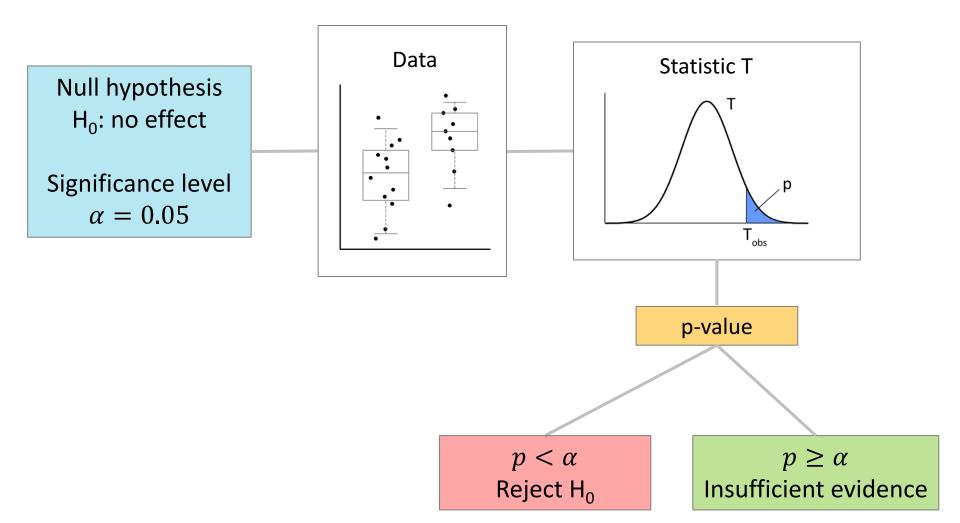
P-values and statistical tests 5. Non-parametric methods

Marek Gierliński Division of Computational Biology

Hand-outs available at http://is.gd/statlec



Nonparametric methods

Parametric methods: Parametric Nonparametric □ require finding parameters (e.g. mean) test test □ sensitive to distributions □ don't work in some cases 26 • 11 □ more powerful • 10 24 • 9 Nonparametric methods: 8 • □ based on ranks Body mass (g) 22 distribution-free • 7 □ wider application 20 6 • □ less powerful • 5 18 4 • • 3 • 2 16 1 •

Ctrl

Treat

Treat

Ctrl

Mann-Whitney test (Wilcoxon rank-sum test)

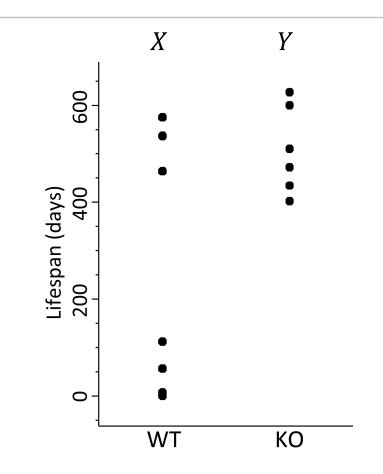
a nonparametric alternative to t-test

Mann-Whitney test

- Two samples representing random variables X and Y
- Null hypothesis: there is no shift in location (and/or change in shape)

 $H_0: P(X > Y) = P(Y > X)$

Only ranks matter, not actual values

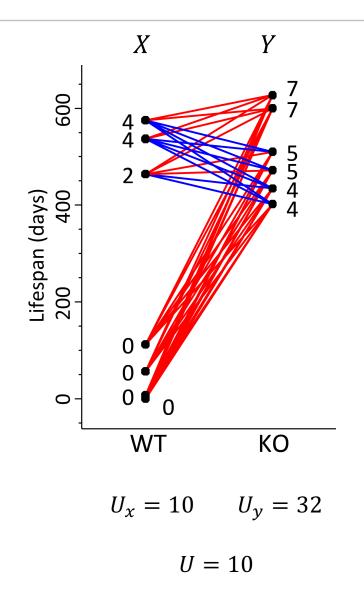


Mann-Whitney test

- Two samples: x_1, x_2, \dots, x_{n_x} y_1, y_2, \dots, y_{n_y}
- For each x_i count the number of y_j, such that x_i > y_j
- The sum of these counts over all x_i is U_x
- Do the same for y_i and find U_y

Test statistic

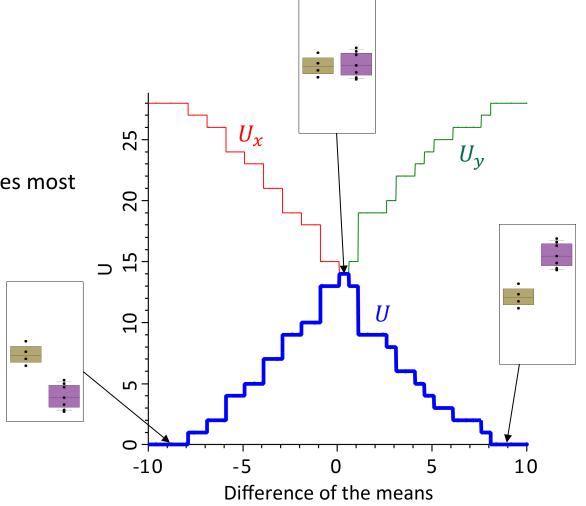
 $U = \min(U_x, U_y)$



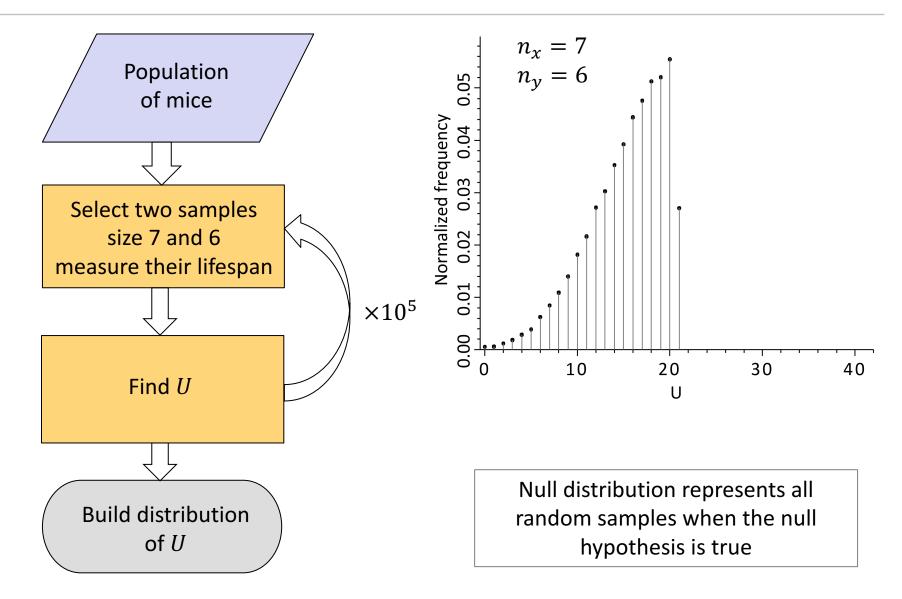
Mann-Whitney test

- U measures difference in location between the samples
- With no overlap U = 0
- Direction not important

•
$$U = \max = \left\lfloor \frac{n_{\chi} n_{y}}{2} \right\rfloor$$
 when samples most similar



Null distribution



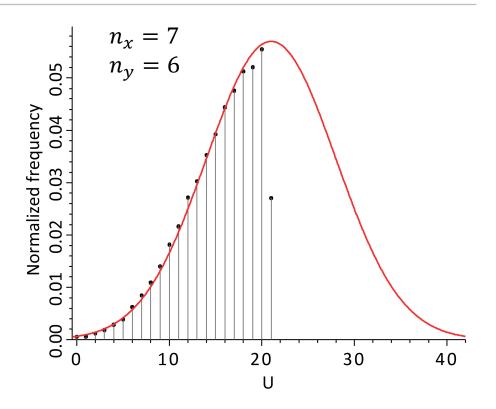
Null distribution

 For large samples U is approximately normally distributed (half of it) with

$$\mu_U = \frac{n_x n_y}{2}$$

$$\sigma_U = \sqrt{\frac{n_x n_y (n_x + n_y + 1)}{12}}$$

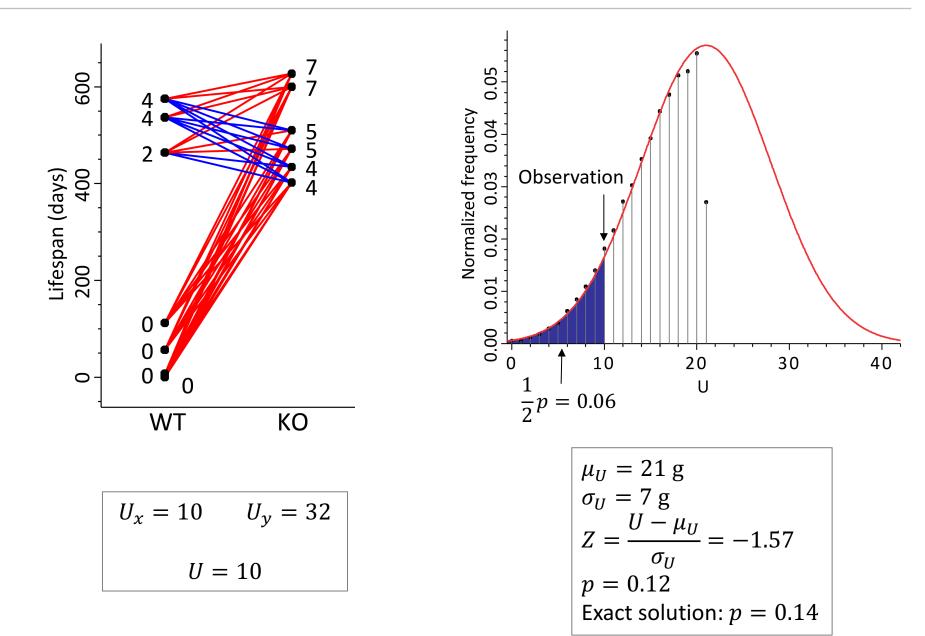
 For smaller samples exact solutions are available (tables or software)



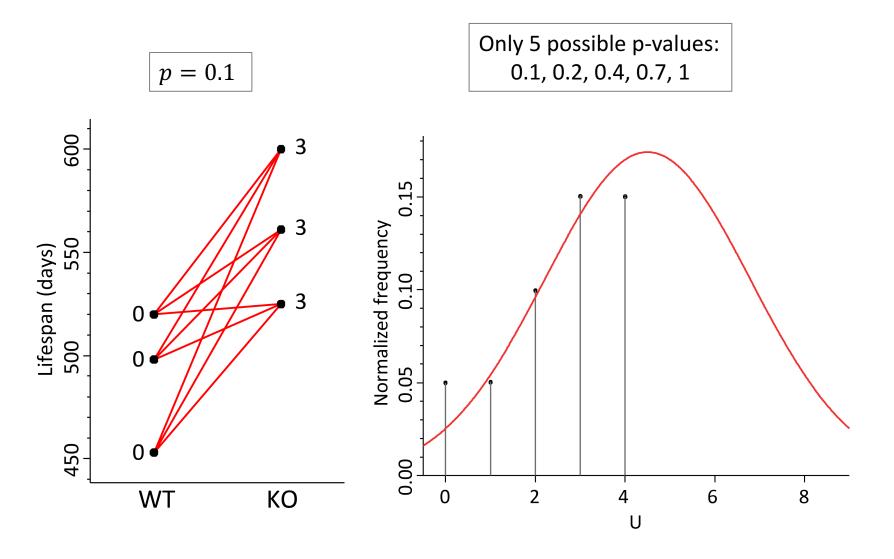
$$\mu_U = \frac{7 \times 6}{2} = 21$$

$$\sigma_U = \sqrt{\frac{7 \times 6 \times (7 + 6 + 1)}{12}} = 7$$

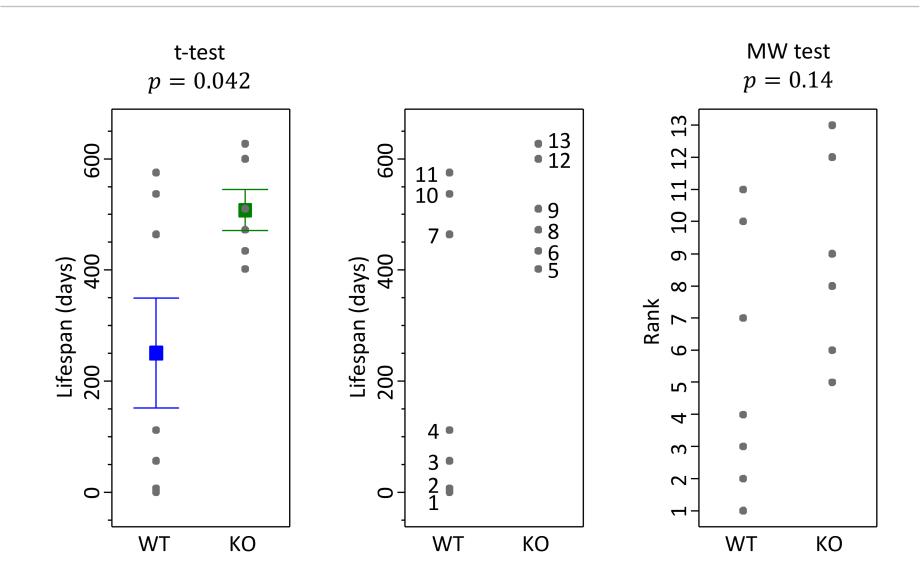
P-value



Limited usage for small samples



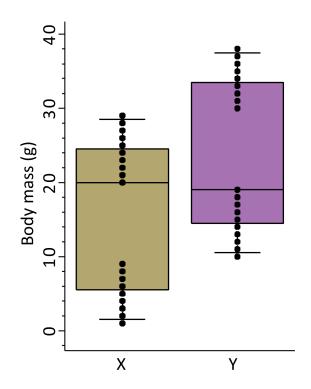
Comparison to t-test



Mann-Whitney can compare medians, but...

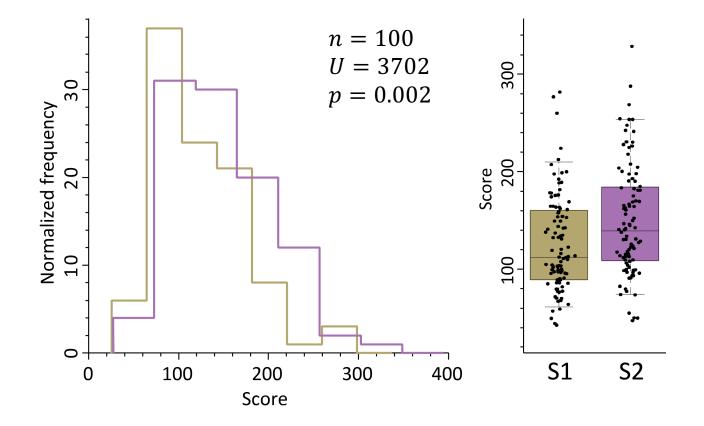
- Consider two samples in the figure
- Yes, I know they are contrived
- Medians are similar, but med X > med Y
- Mann-Whitney test gives U = 100 and one-sided p = 0.02
- Y exceeds X!

- Mann-Whitney test is sensitive to change in location (median) and/or shape
- If shapes are the same, then MW test can be a test of medians
- Otherwise, use Mood's test for medians



What is Mann-Whitney test really for?

- If data are distributed (roughly) normally, use t-test
- MW test is good for weird distributions, e.g. 'scores'
- Ordinal variables, e.g., manual score 1-5



How to do it in R?

> x = c(0, 7, 56, 112, 464, 537, 575)
> y = c(402, 434, 472, 510, 600, 627)
Mann-Whitney test
> wilcox.test(x, y)

Wilcoxon rank sum test

data: x and yW = 10, p-value = 0.1375alternative hypothesis: true location shift is not equal to 0

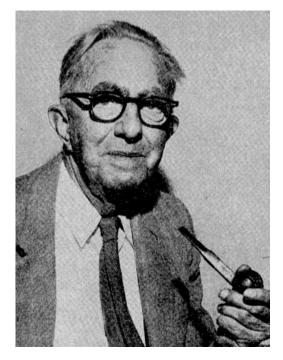
Mood's test for medians
> mood.test(x,y)

Mood two-sample test of scale

data: x and y Z = 0.55995, p-value = 0.5755 alternative hypothesis: two.sided

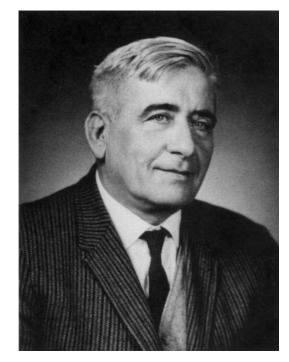
Input	two samples of n_1 and n_2 values values can be ordinal
Assumptions	Samples are random and independent (no before/after tests) If used for medians, both distributions must be the same
Usage	Compare location and shape of two samples
Null hypothesis	There is no shift in location and/or change in shape Stronger version: both samples are from the same distribution
Comments	Non-parametric counterpart of t-test Less powerful than t-test (use t-test if distributions symmetric) Not very useful for small samples Doesn't really give the effect size

Mann-Whitney-Wilcoxon



Frank Wilcoxon (1892-1965)

Wilcoxon, F. (1945) "Individual Comparisons by Ranking Methods" *Biometrics Bulletin* **1**, 80–83



Henry Berthold Mann (1905-2000)

Donald Ransom Whitney (1915-2007)

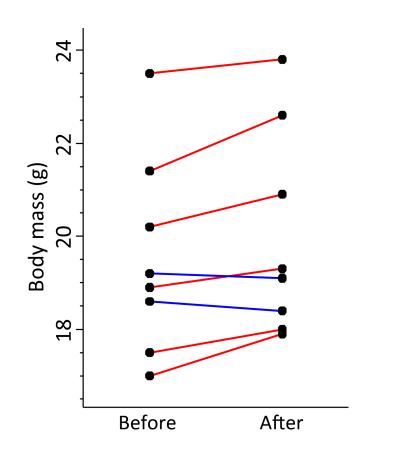
Mann, H. B.; Whitney, D. R. (1947). "On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other" *Annals of Mathematical Statistics* **18**, 50–60

Wilcoxon signed-rank test

a nonparametric alternative to paired t-test

Paired data

- Samples are paired
- For example: mouse weight before and after obesity treatment
- Null hypothesis: difference between pairs follows a symmetric distribution around zero
- Example: mouse body mass (g)



Before:	21.4	20.2	23.5	17.5	18.6	17.0	18.9	19.2
After:	22.6	20.9	23.8	18.0	18.4	17.9	19.3	19.1

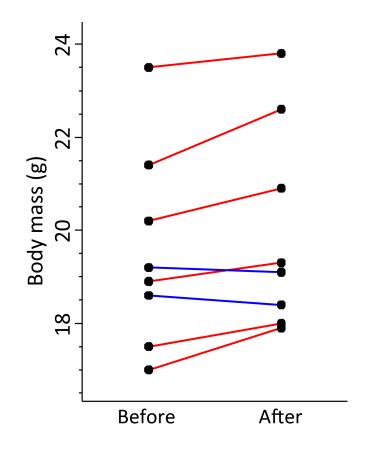
Wilcoxon signed-rank test

Find the differences:

 $\Delta_i = |y_i - x_i|$

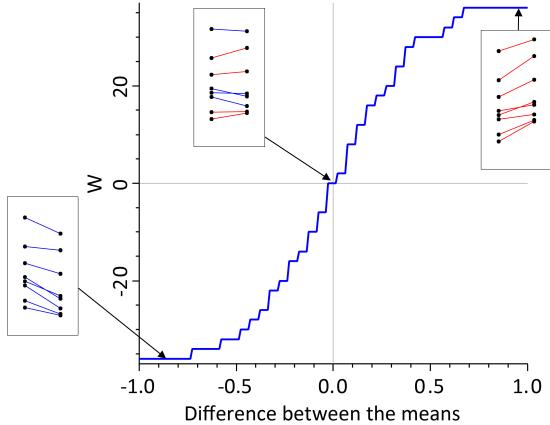
- $s_i = \operatorname{sgn}(y_i x_i)$
- Order and rank the pairs according to Δ_i
 - R_i rank of the *i*-the pair
- Test statistic:

$$W = \sum_{i=1}^{n} s_i R_i$$

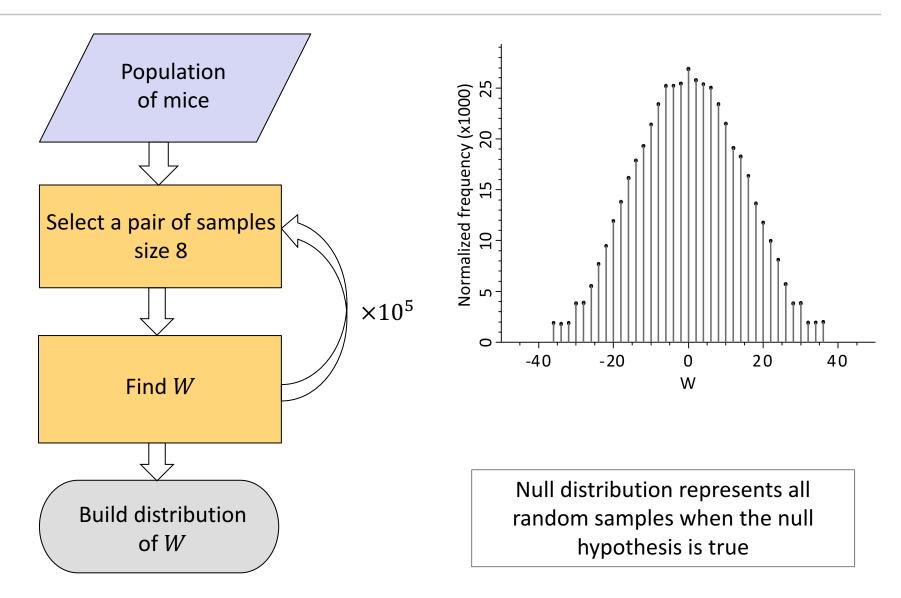


Wilcoxon signed-rank test

- W measures difference in location between pairs of points
- Direction is important
- W = 0 when samples most similar



Null distribution



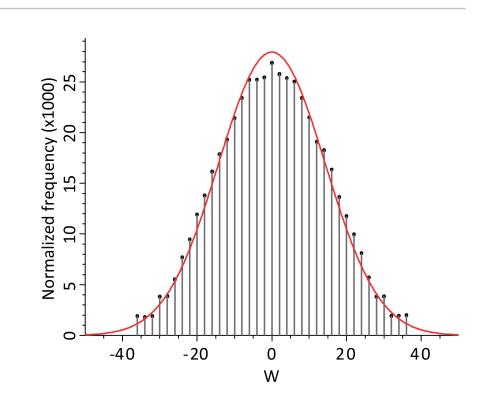
Null distribution

 For large samples W is approximately normally distributed with

$$\mu_W = 0$$

$$\sigma_W = \sqrt{\frac{n(n+1)(2n+1)}{6}}$$

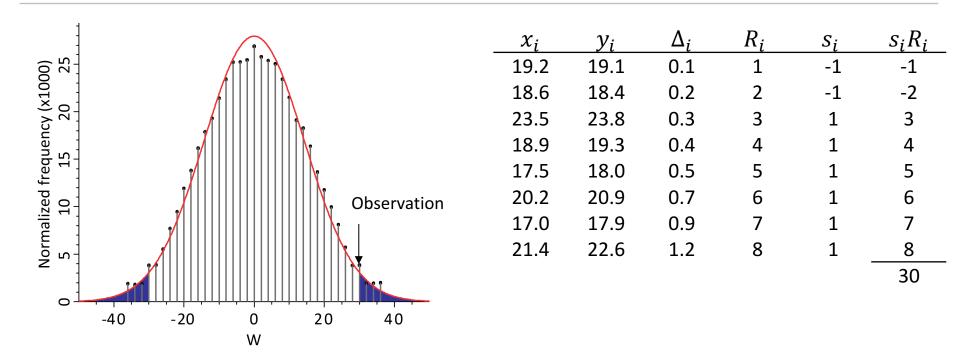
 For smaller samples exact solutions are available (tables or software)



$$n = 8$$

$$\sigma_W = \sqrt{\frac{8 \times 9 \times 17}{6}} = \sqrt{204} \approx 14.3$$

P-value



$$n = 8$$

 $W = 30$
 $\sigma_W = 14.3$
 $Z = W / \sigma_W = 2.10$
 $p = 0.036$
 $p_{\text{exact}} = 0.039$

How to do it in R?

```
# Paired t-test
> before = c(21.4, 20.2, 23.5, 17.5, 18.6, 17.0, 18.9, 19.2)
> after = c(22.6, 20.9, 23.8, 18.0, 18.4, 17.9, 19.3, 19.1)
> wilcox.test(before, after, paired=T)
```

Wilcoxon signed rank test

data: before and after V = 3, p-value = 0.03906 alternative hypothesis: true location shift is not equal to 0

Wilcoxon signed-rank test: summary

Input	Sample of <i>n</i> pairs of data (<i>before</i> and <i>after</i>) Values can be ordinal
Assumptions	Pairs should be random and independent
Usage	Discover change in individual points between <i>before</i> and <i>after</i>
Null hypothesis	There is no change between <i>before</i> and <i>after</i> is zero The difference between <i>before</i> and <i>after</i> follows a symmetric distribution around zero
Comments	Non-parametric counterpart of paired t-test Paired data only Doesn't care about distributions Not very useful for small samples

Kruskal-Wallis test

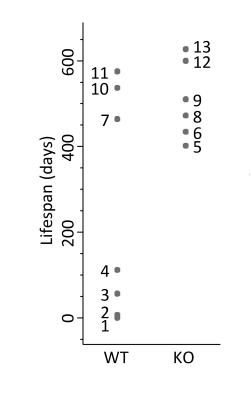
a nonparametric alternative to one-way ANOVA

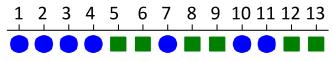
Alternative formulation of the Mann-Whitney test

 Rank pooled data from the smallest to the largest

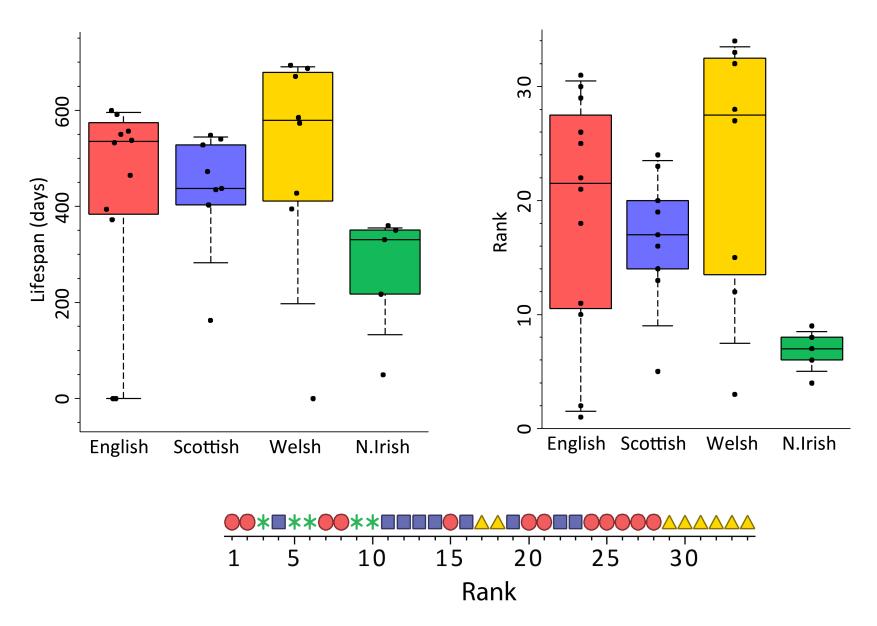
 Null hypothesis: both samples are randomly distributed between available rank slots

Can be extended to more than 2 samples

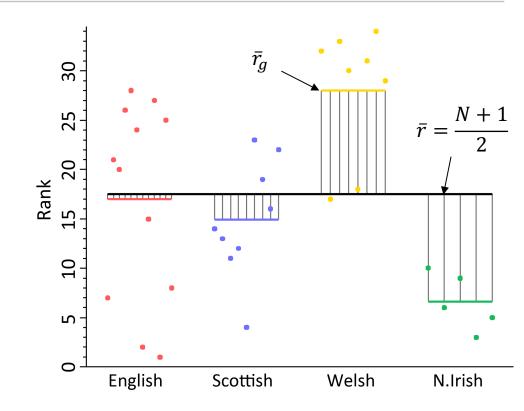




Ranked ANOVA



Variance between groups



Test statistic

Sum of square residuals

$$SS_B = \sum_{g=1}^n n_g \big(\bar{r}_g - \bar{r}\big)^2$$

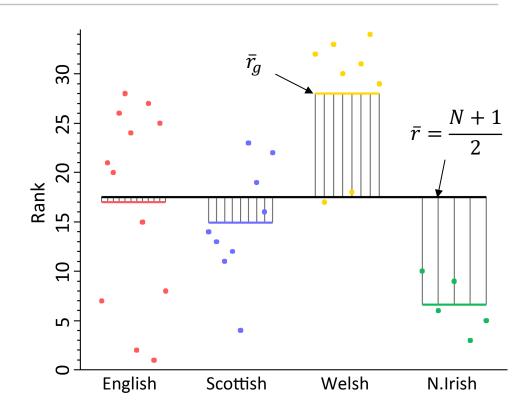
Rank variance

$$\sigma^2 = \frac{1}{12}N(N+1)$$

Test statistic

$$H = \frac{SS_B}{\sigma^2}$$

$$H = \frac{12}{N(N+1)} \sum_{g=1}^{n} n_g \left(\bar{r}_g - \frac{N+1}{2}\right)^2$$



Test statistic

$$H = \frac{12}{N(N+1)} \sum_{g=1}^{n} n_g \left(\bar{r}_g - \frac{N+1}{2}\right)^2$$

where

- \square n_g number of points in group g
- $\ \square \ ar{r_g}$ mean rank in group g
- $\Box \ \bar{r} = (N+1)/2 \text{mean rank}$
- \square *N* number of all points
- \square *n* number of groups
- *H* is distributed with χ^2 distribution with n-1 degrees of freedom
- Null hypothesis: mean rank in each group is the same as total mean rank

$$H_0: \bar{r}_g = \frac{N+1}{2}$$

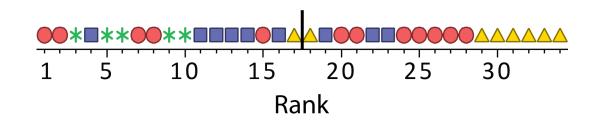


$$H = \frac{1}{\sigma^2} \sum_{g=1}^n n_g (\bar{r}_g - \bar{r})^2$$

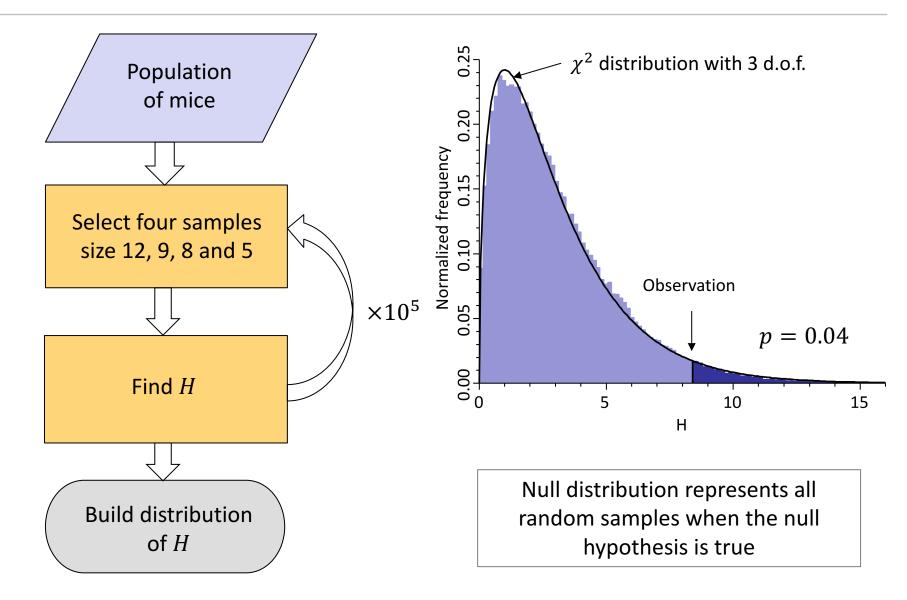
$$\bar{r} = \frac{N+1}{2} = 17.5$$
 $\sigma^2 = \frac{N(N+1)}{12} = 99.2$

		English	Scottish	Welsh	N. Irish
Number	n_g	12	9	8	5
Mean rank	$ar{r_g}$	18.96	16.78	22.81	6.80
Contribution to H	$\frac{n_g \big(\bar{r}_g - \bar{r}\big)^2}{\sigma^2}$	0.258	0.047	2.27	5.77

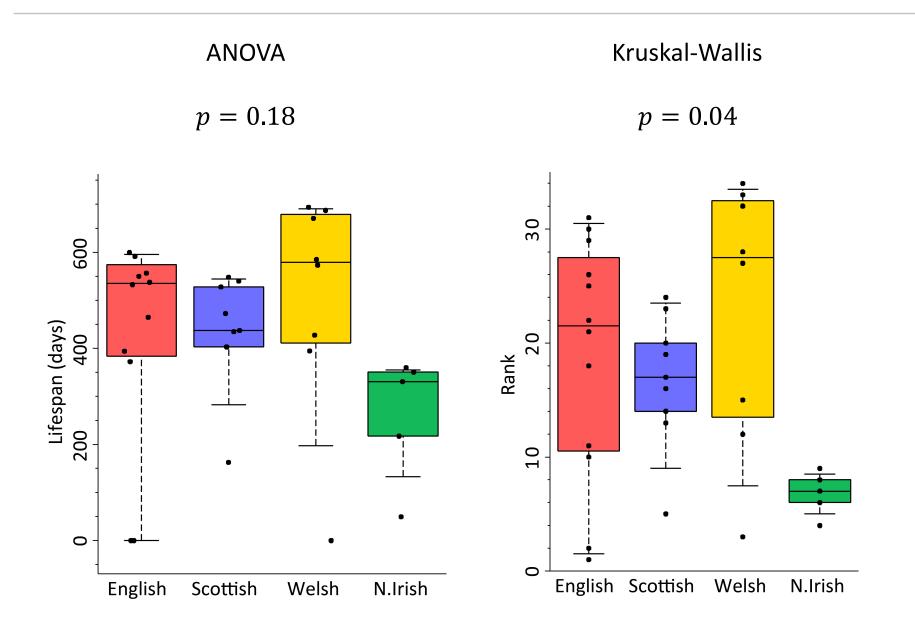
H = 8.36



Null distribution



Comparison to ANOVA



How to do it in R?

> mice = read.table('http://tiny.cc/mice_kruskal', header=T)
> kruskal.test(Lifespan ~ Country, data=mice)

Kruskal-Wallis rank sum test

data: Lifespan by Country
Kruskal-Wallis chi-squared = 8.3617, df = 3, p-value = 0.0391

What about two-way test?

- Scheirer-Ray-Hare extension to Kruskal-Wallis test
- Briefly: replace values with ranks and carry out two-way ANOVA

Scheirer C.J., Ray W.S. and Hare N (1976), The Analysis of Ranked Data Derived from Completely Randomized Factorial Designs, *Biometrics*, **32**, 429-434

Input	n samples of values N values divided into n groups
Assumptions	Samples are random and independent
Usage	Compare location and shape of n samples
Null hypothesis	Mean rank in each group is the same as total mean rank There is no change between groups
Comments	Doesn't care about distributions

Hand-outs available at http://tiny.cc/statlec

