# Error analysis in biology

Marek Gierliński Division of Computational Biology

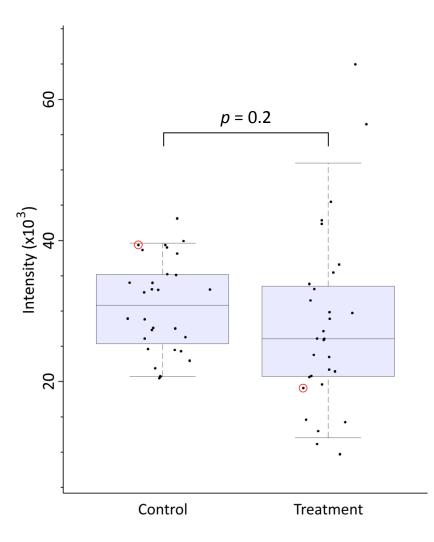
Hand-outs available at http://is.gd/statlec

## Why do we need error analysis?

- Consider a microarray experiment
- Comparing control and treatment
- Expression level of FLG
  - □ control = 41,723
  - □ treatment = 19,786
- There is a 2-fold change in intensity
- Great! Gene is repressed in our treatment!

## Why do we need error analysis?

- Consider a microarray experiment
- Comparing control and treatment
- Expression level of FLG
   control = 41,723
   treatment = 19,786
- There is a 2-fold change in intensity
- Great! Gene is repressed in our treatment!
- Repeat the experiment in 30 replicates
   control = (31.5±1.6)×10<sup>3</sup>
   treatment = (27.7±2.4)×10<sup>3</sup>
- Reveal variability of expression
- No difference between control and treatment



#### "A measurement without error is meaningless"

My physics teachers

#### Data Analysis Group



Chris Cole

Stuart MacGowan



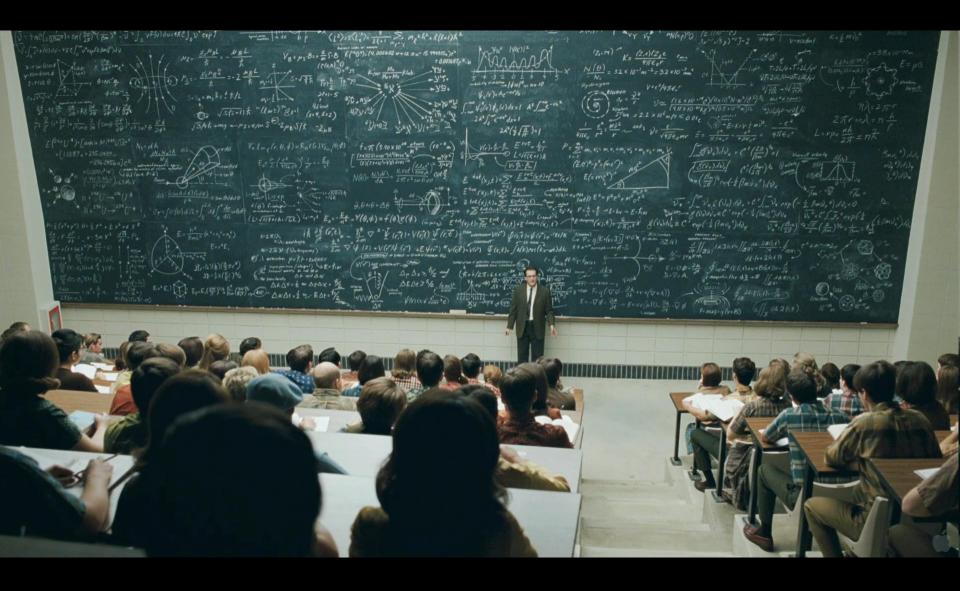
Pietà Schofield



Marek Gierliński

Computational Biology Barton Group Level 2 CTIR

http://www.compbio.dundee.ac.uk/dag.html



## Table of contents

| 1. Probability distribution   | 1  |  |
|-------------------------------|----|--|
| 2. Random errors              |    |  |
| 3. Statistical estimators     | 2  |  |
| 4. Confidence intervals       | 34 |  |
| 5. Error bars                 |    |  |
| 6. Quoting numbers and errors |    |  |
| 7. Error propagation          | 6  |  |
| 8. Linear regression errors   | 0  |  |

## Example

 Experiment: estimate bacterial concentration using a spectrophotometer

- 6 replicates
- Find the following OD600
   0.37 0.34 0.41 0.40 0.30 0.33

- Experimental result is a random variable
- It follows a certain probability distribution



# 1. Random variables and probability distributions

"Misunderstanding of probability may be the greatest of all general impediments to scientific literacy"

Stephen Jay Gould

#### Random variable: random numbers





## Discrete and continuous random variables

- Discrete variables:
  - □ sum of 2 dice (2, 3, 4, ..., 12)
  - categorical outcome
  - number of mice (5, non random?)
  - number of mice in survival experiment (random)

- Continuous variables:
  - $\hfill\square$  weight of a mouse
  - □ height of a person
  - fluorescent marker luminosity
  - protein abundance



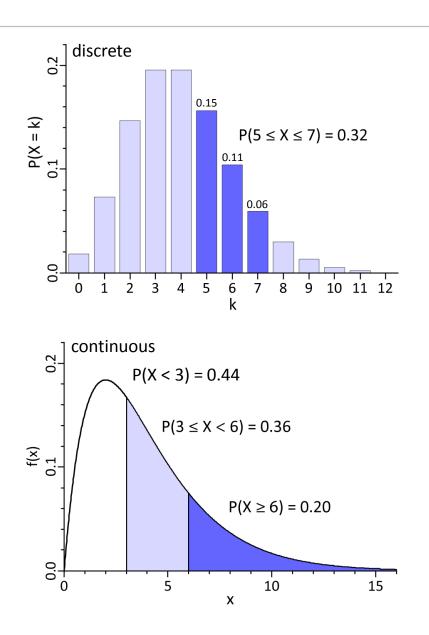




## Probability distribution

- Assigns a probability to each of the possible outcomes
- X random variable
- P(X = 5) probability of X being 5
- $P(5 \le X \le 7)$  probability of X between 5 and 7 (sum of probabilities)

- f(x) probability density function
- P(X < 3) area under the curve f(x)
- P(X = 5) = 0



## Gaussian distribution

Gaussian (or normal) probability distribution

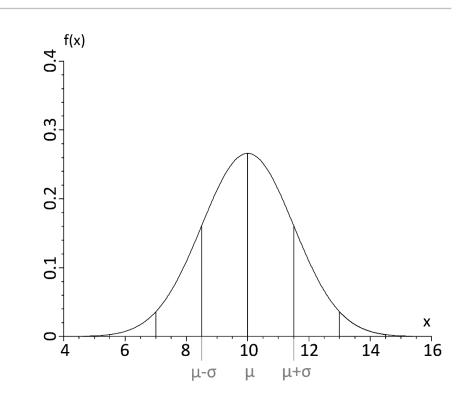
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 $\square$   $\mu$  - mean

 $\square \sigma$  - standard deviation

 $\square \sigma^2$  - variance

 It is called "normal" as it often appears in nature

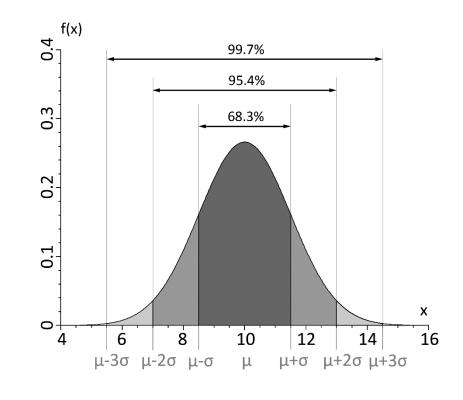


 $\mathcal{N}(10, 1.5)$  - normal distribution with  $\mu = 10$  and  $\sigma = 1.5$ 

## Gaussian distribution: a few numbers

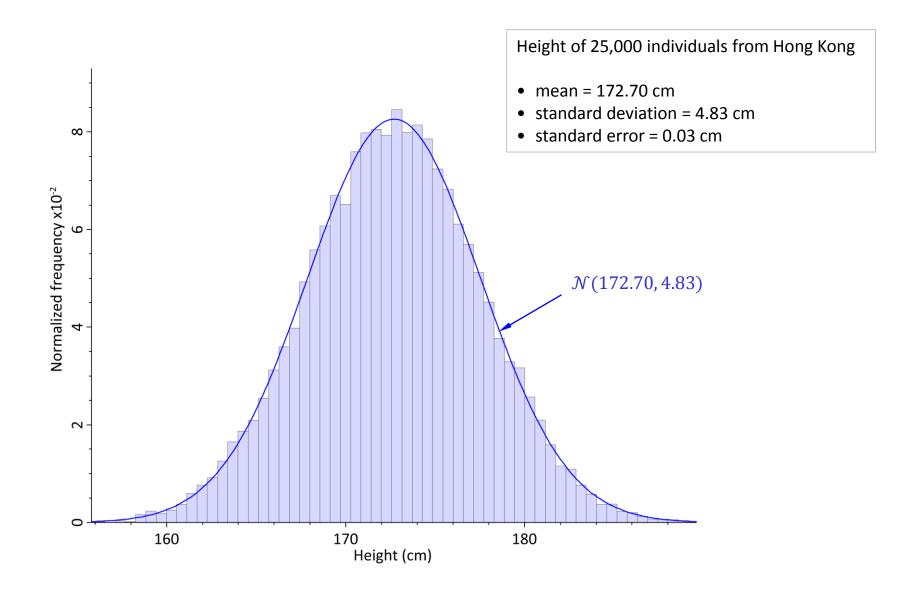
- Area under the curve = probability
- Probability within one sigma of the mean is about ⅔ (68.3%)
- 95% confidence intervals are traditionally used: correspond to about 1.96σ

|        | In        | Out      | Odds of out |
|--------|-----------|----------|-------------|
| ±1σ    | 68.3%     | 31.7%    | 1:3         |
| ±2σ    | 95.4%     | 4.6%     | 1:20        |
| ±3σ    | 99.7%     | 0.3%     | 1:400       |
| ±4σ    | 99.994%   | 0.006%   | 1:16,000    |
| ±5σ    | 99.99993% | 0.00007% | 1:1,700,000 |
| ±1.96σ | 95.0%     | 5.0%     | 1:20        |



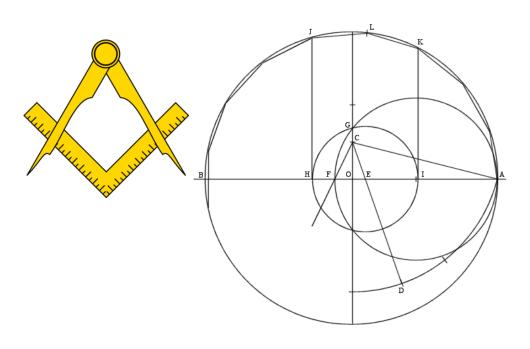
 $\mathcal{N}(10,1.5)$  - normal distribution with  $\mu=10 \text{ and } \sigma=1.5$ 

## Example: Gaussian distribution



## Carl Friedrich Gauss (1777-1855)

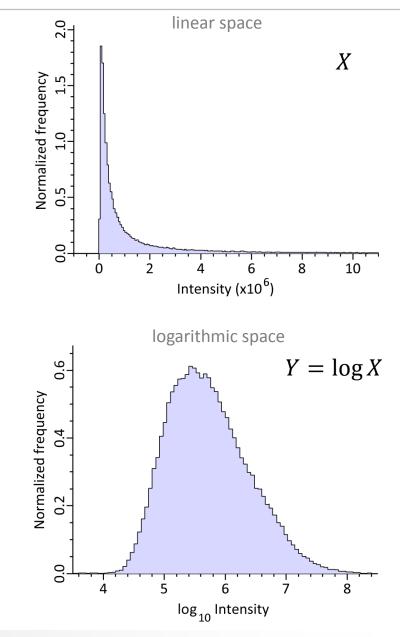
- Brilliant German mathematician
- Constructed a regular heptadecagon with a ruler and a compass
- He requested that a regular heptadecagon should be inscribed on his tombstone
- However, it was Abraham de Moivre (1667-1754) who first formulated "Gaussian" distribution





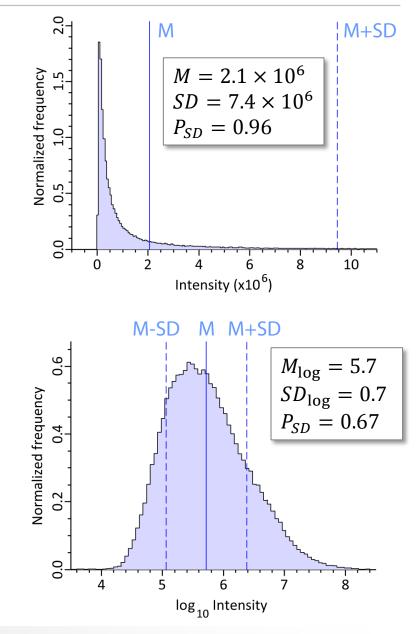
## Log-normal distribution

- Probability distribution of a random variable whose logarithm is normally distributed
- Log-normal distribution can be very asymmetric!



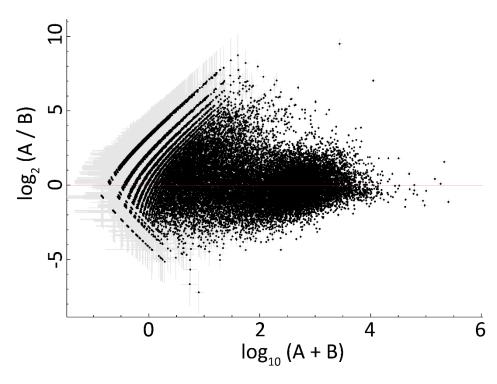
## Example: log-normal distribution

- Peptide intensities from a mass spectrometry experiment
- $P_{SD}$  fraction of data within  $M \pm SD$
- Data look better in logarithmic space
- Always plot the distribution of your data before analysis
- About two-thirds of data points are within one standard deviation from the mean only when their distribution is approximately Gaussian



## A few notes on log-normal distribution

- Examples of log-normal distributions
  - gene expression (RNA-seq, microarrays)
  - mass spectrometry data
  - $\Box$  drug potency  $IC_{50}$
- It doesn't matter if you use log<sub>2</sub>, log<sub>10</sub> or ln, as long as you are consistent
- $\log_{10}$  is easier to understand in plots  $\square 10^5 = 100,000$  $\square 2^{10} = 1024$



## John Napier (1550-1617)

- Scottish mathematician and astronomer
- Invented logarithms and published first tables of natural logarithms
- Created "Napier's bones", the first practical calculator
- Had an interest in theology, calculated the date of the end of the world between 1688 and 1700
- Apparently involved in alchemy and necromancy



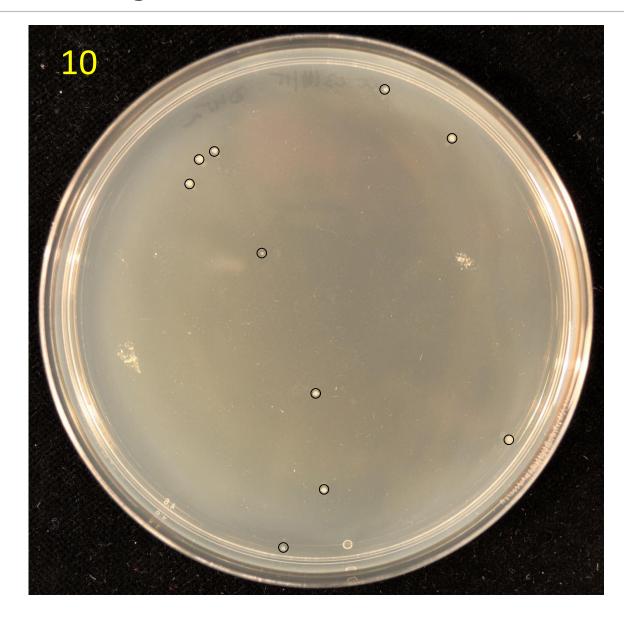
Merchiston Castle, Edinburgh





## What's in the box?

## Counting bacterial colonies



Courtesy of Katharina Trunk, Molecular Biology

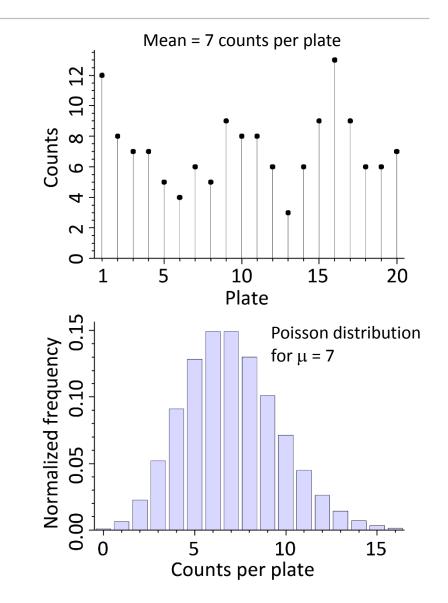
100  $\mu l$  of 10^-7 dilution of  $OD_{600}$  = 2.0

## Poisson distribution

 Measure of bacterial count per unit volume

Poisson count: always per bin

This applies to any counts in time or space
 radioactive decays per second
 number of deaths in a population
 number of cells in a counting chamber
 number of mutations in a DNA fragment

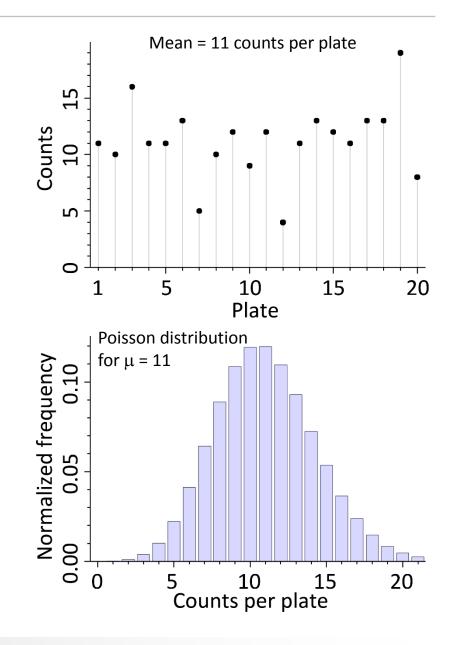


## Poisson distribution

 Measure of bacterial count per unit volume

Poisson count: always per bin

This applies to any counts in time or space
 radioactive decays per second
 number of deaths in a population
 number of cells in a counting chamber
 number of mutations in a DNA fragment



## Poisson distribution

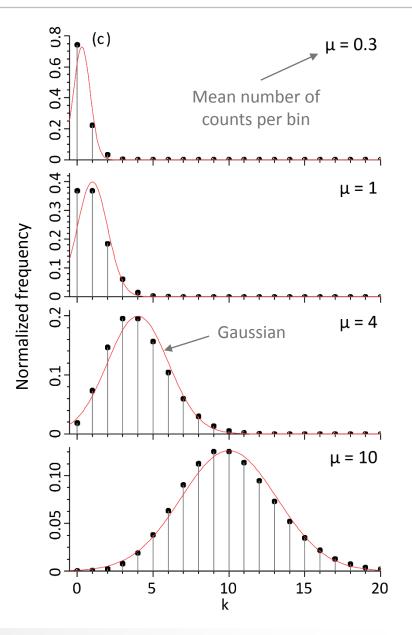
- Random and independent events
- Probability of observing exactly k events:

$$P(X=k) = \frac{\mu^k e^{-\mu}}{k!}$$

- One parameter: mean count rate,  $\mu$
- Standard deviation:

$$\sigma = \sqrt{\mu}$$
$$\sigma^2 = \mu$$

For large μ Poisson distribution approximates
 Gaussian



## Classic example: horse kicks

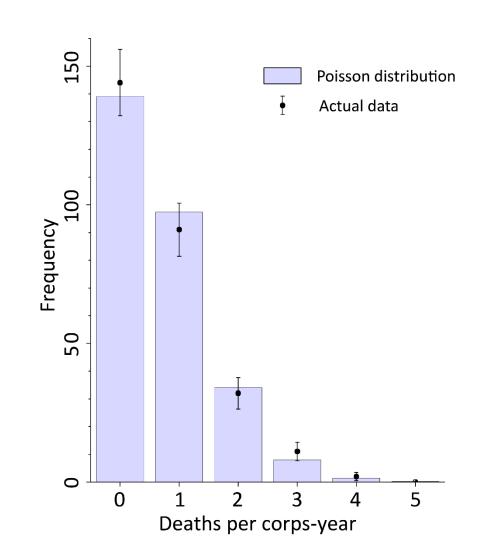
- Ladislaus von Bortkiewicz (1898) "Das Gesetz der kleinen Zahlen"
- Number of soldiers in the Prussian army killed by horse kicks
  - 14 army corps, 20 years of data
  - Deaths per year per army corps

In nachstehender Tabelle sind die Zahlen der durch Schlag eines Pferdes verunglückten Militärpersonen, nach Armeecorps ("G." bedeutet Gardecorps) und Kalenderjahren nachgewiesen.<sup>1</sup>)

|                     | 75 | 76     | 77         | 78               | 79               | 80          | 81    | 82          | 83             | 8.1                                 | 85    | 86          | 87               | 88         | 89            | 90              | 91            | 92          | 93              | 94 |
|---------------------|----|--------|------------|------------------|------------------|-------------|-------|-------------|----------------|-------------------------------------|-------|-------------|------------------|------------|---------------|-----------------|---------------|-------------|-----------------|----|
| G<br>I<br>JI<br>III |    | 2      | 2          | 1<br>2<br>2<br>1 |                  |             | 1<br> |             | 12             | 3                                   |       | 2<br>1      | 1<br>1<br>2<br>1 | 1 1        |               | $\frac{1}{2}$   |               | 1<br>3<br>2 | 1               | 1  |
| IV<br>V<br>VI       |    | 1      | 1          | 1<br>            | 1<br>1<br>2<br>2 | 1 1         | 1     |             | $\frac{1}{2}$  |                                     |       | 1<br>1<br>1 |                  | 1<br>1     | -<br>1<br>1   | <br>1<br>1      | 1<br>1<br>    | 1<br>1<br>3 | 1               |    |
|                     |    | <br>   | 1<br><br>1 | <br><br>1        | 1                |             | 1     | 1<br>1<br>2 | 1<br><br>1<br> | $     \frac{1}{-}     \frac{1}{2} $ |       | 1           | 2<br>1<br>1<br>- |            | 1<br>2        | $\frac{2}{2}$ 1 | $\frac{1}{1}$ | 1 1         | 2<br><br>-<br>1 | 1  |
| XI<br>XIV<br>XV     | 1  | 1<br>1 | 2          | 1                | 2<br>1<br>       | 4<br>3<br>— |       | 1<br>4<br>1 | 3<br>          | 1<br>1                              | 1<br> | 1<br>3<br>  | 1<br>2<br>       | 1<br>1<br> | $\frac{2}{2}$ | 1<br>2<br>2     | 3<br>1<br>    | 1<br>1<br>  | 3<br>           | 1  |

## Example: Poisson distribution

- Death distribution follows Poisson law
- mean = 0.70 deaths / corps / year
- 4 deaths in a corps-year are expected to happen from time to time!
- P(X = 4) = 0.078 in 14 corps
- On average it should happen once in 13 years



### Exercise: Poisson distribution

Poisson law:

$$P(X = k) = \frac{\mu^k e^{-\mu}}{k!}$$

- You transfect a marker into a population of  $n = 3 \times 10^5$  cells
- It functionally integrates with the genome at a rate of  $r = 10^{-5}$
- What is the probability of having at least one cell with the marker?
- First calculate the mean (expected) number of marked cells:  $\mu = nr = 3$
- Now we can use the Poisson law to find P(X = 0)

$$P(X = 0) = \frac{3^0 e^{-3}}{0!} = \frac{1 \times 0.05}{1} = 0.05$$

Hence, the solution

P(X > 0) = 1 - P(X = 0) = 0.95

## **Binomial distribution**

- A series of n "trials"
- In each trial, the probability of:

$$\square "success" = p$$

$$\Box$$
 "failure" = 1 – p

- What is the probability of having exactly k successes in n trials?
- Mean and standard deviation

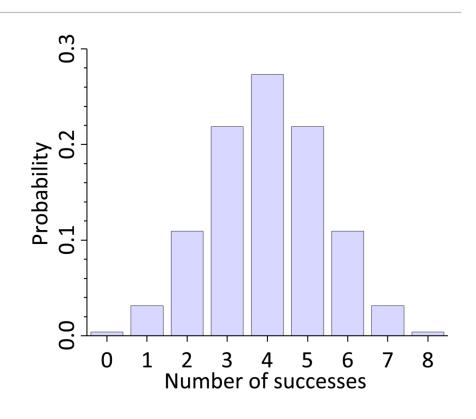
 $\mu = np$ 

$$\sigma = \sqrt{np(1-p)}$$

- For large n approximates Gaussian
- Applications:

□ random errors

- error of the proportion
- $\hfill\square$  error of the median

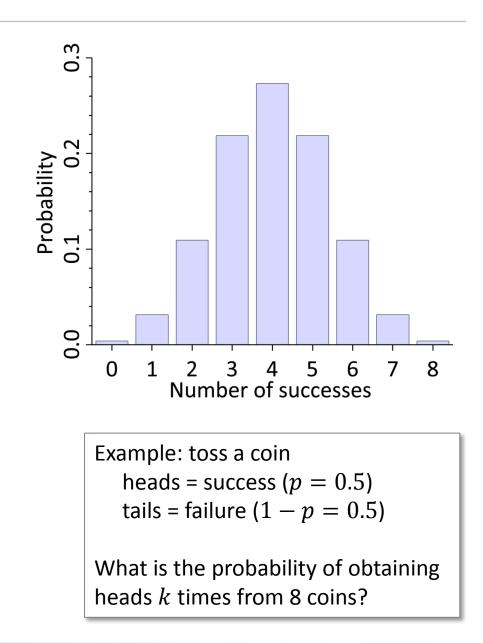


Example: toss a coin heads = success (p = 0.5) tails = failure (1 - p = 0.5)

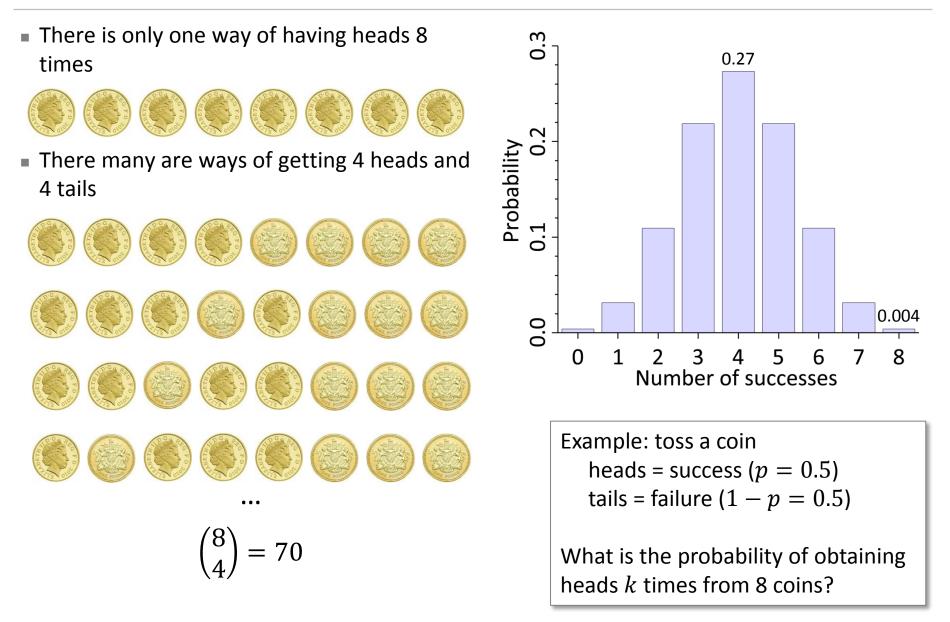
What is the probability of obtaining heads k times from 8 coins?

## Example: tossing a coin

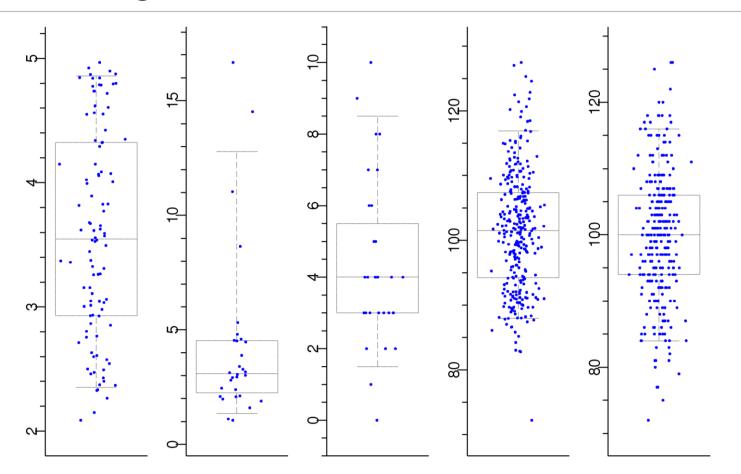
- Toss 8 coins
- Question: why is the probability having heads 4 times much larger than the probability of heads 8 times?



## Example: tossing a coin

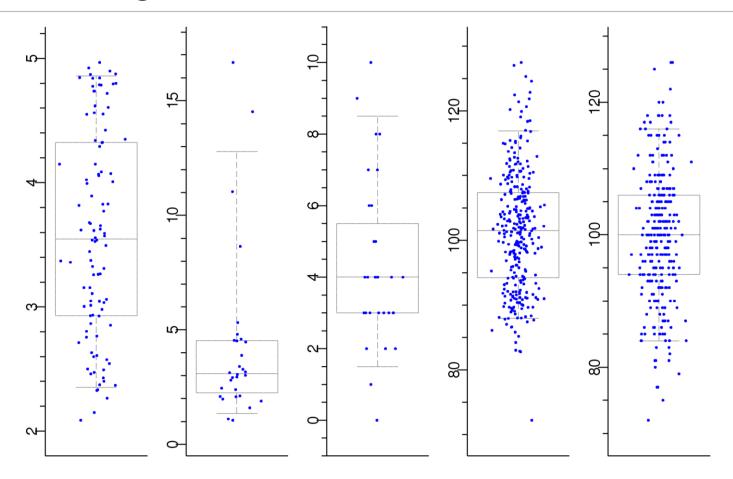


## Exercise: recognize these distributions



| Distribution |  |  |  |
|--------------|--|--|--|
| Mean         |  |  |  |
| SD           |  |  |  |

## Exercise: recognize these distributions



| Distribution | Uniform | Log-normal | Poisson | Gaussian | Poisson |
|--------------|---------|------------|---------|----------|---------|
| Mean         | 3.5     | 3.5        | 4       | 100      | 100     |
| SD           | 0.87    | 0.90       | 2       | 10       | 10      |



#### Hand-outs available at <a href="http://is.gd/statlec">http://is.gd/statlec</a>

#### Please leave your feedback forms on the table by the door



