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Why do we need error analysis?

= Consider a microarray experiment
= Comparing control and treatment

= Expression level of FLG
0 control =41,723
0 treatment = 19,786
= There is a 2-fold change in intensity

= Great! Gene is repressed in our
treatment!



Why do we need error analysis?

s Consider a microarray experiment
s Comparing control and treatment

m Expression level of FLG
o control =41,723
o treatment = 19,786

60

s There is a 2-fold change in intensity

)

s Great! Gene is repressed in our
treatment!

40

= Repeat the experiment in 30 replicates
o control = (31.5+1.6)x103
o treatment = (27.7+2.4)x103

Intensity (x10

20

= Reveal variability of expression

= No difference between control and

treatment

Control

Treatment




“A measurement without error is meaningless”

My physics teachers
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Example

Experiment: estimate bacterial concentration
using a spectrophotometer

6 replicates
Find the following OD600
0.37 0.34 0.41 0.40 0.30 0.33

Experimental result is a random variable
It follows a certain probability distribution




1. Random variables and probability
distributions

“Misunderstanding of probability may be the greatest of all
general impediments to scientific literacy”

Stephen Jay Gould



Random variable: random numbers
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Discrete and continuous random variables

= Discrete variables:

o sum of 2 dice (2, 3, 4, ..., 12) 3 ‘\\
0 categorical outcome C o * ? .o
o number of mice (5, non random?) .’ .’ —
o number of mice in survival experiment \?

(random)

= Continuous variables:

o weight of a mouse

o height of a person

o fluorescent marker luminosity
o protein abundance




Probability distribution

= Assigns a probability to each of the
possible outcomes

= X —random variable

= P(X = 5) — probability of X being 5

= P(5 < X < 7)—probability of X between
5 and 7 (sum of probabilities)

= f(x) - probability density function
= P(X < 3) —area under the curve f(x)
u P(X — 5) =0

P(X = k)

0.1

fi(x)
0.1

0.2

0.2

|1 discrete

P(5<X<7)=0.32

FWFTMT“*T T

0.0

01 2 3 4 5 6 7 8 9 10 11 12
k

1 continuous

P(X <3)=0.44

P(3<X<6)=0.36

P(X = 6) = 0.20

0.0

5 10 15
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Gaussian distribution

= Gaussian (or normal) probability distribution

_(x—p)?
e 202

f(x):a\/%

0 U - mean
0 o - standard deviation
0 o2 - variance

= Itis called “normal” as it often appears in
nature

0.4

0.3

0.2

0.1

f(x)
/ X
4 6 8 10 12 14 16
u-c U pto

N (10, 1.5) - normal distribution with

u=10ando =1.5
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Gaussian distribution: a few numbers

= Area under the curve = probability £(x)
- 99.7%
95.4%
= Probability within one sigma of the mean o o1
is about % (68.3%) o '
]
= 95% confidence intervals are traditionally ©
used: correspond to about 1.960 | *
o
In Out Odds of out _
+16  68.3% 31.7% 1:3 | | X
126 95.4% 4.6% 1:20 a6 | 8 10 12 14, 16
136 99.7% 0.3% 1:400 W30 W20 o | Hto W20 pt3c
+4G 99.994% 0.006% 1:16,000

N (10, 1.5) - normal distribution with

156 99.99993% 0.00007% 1:1,700,000
’ ’ u=10ando = 1.5

+1.966 95.0% 5.0% 1:20
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Example: Gaussian distribution

Normalized frequency x10?

Height of 25,000 individuals from Hong Kong

e mean=172.70cm
n e standard deviation =4.83 cm
_‘\_
0 1 // N e standard error =0.03 cm
7 N\
w -
N(172.70,4.83)
< /
~ \
o T | T T ‘ -‘
160 170 180
Height (cm)
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Carl Friedrich Gauss (1777-1855)

= Brilliant German mathematician

= Constructed a regular heptadecagon with a
ruler and a compass

= He requested that a regular heptadecagon
should be inscribed on his tombstone

= However, it was Abraham de Moivre (1667-
1754) who first formulated “Gaussian”
distribution
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Log-normal distribution

- . L . o linear space
= Probability distribution of a random ~
variable whose logarithm is normally o X
o |
distributed g -
g |
- 2
. . . Q —
= Log-normal distribution can be very =
: £
| £
asymmetric! g -
o]
ot r— 1~ rrrrr oo
0 2 4 6 8 10
Intensﬂy(xlOS)
logarithmic space
2- Y =logX
>
c
]
=}
T <
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5
g
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o T I N I I
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IoglOIntensny
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Example: log-normal distribution

= Peptide intensities from a mass
spectrometry experiment

= Pgp - fraction of data within M + SD

= Data look better in logarithmic space

= Always plot the distribution of your data
before analysis

= About two-thirds of data points are within
one standard deviation from the mean
only when their distribution is
approximately Gaussian

Normalized frequency

Normalized frequency

15

0.5

0.6

04

0.2

1.0 2.0

0.0

0.0

- |
|
|

: M=21x10° ||

SD =7.4x10° ||

] PSD2096 :
|
|
|

- |
|
|

o 2 4 6 8 10

Intensity (x106)

log 10 Intensity
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A few notes on log-normal distribution

= Examples of log-normal distributions

0 gene expression (RNA-seq,
microarrays)

0 mass spectrometry data
o drug potency IC«,

= It doesn’t matter if you use log,, log,,
or In, as long as you are consistent

= log,, is easier to understand in plots
0 10° = 100,000
0210 =1024

10

log, (A /B)

>

0
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John Napier (1550-1617)

= Scottish mathematician and astronomer

= Invented logarithms and published first
tables of natural logarithms

= Created “Napier’s bones”, the first
practical calculator

= Had an interest in theology, calculated the
date of the end of the world between
1688 and 1700

= Apparently involved in alchemy and
necromancy

Merchiston Castle, Edinburgh
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Counting bacterial colonies

Courtesy of Katharina Trunk,
Molecular Biology

100 pl of 1077 dilution of ODgy, = 2.0
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Poisson distribution

= Measure of bacterial count per unit
volume

= Poisson count: always per bin

= This applies to any counts in time or space
0 radioactive decays per second
o number of deaths in a population
o number of cells in a counting chamber

0 number of mutations in a DNA fragment

Counts

Normalized frequency

0.00

10 12

00 ]
© ]
<t

N

Mean = 7 counts per plate

0.10 0.15 0

0.05

10 15 20

Plate

Poisson distribution
— foru=7

5

10 15

Counts per plate
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Poisson distribution

= Measure of bacterial count per unit | Mean = 11 counts per plate
volume '
i ] t
— |
ﬂ E. e o [ * ? [ ] I ! [ ] T
c O . [ ]
i . S ] .
= Poisson count: always per bin S .
N ) .
= This applies to any counts in time or space © T
1 5 10 15 20
0 radioactive decays per second Plate
o number of deaths in a population | Poisson distribution
. . o~ {forp=11 (A
o number of cells in a counting chamber c 9.
(b} : _
0 number of mutations in a DNA fragment =1 © 4 M
O] -
“— _
T ] -
=5
= O
o
g H
o
Z 8 T T T /—"HH T T T T T T T T T T T |i“"’fll’_I|
©0 5 10 15 20

Counts per plate
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Poisson distribution

= Random and independent events
= Probability of observing exactly k events:

pke #
k!

P(X = k) =

= One parameter: mean count rate, u
= Standard deviation:

0= I

g% =

= For large u Poisson distribution approximates
Gaussian

Normalized frequency

Mean number of
counts per bin

mmmmmmmmmmmmmmmmmm
||||||||||||||

il

020 010203040 020406 0.8

0.1

0

0.05 0.10

0
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Classic example: horse kicks

= Ladislaus von Bortkiewicz (1898) “Das Gesetz der kleinen Zahlen”

= Number of soldiers in the Prussian army killed by horse kicks

o 14 army corps, 20 years of data
0 Deaths per year per army corps

In nachstehender Tabelle sind die Zahlen der durch Schlag cines

e L “ ‘
Pferdes verungliickten Militirpersonen, nach Armeecorps (,G.“ bedeutet
Gardecorps) und Kalenderjahren nachgewiesen.?)
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Example: Poisson distribution

= Death distribution follows Poisson law
= mean = 0.70 deaths / corps / year ] Poisson distribution

¢ Actual data

150

= 4 deaths in a corps-year are expected to
happen from time to time!

= P(X=4) = 0.078in 14 corps

100

= On average it should happen once in 13 §
()]
years %
o
(=N
LN
5 Hﬁ s

o 1 2 3 4 5
Deaths per corps-year
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Exercise: Poisson distribution

= Poisson law:

pke

k!

= You transfect a marker into a population of n = 3 x 10° cells

P(X =k) =

= It functionally integrates with the genome at a rate of r = 107>
= What is the probability of having at least one cell with the marker?

= First calculate the mean (expected) number of marked cells:
Uu=nr=3
= Now we can use the Poisson law to find P(X = 0)
P(X = 0) = 303 _ 1 x 0.05 —0.05
0! 1
= Hence, the solution
PX>0)=1-PX =0)=0.95

28



Binomial distribution

= A series of n “trials”
= In each trial, the probability of:
0 “success” =p
o “failure” =1-—p
What is the probability of having exactly k
successes in n trials?

= Mean and standard deviation
U =np
g =np(1—p)

For large n approximates Gaussian

= Applications:
o random errors
0 error of the proportion
o error of the median

0.3

Probability
0.2

0.1

0.0

0

1

2

3

4 5

6 7

Number of successes

8

Example: toss a coin
heads = success (p = 0.5)
tails = failure (1 — p = 0.5)

What is the probability of obtaining
heads k times from 8 coins?
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Example: tossing a coin

= Toss 8 coins

= Question: why is the probability having
heads 4 times much larger than the
probability of heads 8 times?

0.3

1

Probability
0.2

0.1

0.0

0

1

2

3

4 5

6 7

Number of successes

8

Example: toss a coin
heads = success (p = 0.5)
tails = failure (1 — p = 0.5)

What is the probability of obtaining
heads k times from 8 coins?
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Example: tossing a coin

= There is only one way of having heads 8
times

S S S S S S S S

= There many are ways of getting 4 heads and
4 tails

NG NG NG NG Y9 &7 i &7 yi ¢

&L

N N N SN SN raizer B AN
N Y Y sy & &Y Wy WY
N B O Vi oW w0 Ve e/ \Sad)

N N Nk N ~

Probability
0.2 0.3

0.1

0.27

0.004

0.0

T T T T T T T T T

o 1 2 3 4 5 6 7 8
Number of successes

Example: toss a coin
heads = success (p = 0.5)
tails = failure (1 — p = 0.5)

What is the probability of obtaining
heads k times from 8 coins?

31




Exercise: recognize these distributions

=
—

. 120

100

S e ememw e s

Distribution

Mean

SD
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Exercise: recognize these distributions

=
—

|
|
| -
|
. . N
|
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. ~— | _
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. e
| . I .
.. 7] |
N ae i : <
S | A
. |
Nt : 7 | -
. .
e L0 I -
I,
| _ . QH
1 1w ]
- ‘. -i-

Distribution | Uniform Log-normal

Mean 3.5 3.5
SD 0.87 0.90

Poisson

4
2

Gaussian
100
10

Poisson
100
10
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