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Why do we need error analysis?

 Consider a microarray experiment

 Comparing control and treatment

 Expression level of FLG

 control = 41,723

 treatment = 19,786

 There is a 2-fold change in intensity

 Great! Gene is repressed in our 
treatment!
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Why do we need error analysis?

 Consider a microarray experiment

 Comparing control and treatment

 Expression level of FLG

 control = 41,723

 treatment = 19,786

 There is a 2-fold change in intensity

 Great! Gene is repressed in our 
treatment!

 Repeat the experiment in 30 replicates

 control = (31.51.6)103

 treatment = (27.72.4)103

 Reveal variability of expression

 No difference between control and 
treatment

p = 0.2



“A measurement without error is meaningless”

My physics teachers
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Example

 Experiment: estimate bacterial concentration 
using a spectrophotometer

 6 replicates

 Find the following OD600

0.37  0.34  0.41  0.40  0.30  0.33

 Experimental result is a random variable

 It follows a certain probability distribution
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1. Random variables and probability 
distributions

“Misunderstanding of probability may be the greatest of all 
general impediments to scientific literacy”

Stephen Jay Gould
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Random variable: random numbers
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Discrete and continuous random variables

 Discrete variables:

 sum of 2 dice (2, 3, 4, …, 12)

 categorical outcome

 number of mice (5, non random?)

 number of mice in survival experiment 
(random)

 Continuous variables:

 weight of a mouse

 height of a person

 fluorescent marker luminosity

 protein abundance
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Probability distribution

 Assigns a probability to each of the 
possible outcomes

 𝑋 – random variable

 𝑃(𝑋 = 5) – probability of 𝑋 being 5

 𝑃(5 ≤ 𝑋 ≤ 7) – probability of 𝑋 between 
5 and 7 (sum of probabilities)

 𝑓(𝑥) – probability density function

 𝑃(𝑋 < 3) – area under the curve 𝑓(𝑥)

 𝑃 𝑋 = 5 = 0

discrete

continuous

P(X < 3) = ?0.44

0.15

0.11

0.06
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Gaussian distribution

 Gaussian (or normal) probability distribution

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−
𝑥−𝜇 2

2𝜎2

 𝜇 - mean

 𝜎 - standard deviation

 𝜎2 - variance

 It is called “normal” as it often appears in 
nature

𝒩(10, 1.5) - normal distribution with
𝜇 = 10 and 𝜎 = 1.5
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Gaussian distribution: a few numbers

 Area under the curve = probability

 Probability within one sigma of the mean 
is about ⅔ (68.3%)

 95% confidence intervals are traditionally 
used: correspond to about 1.96𝜎

In Out Odds of out

1 68.3% 31.7% 1:3

2 95.4% 4.6% 1:20

3 99.7% 0.3% 1:400

4 99.994% 0.006% 1:16,000

5 99.99993% 0.00007% 1:1,700,000

1.96 95.0% 5.0% 1:20

𝒩(10, 1.5) - normal distribution with
𝜇 = 10 and 𝜎 = 1.5
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Example: Gaussian distribution

Height of 25,000 individuals from Hong Kong

• mean = 172.70 cm
• standard deviation = 4.83 cm
• standard error = 0.03 cm

𝒩(172.70, 4.83)
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Carl Friedrich Gauss (1777-1855)

 Brilliant German mathematician

 Constructed a regular heptadecagon with a 
ruler and a compass

 He requested that a regular heptadecagon
should be inscribed on his tombstone

 However, it was Abraham de Moivre (1667-
1754) who first formulated “Gaussian” 
distribution
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Log-normal distribution

 Probability distribution of a random 
variable whose logarithm is normally 
distributed

 Log-normal distribution can be very 
asymmetric!

linear space

logarithmic space

𝑋

𝑌 = log𝑋
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Example: log-normal distribution

 Peptide intensities from a mass 
spectrometry experiment

 𝑃𝑆𝐷 - fraction of data within 𝑀 ± 𝑆𝐷

 Data look better in logarithmic space

 Always plot the distribution of your data 
before analysis

 About two-thirds of data points are within 
one standard deviation from the mean 
only when their distribution is 
approximately Gaussian

𝑀 = 2.1 × 106

𝑆𝐷 = 7.4 × 106

𝑃𝑆𝐷 = 0.96

𝑀log = 5.7

𝑆𝐷log = 0.7

𝑃𝑆𝐷 = 0.67
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A few notes on log-normal distribution

 Examples of log-normal distributions

 gene expression (RNA-seq, 
microarrays)

 mass spectrometry data

 drug potency 𝐼𝐶50

 It doesn’t matter if you use log2, log10
or ln, as long as you are consistent

 log10 is easier to understand in plots

 105 = 100,000

 210 = 1024



John Napier (1550-1617)

 Scottish mathematician and astronomer

 Invented logarithms and published first 
tables of natural logarithms

 Created “Napier’s bones”, the first 
practical calculator

 Had an interest in theology, calculated the 
date of the end of the world between 
1688 and 1700
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Merchiston Castle, Edinburgh
 Apparently involved in alchemy and 

necromancy





Counting bacterial colonies
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10
Courtesy of Katharina Trunk,
Molecular Biology

100 µl of 10-7 dilution of OD600 = 2.0



Poisson distribution

 Measure of bacterial count per unit 
volume

 Poisson count: always per bin

 This applies to any counts in time or space

 radioactive decays per second

 number of deaths in a population

 number of cells in a counting chamber

 number of mutations in a DNA fragment
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Mean = 7 counts per plate

Poisson distribution
for  = 7



Poisson distribution

 Measure of bacterial count per unit 
volume

 Poisson count: always per bin

 This applies to any counts in time or space

 radioactive decays per second

 number of deaths in a population

 number of cells in a counting chamber

 number of mutations in a DNA fragment
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Mean = 11 counts per plate

Poisson distribution
for  = 11 



Poisson distribution

 Random and independent events

 Probability of observing exactly 𝑘 events:

𝑃 𝑋 = 𝑘 =
𝜇𝑘𝑒−𝜇

𝑘!

 One parameter: mean count rate, 𝜇

 Standard deviation:

𝜎 = 𝜇

𝜎2 = 𝜇

 For large 𝜇 Poisson distribution approximates 
Gaussian

25

Mean number of
counts per bin

N
o

rm
al

iz
ed

 f
re

q
u

en
cy

Gaussian



26

Classic example: horse kicks

 Ladislaus von Bortkiewicz (1898) “Das Gesetz der kleinen Zahlen”

 Number of soldiers in the Prussian army killed by horse kicks

 14 army corps, 20 years of data

 Deaths per year per army corps
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Example: Poisson distribution

 Death distribution follows Poisson law

 mean = 0.70 deaths / corps / year

 4 deaths in a corps-year are expected to 
happen from time to time!

 𝑃(𝑋 = 4) = 0.078 in 14 corps

 On average it should happen once in 13 
years



Exercise: Poisson distribution

 Poisson law:

𝑃 𝑋 = 𝑘 =
𝜇𝑘𝑒−𝜇

𝑘!

 You transfect a marker into a population of 𝑛 = 3 × 105 cells

 It functionally integrates with the genome at a rate of 𝑟 = 10−5

 What is the probability of having at least one cell with the marker?
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 First calculate the mean (expected) number of marked cells:

𝜇 = 𝑛𝑟 = 3

 Now we can use the Poisson law to find 𝑃(𝑋 = 0)

𝑃 𝑋 = 0 =
30𝑒−3

0!
=
1 × 0.05

1
= 0.05

 Hence, the solution

𝑃 𝑋 > 0 = 1 − 𝑃 𝑋 = 0 = 0.95



Binomial distribution

 A series of 𝑛 “trials”

 In each trial, the probability of:

 “success” = 𝑝

 “failure” = 1 − 𝑝

 What is the probability of having exactly 𝑘
successes in 𝑛 trials?

 Mean and standard deviation

𝜇 = 𝑛𝑝

𝜎 = 𝑛𝑝(1 − 𝑝)

 For large 𝑛 approximates Gaussian

 Applications:

 random errors

 error of the proportion

 error of the median
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Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?



Example: tossing a coin

 Toss 8 coins

 Question: why is the probability having 
heads 4 times much larger than the 
probability of heads 8 times?
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Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?



Example: tossing a coin

 There is only one way of having heads 8 
times

 There many are ways of getting 4 heads and 
4 tails
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Example: toss a coin
heads = success (𝑝 = 0.5)
tails = failure (1 − 𝑝 = 0.5)

What is the probability of obtaining 
heads 𝑘 times from 8 coins?

…

0.27

0.004

8
4

= 70
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Exercise: recognize these distributions

Distribution

Mean

SD
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Exercise: recognize these distributions

Distribution Uniform Log-normal Poisson Gaussian Poisson

Mean 3.5 3.5 4 100 100

SD 0.87 0.90 2 10 10



Hand-outs available at http://is.gd/statlec

Please leave your feedback forms on the table by the door


