Error analysis in biology

Marek Gierliński Division of Computational Biology

Hand-outs available at http://is.gd/statlec

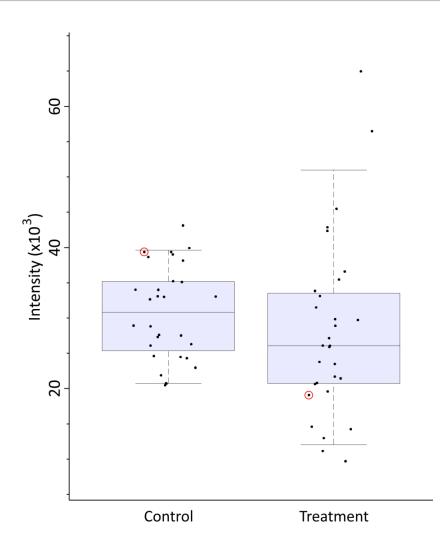
Errors, like straws, upon the surface flow; He who would search for pearls must dive below *John Dryden (1631-1700)*

Why do we need errors (a silly question)?

- Consider a microarray experiment
- Comparing control and treatment
- Expression level of FLG
 - □ control = 41,723
 - □ treatment = 19,786
- There is a 2-fold change in intensity
- Great! Gene is repressed in our treatment!

Why do we need errors (a crucial question)!

- Consider a microarray experiment
- Comparing control and treatment
- Expression level of FLG
 control = 41,723
 treatment = 19,786
- There is a 2-fold change in intensity
- Great! Gene is repressed in our treatment!
- Now repeat this measurement 30 times
 control = (31.5±1.6)×10³
 treatment = (27.7±2.4)×10³
- Reveal variability of expression
- Distributions are very similar
- t-test gives p = 0.2
- No difference between control and treatment



"A measurement without error is meaningless"

My physics teachers

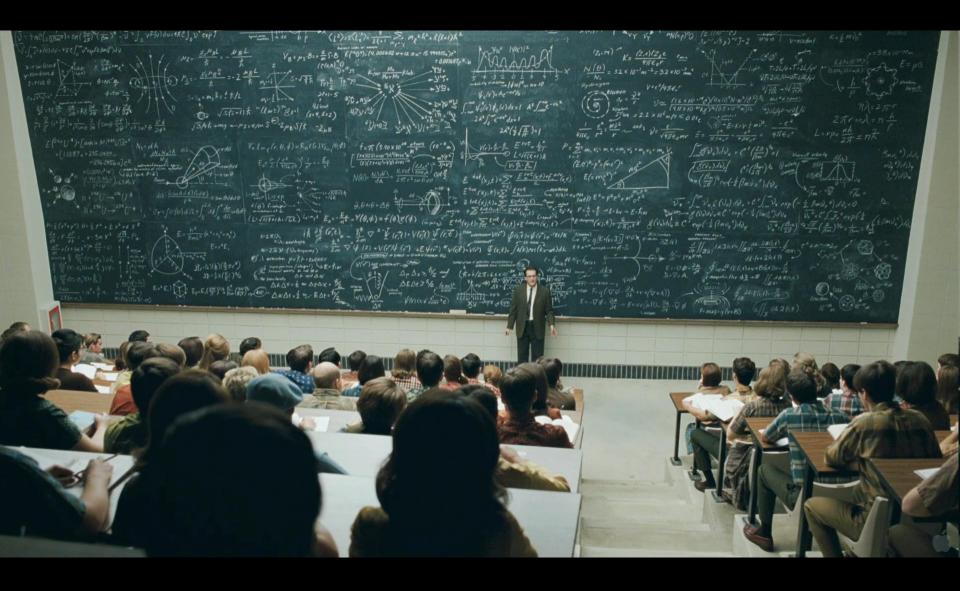
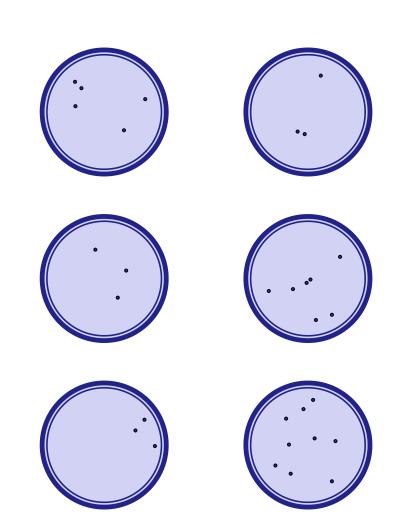


Table of contents

1. Probability distribution	1	
2. Random errors		
3. Statistical estimators	2	
4. Confidence intervals	34	
5. Error bars	(5)	
6. Quoting numbers and errors		
7. Error propagation		
8. Linear regression errors	0	

Example

- Experiment: count bacteria in a sample using dilution plating
- 6 replicates
- Find the following numbers of colonies
 5 3 3 7 3 9
- What can we say about these results?
- Experimental result is a random variable
- It follows a certain probability distribution
- Based on our sample, we can make predictions on future experiments
- We can discuss uncertainty, or error, of the count



1. Probability distribution

"Misunderstanding of probability may be the greatest of all general impediments to scientific literacy"

Stephen Jay Gould

Random variable

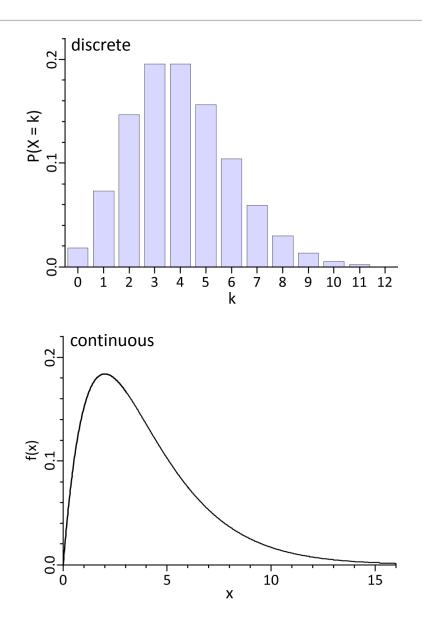
- Random variable can assume random values
- Numerical outcome of an experiment
- Example: result of throwing 2 dice (any number between 2 and 12)
- Non-random variable: number of mice in front of you (5)
- But even the number of mice can be a random variable!
- All values in biological experiments are random variables

Random variable

- Random variable can assume random values
- Numerical outcome of an experiment
- Example: result of throwing 2 dice (any number between 2 and 12)
- Non-random variable: number of mice in front of you (5)
- But even the number of mice can be a random variable!
- All values in biological experiments are random variables
- Two types of random variables
- discrete can assume only certain values
 number of mice
- continuous can assume any value
 weight of a mouse

Probability distribution

- Probability distribution of a random variable X
- It defines the probability of finding X in a certain range of values



Probability distribution

- Probability distribution of a random variable X
- It defines the probability of finding X in a certain range of values
- discrete variable (k = 0, 1, 2, ...)

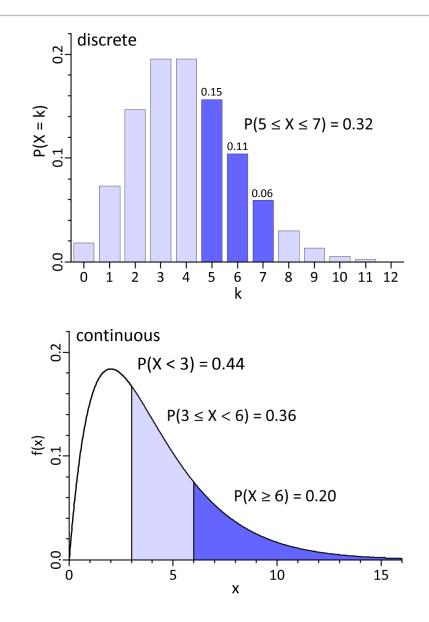
 $\square P(X = k)$ is a probability of finding X = k

- □ $P(k_1 \le X \le k_2)$ is the sum of individual probabilities
- continuous variable (any value of x)
 - $\Box f(x)$ is a probability density function
 - □ $P(x_1 \le X < x_2)$ is the area under the f(x) curve between x_1 and x_2

 $\square P(X=5)=0$

Notation:

- X, Y, W, ... random variables (symbols)
- x, y, k, ... actual numbers



Gaussian distribution

Gaussian (or normal) probability distribution

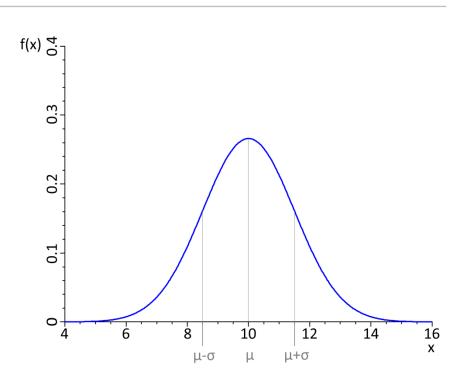
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 \square μ - mean

 $\square \ \sigma$ - standard deviation

 $\square \sigma^2$ - variance

- It is called "normal" as it often appears in nature
- Many observables are normally distributed (central limit theorem)

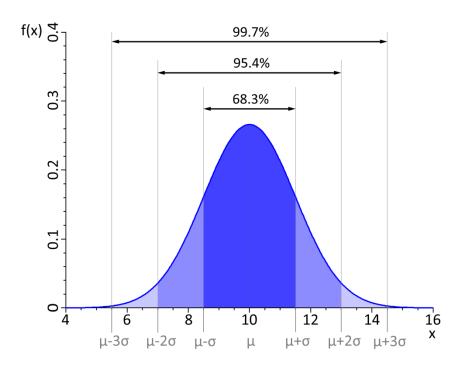


 $\mathcal{N}(10,1.5)$ - normal distribution with $\mu=10 \text{ and } \sigma=1.5$

Gaussian distribution: a few numbers

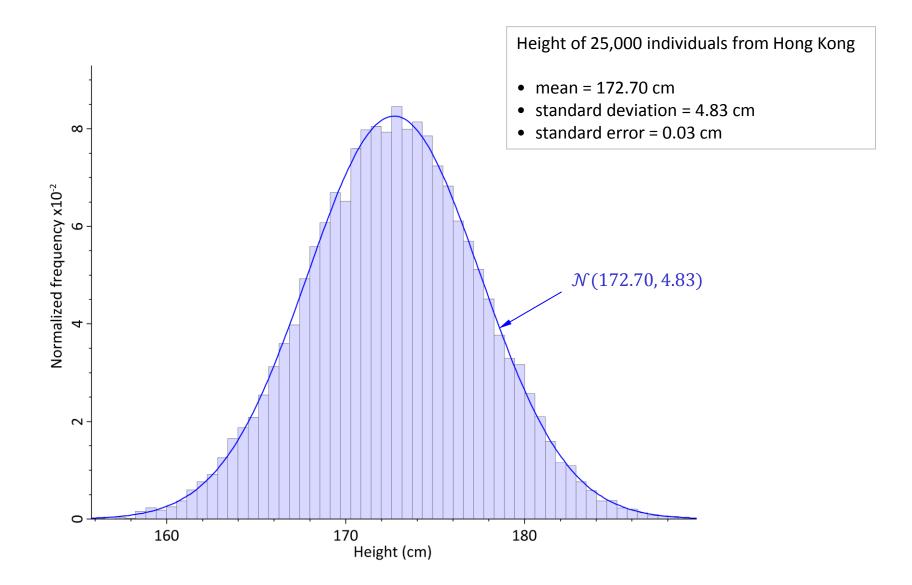
- Area under the curve = probability
- Probability of being within one sigma of the mean is about ²/₃ (68.3%)
- Terminology "one sigma", "three sigma": probability of being outside a range (tail)
- 95% confidence intervals are traditionally used: correspond to about 1.96σ

	In	Out	Odds
±1σ	68.3%	31.7%	1:3
±1.96σ	95.0%	5.0%	1:20
±2σ	95.4%	4.6%	1:20
±3σ	99.7%	0.3%	1:400
±4σ	99.994%	0.006%	1:16,000
±5σ	99.99993%	0.00007%	1:1,700,000



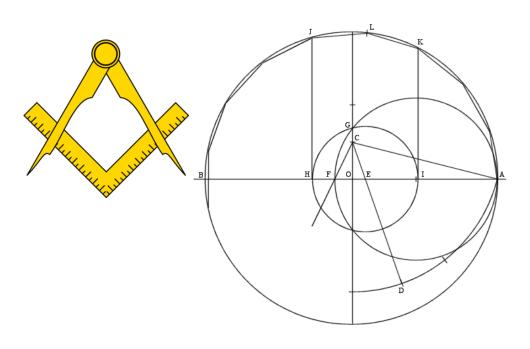
 $\mathcal{N}(10,1.5)$ - normal distribution with $\mu=10$ and $\sigma=1.5$

Example: Gaussian distribution



Carl Friedrich Gauss (1777-1855)

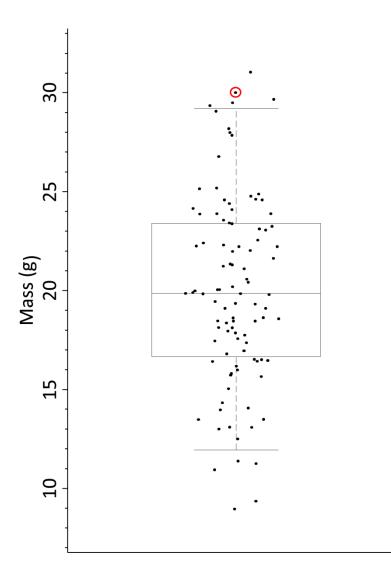
- Brilliant German mathematician
- Constructed a regular heptadecagon with ruler and compass
- He requested that a regular heptadecagon be inscribed on his tombstone
- However, it was Abraham de Moivre (1667-1754) who first formulated "Gaussian" distribution



Exercise: estimate an outlier

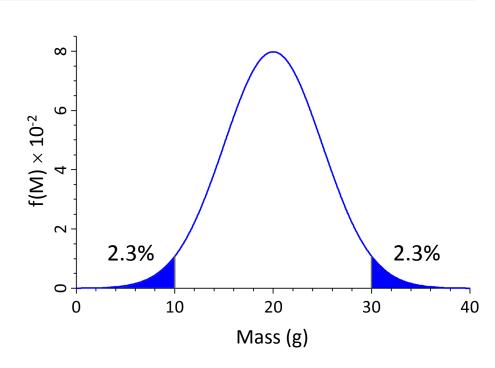
- Obesity study in mice
- Sample of 100 mice, find body weight
 - \square mean = 20 g
 - □ standard deviation = 5 g
- Jerry's weight is 30 g
- What is the probability of Jerry being that fat?

	In	Out	Odds
±1σ	68.3%	31.7%	1:3
±1.96σ	95.0%	5.0%	1:20
±2σ	95.4%	4.6%	1:20
±3σ	99.7%	0.3%	1:400
±4σ	99.994%	0.006%	1:16,000
±5σ	99.99993%	0.00007%	1:1,700,000



Exercise: estimate an "outlier"

- What is the probability of Jerry being that fat?
- 30 g is 2σ from the mean:
 - $\square P(X = 30 \text{ g}) = 0$
 - $\square P(X \ge 30 \text{ g}) = 2.3\%$
 - $\square P(X \ge 30 \text{ g} \cup X < 10 \text{ g}) = 4.6\%$
- One-tail or two-tail probability?
- But even with probability of 2.3% you will expect on average about 2 fat mice in a sample of a 100
- Rare events are expected in large samples
- Jerry is fat, but he is not a statistical outlier

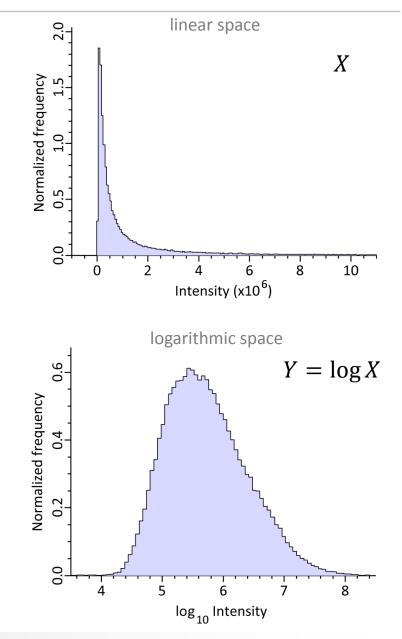


Log-normal distribution

 Log-normal distribution is a probability distribution of a random variable whose logarithm is normally distributed

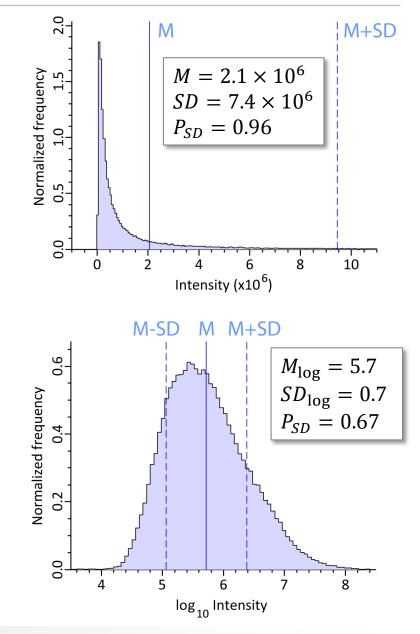
Log-normalX $X = e^Y$ Normal $Y = \ln X$ Y

Log-normal distribution can be very asymmetric!



Example: log-normal distribution

- Peptide intensities from mass spectrometry experiment
- P_{SD} fraction of data within $M \pm SD$
- Data look better in logarithmic space
- Always plot the distribution of your data before analysis
- About two-thirds of data points are within one standard deviation from the mean only when their distribution is approximately Gaussian



A few notes on log-normal distribution

Examples of log-normal distributions

gene expression (RNA-seq, microarrays)

- mass spectrometry data
- \Box drug potency IC_{50}
- Difference in log space is a ratio in linear space

$$\log x_1 - \log x_2 = \log \frac{x_1}{x_2}$$

- This is why you should use ratios, not differences, to compare results in these experiments
- It doesn't matter if you use log₂, log₁₀ or ln, as long as you are consistent
- log₁₀ is easier to understand in plots
 10⁶ = 1,000,000

$$\Box 2^{12} = 4096$$

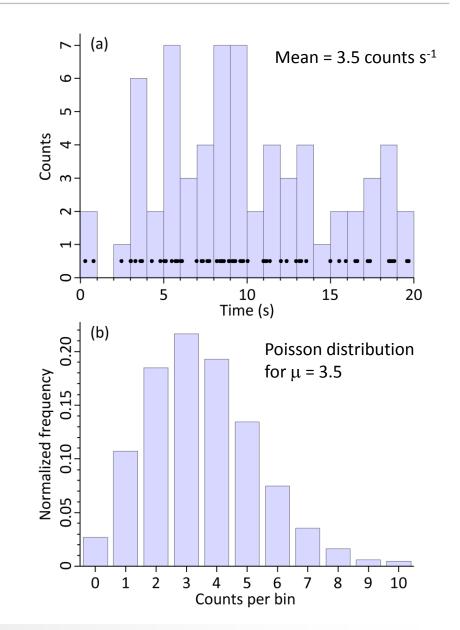
John Napier (1550-1617)

- Scottish mathematician and astronomer
- Mirifici Logarithmorum Canonis Descriptio (1614)
- Invented logarithms and published first tables of natural logarithms
- Created "Napier's bones", the first practical calculator
- Had an interest in theology, calculated the date of the end of the world between 1688 and 1700
- Apparently involved in alchemy and necromancy

Merchiston Castle, Edinburgh

Poisson distribution

- Consider radioactive decay
- Atomic nucleus can decay spontaneously
- We don't know when it is going to happen
- We know how likely it is to happen in a given period of time
- Collect counts in 1-s bins
- Create distribution of counts per bin
- This applies to any counts in time or space
 number of deaths in a population
 number of cells in a counting chamber
 number of mutations in a DNA fragment



Poisson distribution

- Random and independent events
- Probability of observing exactly k events:

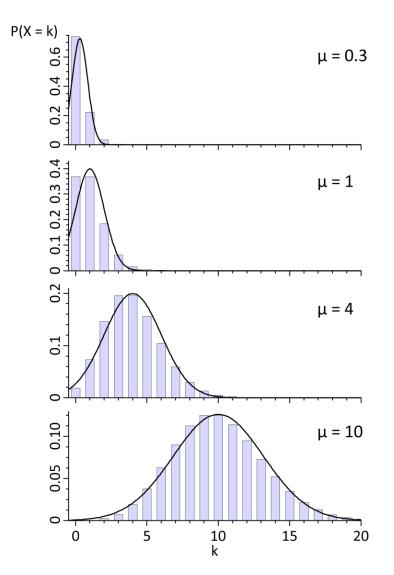
$$P(X=k) = \frac{\mu^k e^{-\mu}}{k!}$$

- Poisson distribution is characterized by the mean count rate, μ (not integer!)
- Standard deviation is not a free parameter:

$$\sigma = \sqrt{\mu}$$

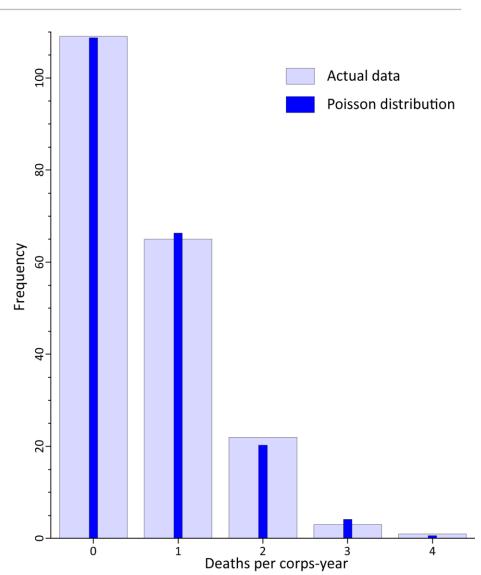
For large μ Poisson distribution approximates
 Gaussian

Poisson and corresponding Gaussian distributions



Example: Poisson distribution

- von Bortkiewicz (1898) "Das Gesetz der kleinen Zahlen"
- Number of soldiers in the Prussian army killed by horse kicks
 - 10 army corps, 20 years of data
 - Deaths per year per army corps
- One year in one corps there were four deaths – investigation started
- Death distribution follows Poisson law
- mean = 0.61 deaths / corps / year
- 4 deaths in a corps-year are expected to happen from time to time!
- P(X = 4) = 0.035 in 10 corps
- On average it should happen once in 29 years



Interarrival times

- How long do we need to wait for the next event to happen?
- Time between two events, ΔT , is called interarrival time
- It is a random variable with cumulative distribution

 $P(\Delta T < t) = 1 - e^{-\mu t}$

- Probability of observing at least one event in time t
- Mean interarrival time is $\frac{1}{\mu}$
- However, random events occur randomly, so there is no periodicity!
- "On average once in 29 years" does not mean "every 29 years"

1.0 0.8 0.6 $P(\Delta t < t)$ 0.4 Mean interarrival time = 29 years 0.2 0.0 20 40 60 80 100 0 Time between events (years)

Cumulative distribution of interarrival times between 4 deaths in one corps-year ($\mu = 0.035$ per year)

If you play National Lottery once a week, the mean interarrival time between the jackpots is $\frac{1}{\mu} \approx 269,000$ years.

Exercise: Poisson distribution

Poisson law:

$$P(X = k) = \frac{\mu^k e^{-\mu}}{k!}$$

- You transfect a marker into a population of $n = 3 \times 10^5$ cells
- It functionally integrates with the genome at a rate of $r = 10^{-5}$
- What is the probability of having at least one cell with the marker?
- First calculate the mean (expected) number of marked cells:

$$\mu = nr = 3$$

• Now we can use the Poisson law to find P(X = 0)

$$P(X = 0) = \frac{3^0 e^{-3}}{0!} = \frac{1 \times 0.05}{1} = 0.05$$

Hence, the solution

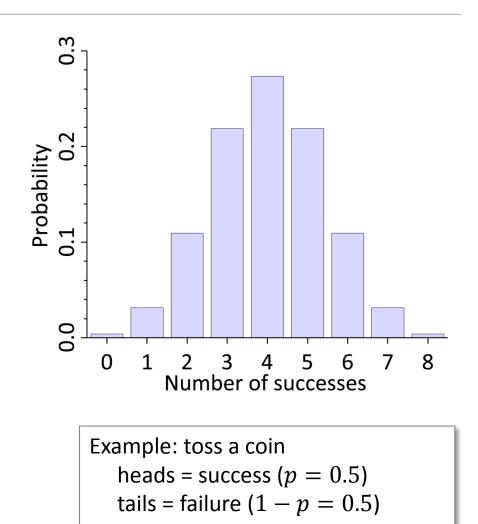
$$P(X > 0) = 1 - P(X = 0) = 0.95$$

Binomial distribution

- A series of n "trials"
- Probability of "success" in one trial is p
- Probability of "failure" in one trial is 1-p
- What is the probability of having exactly k successes in n trials?
- Binomial distribution

 $\mu = np$

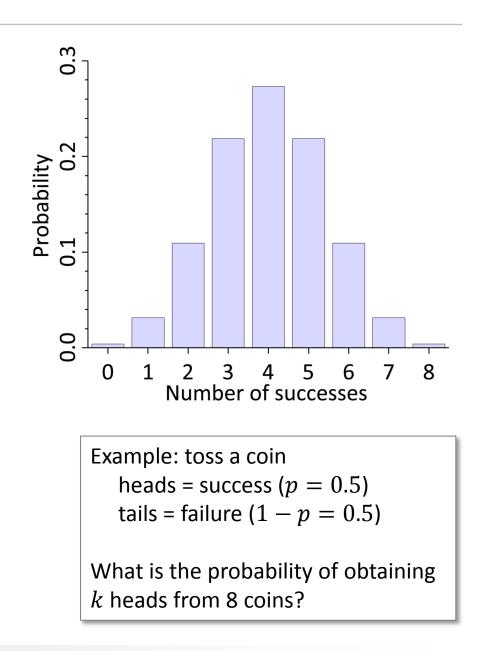
- $\sigma = \sqrt{np(1-p)}$
- For large n binomial distribution approximates a Gaussian
- Applications:
 - □ random errors
 - $\hfill\square$ error of a proportion
 - $\hfill\square$ error of a median



What is the probability of obtaining k heads from 8 coins?

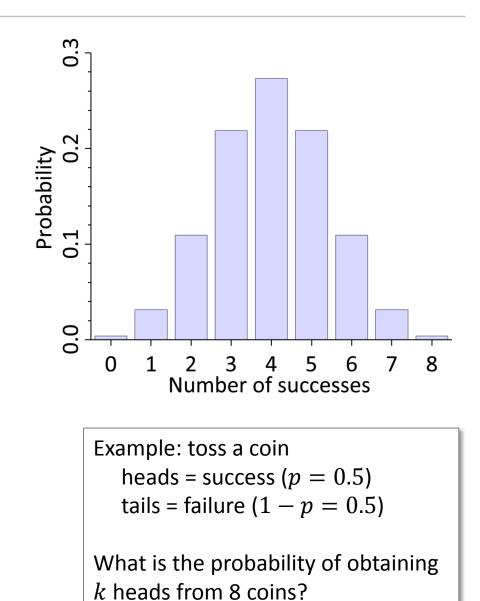
Exercise: tossing a coin

- Toss 8 coins
- Question: why is the probability having 4 heads much larger than the probability of having 8 heads?

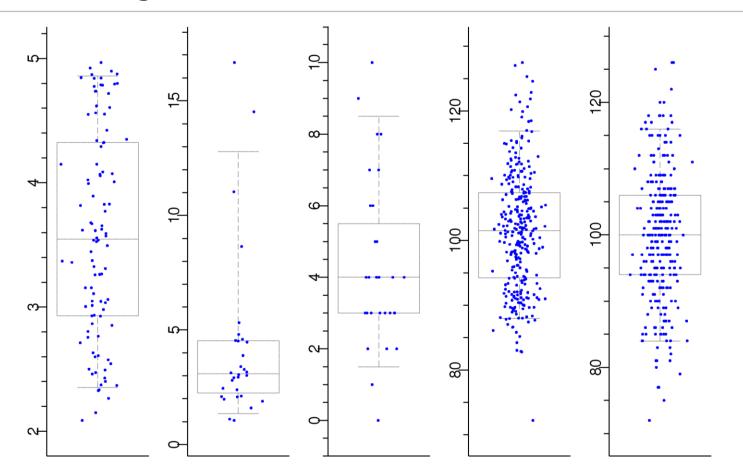


Exercise: tossing a coin

- Toss 8 coins
- Question: why is the probability having 4 heads much larger than the probability of having 8 heads?
- There is only one way of having 8 heads HHHHHHHHH

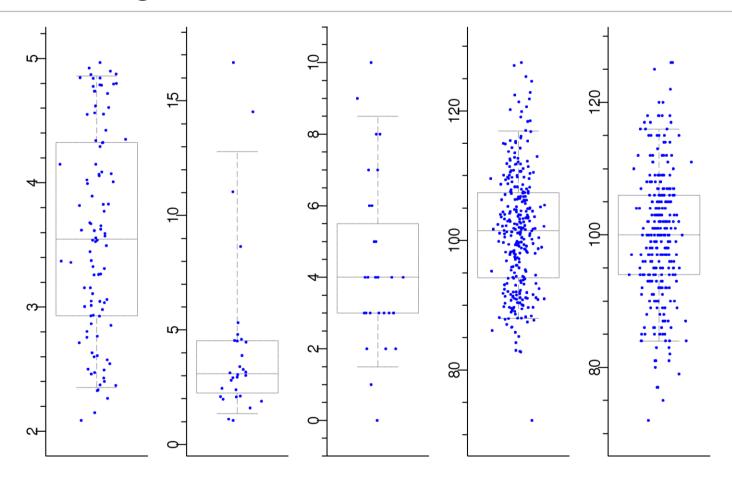


Exercise: recognize these distributions



Distribution			
Mean			
SD			

Exercise: recognize these distributions



Distribution	Uniform	Log-normal	Poisson	Gaussian	Poisson
Mean	3.5	3.5	4	100	100
SD	0.87	0.90	2	10	10

Hand-outs available at http://is.gd/statlec

Please leave your feedback forms on the table by the door

