix} = 0.17$$

$$P\begin{bmatrix} 2 & 18 \\ 8 & 8 \end{bmatrix} = 0.0096$$
 $P\begin{bmatrix} 8 & 12 \\ 2 & 14 \end{bmatrix} = 0.059$

$$P \begin{bmatrix} 8 & 12 \\ 2 & 14 \end{bmatrix} = 0.059$$

$$P\begin{bmatrix} 3 & 17 \\ 7 & 9 \end{bmatrix} = 0.051 \qquad P\begin{bmatrix} 9 & 11 \\ 1 & 15 \end{bmatrix} = 0.011$$

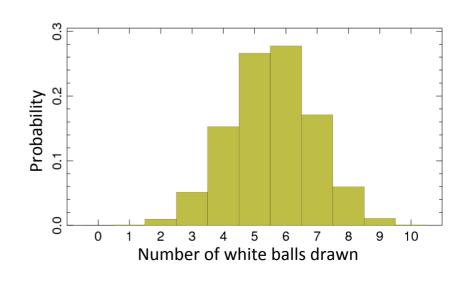
$$P \begin{bmatrix} 9 & 11 \\ 1 & 15 \end{bmatrix} = 0.011$$

$$P \begin{bmatrix} 4 & 16 \\ 6 & 10 \end{bmatrix} = 0.15$$

$$P \begin{bmatrix} 4 & 16 \\ 6 & 10 \end{bmatrix} = 0.15$$
 $P \begin{bmatrix} 10 & 10 \\ 0 & 16 \end{bmatrix} = 0.00073$

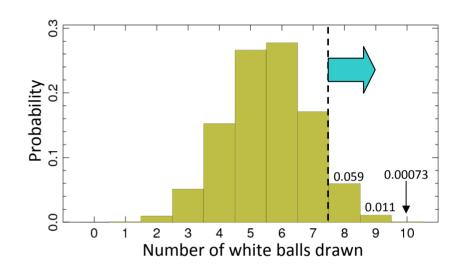
$$P\begin{bmatrix} 5 & 15 \\ 5 & 11 \end{bmatrix} = 0.27$$

	Drawn	Not drawn	Total
White	а	b	20
Black	С	d	16
Total	10	26	36



One-sided test

- Rephrase the question: how unlikely is it to get 8 white balls in a draw?
- Let us consider all cases equally or more extreme
- What is the probability of drawing 8 or more white balls?
- $P(k \ge 8) = 0.059 + 0.011 + 0.00073 = 0.071$
- Enrichment: do we have more than random? (right-sided test)
- Depletion: do we have less than random? (left-sided test)



$$P\begin{bmatrix} 8 & 12 \\ 2 & 14 \end{bmatrix} = 0.059$$

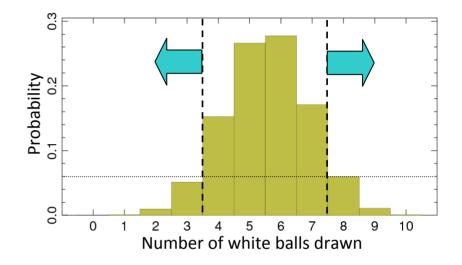
$$P\begin{bmatrix} 9 & 11 \\ 1 & 15 \end{bmatrix} = 0.011$$

$$P\begin{bmatrix} 10 & 10 \\ 0 & 16 \end{bmatrix} = 0.00073$$

Contingency tables considered

Two-sided test

- Two-sided tests ask about any extreme
- Is my result extreme in any way?
- A little practical trick to calculate twosided probability
- Find all probabilities less or equal P(k = 8) on both sides
- Add them together
- P(sum) = 0.000032 + 0.0009 + 0.0096 + 0.051 + 0.059 + 0.011 + 0.00073 = 0.132



$$P\begin{bmatrix} 0 & 20 \\ 10 & 6 \end{bmatrix} = 0.000032$$

$$P\begin{bmatrix} 1 & 19 \\ 9 & 7 \end{bmatrix} = 0.00090$$

$$P\begin{bmatrix} 2 & 18 \\ 8 & 8 \end{bmatrix} = 0.0096$$

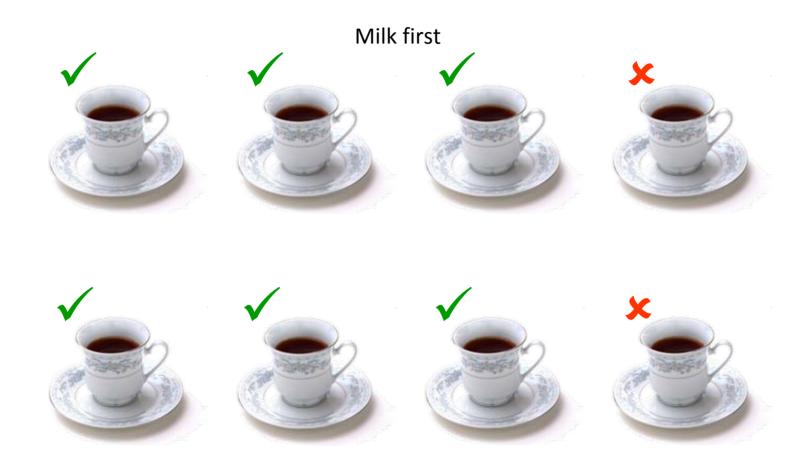
$$P\begin{bmatrix} 3 & 17 \\ 7 & 9 \end{bmatrix} = 0.05$$

$$P \begin{bmatrix} 8 & 12 \\ 2 & 14 \end{bmatrix} = 0.059$$

$$P \begin{bmatrix} 9 & 11 \\ 1 & 15 \end{bmatrix} = 0.011$$

$$P\begin{bmatrix} 10 & 10 \\ 0 & 16 \end{bmatrix} = 0.00073$$

Tea tasting by Muriel Bristol



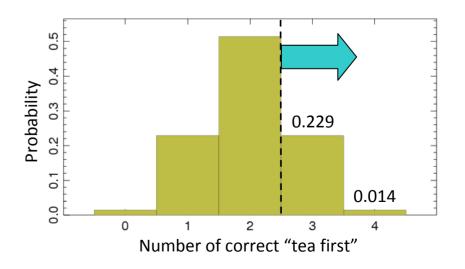
Tea first

Tea tasting test

- 8 cups of tea, 4 with tea first, 4 with milk first
- Null hypothesis: Ms Bristol has no ability to tell the difference
- One-sided probability of getting this or more extreme result by chance is $P(k \ge 3) = 0.229 + 0.014 \approx 0.24$
- The null hypothesis cannot be rejected

	Ms Bristol says tea first	Ms Bristol says milk first	Total
Poured tea first	3	1	4
Poured milk first	1	3	4
Total	4	4	8

15/26



Test of independence

- Columns and rows in the table, typically groups vs categories
- E.g. treatments vs outcomes
- The null hypothesis is that rows and columns are not associated and are independent
- If the resulting p-value is small, we reject the null hypothesis and conclude that the these are associated
- If sums (yellow fields) are fixed, the numbers in cells follow hypergeometric distribution

	Columns					
		Group 1 (Treat. 1)	Group 2 (Treat. 2)	Total		
Kows	Category 1 (Success)	а	b	a + b		
Š	Category 2 (Failure)	С	d	c + d		
	Total	a + c	b + d	a+b+c+d		

16/26

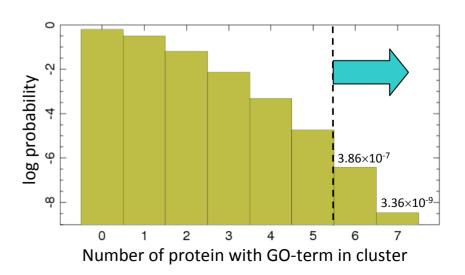
2x2 contingency table

- rows milk or tea put in first
- columns Ms Bristol thinks that tea or milk was put in first
- null hypothess Ms Bristol's guesses are independent of what was put first (i.e. random)
- p-value large cannot reject null hypothesis

Proteomics example

- There are 668 proteins in an experiment
- 7 of them have an associated Gene
 Ontology term (GO:00301174, regulation of
 DNA replication initiation)
- We have a cluster of 44 proteins with similar properties
- 6 of them have this GO term
- Is it significantly enriched?
- $P(k \ge 6) = 3.9 \times 10^{-7}$

	In cluster	Outside cluster	Total
With GO-term	6	1	7
Without GO-term	38	623	661
Total	44	624	668



In-or-out example

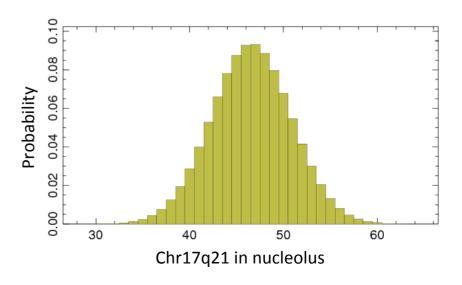
Using FISH probes

Fisher's exact test

- Observing association of two regions in human chromosome 17 with the nucleolus
- 34 out of 238 (14.3%) probes found in nucleolus for q21
- 56 out of 222 (25.2%) probes found in nucleolus for q22
- Are these significantly different?

	Chr17q21	Chr17q22	Total
In nucleolus	34	56	90
Outside nucleolus	204	166	370
Total	238	222	460

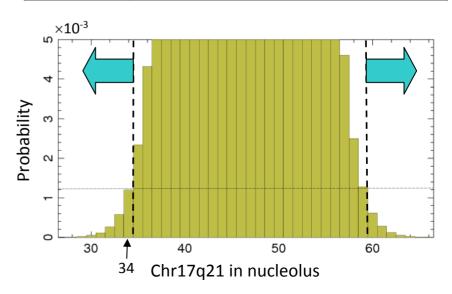
18/26



In-or-out example

- Using FISH probes
- Observing association of two regions in human chromosome 17 with the nucleolus
- 34 out of 238 (14.3%) probes found in nucleolus for q21
- 56 out of 222 (25.2%) probes found in nucleolus for q22
- Are these significantly different?
- No a priori assumption about alternative to null hypothesis – either chromosomal locus can be more or less associated with the nucleolus
- Two-sided test: add all the probabilities less or equal P(k = 34)
- P(sum) = 0.0033

	Chr17q21	Chr17q22	Total
In nucleolus	34	56	90
Outside nucleolus	204	166	370
Total	238	222	460



Absolute numbers are important!

- A newspaper reports clinical tests on a new drug
- 15% of patients treated with drug A showed improvement
- 30% of patients treated with drug B showed improvement
- So, drug B is 100% better than drug A!

Absolute numbers are important!

- A newspaper reports clinical tests on a new drug
- 15% of patients treated with drug A showed improvement
- 30% of patients treated with drug B showed improvement
- So, drug B is 100% better than drug A!
- Actual numbers: 20 and 10 patients
- $P(k \le 3) = 0.306$; insignificant!

	Drug A	Drug B	Total
Improvement	3	3	6
No improvement	17	7	24
Total	20	10	30

p = 0.306

Absolute numbers are important!

- A newspaper reports clinical tests on a new drug
- 15% of patients treated with drug A showed improvement
- 30% of patients treated with drug B showed improvement
- So, drug B is 100% better than drug A!
- Actual numbers: 20 and 10 patients
- $P(k \le 3) = 0.306$; insignificant!
- If we had 80 patients in each group and the same proportions, this would be significant, $P(k \le 12) = 0.018$
- Moral 1: don't trust newspapers
- Moral 2: estimate the size of your sample before you do your experiment, so the result is more significant

	Drug A	Drug B	Total
Improvement	3	3	6
No improvement	17	7	24
Total	20	10	30

p = 0.306

	Drug A	Drug B	Total
Improvement	12	24	36
No improvement	68	56	124
Total	80	80	160

p = 0.0182

Chi square test

- χ² test is an approximation of Fisher's exact test, which works well for large numbers
- Comparing observed (O_{ij}) with expected (E_{ii}) values
- Expected values are $E_{ij} = Np_i p_j$
 - p_i proportions in row i
 - p_i proportions in column j
 - *N* total number

	Chr17q21	Chr17q22	Total	Proportion
In nucleolus	34	56	90	19.6%
Outside nucleolus	204	166	370	80.4%
Total	238	222	460	
Proportion	51.7%	48.3%		•

Chi square test

- χ² test is an approximation of Fisher's exact test, which works well for large numbers
- Comparing observed (O_{ij}) with expected (E_{ii}) values
- Expected values are $E_{ij} = Np_i p_j$
 - p_i proportions in row i
 - p_i proportions in column j
 - N total number

		Chr17q21	Chr17q22	Total	Proportion	
	In nucleolus	34	56	90	19.6%	
		46.6	43.5			
	Outside nucleolus	204	166ᢏ	270	90.40/	
		191.2	178.6	370	80.4%	
	Total	238	222	460	Observed	
	Proportion	51.7%	48.3%			
		Estimated				
	$460 \times 0.804 \times 0.483$					

 $460 \times 0.804 \times 0.483$

25/26

Chi square test

- χ² test is an approximation of Fisher's exact test, which works well for large numbers
- Comparing observed (O_{ij}) with expected (E_{ii}) values
- Expected values are $E_{ij} = Np_i p_j$
 - p_i proportions in row i
 - p_i proportions in column j
 - *N* total number

$$\chi^{2} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

- Then find p-value from χ^2 distribution (tabulated or computed) for 1 degree of freedom
- Corresponds to two-sided Fisher's test

Chr17q21	Chr17q22	Total	Proportion
34	56	90	19.6%
46.6	43.5		
204	166,	270	80.4%
191.2	178.6	3/	60.470
238	222	460	Observed mated
51.7%	48.3%	Fatin	
	46.6 204 191.2 238	34 56 46.6 43.5 204 166 191.2 178.6 238 222	34 56 90 46.6 43.5 90 204 166 370 191.2 178.6 370 238 222 460 51.7% 48.3%

$$\chi^{2} = \frac{(34 - 46.6)^{2}}{46.6} + \frac{(56 - 43.5)^{2}}{43.5} + \frac{(204 - 191.2)^{2}}{191.2} + \frac{(166 - 178.6)^{2}}{178.6} = 8.74$$

$$p_{\text{chi square}} = 0.0031$$

 $p_{\text{Fisher}} = 0.0033$

Summary

- Fisher's exact test is typically used when you have
 - two groups of data
 - two categories in which data fall (success or failure)
- Create a 2×2 contingency table
- Calculate one- or two-sided probability (hypergeometric distribution)
- Null hypothesis:
 - rows and columns in the contingency table are independent
 - or, difference between data groups is due to random sampling
 - or, treatments do not affect outcomes
 - or, my sample is not enriched
- p-value small: reject hypothesis, there is something special in the data
- p-value large: do not reject hypothesis, data are just random
- When you have more than about 100 counts in the table, use chi squared test instead
- Try estimating significance of your result before you do the experiment

This presentation is available at http://www.compbio.dundee.ac.uk/user/mgierlinski/fisher.pdf

A good Fisher's test and χ^2 test is available at http://www.quantitativeskills.com/sisa/statistics/fisher.htm

