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Errors, like straws, upon the surface flow; 
He who would search for pearls must dive below 

John Dryden (1631-1700) 
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Why do we need errors (a silly question)? 

 Consider a microarray experiment 

 Comparing control and treatment 

 Expression level of FLG 

 control = 41,723 

 treatment = 19,786 

 There is a 2-fold change in intensity 

 Great! Gene is repressed in our 
treatment! 
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Why do we need errors (a crucial question)! 

 Consider a microarray experiment 

 Comparing control and treatment 

 Expression level of FLG 

 control = 41,723 

 treatment = 19,786 

 There is a 2-fold change in intensity 

 Great! Gene is repressed in our 
treatment! 

 Now repeat this measurement 30 times 

 control = (31.51.6)103 

 treatment = (27.72.4)103 

 Reveal variability of expression 

 Distributions are very similar 

 t-test gives 𝑝 = 0.2 

 No difference between control and 
treatment 

 



“A measurement without error is meaningless” 

My physics teachers 
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Example 

 Experiment: count bacteria in a sample using 
dilution plating 

 6 replicates 

 Find the following numbers of colonies 

5  3  3  7  3  9 

  What can we say about these results? 

 

 Experimental result is a random variable 

 It follows a certain probability distribution 

 

 Based on our sample, we can make predictions 
on future experiments 

 We can discuss uncertainty, or error, of the 
count 
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1. Probability distribution 

“Misunderstanding of probability may be the greatest of all 
general impediments to scientific literacy” 

 

Stephen Jay Gould 
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Random variable 

 Random variable can assume random values 

 Numerical outcome of an experiment 

 Example: result of throwing 2 dice (any 
number between 2 and 12) 

 Non-random variable: number of mice in front 
of you (5) 

 But even the number of mice can be a random 
variable! 

 All values in biological experiments are 
random variables 
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Random variable 

 Random variable can assume random values 

 Numerical outcome of an experiment 

 Example: result of throwing 2 dice (any 
number between 2 and 12) 

 Non-random variable: number of mice in front 
of you (5) 

 But even the number of mice can be a random 
variable! 

 All values in biological experiments are 
random variables 

 Two types of random variables 

 discrete - can assume only certain values 

 number of mice 

 continuous – can assume any value 

 weight of a mouse 
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Probability distribution 

 Probability distribution of a random 
variable 𝑋 

 It defines the probability of finding 𝑋 in a 
certain range of values 

discrete 

continuous 
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Probability distribution 

 Probability distribution of a random 
variable 𝑋 

 It defines the probability of finding 𝑋 in a 
certain range of values 

 discrete variable (𝑘 = 0, 1, 2, …) 

 𝑃(𝑋 = 𝑘) is a probability of finding 𝑋 = 𝑘 

 𝑃(𝑘1 ≤ 𝑋 ≤ 𝑘2) is the sum of individual 
probabilities 

 continuous variable (any value of 𝑥) 

 𝑓(𝑥) is a probability density function 

 𝑃(𝑥1 ≤ 𝑋 < 𝑥2) is the area under the 𝑓(𝑥) 
curve between 𝑥1 and 𝑥2 

 𝑃 𝑋 = 5 = 0 

 

discrete 

continuous 

P(X < 3) = ? 0.44 

0.15 

0.11 

0.06 

Notation: 
• 𝑋, 𝑌, 𝑊, … - random variables (symbols) 
• 𝑥, 𝑦, 𝑘, … - actual numbers 
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Gaussian distribution 

 Gaussian (or normal) probability distribution 

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒

−
𝑥−𝜇 2

2𝜎2  

 𝜇 - mean 

 𝜎 - standard deviation 

 𝜎2 - variance 

 

 It is called “normal” as it often appears in 
nature 

 Many observables are normally distributed  
(central limit theorem) 

 
𝒩(10, 1.5) - normal distribution with 

𝜇 = 10 and 𝜎 = 1.5 
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Gaussian distribution: a few numbers 

 Area under the curve = probability 

 Probability of being within one sigma of 
the mean is about ⅔ (68.3%) 

 Terminology “one sigma”, “three sigma”: 
probability of being outside a range (tail) 

 95% confidence intervals are traditionally 
used: correspond to about 1.96𝜎 

In Out Odds 

1 68.3% 31.7% 1:3 

1.96 95.0% 5.0% 1:20 

2 95.4% 4.6% 1:20 

3 99.7% 0.3% 1:400 

4 99.994% 0.006% 1:16,000 

5 99.99993% 0.00007% 1:1,700,000 

𝒩(10, 1.5) - normal distribution with 
𝜇 = 10 and 𝜎 = 1.5 



15 

Example: Gaussian distribution 

Height of 25,000 individuals from Hong Kong 
 
• mean = 172.70 cm 
• standard deviation = 4.83 cm 
• standard error = 0.03 cm 

𝒩(172.70, 4.83) 
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Carl Friedrich Gauss (1777-1855) 

 Brilliant German mathematician 

 Constructed a regular heptadecagon with 
ruler and compass 

 He requested that a regular heptadecagon 
be inscribed on his tombstone 

 However, it was Abraham de Moivre (1667-
1754) who first formulated “Gaussian” 
distribution 
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Exercise: estimate an outlier 

 Obesity study in mice 

 Sample of 100 mice, find body weight 

 mean = 20 g 

 standard deviation = 5 g 

 Jerry’s weight is 30 g 

 What is the probability of Jerry being that 
fat?  

 
In Out Odds 

1 68.3% 31.7% 1:3 

1.96 95.0% 5.0% 1:20 

2 95.4% 4.6% 1:20 

3 99.7% 0.3% 1:400 

4 99.994% 0.006% 1:16,000 

5 99.99993% 0.00007% 1:1,700,000 
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Exercise: estimate an “outlier” 

 What is the probability of Jerry being that 
fat?  

 30 g is 2𝜎 from the mean: 

 𝑃 𝑋 = 30 g = 0 

 𝑃 𝑋 ≥ 30 g = 2.3% 

 𝑃(𝑋 ≥ 30 g ∪ 𝑋 < 10 g) = 4.6% 

 One-tail or two-tail probability? 

 

 But even with probability of 2.3% you will 
expect on average about 2 fat mice in a 
sample of a 100 

 Rare events are expected in large samples 

 Jerry is fat, but he is not a statistical 
outlier 

 

2.3% 2.3% 

Mass (g) 

f(
M

) 


 1
0

-2
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Log-normal distribution 

 Log-normal distribution is a probability 
distribution of a random variable whose 
logarithm is normally distributed 

 

 

 

 Log-normal distribution can be very 
asymmetric! 

Log-normal 𝑋 𝑋 = 𝑒𝑌 

Normal 𝑌 = ln 𝑋 𝑌 

linear space 

logarithmic space 

𝑋 

𝑌 = log 𝑋 
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Example: log-normal distribution 

 Peptide intensities from mass 
spectrometry experiment 

 

 𝑃𝑆𝐷 - fraction of data within 𝑀 ± 𝑆𝐷 

 

 Data look better in logarithmic space 

 Always plot the distribution of your data 
before analysis 

 

 About two-thirds of data points are within 
one standard deviation from the mean 
only when their distribution is 
approximately Gaussian 

 

𝑀 = 2.1 × 106 
𝑆𝐷 = 7.4 × 106 
𝑃𝑆𝐷 = 0.96 

𝑀log = 5.7 

𝑆𝐷log = 0.7 

𝑃𝑆𝐷 = 0.67 
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A few notes on log-normal distribution 

 Examples of log-normal distributions 

 gene expression (RNA-seq, microarrays) 

 mass spectrometry data 

 drug potency 𝐼𝐶50 

 Difference in log space is a ratio in linear space 

log 𝑥1 − log 𝑥2 = log
𝑥1

𝑥2
 

 This is why you should use ratios, not differences, to compare results in these 
experiments 

 It doesn’t matter if you use log2, log10 or ln, as long as you are consistent 

 log10 is easier to understand in plots 

 106 = 1,000,000 

 212 = 

 

4096 



John Napier (1550-1617) 

 Scottish mathematician and astronomer 

 Mirifici Logarithmorum Canonis 
Descriptio (1614) 

 Invented logarithms and published first 
tables of natural logarithms 

 Created “Napier’s bones”, the first 
practical calculator 

 Had an interest in theology, calculated the 
date of the end of the world between 
1688 and 1700 
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Merchiston Castle, Edinburgh 

 Apparently involved in alchemy and 
necromancy 



Poisson distribution 

 Consider radioactive decay 

 Atomic nucleus can decay spontaneously 

 We don’t know when it is going to happen 

 

 We know how likely it is to happen in a 
given period of time 

 Collect counts in 1-s bins 

 Create distribution of counts per bin 

 

 This applies to any counts in time or space 

 number of deaths in a population 

 number of cells in a counting chamber 

 number of mutations in a DNA fragment 
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Mean = 3.5 counts s-1 

Poisson distribution 
for  = 3.5  



Poisson distribution 

 Random and independent events 

 Probability of observing exactly 𝑘 events: 

𝑃 𝑋 = 𝑘 =
𝜇𝑘𝑒−𝜇

𝑘!
 

 Poisson distribution is characterized by the 
mean count rate, 𝜇 (not integer!) 

 Standard deviation is not a free parameter: 

𝜎 = 𝜇 

 

 For large 𝜇 Poisson distribution approximates 
Gaussian 
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Poisson and corresponding Gaussian distributions 

Mean number of 
counts per bin 
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Example: Poisson distribution 

 von Bortkiewicz (1898) “Das Gesetz der 
kleinen Zahlen” 

 Number of soldiers in the Prussian army 
killed by horse kicks 

 10 army corps, 20 years of data 

 Deaths per year per army corps 

 One year in one corps there were four 
deaths – investigation started 

 

 Death distribution follows Poisson law 

 mean = 0.61 deaths / corps / year 

 

 4 deaths in a corps-year are expected to 
happen from time to time! 

 𝑃(𝑋 = 4)  =  0.035 in 10 corps 

 On average it should happen once in 29 
years 

 



Interarrival times 

 How long do we need to wait for the next 
event to happen? 

 Time between two events, Δ𝑇, is called 
interarrival time 

 It is a random variable with cumulative 
distribution 

𝑃 ∆𝑇 < 𝑡 = 1 − 𝑒−𝜇𝑡 

 Probability of observing at least one event 
in time 𝑡 

 

 Mean interarrival time is 
1

𝜇
 

 

 However, random events occur randomly, 
so there is no periodicity! 

 “On average once in 29 years” does not 
mean “every 29 years” 
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Cumulative distribution of interarrival times 
between 4 deaths in one corps-year 
(𝜇 = 0.035 per year) 

Mean interarrival time 
1

𝜇
= 29 years 

If you play National Lottery once a week, the 
mean interarrival time between the jackpots 

is 
1

𝜇
≈ 269,000 years. 



Exercise: Poisson distribution 

 Poisson law: 

𝑃 𝑋 = 𝑘 =
𝜇𝑘𝑒−𝜇

𝑘!
 

 You transfect a marker into a population of 𝑛 = 3 × 105 cells 

 It functionally integrates with the genome at a rate of 𝑟 = 10−5 

 What is the probability of having at least one cell with the marker? 

 

27 

 First calculate the mean (expected) number of marked cells: 

𝜇 = 𝑛𝑟 = 3 

 Now we can use the Poisson law to find 𝑃(𝑋 = 0) 

𝑃 𝑋 = 0 =
30𝑒−3

0!
=

1 × 0.05

1
= 0.05 

 Hence, the solution 

𝑃 𝑋 > 0 = 1 − 𝑃 𝑋 = 0 = 0.95 



Binomial distribution 

 A series of 𝑛 “trials” 

 Probability of “success” in one trial is 𝑝 

 Probability of “failure” in one trial is 1 − 𝑝 

 What is the probability of having exactly 𝑘 
successes in 𝑛 trials? 

 

 Binomial distribution 

𝜇 = 𝑛𝑝 

𝜎 = 𝑛𝑝(1 − 𝑝) 

 For large 𝑛 binomial distribution 
approximates a Gaussian 

 

 Applications: 

 random errors 

 error of a proportion 

 error of a median 
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Example: toss a coin 
heads = success (𝑝 = 0.5) 
tails = failure (1 − 𝑝 = 0.5) 

 
What is the probability of obtaining 
𝑘 heads from 8 coins? 



Exercise: tossing a coin 

 Toss 8 coins 

 Question: why is the probability having 4 
heads much larger than the probability of 
having 8 heads? 

 

 

29 

Example: toss a coin 
heads = success (𝑝 = 0.5) 
tails = failure (1 − 𝑝 = 0.5) 

 
What is the probability of obtaining 
𝑘 heads from 8 coins? 



Exercise: tossing a coin 

 Toss 8 coins 

 Question: why is the probability having 4 
heads much larger than the probability of 
having 8 heads? 

 

 There is only one way of having 8 heads 

H H H H H H H H 

 

 There are 
8
4

= 70 ways of getting 4 

heads and 4 tails 

H H H H T T T T 

H H H T H T T T 

H H H T T H T T 

… 
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Example: toss a coin 
heads = success (𝑝 = 0.5) 
tails = failure (1 − 𝑝 = 0.5) 

 
What is the probability of obtaining 
𝑘 heads from 8 coins? 
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Exercise: recognize these distributions 

Distribution 

Mean 

SD 
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Exercise: recognize these distributions 

Distribution Uniform Log-normal Poisson Gaussian Poisson 

Mean 3.5 3.5 4 100 100 

SD 0.87 0.90 2 10 10 



Hand-outs available at http://is.gd/statlec 
 

Please leave your feedback forms on the table by the door 


