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Errors, like straws, upon the surface flow; 
He who would search for pearls must dive below 

John Dryden (1631-1700) 
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Why do we need errors (a silly question)? 

 Consider a microarray experiment 

 Comparing control and treatment 

 Expression level of FLG 

 control = 41,723 

 treatment = 19,786 

 There is a 2-fold change in intensity 

 Great! Gene is repressed in our 
treatment! 
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Why do we need errors (a crucial question)! 

 Consider a microarray experiment 

 Comparing control and treatment 

 Expression level of FLG 

 control = 41,723 

 treatment = 19,786 

 There is a 2-fold change in intensity 

 Great! Gene is repressed in our 
treatment! 

 Now repeat this measurement 30 times 

 control = (31.51.6)103 

 treatment = (27.72.4)103 

 Reveal variability of expression 

 Distributions are very similar 

 t-test gives 𝑝 = 0.2 

 No difference between control and 
treatment 

 



“A measurement without error is meaningless” 

My physics teachers 
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Example 

 Experiment: count bacteria in a sample using 
dilution plating 

 6 replicates 

 Find the following numbers of colonies 

5  3  3  7  3  9 

  What can we say about these results? 

 

 Experimental result is a random variable 

 It follows a certain probability distribution 

 

 Based on our sample, we can make predictions 
on future experiments 

 We can discuss uncertainty, or error, of the 
count 
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1. Probability distribution 

“Misunderstanding of probability may be the greatest of all 
general impediments to scientific literacy” 

 

Stephen Jay Gould 
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Random variable 

 Random variable can assume random values 

 Numerical outcome of an experiment 

 Example: result of throwing 2 dice (any 
number between 2 and 12) 

 Non-random variable: number of mice in front 
of you (5) 

 But even the number of mice can be a random 
variable! 

 All values in biological experiments are 
random variables 
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Random variable 

 Random variable can assume random values 

 Numerical outcome of an experiment 

 Example: result of throwing 2 dice (any 
number between 2 and 12) 

 Non-random variable: number of mice in front 
of you (5) 

 But even the number of mice can be a random 
variable! 

 All values in biological experiments are 
random variables 

 Two types of random variables 

 discrete - can assume only certain values 

 number of mice 

 continuous – can assume any value 

 weight of a mouse 
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Probability distribution 

 Probability distribution of a random 
variable 𝑋 

 It defines the probability of finding 𝑋 in a 
certain range of values 

discrete 

continuous 
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Probability distribution 

 Probability distribution of a random 
variable 𝑋 

 It defines the probability of finding 𝑋 in a 
certain range of values 

 discrete variable (𝑘 = 0, 1, 2, …) 

 𝑃(𝑋 = 𝑘) is a probability of finding 𝑋 = 𝑘 

 𝑃(𝑘1 ≤ 𝑋 ≤ 𝑘2) is the sum of individual 
probabilities 

 continuous variable (any value of 𝑥) 

 𝑓(𝑥) is a probability density function 

 𝑃(𝑥1 ≤ 𝑋 < 𝑥2) is the area under the 𝑓(𝑥) 
curve between 𝑥1 and 𝑥2 

 𝑃 𝑋 = 5 = 0 

 

discrete 

continuous 

P(X < 3) = ? 0.44 

0.15 

0.11 

0.06 

Notation: 
• 𝑋, 𝑌, 𝑊, … - random variables (symbols) 
• 𝑥, 𝑦, 𝑘, … - actual numbers 
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Gaussian distribution 

 Gaussian (or normal) probability distribution 

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒

−
𝑥−𝜇 2

2𝜎2  

 𝜇 - mean 

 𝜎 - standard deviation 

 𝜎2 - variance 

 

 It is called “normal” as it often appears in 
nature 

 Many observables are normally distributed  
(central limit theorem) 

 
𝒩(10, 1.5) - normal distribution with 

𝜇 = 10 and 𝜎 = 1.5 
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Gaussian distribution: a few numbers 

 Area under the curve = probability 

 Probability of being within one sigma of 
the mean is about ⅔ (68.3%) 

 Terminology “one sigma”, “three sigma”: 
probability of being outside a range (tail) 

 95% confidence intervals are traditionally 
used: correspond to about 1.96𝜎 

In Out Odds 

1 68.3% 31.7% 1:3 

1.96 95.0% 5.0% 1:20 

2 95.4% 4.6% 1:20 

3 99.7% 0.3% 1:400 

4 99.994% 0.006% 1:16,000 

5 99.99993% 0.00007% 1:1,700,000 

𝒩(10, 1.5) - normal distribution with 
𝜇 = 10 and 𝜎 = 1.5 
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Example: Gaussian distribution 

Height of 25,000 individuals from Hong Kong 
 
• mean = 172.70 cm 
• standard deviation = 4.83 cm 
• standard error = 0.03 cm 

𝒩(172.70, 4.83) 
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Carl Friedrich Gauss (1777-1855) 

 Brilliant German mathematician 

 Constructed a regular heptadecagon with 
ruler and compass 

 He requested that a regular heptadecagon 
be inscribed on his tombstone 

 However, it was Abraham de Moivre (1667-
1754) who first formulated “Gaussian” 
distribution 
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Exercise: estimate an outlier 

 Obesity study in mice 

 Sample of 100 mice, find body weight 

 mean = 20 g 

 standard deviation = 5 g 

 Jerry’s weight is 30 g 

 What is the probability of Jerry being that 
fat?  

 
In Out Odds 

1 68.3% 31.7% 1:3 

1.96 95.0% 5.0% 1:20 

2 95.4% 4.6% 1:20 

3 99.7% 0.3% 1:400 

4 99.994% 0.006% 1:16,000 

5 99.99993% 0.00007% 1:1,700,000 
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Exercise: estimate an “outlier” 

 What is the probability of Jerry being that 
fat?  

 30 g is 2𝜎 from the mean: 

 𝑃 𝑋 = 30 g = 0 

 𝑃 𝑋 ≥ 30 g = 2.3% 

 𝑃(𝑋 ≥ 30 g ∪ 𝑋 < 10 g) = 4.6% 

 One-tail or two-tail probability? 

 

 But even with probability of 2.3% you will 
expect on average about 2 fat mice in a 
sample of a 100 

 Rare events are expected in large samples 

 Jerry is fat, but he is not a statistical 
outlier 

 

2.3% 2.3% 

Mass (g) 

f(
M

) 


 1
0

-2
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Log-normal distribution 

 Log-normal distribution is a probability 
distribution of a random variable whose 
logarithm is normally distributed 

 

 

 

 Log-normal distribution can be very 
asymmetric! 

Log-normal 𝑋 𝑋 = 𝑒𝑌 

Normal 𝑌 = ln 𝑋 𝑌 

linear space 

logarithmic space 

𝑋 

𝑌 = log 𝑋 
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Example: log-normal distribution 

 Peptide intensities from mass 
spectrometry experiment 

 

 𝑃𝑆𝐷 - fraction of data within 𝑀 ± 𝑆𝐷 

 

 Data look better in logarithmic space 

 Always plot the distribution of your data 
before analysis 

 

 About two-thirds of data points are within 
one standard deviation from the mean 
only when their distribution is 
approximately Gaussian 

 

𝑀 = 2.1 × 106 
𝑆𝐷 = 7.4 × 106 
𝑃𝑆𝐷 = 0.96 

𝑀log = 5.7 

𝑆𝐷log = 0.7 

𝑃𝑆𝐷 = 0.67 
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A few notes on log-normal distribution 

 Examples of log-normal distributions 

 gene expression (RNA-seq, microarrays) 

 mass spectrometry data 

 drug potency 𝐼𝐶50 

 Difference in log space is a ratio in linear space 

log 𝑥1 − log 𝑥2 = log
𝑥1

𝑥2
 

 This is why you should use ratios, not differences, to compare results in these 
experiments 

 It doesn’t matter if you use log2, log10 or ln, as long as you are consistent 

 log10 is easier to understand in plots 

 106 = 1,000,000 

 212 = 

 

4096 



John Napier (1550-1617) 

 Scottish mathematician and astronomer 

 Mirifici Logarithmorum Canonis 
Descriptio (1614) 

 Invented logarithms and published first 
tables of natural logarithms 

 Created “Napier’s bones”, the first 
practical calculator 

 Had an interest in theology, calculated the 
date of the end of the world between 
1688 and 1700 
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Merchiston Castle, Edinburgh 

 Apparently involved in alchemy and 
necromancy 



Poisson distribution 

 Consider radioactive decay 

 Atomic nucleus can decay spontaneously 

 We don’t know when it is going to happen 

 

 We know how likely it is to happen in a 
given period of time 

 Collect counts in 1-s bins 

 Create distribution of counts per bin 

 

 This applies to any counts in time or space 

 number of deaths in a population 

 number of cells in a counting chamber 

 number of mutations in a DNA fragment 
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Mean = 3.5 counts s-1 

Poisson distribution 
for  = 3.5  



Poisson distribution 

 Random and independent events 

 Probability of observing exactly 𝑘 events: 

𝑃 𝑋 = 𝑘 =
𝜇𝑘𝑒−𝜇

𝑘!
 

 Poisson distribution is characterized by the 
mean count rate, 𝜇 (not integer!) 

 Standard deviation is not a free parameter: 

𝜎 = 𝜇 

 

 For large 𝜇 Poisson distribution approximates 
Gaussian 
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Poisson and corresponding Gaussian distributions 

Mean number of 
counts per bin 
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Example: Poisson distribution 

 von Bortkiewicz (1898) “Das Gesetz der 
kleinen Zahlen” 

 Number of soldiers in the Prussian army 
killed by horse kicks 

 10 army corps, 20 years of data 

 Deaths per year per army corps 

 One year in one corps there were four 
deaths – investigation started 

 

 Death distribution follows Poisson law 

 mean = 0.61 deaths / corps / year 

 

 4 deaths in a corps-year are expected to 
happen from time to time! 

 𝑃(𝑋 = 4)  =  0.035 in 10 corps 

 On average it should happen once in 29 
years 

 



Interarrival times 

 How long do we need to wait for the next 
event to happen? 

 Time between two events, Δ𝑇, is called 
interarrival time 

 It is a random variable with cumulative 
distribution 

𝑃 ∆𝑇 < 𝑡 = 1 − 𝑒−𝜇𝑡 

 Probability of observing at least one event 
in time 𝑡 

 

 Mean interarrival time is 
1

𝜇
 

 

 However, random events occur randomly, 
so there is no periodicity! 

 “On average once in 29 years” does not 
mean “every 29 years” 
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Cumulative distribution of interarrival times 
between 4 deaths in one corps-year 
(𝜇 = 0.035 per year) 

Mean interarrival time 
1

𝜇
= 29 years 

If you play National Lottery once a week, the 
mean interarrival time between the jackpots 

is 
1

𝜇
≈ 269,000 years. 



Exercise: Poisson distribution 

 Poisson law: 

𝑃 𝑋 = 𝑘 =
𝜇𝑘𝑒−𝜇

𝑘!
 

 You transfect a marker into a population of 𝑛 = 3 × 105 cells 

 It functionally integrates with the genome at a rate of 𝑟 = 10−5 

 What is the probability of having at least one cell with the marker? 
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 First calculate the mean (expected) number of marked cells: 

𝜇 = 𝑛𝑟 = 3 

 Now we can use the Poisson law to find 𝑃(𝑋 = 0) 

𝑃 𝑋 = 0 =
30𝑒−3

0!
=

1 × 0.05

1
= 0.05 

 Hence, the solution 

𝑃 𝑋 > 0 = 1 − 𝑃 𝑋 = 0 = 0.95 



Binomial distribution 

 A series of 𝑛 “trials” 

 Probability of “success” in one trial is 𝑝 

 Probability of “failure” in one trial is 1 − 𝑝 

 What is the probability of having exactly 𝑘 
successes in 𝑛 trials? 

 

 Binomial distribution 

𝜇 = 𝑛𝑝 

𝜎 = 𝑛𝑝(1 − 𝑝) 

 For large 𝑛 binomial distribution 
approximates a Gaussian 

 

 Applications: 

 random errors 

 error of a proportion 

 error of a median 
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Example: toss a coin 
heads = success (𝑝 = 0.5) 
tails = failure (1 − 𝑝 = 0.5) 

 
What is the probability of obtaining 
𝑘 heads from 8 coins? 



Exercise: tossing a coin 

 Toss 8 coins 

 Question: why is the probability having 4 
heads much larger than the probability of 
having 8 heads? 
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Example: toss a coin 
heads = success (𝑝 = 0.5) 
tails = failure (1 − 𝑝 = 0.5) 

 
What is the probability of obtaining 
𝑘 heads from 8 coins? 



Exercise: tossing a coin 

 Toss 8 coins 

 Question: why is the probability having 4 
heads much larger than the probability of 
having 8 heads? 

 

 There is only one way of having 8 heads 

H H H H H H H H 

 

 There are 
8
4

= 70 ways of getting 4 

heads and 4 tails 

H H H H T T T T 

H H H T H T T T 

H H H T T H T T 

… 
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Example: toss a coin 
heads = success (𝑝 = 0.5) 
tails = failure (1 − 𝑝 = 0.5) 

 
What is the probability of obtaining 
𝑘 heads from 8 coins? 
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Exercise: recognize these distributions 

Distribution 

Mean 

SD 
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Exercise: recognize these distributions 

Distribution Uniform Log-normal Poisson Gaussian Poisson 

Mean 3.5 3.5 4 100 100 

SD 0.87 0.90 2 10 10 



Hand-outs available at http://is.gd/statlec 
 

Please leave your feedback forms on the table by the door 


