Error analysis in biology

Marek Gierliński
Division of Computational Biology

Hand-outs available at http://is.gd/statlec

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below

John Dryden (1631-1700)
Why do we need errors (a silly question)?

- Consider a microarray experiment
- Comparing control and treatment
- Expression level of FLG
 - control = 41,723
 - treatment = 19,786
- There is a 2-fold change in intensity
- Great! Gene is repressed in our treatment!
Why do we need errors (a crucial question)!

- Consider a microarray experiment
- Comparing control and treatment
- Expression level of FLG
 - control = 41,723
 - treatment = 19,786
- There is a 2-fold change in intensity
- Great! Gene is repressed in our treatment!
- Now repeat this measurement 30 times
 - control = (31.5±1.6)×10³
 - treatment = (27.7±2.4)×10³
- Reveal variability of expression
- Distributions are very similar
- t-test gives $p = 0.2$
- No difference between control and treatment
“A measurement without error is meaningless”

My physics teachers
Table of contents

1. Probability distribution ①
2. Random errors ②
3. Statistical estimators ②
4. Confidence intervals ③ ④
5. Error bars ⑤
6. Quoting numbers and errors ⑤
7. Error propagation ⑥
8. Linear regression errors ⑥
Example

- Experiment: count bacteria in a sample using dilution plating
- 6 replicates
- Find the following numbers of colonies
 5 3 3 7 3 9
- What can we say about these results?
 - Experimental result is a **random variable**
 - It follows a certain **probability distribution**
- Based on our sample, we can make predictions on future experiments
- We can discuss uncertainty, or error, of the count
1. Probability distribution

“Misunderstanding of probability may be the greatest of all general impediments to scientific literacy”

Stephen Jay Gould
Random variable

- Random variable can assume random values
- Numerical outcome of an experiment
- Example: result of throwing 2 dice (any number between 2 and 12)
- Non-random variable: number of mice in front of you (5)
- But even the number of mice can be a random variable!
- All values in biological experiments are random variables
Random variable

- Random variable can assume random values
- Numerical outcome of an experiment
- Example: result of throwing 2 dice (any number between 2 and 12)
- Non-random variable: number of mice in front of you (5)
- But even the number of mice can be a random variable!
- All values in biological experiments are random variables
- Two types of random variables
 - discrete - can assume only certain values
 - number of mice
 - continuous – can assume any value
 - weight of a mouse
Probability distribution

- Probability distribution of a random variable X
- It defines the probability of finding X in a certain range of values
Probability distribution

- Probability distribution of a random variable X
- It defines the probability of finding X in a certain range of values

- discrete variable ($k = 0, 1, 2, ...$)
 - $P(X = k)$ is a probability of finding $X = k$
 - $P(k_1 \leq X \leq k_2)$ is the sum of individual probabilities

- continuous variable (any value of x)
 - $f(x)$ is a probability density function
 - $P(x_1 \leq X < x_2)$ is the area under the $f(x)$ curve between x_1 and x_2
 - $P(X = 5) = 0$

Notation:
- $X, Y, W, ...$ - random variables (symbols)
- $x, y, k, ...$ - actual numbers
Gaussian distribution

- Gaussian (or normal) probability distribution

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

- \(\mu \) - mean
- \(\sigma \) - standard deviation
- \(\sigma^2 \) - variance

- It is called “normal” as it often appears in nature
- Many observables are normally distributed (central limit theorem)

\[\mathcal{N}(10, 1.5) \] - normal distribution with \(\mu = 10 \) and \(\sigma = 1.5 \)
Gaussian distribution: a few numbers

- Area under the curve = probability
- Probability of being within one sigma of the mean is about ⅔ (68.3%)
- Terminology “one sigma”, “three sigma”: probability of being outside a range (tail)
- 95% confidence intervals are traditionally used: correspond to about 1.96\(\sigma\)

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
<th>Odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>±1(\sigma)</td>
<td>68.3%</td>
<td>31.7%</td>
</tr>
<tr>
<td>±1.96(\sigma)</td>
<td>95.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>±2(\sigma)</td>
<td>95.4%</td>
<td>4.6%</td>
</tr>
<tr>
<td>±3(\sigma)</td>
<td>99.7%</td>
<td>0.3%</td>
</tr>
<tr>
<td>±4(\sigma)</td>
<td>99.994%</td>
<td>0.006%</td>
</tr>
<tr>
<td>±5(\sigma)</td>
<td>99.99993%</td>
<td>0.00007%</td>
</tr>
</tbody>
</table>

\(\mathcal{N}(10, 1.5)\) - normal distribution with \(\mu = 10\) and \(\sigma = 1.5\)
Example: Gaussian distribution

Height of 25,000 individuals from Hong Kong
- mean = 172.70 cm
- standard deviation = 4.83 cm
- standard error = 0.03 cm

$\mathcal{N}(172.70, 4.83)$
Carl Friedrich Gauss (1777-1855)

- Brilliant German mathematician
- Constructed a regular heptadecagon with ruler and compass
- He requested that a regular heptadecagon be inscribed on his tombstone
- However, it was Abraham de Moivre (1667-1754) who first formulated “Gaussian” distribution
Exercise: estimate an outlier

- Obesity study in mice
- Sample of 100 mice, find body weight
 - mean = 20 g
 - standard deviation = 5 g
- Jerry’s weight is 30 g
- What is the probability of Jerry being that fat?

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
<th>Odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>±1σ</td>
<td>68.3%</td>
<td>31.7%</td>
</tr>
<tr>
<td>±1.96σ</td>
<td>95.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>±2σ</td>
<td>95.4%</td>
<td>4.6%</td>
</tr>
<tr>
<td>±3σ</td>
<td>99.7%</td>
<td>0.3%</td>
</tr>
<tr>
<td>±4σ</td>
<td>99.994%</td>
<td>0.006%</td>
</tr>
<tr>
<td>±5σ</td>
<td>99.99993%</td>
<td>0.00007%</td>
</tr>
</tbody>
</table>
Exercise: estimate an “outlier”

- What is the probability of Jerry being that fat?
- 30 g is 2σ from the mean:
 - $P(X = 30\, \text{g}) = 0$
 - $P(X \geq 30\, \text{g}) = 2.3\%$
 - $P(X \geq 30\, \text{g} \cup X < 10\, \text{g}) = 4.6\%$
- One-tail or two-tail probability?

 - But even with probability of 2.3% you will expect on average about 2 fat mice in a sample of a 100

- Rare events are expected in large samples
- Jerry is fat, but he is not a statistical outlier
Log-normal distribution

- Log-normal distribution is a probability distribution of a random variable whose logarithm is normally distributed

<table>
<thead>
<tr>
<th>Log-normal</th>
<th>X</th>
<th>$X = e^Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>$Y = \ln X$</td>
<td>Y</td>
</tr>
</tbody>
</table>

- Log-normal distribution can be very asymmetric!

![Log-normal distribution graph](attachment:image.png)

1. **Linear space**
 - $X = e^Y$

2. **Logarithmic space**
 - $Y = \log X$
Example: log-normal distribution

- Peptide intensities from mass spectrometry experiment

- P_{SD} - fraction of data within $M \pm SD$

- Data look better in logarithmic space
- Always plot the distribution of your data before analysis

- About two-thirds of data points are within one standard deviation from the mean only when their distribution is approximately Gaussian
A few notes on log-normal distribution

- Examples of log-normal distributions
 - gene expression (RNA-seq, microarrays)
 - mass spectrometry data
 - drug potency IC_{50}

- Difference in log space is a ratio in linear space

$$\log x_1 - \log x_2 = \log \frac{x_1}{x_2}$$

- This is why you should use ratios, not differences, to compare results in these experiments

- It doesn’t matter if you use \log_2, \log_{10} or ln, as long as you are consistent

- \log_{10} is easier to understand in plots
 - $10^6 = 1,000,000$
 - $2^{12} = 4096$
John Napier (1550-1617)

- Scottish mathematician and astronomer
- *Mirifici Logarithmorum Canonis Descriptio* (1614)
- Invented logarithms and published first tables of natural logarithms
- Created “Napier’s bones”, the first practical calculator
- Had an interest in theology, calculated the date of the end of the world between 1688 and 1700
- Apparently involved in alchemy and necromancy
Poisson distribution

- Consider radioactive decay
- Atomic nucleus can decay spontaneously
- We don’t know when it is going to happen

- We know how likely it is to happen in a given period of time
- Collect counts in 1-s bins
- Create distribution of counts per bin

- This applies to any counts in time or space
 - number of deaths in a population
 - number of cells in a counting chamber
 - number of mutations in a DNA fragment
Poisson distribution

- Random and independent events
- Probability of observing exactly \(k \) events:
 \[
P(X = k) = \frac{\mu^k e^{-\mu}}{k!}
\]
- Poisson distribution is characterized by the mean count rate, \(\mu \) (not integer!)
- Standard deviation is not a free parameter:
 \[
 \sigma = \sqrt{\mu}
 \]
- For large \(\mu \) Poisson distribution approximates Gaussian
Example: Poisson distribution

- von Bortkiewicz (1898) “Das Gesetz der kleinen Zahlen”
- Number of soldiers in the Prussian army killed by horse kicks
 - 10 army corps, 20 years of data
 - Deaths per year per army corps
- One year in one corps there were four deaths – investigation started
- Death distribution follows Poisson law
- mean = 0.61 deaths / corps / year
- 4 deaths in a corps-year are expected to happen from time to time!
- $P(X = 4) = 0.035$ in 10 corps
- On average it should happen once in 29 years
Interarrival times

- How long do we need to wait for the next event to happen?
- Time between two events, ΔT, is called interarrival time
- It is a random variable with cumulative distribution

$$P(\Delta T < t) = 1 - e^{-\mu t}$$

- Probability of observing at least one event in time t
- Mean interarrival time is $\frac{1}{\mu}$

- However, random events occur randomly, so there is no periodicity!
- “On average once in 29 years” does not mean “every 29 years”

Cumulative distribution of interarrival times between 4 deaths in one corps-year ($\mu = 0.035$ per year)

If you play National Lottery once a week, the mean interarrival time between the jackpots is $\frac{1}{\mu} \approx 269,000$ years.
Exercise: Poisson distribution

- Poisson law:
 \[
 P(X = k) = \frac{\mu^k e^{-\mu}}{k!}
 \]

- You transflect a marker into a population of \(n = 3 \times 10^5 \) cells
- It functionally integrates with the genome at a rate of \(r = 10^{-5} \)
- What is the probability of having at least one cell with the marker?

First calculate the mean (expected) number of marked cells:
\[
\mu = nr = 3
\]

Now we can use the Poisson law to find \(P(X = 0) \)
\[
P(X = 0) = \frac{3^0 e^{-3}}{0!} = \frac{1 \times 0.05}{1} = 0.05
\]

Hence, the solution
\[
P(X > 0) = 1 - P(X = 0) = 0.95
\]
Binomial distribution

- A series of \(n \) “trials”
- Probability of “success” in one trial is \(p \)
- Probability of “failure” in one trial is \(1 - p \)
- What is the probability of having exactly \(k \) successes in \(n \) trials?

Binomial distribution

\[
\mu = np
\]

\[
\sigma = \sqrt{np(1-p)}
\]

- For large \(n \) binomial distribution approximates a Gaussian

Applications:

- random errors
- error of a proportion
- error of a median

Example: toss a coin

heads = success (\(p = 0.5 \))
tails = failure (\(1 - p = 0.5 \))

What is the probability of obtaining \(k \) heads from 8 coins?
Exercise: tossing a coin

- Toss 8 coins
- Question: why is the probability having 4 heads much larger than the probability of having 8 heads?

Example: toss a coin
heads = success ($p = 0.5$)
tails = failure ($1 - p = 0.5$)

What is the probability of obtaining k heads from 8 coins?
Exercise: tossing a coin

- Toss 8 coins
- Question: why is the probability having 4 heads much larger than the probability of having 8 heads?

- There is only one way of having 8 heads
 H H H H H H H H

- There are \(\binom{8}{4} = 70 \) ways of getting 4 heads and 4 tails
 H H H H T T T T
 H H H T H T T T
 H H H T T T H T T
 ...

Example: toss a coin
 heads = success \(p = 0.5 \)
 tails = failure \(1 - p = 0.5 \)

What is the probability of obtaining \(k \) heads from 8 coins?
Exercise: recognize these distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise: recognize these distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Uniform</th>
<th>Log-normal</th>
<th>Poisson</th>
<th>Gaussian</th>
<th>Poisson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3.5</td>
<td>3.5</td>
<td>4</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SD</td>
<td>0.87</td>
<td>0.90</td>
<td>2</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Hand-outs available at http://is.gd/statlec

Please leave your feedback forms on the table by the door