Error analysis in biology

Marek Gierlinski
Division of Computational Biology

Hand-outs available at http://is.gd/statlec

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below
John Dryden (1631-1700)



Why do we need errors (a silly question)?

= Consider a microarray experiment
= Comparing control and treatment

= Expression level of FLG
0 control =41,723
0 treatment = 19,786
= There is a 2-fold change in intensity

= Great! Gene is repressed in our
treatment!



Why do we need errors (a crucial question)!
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Now repeat this measurement 30 times g :
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o control = (31.5+1.6)x103
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0 treatment = (27.742.4)x103 T ‘
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Reveal variability of expression

Distributions are very similar

t-test givesp = 0.2

No difference between control and

treatment Control Treatment



“A measurement without error is meaningless”

My physics teachers
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Example

Experiment: count bacteria in a sample using

dilution plating

6 replicates

Find the following numbers of colonies
533739

What can we say about these results?

Experimental result is a random variable
It follows a certain probability distribution

Based on our sample, we can make predictions
on future experiments

We can discuss uncertainty, or error, of the
count



1. Probability distribution

“Misunderstanding of probability may be the greatest of all
general impediments to scientific literacy”

Stephen Jay Gould



Random variable

= Random variable can assume random values \

7 4

= Numerical outcome of an experiment

= Example: result of throwing 2 dice (any ,
number between 2 and 12) \

= Non-random variable: number of mice in front
of you (5)

= But even the number of mice can be a random
variable!

= All values in biological experiments are
random variables




Random variable

Random variable can assume random values
Numerical outcome of an experiment

Example: result of throwing 2 dice (any
number between 2 and 12)

Non-random variable: number of mice in front
of you (5)

But even the number of mice can be a random
variable!

All values in biological experiments are
random variables

Two types of random variables
discrete - can assume only certain values

o number of mice
continuous — can assume any value

o weight of a mouse

10



Probability distribution

= Probability distribution of a random ~ | discrete
variable X ° e
= |t defines the probability of finding X in a = - T
certain range of values x
a ;_ —
O’T‘H T T T T T Hﬂl—lﬁﬁ T
D0123456 89101112
k
o continuous
a
Q- T T T
o 5 10 15
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Probability distribution

= Probability distribution of a random
variable X
= |t defines the probability of finding X in a
certain range of values
= discrete variable (k = 0,1, 2, ...)
o P(X = k) is a probability of finding X = k
0 P(k;y < X < ky) is the sum of individual
probabilities
= continuous variable (any value of x)
0 f(x) is a probability density function

0 P(x; < X < x,)is the area under the f(x)
curve between x; and x,

oP(X=5)=0

Notation:
« X,Y, W, ..-random variables (symbols)
* x,v,k, ...-actual numbers

P(X = k)

0.1

f(x)
1 0‘1 1

0.0

0.2

0.2

|1 discrete

0.15

P(5<X<7)=0.32
0.11

0.0

HWTT T

01 2 3 4 5 6 7 8 9 10 11 12
k

1 continuous

P(X<3)=0.44

P(3<X<6)=0.36

P(X =6)=0.20

5 10 15
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Gaussian distribution

= Gaussian (or normal) probability distribution

(x—p)?

e 202
oV 21

fx) =

0 U - mean
0 o - standard deviation
0 o2 - variance

= Itis called “normal” as it often appears in
nature

= Many observables are normally distributed
(central limit theorem)

f(x) -

0;2 0;3

0.1

6 8| 10 |12 T1a
o WU PO

N (10, 1.5) - normal distribution with
u=10ando = 1.5

16
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Gaussian distribution: a few numbers

= Area under the curve = probability

fx) <4 99.7%

= Probability of being within one sigma of ; 95.4%

the mean is about % (68.3%) ] 68.3%
i .

n  «u

= Terminology “one sigma”, “three sigma”:
probability of being outside a range (tail)

0.2

= 95% confidence intervals are traditionally _
used: correspond to about 1.960 ]
=
In Out Odds ]
+1o 68.3% 31.7% 1:3 ot S
4 12 16
i1.966 95.0% 5-0% 1.20 H_SG M'ZO p-o I u_+0 H+20 u+30 X
+26 95.4% 4.6% 1:20
+30 99.7% 0.3% 1:400 o _
N (10, 1.5) - normal distribution with
+46 99.994% 0.006% 1:16,000

u=10ando = 1.5
t5c 99.99993% 0.00007% 1:1,700,000

14



Example: Gaussian distribution

Normalized frequency x107?

Height of 25,000 individuals from Hong Kong
e mean=172.70cm

e standard deviation =4.83 cm
e standard error =0.03 cm

N(172.70,4.83)

160

170
Height (cm)

180

15



Carl Friedrich Gauss (1777-1855)

= Brilliant German mathematician

= Constructed a regular heptadecagon with
ruler and compass

= He requested that a regular heptadecagon
be inscribed on his tombstone

= However, it was Abraham de Moivre (1667-
1754) who first formulated “Gaussian”
distribution

16



Exercise: estimate an outlier

= Obesity study in mice

= Sample of 100 mice, find body weight

0omean=20g

o standard deviation=5g

= Jerry’s weightis30 g

= What is the probability of Jerry being that

fat?
In Out Odds
+lo 68.3% 31.7% 1:3
+1.966 95.0% 5.0% 1:20
+20 95.4% 4.6% 1:20
+3c 99.7% 0.3% 1:400
+4c 99.994% 0.006% 1:16,000
+50 99.99993% 0.00007% 1:1,700,000

Mass (g)

30

25

20

15

10

17



Exercise: estimate an “outlier”

= What is the probability of Jerry being that
fat?
30 g is 20 from the mean:

0 P(X=30g)=0

o P(X>30g) =23%

o P(X=>30gUX<10g) = 4.6%
One-tail or two-tail probability?

But even with probability of 2.3% you will
expect on average about 2 fat mice in a
sample of a 100 Mass (g)

Rare events are expected in large samples

Jerry is fat, but he is not a statistical
outlier

18



Log-normal distribution

= Log-normal distribution is a probability 7 nearspace
distribution of a random variable whose o X
logarithm is normally distributed § all
Log-normal X X=e" 5
Normal Y =InX Y Té .
2 o]

= Log-normal distribution can be very

asymmetric! 0 2 4 & 8 10
Intensﬂy(xlOG)

0.0

logarithmic space

LD- —_—
2 Y =logX
> ]
c
Q
S
T <
g o
b
=
©
£ o
5 ©
=z
o-
o T I N I I
4 5 6 7 8

IoglOIntensny
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Example: log-normal distribution

= Peptide intensities from mass
spectrometry experiment

= Pgp - fraction of data within M + SD

= Data look better in logarithmic space

= Always plot the distribution of your data
before analysis

= About two-thirds of data points are within
one standard deviation from the mean
only when their distribution is
approximately Gaussian

Normalized frequency

Normalized frequency

15

0.5

0.6

04

0.2

1.0 2.0

0.0

0.0

- |
|
|

: M=21x10° ||

SD =7.4x10° ||

] PSD:()96 :
|
|
|

- |
|
|

o 2 4 6 8 10

Intensity (x106)

log 10 Intensity
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A few notes on log-normal distribution

= Examples of log-normal distributions
0 gene expression (RNA-seq, microarrays)
0 mass spectrometry data
o drug potency IC,
= Difference in log space is a ratio in linear space
X1

logx; —logx, = logx—2

= This is why you should use ratios, not differences, to compare results in these
experiments

= It doesn’t matter if you use log,, log,, or In, as long as you are consistent

= log,, is easier to understand in plots
010 = 1,000,000
02 = 4096
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John Napier (1550-1617)

= Scottish mathematician and astronomer

= Mirifici Logarithmorum Canonis
Descriptio (1614)

= Invented logarithms and published first
tables of natural logarithms

= Created “Napier’s bones”, the first
practical calculator

= Had an interest in theology, calculated the
date of the end of the world between
1688 and 1700

= Apparently involved in alchemy and
necromancy

Merchiston Castle, Edinburgh

22



Poisson distribution

= Consider radioactive decay

= Atomic nucleus can decay spontaneously
= We don’t know when it is going to happen

= We know how likely it is to happenin a

given period of time
= Collect counts in 1-s bins
= Create distribution of counts per bin

= This applies to any counts in time or space

o number of deaths in a population

o number of cells in a counting chamber

0 number of mutations in a DNA fragment

Counts

Normalized frequency

~- (a)
Mean = 3.5 counts s!
\D— —
m_
ﬂ-_. — . R .
m_. —— — —
N_.
o ' "7 ' ' I i ! ! 1
0 5 10 15 20
Time (s)
o1 B ) : o
N - Poisson distribution
1 forn=3.5
L A
L
O. 1 —
21
S
|
O
S
o - I I I T I T T T ’—‘ L

O 1 2 3 4 5 6 7 8 9 10
Counts per bin
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Poisson distribution

= Random and independent events Poisson and corresponding Gaussian distributions
= Probability of observing exactly k events: P(X=k) |
K — . n=0.3
Pix =) =" :
K=k ==% _5
= Poisson distribution is characterized by the | '
mean count rate, u (not integer!) p=1

Standard deviation is not a free parameter:

020 01020304 0 0.2 04 0.6
PR s | L
P

O- = ﬁ T I T T
77F L=4

= For large u Poisson distribution approximates =g
Gaussian 5

O -5 T | T 1

AT TN

2 ] u=10
o
o
D__
o

o ] T aa I ‘ — T )

0 5 10 15 20
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Example: Poisson distribution

= von Bortkiewicz (1898) “Das Gesetz der

. ”
kleinen Zahlen ] Actual data

= Number of soldiers in the Prussian army - B Poisson distribution
killed by horse kicks ‘

o 10 army corps, 20 years of data

1(|)0

80

o Deaths per year per army corps

= One year in one corps there were four
deaths — investigation started

60

Frequency

= Death distribution follows Poisson law

P

= mean = 0.61 deaths / corps / year

= 4 deaths in a corps-year are expected to
happen from time to time!

= P(X=4) = 0.035in 10 corps

20

= On average it should happen once in 29 ‘ I . .
years ? ;

o

Deaths per corps-year

25



Interarrival times

How long do we need to wait for the next
event to happen?

= Time between two events, AT, is called
interarrival time

It is a random variable with cumulative
distribution

P(AT <t) =1— e Ht

Probability of observing at least one event
intime t

. . . .1
Mean interarrival time is ;

However, random events occur randomly,
so there is no periodicity!

“On average once in 29 years” does not
mean “every 29 years”

P(At < t)

0.4

1.0

0.8

0.6

0.2

0.0

Mean interarrival time
E 1_ 29 years
—u Y
0 20 40 60 80 100

Time between events (years)

Cumulative distribution of interarrival times
between 4 deaths in one corps-year
(u = 0.035 per year)

If you play National Lottery once a week, the
mean interarrival time between the jackpots

isi ~ 269,000 years.

26



Exercise: Poisson distribution

= Poisson law:

pke

k!

= You transfect a marker into a population of n = 3 x 10° cells

P(X =k) =

= It functionally integrates with the genome at a rate of r = 107>
= What is the probability of having at least one cell with the marker?

= First calculate the mean (expected) number of marked cells:
Uu=nr =3
= Now we can use the Poisson law to find P(X = 0)
P(X = 0) = 30¢~3 _ 1 x 0.05 005
0! 1
= Hence, the solution
PX>0)=1—-P(X=0)=0.95

27



Binomial distribution

= A series of n “trials”
= Probability of “success” in one trial is p
= Probability of “failure” in one trialis 1 — p

What is the probability of having exactly k
successes in n trials?

Binomial distribution

u=np
o =np(1-p)

For large n binomial distribution
approximates a Gaussian

= Applications:
0 random errors
0 error of a proportion
0 error of a median

0.3

Probability
0.2

0.1

0.0

0

1

2

3

4 5

T T

6 7

Number of successes

8

Example: toss a coin
heads = success (p = 0.5)
tails = failure (1 — p = 0.5)

What is the probability of obtaining
k heads from 8 coins?

28




Exercise: tossing a coin

= Toss 8 coins

= Question: why is the probability having 4
heads much larger than the probability of
having 8 heads?

Probability
0.2 0.3

0.1

T

0

0.0

1

T T T T T T

2 3 4 5 6 7
Number of successes

8

Example: toss a coin
heads = success (p = 0.5)
tails = failure (1 — p = 0.5)

What is the probability of obtaining
k heads from 8 coins?

29




Exercise: tossing a coin

= Toss 8 coins

= Question: why is the probability having 4
heads much larger than the probability of
having 8 heads?

= There is only one way of having 8 heads
HHHHHHHH

= There are (2) = 70 ways of getting 4

heads and 4 tails
HHHHTTTT
HHHTHTTT
HHHTTHTT

0.3

0.2

Probability

0.1

T

0

0.0

1

T T T T T T

2 3 4 5 6 7
Number of successes

8

Example: toss a coin
heads = success (p = 0.5)
tails = failure (1 — p = 0.5)

What is the probability of obtaining
k heads from 8 coins?
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Exercise: recognize these distributions

P

1|0

==

.
A S
-— O

. 190, . 130

80

190 1 1 1?0 1

8|0

Distribution

Mean

SD
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Exercise: recognize these distributions
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Distribution | Uniform Log-normal | Poisson Gaussian Poisson
Mean 3.5 3.5 4 100 100
SD 0.87 0.90 2 10 10
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