P-values and statistical tests 7. Statistical power

Marek Gierliński Division of Computational Biology

Hand-outs available at http://is.gd/statlec

Statistical power: what is it about?

How does our ability to call a change "significant" depend on the effect size and the sample size?

Effect size

Effect size describes the alternative hypothesis

Effect size for two sample means

Effect size for two sample means

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences*

Effect size depends on the standard deviation

Effect size does not depend on the sample size

Effect size describes the alternative hypothesis

Effect size in ANOVA

Test statistic
$$F = \frac{MS_B}{MS_W}$$

$$H_0: MS_B = MS_W$$
$$H_1: MS_B = MS_W + nMS_A$$
Added variance

$$f^2 = \frac{MS_A}{MS_W}$$
Cohen's f

$$f^2 = \frac{F-1}{n}$$

For the purpose of this calculation we only consider groups of equal sizes, n

Effect size in ANOVA

Effect size in frequency tables: odds ratio

	Dead	Alive	Total
Drug A	68	12	80
Drug B	70	30	100
Total	138	42	180

p = 0.013

$q_B - q_A = 0.30 - 0.15 = 0.1$

Not useful for small proportions

Odds of survival

$$\frac{q_A}{p_A} = \frac{0.15}{0.85} = 0.18 : 1$$

 $\frac{q_B}{p_B} = \frac{0.30}{0.70} = 0.43 : 1$

Odds ratio
$$\omega = \frac{q_B/p_B}{q_A/p_A} = \frac{0.43}{0.18} = 2.4$$

	Dead	Alive	Total
Drug A	$p_{A} = 0.85$	$q_{A} = 0.15$	1
Drug B	$p_{B} = 0.70$	$q_{B} = 0.30$	1
Total	1	1	

Effect size

Data	Statistical test	Effect size	Formula
Two sets, size n_1 and n_2	t-test	Cohen's d	$d = t \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$
k groups of n points each	ANOVA	Cohen's <i>f</i>	$f = \sqrt{\frac{F-1}{n}}$
2×2 contingency table	Fisher's exact	Odds ratio	$\omega = \frac{q_B/p_B}{q_A/p_A}$
Paired data x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n	Significance of correlation	Pearson's <i>r</i>	$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - M_x}{SD_x} \right) \left(\frac{y_i - M_y}{SD_y} \right)$

How to do it in R?

```
> library(MBESS)
# Mouse body weight data
> English = c(16.5, 21.3, 12.4, 11.2, 23.7, 20.2, 17.4, 23, 15.6, 26.5, 21.8, 18.9)
> Scottish = c(19.7, 29.3, 27.1, 24.8, 22.4, 27.6, 25.7, 23.9, 15.4)
> n1 = length(English)
> n2 = length(Scottish)
# t-test with equal variances, extract test statistic
> test = t.test(English, Scottish, var.equal=TRUE)
> t = test$statistic[['t']]
# confidence limits on the non-centrality parameter (t in this case)
> nct.limits = conf.limits.nct(t, n1 + n2 - 2)
# find Cohen's distance and its limits
> sn = sqrt((n1 + n2) / (n1 * n2))
> d = t * sn
> d.lower = nct.limits$Lower.Limit * sn
> d.upper = nct.limits$Upper.Limit * sn
> d
[1] -1.102067
> d.lower
[1] -2.021337
> d.upper
[1] -0.1579345
```

Statistical power t-test

Statistical testing

	H _o is true	H _o is false	
H _o rejected	type I error (α) false positive	correct decision true positive	Positive
H _o accepted	correct decision true negative	type II error (β) false negative	Negative
	No effect	Effect	

Gedankenexperiment

One alternative hypothesis

Statistical power

The probability of correctly rejecting the null hypothesis

(choosing the alternative, when it is true)

Multiple alternative hypotheses

Power curve

How to do it in R?

```
# Find sample size required to detect the effect size d = 1
> power.t.test(d=1, sig.level=0.05, power=0.8, type="two.sample",
alternative="two.sided")
```

```
One-sample t test power calculation
```

```
n = 16.71473
d = 1
sig.level = 0.05
power = 0.8
alternative = two.sided
```

```
> power.t.test(d=1, sig.level=0.05, power=0.95, type="two.sample",
alternative="two.sided")
```

One-sample t test power calculation n = 26.98922 d = 1 sig.level = 0.05 power = 0.95

alternative = two.sided

Statistical power ANOVA

One alternative hypothesis

Multiple alternative hypotheses

Power curves

How to do it in R?

> library(pwr)

```
# Find sample size required to detect a "large" effect size f = 0.4
> pwr.anova.test(k=4, f=0.4, sig.level=0.05, power=0.8)
```

Balanced one-way analysis of variance power calculation

NOTE: n is number in each group

Worked example

Example: how toxicity affects rat brains

Pilot experiment

Connected neurons in 5 chambers Put neurotoxin in C3 Count dead and alive cells See how it spreads

Power analysis

How many replicates do we need to...

- 1) detect a 10% difference between chambers? (power in t-test)
- 2) detect the observed C1-C5 effect in ANOVA? (power in ANOVA)

Samson *at al.* (2016) DOI:10.1038/srep33746 How many replicates to detect a difference of 0.1 between chambers?

Assess your data variability based on the pilot

Better scenario: SD = 0.1

> power.t.test(d=1, sig.level=0.05, power=0.8, type="two.sample", alternative="two.sided")

```
Two-sample t test power calculation
```

```
n = 16.71477
delta = 1
    sd = 1
sig.level = 0.05
    power = 0.8
```

Worse scenario: SD = 0.15

> power.t.test(d=0.67, sig.level=0.05, power=0.8, type="two.sample", alternative="two.sided")

```
Two-sample t test power calculation
```

```
n = 35.95548
delta = 0.67
sd = 1
sig.level = 0.05
power = 0.8
```

How many replicates to detect the observed C1-C5 effect in ANOVA?

Power in ANOVA

How many replicates do we need?

```
> library(pwr)
> rat = read.table('http://tiny.cc/rat_toxicity', header=TRUE)
# Here n = 6 and k = 4
> rat.aov = aov(Proportion \sim Chamber, data=rat)
# Extract F value
> F = summary(rat.aov)[[1]] [1]
# Effect size: Cohen's f
> f = sqrt((F - 1)/n)
# What is the power of this experiment?
> pwr.anova.test(k=4, n=6, f=f, sig.level=0.05)
              k = 6
              n = 5
              f = 0.3760972
      sig.level = 0.05
          power = 0.2507655
# How many replicates to get power of 0.8?
> pwr.anova.test(k=4, f=f, sig.level=0.05, power=0.8)
              k = 6
              n = 16.06243
              f = 0.3760972
      sig.level = 0.05
          power = 0.8
```


Hand-outs available at

http://tiny.cc/statlec

