Error analysis in biology

Marek Gierliński
Division of Computational Biology

Hand-outs available at http://is.gd/statlec
error ~ōris, m. [erro\(^1\) + -or]

1 The act or fact of travelling on an uncertain or devious course, wandering about, roaming, etc. b (of things); (esp. of unsteady movements of the head or eyes). c the devious and perplexing course of a labyrinth or sim.

2 Uncertainty of mind, doubt, perplexity.

3 A deviation from one’s path, going astray.

4 A derangement of the mind.

5 A mistake or mistaken condition, error (in thought or action).

6 A departure from right principles, moral lapse or sim. (usu. by implication venial).
Previously on Errors...

- Random variable: numerical outcome of an experiment
- Probability distribution: how random values are distributed
- Discrete and continuous probability distributions

Gaussian (normal) distribution
- very common
- 95% probability within $\mu \pm 1.96\sigma$

Poisson (count) distribution
- random and independent events
- mean = variance
- approximates Gaussian for large n

Binomial distribution
- probability of k successes out of n trials
- toss a coin
- approximates Gaussian for large n
Example

- Take one cuvette with bacterial culture
- Measure optical density (OD600)
- Result: 0.37
- *Reading error*

- Take five cuvettes and find mean OD600
- Results 0.42
- *Sampling error*

- These are examples of *measurement errors*
2. Measurement errors

“If your experiment needs statistics, you ought to have done a better experiment”

Ernest Rutherford
Systematic and random errors

Systematic errors
- Incorrect instrument calibration
- Change in experimental conditions
- Pipetting error

Random errors
- Reading errors
- Sampling errors
- Counting errors
- Intrinsic variability
YOU NEED REPLICATES
Reading error

- The reading error is ± half of the smallest division
- Example: 23±0.5 mm from a ruler

- Beware of digital instruments that sometimes give readings much better than their real accuracy
- Read the instruction manual!

- Reading error does not take into account biological variability
Random measurement error

- Determine the strength of oxalic acid in a sample
- Method: sodium hydroxide titration

Uncertainties contributing to the final result
- volume of the acid sample
- judgement at which point acid is neutralized
- volume of NaOH solution used at this point
- accuracy of NaOH concentration
 - weight of solid NaOH dissolved
 - volume of water added

- Each of these uncertainties adds a random error to the final result

- Measurement errors are normally distributed
Random measurement error

Gene expression from RNA-seq in 42 replicates
Counting error

- Dilution plating of bacteria

- Found $C = 10$ colonies

- Counting statistics: Poisson distribution
 \[\sigma = \sqrt{\mu} \]

- Use standard deviation as error estimate
 \[S = \sqrt{C} = \sqrt{10} \approx 3 \]

$C = 10 \pm 3$
Counting error

- **Gedankenexperiment**

- Measure counts on 10,000 plates

<table>
<thead>
<tr>
<th>C_i</th>
<th>Count from plate i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_i = \sqrt{C_i}$</td>
<td>Its error</td>
</tr>
<tr>
<td>μ</td>
<td>Unknown population mean</td>
</tr>
<tr>
<td>$\sigma = \sqrt{\mu}$</td>
<td>Unknown population SD</td>
</tr>
</tbody>
</table>

- Counting errors, S_i, are similar, but not identical, to σ

- C_i is an estimator of μ

- S_i is an estimator of σ
Exercise: is Dundee a murder capital of Scotland?

- On 2 October 2013 *The Courier* published an article “Dundee is murder capital of Scotland”
- Data in the article (2012/2013):

<table>
<thead>
<tr>
<th>City</th>
<th>Murders</th>
<th>Per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dundee</td>
<td>6</td>
<td>4.1</td>
</tr>
<tr>
<td>Glasgow</td>
<td>19</td>
<td>3.2</td>
</tr>
<tr>
<td>Aberdeen</td>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>2</td>
<td>0.41</td>
</tr>
</tbody>
</table>

- Compare Dundee and Glasgow
- Find errors on murder rates
- Hint: find errors on murder count first
Exercise: is Dundee a murder capital of Scotland?

<table>
<thead>
<tr>
<th>City</th>
<th>Murders</th>
<th>Per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dundee</td>
<td>6</td>
<td>4.1</td>
</tr>
<tr>
<td>Glasgow</td>
<td>19</td>
<td>3.2</td>
</tr>
</tbody>
</table>

\[
\Delta C_D = \sqrt{6} \approx 2.4
\]

\[
\Delta C_G = \sqrt{19} \approx 4.4
\]

- Errors scale with variables, so we can use fractional errors

\[
\frac{\Delta C_D}{C_D} = 0.41
\]

\[
\frac{\Delta C_G}{D_G} = 0.23
\]

- and apply them to murder rate

\[
\Delta R_D = 4.1 \times 0.41 = 1.7
\]

\[
\Delta R_G = 3.2 \times 0.23 = 0.74
\]

\[p = 0.8\]
Exercise: is Dundee a murder capital of Scotland?

<table>
<thead>
<tr>
<th>City</th>
<th>Murders</th>
<th>Per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dundee</td>
<td>6</td>
<td>4.1</td>
</tr>
<tr>
<td>Glasgow</td>
<td>19</td>
<td>3.2</td>
</tr>
<tr>
<td>Aberdeen</td>
<td>2</td>
<td>0.88</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>2</td>
<td>0.41</td>
</tr>
</tbody>
</table>

95% confidence intervals (Lecture 4)

p-values from chi-square test vs Dundee

\[p = 0.8 \]
\[p = 0.04 \]
\[p = 0.002 \]
What’s in the box?
Sampling error

- Repeated measurements give us
 - mean value
 - variability scale

- Sampling from a population
 - Measure the weight of a potato
 - *Sample*: 5 potatoes
 - *Population*: all potatoes

- Small sample size introduces uncertainty

<table>
<thead>
<tr>
<th>Body weight of 5 potatoes (g)</th>
<th>Mean (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115 174 178 149 137</td>
<td>151</td>
</tr>
<tr>
<td>175 162 119 134 66</td>
<td>131</td>
</tr>
<tr>
<td>194 245 62 177 112</td>
<td>158</td>
</tr>
</tbody>
</table>
Measurement errors: summary

- Random measurement errors are expected to be normally distributed

- Some errors can be estimated directly
 - reading (scale, gauge, digital read-out)
 - counting

- Other uncertainties require replicates (a sample)
 - this introduces sampling error
Example

- Weight of 5 potatoes
- This is a **sample**
- We can find
 - mean = 150 g
 - median = 150 g
 - standard deviation = 26 g
 - standard error = 12 g

- These are examples of **statistical estimators**

<table>
<thead>
<tr>
<th>No.</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115</td>
</tr>
<tr>
<td>2</td>
<td>174</td>
</tr>
<tr>
<td>3</td>
<td>178</td>
</tr>
<tr>
<td>4</td>
<td>149</td>
</tr>
<tr>
<td>5</td>
<td>137</td>
</tr>
</tbody>
</table>
3. Statistical estimators

“The average human has one breast and one testicle”

Des MacHale
Population and sample

- Terms nicked from social sciences
- Most biological experiments involve sample selection
- Terms “population” and “sample” are not always literal
What is a sample?

- The term “sample” has different meanings in biology and statistics.

 - **Biology**: sample is a specimen, e.g., a cell culture you want to analyse.

 - **Statistics**: sample is (usually) a set of numbers (measurements).

 - In these talks: $x_1, x_2, ..., x_n$.

- Biological samples (specimens) can be quantified into a statistical sample (set of numbers) for analysis.
Population and sample

A parameter describes a population

A statistical estimator (statistic) describes a sample

A statistical estimator approximates the corresponding parameter
Sample size

Dilution plating experiment

What is the sample size?

\[n = 1 \]

This sample consists of one measurement: \(x_1 = 10 \)

10 colonies
What is a statistical estimator?

Stand at the door of a church on a Sunday and bid 16 men to stop, tall ones and small ones, as they happen to pass out when the service is finished; then make them put their left feet one behind the other, and the length thus obtained shall be a right and lawful rood to measure and survey the land with, and the 16th part of it shall be the right and lawful foot.

Over 400 years ago Köbel:
• introduced random sampling from a population
• required a representative sample
• defined standardized units of measure
• used 16 replicates to minimize random error
• calculated an estimator: the sample mean

“Right and lawful rood*” from Geometrei, by Jacob Köbel (Frankfurt 1575)

*rood – a unit of measure equal to 16 feet
Statistical estimators

- Statistical estimator is a sample attribute used to estimate a population parameter.

- From a sample $x_1, x_2, ..., x_n$ we can find

$$M = \frac{1}{n} \sum_{i=1}^{n} x_i$$

(mean)

$$SD = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - M)^2}$$

(standard deviation)

- Median, proportion, correlation, ...

- Population $\mathcal{N}(20, 5)$
- Sample $n = 30$

- $n = 30$
- $M = 20.3$ g
- $SD = 5.2$ g
- $SE = 0.94$ g

$$M = (20.3 \pm 0.9)$$ g
Standard deviation

- Standard deviation is a measure of spread of data points.

Idea:
- calculate the mean
- find deviations from the mean of individual points
- get rid of negative signs
- combine them together
Standard deviation

- Standard deviation is a measure of spread of data points

- Idea:
 - calculate the mean
 - find deviations from the mean of individual points
 - get rid of negative signs
 - combine them together

- Standard deviation of \(x_1, x_2, \ldots, x_n \)

\[
SD_n = \sqrt{\frac{1}{n} \sum_{i} (x_i - M)^2}
\]

\[
SD_{n-1} = \sqrt{\frac{1}{n-1} \sum_{i} (x_i - M)^2}
\]

- Mean deviation

\[
MD = \frac{1}{n} \sum_{i} |x_i - M|
\]

- \(SD_{n-1} \) estimates true variance better than \(SD_n^2 \)

- \(SD_{n-1} \) doesn’t overestimate outliers
- less accurate than SD
- mathematically more complicated
- tradition: use SD
Sampling distribution

Population of mice with Gaussian body weight: $\mu = 20 \text{ g}, \sigma = 5 \text{ g}$

Draw lots of samples of size $n = 5$
Standard error of the mean

Hypothetical experiment

- 10,000 samples of 5 mice
- Build a distribution of sample means
- Width of this distribution is the true uncertainty of the mean

$$\sigma_m = \frac{\sigma}{\sqrt{n}} = 2.2 \text{ g}$$

Real experiment

- 5 mice
- Measure body mass:
 - 7.9, 15.3, 18.5, 22.4, 25.3 g
- Find standard error

$$SE = \frac{SD}{\sqrt{n}} = 3.0 \text{ g}$$

SE is an approximation of σ_m
Standard error of the mean

Hypothetical experiment
- 10,000 samples of 30 mice
- Build a distribution of sample means
- Width of this distribution is the true uncertainty of the mean

\[\sigma_m = \frac{\sigma}{\sqrt{n}} = 0.9 \text{ g} \]

Real experiment
- 30 mice
- Measure body mass: 11.6, 13.7, ..., 32.8 g
- Find standard error

\[SE = \frac{SD}{\sqrt{n}} = 0.8 \text{ g} \]

SE is an approximation of \(\sigma_m \)
Standard error of the mean

(a) $n = 5$

(b) $\sigma_m = 2.2$ g

(c) $n = 30$

(d) $\sigma_m = 0.9$ g
Standard deviation and standard error

<table>
<thead>
<tr>
<th>Standard deviation</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SD = \sqrt{\frac{1}{n-1} \sum (x_i - M)^2}$</td>
<td>$SE = \frac{SD}{\sqrt{n}}$</td>
</tr>
</tbody>
</table>

- **Measure of dispersion in the sample**
- **Error of the mean**

- **Estimates the true standard deviation in the population, σ**
- **Estimates the width (standard deviation) of the distribution of the sample means**

- **Does not depend on sample size**
- **Gets smaller with increasing sample size**
Correlation coefficient

- Two samples: \(x_1, x_2, \ldots, x_n \) and \(y_1, y_2, \ldots, y_n \)

\[
r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - M_x}{SD_x} \right) \left(\frac{y_i - M_y}{SD_y} \right) = \frac{1}{n-1} \sum_{i=1}^{n} Z_{xi} Z_{yi}
\]

where \(Z \) is a “Z-score”

- Correlation does not mean causation!
Correlation coefficient: example

\[
r = \frac{1}{n-1} \sum_{i=1}^{n} Z_{xi}Z_{yi}
\]

\[
\sum Z_{x}Z_{y} = 4.96
\]

\[
\sum Z_{x}Z_{y} = 0.18
\]
Statistical estimators

<table>
<thead>
<tr>
<th>Central point</th>
<th>Dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Variance</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>Harmonic mean</td>
<td>Mean deviation</td>
</tr>
<tr>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>Mode</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>Trimmed mean</td>
<td>Mean difference</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness</td>
<td>Pearson’s correlation</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>Rank correlation</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
</tr>
</tbody>
</table>
Hand-outs available at http://is.gd/statlec

Please leave your feedback forms on the table by the door