Error analysis in biology

Marek Gierliński Division of Computational Biology

Hand-outs available at http://is.gd/statlec

Errors, like straws, upon the surface flow; He who would search for pearls must dive below *John Dryden (1631-1700)*

Previously on Errors...

Confidence interval of the median

- We do *not* build a sampling distribution
- Draw one random sample of n points, one by one
- Population median Θ property: $P(x_i < \Theta) = \frac{1}{2}$ and $P(x_i > \Theta) = \frac{1}{2}$

Confidence interval of the median

We need to interpolate to find exactly 95% confidence interval

Hettmansperger, T. P. & Sheather, S. J. 1986. Confidence-Intervals Based on Interpolated Order-Statistics. *Statistics & Probability Letters*, 4, 75-79.

4. Confidence intervals II

"Confidence is what you have before you understand the problem"

Woody Allen

Confidence interval for count data

Standard error of a count, C, is

 $SE = \sqrt{C}$

- For example 5 ± 2 (after rounding up)
- How to find a confidence interval on μ ?
- Exact method: reversing the Poisson distribution
- A bit complicated for this talk
- We have a good approximation!

 $C = 5 \pm 2$ (SE)

Confidence interval for count data: approximation

- For the given confidence level find a Gaussian critical value Z
 for example Z = 1.96 for 95% CI
- For the given count number, C, calculate lower and upper limits:

$$C_L = C - Z\sqrt{C} + \frac{Z^2 - 1}{3}$$
$$C_U = C + Z\sqrt{C + 1} + \frac{Z^2 + 2}{3}$$

Example:

□ C = 5□ Z = 1.96□ $C_L = 1.6, C_U = 11.8$ □ $C = 5^{+7}_{-3}$

□ It is asymmetric!

 $C = 5 \pm 2$ (SE) $C = 5^{+7}_{-3}$ (95% CI)

Count errors: example

Confidence intervals for count data are not integer

- 95% CI for *C* = 5 is [1.6, 11.8]
- Shouldn't the confidence interval be exactly integer?
- Confidence interval is for the true mean, not for the sample count!
- This interval indicates that we expect the true mean to be in [1.6, 11.8] with a certain confidence
- The mean in a Poisson process is not integer
- Confidence intervals are for the true mean and are not integer

Confidence interval of the correlation coefficient

- Pearson's correlation coefficient r for a sample of pairs (x_i, y_i)
- It is a number between -1 and 1
- It is not enough to say "we find r = 0.89, therefore our samples are correlated"
- Confidence limits on r or significance of correlation

Sampling distribution of the correlation coefficient

- Gedankenexperiment
- Consider a population of pairs of numbers (x_i, y_i)
- The (unknown) population correlation coefficient, $\rho = 0.73$
- Draw lots of samples of pairs, size
 n
- Calculate the correlation coefficient for each sample
- Build a sampling distribution of the correlation coefficient

Sampling distribution of the correlation coefficient

- Sampling distribution of r
- Unknown in analytical form
- Let us transform it into a known distribution
- Fisher's transformation:

 $Z = \frac{1}{2}\ln\frac{1+r}{1-r}$

Build a sampling distribution of Z

Confidence interval of the correlation coefficient

Example: 95% confidence limits on r

- A sample of n = 30 pairs of numbers, correlation coefficient r = 0.73
- First, find

$$Z = \frac{1}{2} \ln \frac{1+r}{1-r} = 0.929$$
$$\sigma = \frac{1}{\sqrt{n-3}} = 0.192$$

Z is normally distributed

Example: 95% confidence limits on r

- A sample of n = 30 pairs of numbers, correlation coefficient r = 0.73
- First, find

$$Z = \frac{1}{2} \ln \frac{1+r}{1-r} = 0.929$$
$$\sigma = \frac{1}{\sqrt{n-3}} = 0.192$$

Z is normally distributed, so 95% interval corresponds to 1.96σ around Z

□
$$Z_L = Z - 1.96\sigma = 0.553$$

□ $Z_U = Z + 1.96\sigma = 1.31$

Now we find the corresponding limits on r

$$r = \frac{e^{2Z} - 1}{e^{2Z} + 1}$$

 $\Box r_L = 0.503$ $\Box r_U = 0.864$

• Hence, with 95% confidence, $r = 0.73^{+0.13}_{-0.23}$

Example: 95% CI for correlation with n = 6 and n = 30

r = 0.73

	n = 6	n = 30		
$Z = \frac{1}{2}\ln\frac{1+r}{1-r}$	0.929	0.929		
$\sigma = \frac{1}{\sqrt{n-3}}$	0.577	0.192		
$Z_L = Z - 1.96\sigma$	-0.20	0.553		
$Z_U = Z + 1.96\sigma$	2.06	1.31		
$r_L = \frac{e^{2Z_L} - 1}{e^{2Z_L} + 1}$	-0.20	0.503		
$r_U = \frac{e^{2Z_U} - 1}{e^{2Z_U} + 1}$	0.97	0.864		
	$r = 0.7^{+0.3}_{-0.9}$	$r = 0.73^{+0.13}_{-0.23}$		

Significance of correlation

• H_0 : the sample is drawn from a population with no correlation ($\rho = 0$)

• Calculate
$$t = r \sqrt{\frac{n-2}{1-r^2}}$$

- It follows a Student's *t*-distribution with n-2 degrees of freedom
- Calculate p-value: probability of getting the observed correlation by chance

Confidence interval of a proportion

Proportion: 1.0 number of successes 0.8 sample size Survival proportion n 0.6 Examples: \square poll results (32% vote party X) 0.4 □ survival experiments (3 out of 10 mice 0.2 survive) □ counting cells with a property 0.0 Sample proportion, \hat{p} , is an estimator 15 5 10 20 0 Time (days)

- Consider survival experiment
 - take 10 mice
 - infect with something nasty

of the population proportion, p

- apply treatment
- count survival proportion over time
- We need errors of proportion!

Sampling distribution of a proportion

- Gedankenexperiment
- Consider a population of mice where 13% are immune to a certain disease
- Draw a random sample of size n and find the proportion of immune mice, p̂, in the sample
- Repeat 100,000 times and plot the distribution of p̂
- What kind of distribution is it?
- Binomial distribution
 - \Box immune = "success", probability p
 - \square not immune = "failure", probability 1-p
- Good! Sampling distribution is known

Sampling distribution of a proportion: binomial

Absolute numbers

- P(S = k) = probability of having k
 immune mice in a sample of n
- Mean and standard deviation

 $\mu = np$

$$\sigma = \sqrt{np(1-p)}$$

Proportion

- Scaling random variable $\Phi = S/n$
- P(Φ = k/n) = probability of having a proportion k/n of immune mice in a sample
- Mean and standard deviation scaled by n:

$$\mu_{\Phi} = p$$

$$\sigma_{\Phi} = \sqrt{\frac{p(1-p)}{n}}$$

Sampling distribution of a proportion

Reminder from lecture 2

Sampling distribution of a proportion

 Width of the sampling distribution of a proportion

$$\sigma_{\Phi} = \sqrt{\frac{p(1-p)}{n}}$$

 Standard approach: replace unknown population parameter, p, with the sample estimator, p̂ (observed proportion)

$$SE_{\Phi} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- Standard error of a proportion
- SE_Φ estimates the width of the sampling distribution
- However, this doesn't work for small n, or when proportion is close to 0 or 1

Wald method

- Empirical correction to SE of a proportion
- Sample of size n with Ŝ successes
- Select Gaussian Z for given confidence (e.g. Z = 1.96 for 95%)
- Calculate *corrected* quantities

$$S' = \hat{S} + \frac{Z^2}{2}$$
$$n' = n + Z^2$$

and then:

$$p' = \frac{S'}{n'}$$

$$SE'_{\Phi} = \sqrt{\frac{p'(1-p')}{n'}}$$

Confidence interval is

$$[p' - Z \times SE'_{\Phi}, p' + Z \times SE'_{\Phi},]$$

Example

- n = 10 $\hat{S} = 1$ $\hat{p} = 0.1$
- Uncorrected standard error
 SE = 0.1
- Corrected values S' = 1 + 1.92 = 2.92n' = 10 + 3.84 = 13.84
- Corrected proportion and error p' = 0.21 $SE'_{\Phi} = 0.11$
- Margin of error $W = Z \times SE'_{\Phi} = 0.21$
- 95% confidence interval is [0, 0.43]

Confidence intervals of a proportion

- Mouse survival experiment
- 95% confidence intervals calculated using Wald method
- The bigger sample, the smaller error
- Even when $\hat{p} = 0$, error allows for non-zero proportion
- We have zombie mice!

Exercise: error of proportion

- What is the proportion of left-handed people in the audience?
- In general population in UK there are about 11% of left-handed people

$$p' = \frac{\hat{S} + Z}{n + Z^2}$$

$$W = Z \sqrt{\frac{p'(1 - p')}{n + Z^2}}$$

$$[p' - W, p' + W]$$
Modified proportion, where
Z is a z-score corresponding
to needed confidence
(e.g. Z = 1.96 for 95%)
$$W = Z \sqrt{\frac{p'(1 - p')}{n + Z^2}}$$
Confidence interval
for proportion

Bootstrapping

Versatile technique used when

distribution of the estimator is complicated or unknown

- $\hfill\square$ for power calculations
- Approximate sampling distribution from one sample only
- Use random resampling with replacement

19.4	18.2	11.5	17.2	25.7	19.2	21.5	16.7	15.6	27.7	14.3	16.3	M = 18.6	original sample
27.7	18.2	18.2	25.7	11.5	17.2	17.2	25.7	21.5	11.5	14.3	17.2	M = 18.8	
19.2	14.3	19.2	15.6	14.3	14.3	17.2	16.3	19.2	19.2	16.3	21.5	M = 17.2	
14.3	17.2	18.2	18.2	18.2	11.5	14.3	18.2	17.2	19.4	11.5	16.3	M = 16.2	resamples
25.7	18.2	15.6	15.6	19.4	19.2	18.2	19.4	21.5	16.7	14.3	18.2	M = 18.5	
19.2	21.5	16.7	17.2	21.5	18.2	21.5	17.2	21.5	15.6	21.5	21.5	M = 19.4	

- Repeat this many times (e.g. 10⁶) and collect all means
- Build the bootstrap distribution of the mean

Bootstrapping

Replicates

- Replication is the repetition of an experiment under the same condition
- Typically, the only way of estimating measurement errors is to do the experiment in replicates
- You need replicates

YOU NEED REPLICATES

Replicates

- Replication is the repetition of an experiment under the same condition
- Typically, the only way of estimating measurement errors is to do the experiment in replicates
- You need replicates, but how many?
- Roughly speaking, there are two cases

measure a quantity and estimate its uncertainty/variability
 compare groups/conditions (differential analysis)

How many replicates do I need?

- Uncertainty of the mean is huge for very small number of replicates
- It drops quickly and then gradually flattens out
- There is no obvious number of replicates telling you: this is good enough
- Physicists say: use 30 replicates

Number of replicates to find the mean

- Sampling distribution of the mean has a standard deviation of $\sigma_m = \sigma/\sqrt{n}$
- Interval $\sim 2\sigma_m$ around the true mean contains 95% of all samples
- Let's call it precision of the mean:

$$\epsilon \approx 2\sigma_m = \frac{2\sigma}{\sqrt{n}}$$

Sample size to get the required precision:

$$n = \frac{4\sigma^2}{\epsilon^2}$$

- This requires a priori knowledge of σ (do a pilot experiment to estimate)
- Example: $\sigma = 5$ g, required precision of ± 2 g

$$n = 4 \times \frac{5^2}{2^2} = 25$$

Hand-outs available at http://is.gd/statlec

Please leave your feedback forms on the table by the door

Simple approximation instead

- Sample $x_1, x_2, ..., x_n$
- Sorted sample $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$
- Find two limiting indices:

$$L = \left\lfloor \frac{n}{2} \right\rfloor - \left\lceil \sqrt{\frac{n}{4}} \right\rceil$$

$$U = n - L$$

Standard error of the median

$$\widetilde{SE} = \frac{\mathbf{x}_{(U)} - \mathbf{x}_{(L+1)}}{2}$$

Confidence intervals

 $\widetilde{M}_L = \widetilde{M} - t^* \widetilde{SE}$ $\widetilde{M}_U = \widetilde{M} + t^* \widetilde{SE}$

 Here, t* is the critical value from tdistribution with U - L - 1 degrees of freedom

