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Why do we need error analysis?

 Consider a microarray experiment

 Comparing control and treatment

 Expression level of FLG

 control = 41,723

 treatment = 19,786

 There is a 2-fold change in intensity

 Great! Gene is repressed in our 
treatment!
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Why do we need error analysis?

 Consider a microarray experiment

 Comparing control and treatment

 Expression level of FLG

 control = 41,723

 treatment = 19,786

 There is a 2-fold change in intensity

 Great! Gene is repressed in our 
treatment!

 Repeat the experiment in 30 replicates

 control = (31.51.6)103

 treatment = (27.72.4)103

 Reveal variability of expression

 No difference between control and 
treatment

p = 0.2



“A measurement without error is meaningless”

My physics teachers



Data Analysis Group

5

Computational Biology
Barton Group
Level 2 CTIR

http://www.compbio.dundee.ac.uk/dag.html

Pietà SchofieldChris Cole Stuart MacGowan Marek Gierliński





7

Table of contents

1. Probability distribution

2. Random errors

3. Statistical estimators

4. Confidence intervals

5. Error bars

6. Quoting numbers and errors

7. Error propagation

8. Linear regression errors
⑥

①

②

③ ④

⑤



Example

 Experiment: estimate bacterial concentration 
using a spectrophotometer

 6 replicates

 Find the following OD600

0.37  0.34  0.41  0.40  0.30  0.33

 Experimental result is a random variable

 It follows a certain probability distribution
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1. Random variables and probability 
distributions

“Misunderstanding of probability may be the greatest of all 
general impediments to scientific literacy”

Stephen Jay Gould
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Random variable: random numbers
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Discrete and continuous random variables

 Discrete variables:

 sum of 2 dice (2, 3, 4, …, 12)

 categorical outcome

 number of mice (5, non random?)

 number of mice in survival experiment 
(random)

 Continuous variables:

 weight of a mouse

 height of a person

 fluorescent marker luminosity

 protein abundance
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Probability distribution

 Assigns a probability to each of the 
possible outcomes

 𝑋 – random variable

 𝑃(𝑋 = 5) – probability of 𝑋 being 5

 𝑃(5 ≤ 𝑋 ≤ 7) – probability of 𝑋 between 
5 and 7 (sum of probabilities)

 𝑓(𝑥) – probability density function

 𝑃(𝑋 < 3) – area under the curve 𝑓(𝑥)

 𝑃 𝑋 = 5 = 0

discrete

continuous

P(X < 3) = ?0.44

0.15

0.11

0.06
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Gaussian distribution

 Gaussian (or normal) probability distribution

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−
𝑥−𝜇 2

2𝜎2

 𝜇 - mean

 𝜎 - standard deviation

 𝜎2 - variance

 It is called “normal” as it often appears in 
nature

𝒩(10, 1.5) - normal distribution with
𝜇 = 10 and 𝜎 = 1.5
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Gaussian distribution: a few numbers

 Area under the curve = probability

 Probability within one sigma of the mean 
is about ⅔ (68.3%)

 95% confidence intervals are traditionally 
used: correspond to about 1.96𝜎

In Out Odds of out

1 68.3% 31.7% 1:3

2 95.4% 4.6% 1:20

3 99.7% 0.3% 1:400

4 99.994% 0.006% 1:16,000

5 99.99993% 0.00007% 1:1,700,000

1.96 95.0% 5.0% 1:20

𝒩(10, 1.5) - normal distribution with
𝜇 = 10 and 𝜎 = 1.5
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Example: Gaussian distribution

Height of 25,000 individuals from Hong Kong

• mean = 172.70 cm
• standard deviation = 4.83 cm
• standard error = 0.03 cm

𝒩(172.70, 4.83)
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Carl Friedrich Gauss (1777-1855)

 Brilliant German mathematician

 Constructed a regular heptadecagon with a 
ruler and a compass

 He requested that a regular heptadecagon
should be inscribed on his tombstone

 However, it was Abraham de Moivre (1667-
1754) who first formulated “Gaussian” 
distribution
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Log-normal distribution

 Probability distribution of a random 
variable whose logarithm is normally 
distributed

 Log-normal distribution can be very 
asymmetric!

linear space

logarithmic space

𝑋

𝑌 = log𝑋
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Example: log-normal distribution

 Peptide intensities from a mass 
spectrometry experiment

 𝑃𝑆𝐷 - fraction of data within 𝑀 ± 𝑆𝐷

 Data look better in logarithmic space

 Always plot the distribution of your data 
before analysis

 About two-thirds of data points are within 
one standard deviation from the mean 
only when their distribution is 
approximately Gaussian

𝑀 = 2.1 × 106

𝑆𝐷 = 7.4 × 106

𝑃𝑆𝐷 = 0.96

𝑀log = 5.7

𝑆𝐷log = 0.7

𝑃𝑆𝐷 = 0.67
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A few notes on log-normal distribution

 Examples of log-normal distributions

 gene expression (RNA-seq, 
microarrays)

 mass spectrometry data

 drug potency 𝐼𝐶50

 It doesn’t matter if you use log2, log10
or ln, as long as you are consistent

 log10 is easier to understand in plots

 105 = 100,000

 210 = 1024



John Napier (1550-1617)

 Scottish mathematician and astronomer

 Invented logarithms and published first 
tables of natural logarithms

 Created “Napier’s bones”, the first 
practical calculator

 Had an interest in theology, calculated the 
date of the end of the world between 
1688 and 1700
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Merchiston Castle, Edinburgh
 Apparently involved in alchemy and 

necromancy





Counting bacterial colonies
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10
Courtesy of Katharina Trunk,
Molecular Biology

100 µl of 10-7 dilution of OD600 = 2.0



Poisson distribution

 Measure of bacterial count per unit 
volume

 Poisson count: always per bin

 This applies to any counts in time or space

 radioactive decays per second

 number of deaths in a population

 number of cells in a counting chamber

 number of mutations in a DNA fragment
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Mean = 7 counts per plate

Poisson distribution
for  = 7
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Mean = 11 counts per plate

Poisson distribution
for  = 11 



Poisson distribution

 Random and independent events

 Probability of observing exactly 𝑘 events:

𝑃 𝑋 = 𝑘 =
𝜇𝑘𝑒−𝜇

𝑘!

 One parameter: mean count rate, 𝜇

 Standard deviation:

𝜎 = 𝜇

𝜎2 = 𝜇

 For large 𝜇 Poisson distribution approximates 
Gaussian
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Classic example: horse kicks

 Ladislaus von Bortkiewicz (1898) “Das Gesetz der kleinen Zahlen”

 Number of soldiers in the Prussian army killed by horse kicks

 14 army corps, 20 years of data

 Deaths per year per army corps
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Example: Poisson distribution

 Death distribution follows Poisson law

 mean = 0.70 deaths / corps / year

 4 deaths in a corps-year are expected to 
happen from time to time!

 𝑃(𝑋 = 4) = 0.078 in 14 corps

 On average it should happen once in 13 
years



Exercise: Poisson distribution

 Poisson law:

𝑃 𝑋 = 𝑘 =
𝜇𝑘𝑒−𝜇

𝑘!

 You transfect a marker into a population of 𝑛 = 3 × 105 cells

 It functionally integrates with the genome at a rate of 𝑟 = 10−5

 What is the probability of having at least one cell with the marker?
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 First calculate the mean (expected) number of marked cells:

𝜇 = 𝑛𝑟 = 3

 Now we can use the Poisson law to find 𝑃(𝑋 = 0)

𝑃 𝑋 = 0 =
30𝑒−3

0!
=
1 × 0.05

1
= 0.05

 Hence, the solution

𝑃 𝑋 > 0 = 1 − 𝑃 𝑋 = 0 = 0.95



Binomial distribution

 A series of 𝑛 “trials”

 In each trial, the probability of:

 “success” = 𝑝

 “failure” = 1 − 𝑝

 What is the probability of having exactly 𝑘
successes in 𝑛 trials?

 Mean and standard deviation

𝜇 = 𝑛𝑝

𝜎 = 𝑛𝑝(1 − 𝑝)

 For large 𝑛 approximates Gaussian

 Applications:

 random errors

 error of the proportion

 error of the median
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Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?



Example: tossing a coin

 Toss 8 coins

 Question: why is the probability having 
heads 4 times much larger than the 
probability of heads 8 times?
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Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?



Example: tossing a coin

 There is only one way of having heads 8 
times

 There many are ways of getting 4 heads and 
4 tails
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Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?

…

0.27

0.004

8
4

= 70
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Exercise: recognize these distributions

Distribution

Mean

SD
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Exercise: recognize these distributions

Distribution Uniform Log-normal Poisson Gaussian Poisson

Mean 3.5 3.5 4 100 100

SD 0.87 0.90 2 10 10



Hand-outs available at http://is.gd/statlec

Please leave your feedback forms on the table by the door


