P-values and statistical tests

7. Statistical power

Marek Gierliński
Division of Computational Biology

Hand-outs available at http://is.gd/statlec
Statistical power: what is it about?

How does our ability to call a change “significant” depend on the effect size and the sample size?
Effect size
Effect size describes the alternative hypothesis

\[\frac{\mu_1 - \mu_2}{\sigma} \]
Effect size for two sample means

\[d = \frac{M_1 - M_2}{SD} \]

Cohen’s d

\[SD = \sqrt{\frac{(n_1 - 1)SD_1^2 + (n_2 - 1)SD_2^2}{n_1 + n_2 + 2}} \]

\[t = \frac{M_1 - M_2}{SE} \]

\[d = t \sqrt{\frac{n_1 + n_2}{n_1n_2}} \]
Effect size for two sample means

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences*
Effect size depends on the standard deviation

Fold change = 2
Effect size does not depend on the sample size

Effect size = 0.8

- n = 5, t = 1.3
- n = 20, t = 2.5
- n = 50, t = 4.0
Effect size describes the alternative hypothesis
Effect size in ANOVA

For the purpose of this calculation we only consider groups of equal sizes, n.

Test statistic

$$F = \frac{MS_B}{MS_W}$$

Hypotheses

H_0: $MS_B = MS_W$

H_1: $MS_B = MS_W + nMS_A$

Added variance

$$f^2 = \frac{MS_A}{MS_W}$$

Cohen’s f

$$f^2 = \frac{F - 1}{n}$$
Effect size in ANOVA

\[f = 1 \]

\[f = 1 \]
Effect size in frequency tables: odds ratio

<table>
<thead>
<tr>
<th></th>
<th>Dead</th>
<th>Alive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug A</td>
<td>68</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>Drug B</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>138</td>
<td>42</td>
<td>180</td>
</tr>
</tbody>
</table>

\[q_B - q_A = 0.30 - 0.15 = 0.15 \]

Not useful for small proportions

<table>
<thead>
<tr>
<th></th>
<th>Dead</th>
<th>Alive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug A</td>
<td>0.85</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>Drug B</td>
<td>0.70</td>
<td>0.30</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Odds of survival

\[\frac{q_A}{p_A} = \frac{0.15}{0.85} = 0.18 : 1 \]

\[\frac{q_B}{p_B} = \frac{0.30}{0.70} = 0.43 : 1 \]

Odds ratio

\[\omega = \frac{q_B/p_B}{q_A/p_A} = \frac{0.43}{0.18} = 2.4 \]
Effect size

<table>
<thead>
<tr>
<th>Data</th>
<th>Statistical test</th>
<th>Effect size</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two sets, size n_1 and n_2</td>
<td>t-test</td>
<td>Cohen’s d</td>
<td>$d = t \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$</td>
</tr>
<tr>
<td>k groups of n points each</td>
<td>ANOVA</td>
<td>Cohen’s f</td>
<td>$f = \sqrt{\frac{F - 1}{n}}$</td>
</tr>
<tr>
<td>2×2 contingency table</td>
<td>Fisher’s exact</td>
<td>Odds ratio</td>
<td>$\omega = \frac{q_B/p_B}{q_A/p_A}$</td>
</tr>
<tr>
<td>Paired data $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$</td>
<td>Significance of correlation</td>
<td>Pearson’s r</td>
<td>$r = \frac{1}{n - 1} \sum_{i=1}^{n} \left(\frac{x_i - M_x}{SD_x} \right) \left(\frac{y_i - M_y}{SD_y} \right)$</td>
</tr>
</tbody>
</table>
> library(MBESS)
> # Mouse body weight data
> Scottish = c(19.7, 29.3, 27.1, 24.8, 22.4, 27.6, 25.7, 23.9, 15.4)
> n1 = length(English)
> n2 = length(Scottish)

t-test with equal variances, extract test statistic
> test = t.test(English, Scottish, var.equal=TRUE)
> t = test$statistic[['t']]
confidence limits on the non-centrality parameter (t in this case)
> nct.limits = conf.limits.nct(t, n1 + n2 - 2)

find Cohen's distance and its limits
> sn = sqrt((n1 + n2) / (n1 * n2))
> d = t * sn
> d.lower = nct.limits$Lower.Limit * sn
> d.upper = nct.limits$Upper.Limit * sn

> d
[1] -1.102067
> d.lower
[1] -2.021337
> d.upper
[1] -0.1579345
Statistical power

t-test
Statistical testing

Statistical model

- Null hypothesis: H_0: no effect
- All other assumptions
- Significance level $\alpha = 0.05$

Data

Statistical test against H_0

p-value: probability that the observed effect is random

- $p < \alpha$
 - Reject H_0
 - Effect is real

- $p \geq \alpha$
 - Accept H_0 (!!!)

$(at your own risk)$
This table

<table>
<thead>
<tr>
<th>H₀ rejected</th>
<th>H₀ is true</th>
<th>H₀ is false</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>type I error (α)</td>
<td>correct decision</td>
<td>correct decision</td>
<td>false positive</td>
</tr>
<tr>
<td>H₀ accepted</td>
<td>correct decision</td>
<td>type II error (β)</td>
<td>true negative</td>
</tr>
<tr>
<td>No effect</td>
<td>Effect</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gedankenexperiment

Draw 100,000 pairs of samples \((X, Y)\) of size \(n = 5\)

Find \(t = (M_1 - M_2)/SE\) for each pair

Build sampling distribution of \(t\)

- **H\(_0\): there is no effect**
 - \(X\) from \(\mu_1 = 20\) g
 - \(Y\) from \(\mu_2 = 20\) g

- **H\(_1\): there is an effect**
 - \(X\) from \(\mu_1 = 20\) g
 - \(Y\) from \(\mu_2 = 30\) g
One alternative hypothesis

Null hypothesis \(\alpha = 0.05 \)

<table>
<thead>
<tr>
<th>(H_0 \text{ true})</th>
<th>(H_0 \text{ false})</th>
</tr>
</thead>
<tbody>
<tr>
<td>reject (\text{FP} \alpha \text{ TP})</td>
<td></td>
</tr>
<tr>
<td>accept (\text{TN} \text{ FN} \beta)</td>
<td></td>
</tr>
</tbody>
</table>

Power of the test \(P = 1 - \beta \)

Probability that we correctly reject \(H_0 \)

Alternative hypothesis \(\beta = 0.08 \)
Statistical power

The probability of correctly rejecting the null hypothesis

(choosing the alternative, when it is true)
Multiple alternative hypotheses

![Acceptance region](image)

- For $\mu_1 = 22\, g$, $d = 0.49$, $\beta = 0.90$
- For $\mu_1 = 24\, g$, $d = 0.98$, $\beta = 0.72$
- For $\mu_1 = 26\, g$, $d = 1.47$, $\beta = 0.47$
- For $\mu_1 = 29\, g$, $d = 1.96$, $\beta = 0.23$
- For $\mu_1 = 30\, g$, $d = 2.45$, $\beta = 0.08$
Power curve

Acceptance region $1 - \alpha$

β - type II error (false negative) probability

Power $= 1 - \beta$
Power curves

\[P = 0.8 \]

\[P = 0.95 \]
How to do it in R?

Find sample size required to detect the effect size d = 1
> power.t.test(d=1, sig.level=0.05, power=0.8, type="two.sample", alternative="two.sided")

One-sample t test power calculation

 n = 16.71473
d = 1
sig.level = 0.05
power = 0.8
alternative = two.sided

> power.t.test(d=1, sig.level=0.05, power=0.95, type="two.sample", alternative="two.sided")

One-sample t test power calculation

 n = 26.98922
d = 1
sig.level = 0.05
power = 0.95
alternative = two.sided
Statistical power
ANOVA
One alternative hypothesis

Null hypothesis

\(\alpha = 0.05 \)

Alternative hypothesis

\(\beta = 0.20 \)
Multiple alternative hypotheses

acceptance region

$1 - \alpha$

\begin{align*}
f &= 0.1 \\
\beta &= 0.92
\end{align*}

\begin{align*}
f &= 0.2 \\
\beta &= 0.83
\end{align*}

\begin{align*}
f &= 0.3 \\
\beta &= 0.65
\end{align*}

\begin{align*}
f &= 0.5 \\
\beta &= 0.20
\end{align*}

\begin{align*}
f &= 1 \\
\beta &= 3 \times 10^{-5}
\end{align*}
Power curves

\[P = 0.8 \]
\[P = 0.95 \]

The diagrams show the power curves for different effect sizes and replication numbers. The left diagram illustrates the relationship between the effect size and power for various sample sizes, with n = 2. The right diagram shows the relationship between the number of replicates per group and effect size, for different levels of significance (P = 0.8 and P = 0.95).
How to do it in R?

> library(pwr)

Find sample size required to detect a “large” effect size f = 0.4
> pwr.anova.test(k=4, f=0.4, sig.level=0.05, power=0.8)

Balanced one-way analysis of variance power calculation

k = 4
n = 18.04262
f = 0.4
sig.level = 0.05
power = 0.8

NOTE: n is number in each group
Worked example
Example: how toxicity affects rat brains

Pilot experiment
Connected neurons in 5 chambers
Put neurotoxin in C3
Count dead and alive cells
See how it spreads

Power analysis

How many replicates do we need to...

1) detect a 10% difference between chambers? (power in t-test)
2) detect the observed C1-C5 effect in ANOVA? (power in ANOVA)

$k = 5$ chambers
$n = 6$ replicates in each

Samson *et al.* (2016)
DOI:10.1038/srep33746
How many replicates to detect a difference of 0.1 between chambers?
Assess your data variability based on the pilot

Standard error of SD

$$SE_{SD} = \frac{SD}{\sqrt{2(n - 1)}}$$
Better scenario: $SD = 0.1$

Cohen's d: \[d = \frac{\Delta M}{SD} = \frac{0.1}{0.1} = 1 \]

Two-sample t test power calculation

\[
\begin{align*}
n &= 16.71477 \\
delta &= 1 \\
sd &= 1 \\
sig.level &= 0.05 \\
power &= 0.8
\end{align*}
\]
Worse scenario: $SD = 0.15$

Cohen’s d:
$$d = \frac{\Delta M}{SD} = \frac{0.1}{0.15} \approx 0.67$$

Two-sample t test power calculation

```r
> power.t.test(d=0.67, sig.level=0.05, power=0.8, type="two.sample", alternative="two.sided")

Two-sample t test power calculation

  n = 35.95548
  delta = 0.67
  sd = 1
  sig.level = 0.05
  power = 0.8
```
How many replicates to detect the observed C1-C5 effect in ANOVA?
Power in ANOVA

\[f = \sqrt{\frac{F - 1}{n}} = 0.38 \]
How many replicates do we need?

```r
> library(pwr)
> rat = read.table('http://tiny.cc/rat_toxicity', header=TRUE)
# Here n = 6 and k = 4

> rat.aov = aov(Proportion ~ Chamber, data=rat)
# Extract F value
> F = summary(rat.aov)[[1]]$F[1]
# Effect size: Cohen's f
> f = sqrt((F - 1)/n)

# What is the power of this experiment?
> pwr.anova.test(k=4, n=6, f=f, sig.level=0.05)

   k = 6
   n = 5
   f = 0.3760972
   sig.level = 0.05
   power = 0.2507655

# How many replicates to get power of 0.8?
> pwr.anova.test(k=4, f=f, sig.level=0.05, power=0.8)

   k = 6
   n = 16.06243
   f = 0.3760972
   sig.level = 0.05
   power = 0.8
```
Hand-outs available at
http://tiny.cc/statlec