Null hypothesis p-value

t-test

Chi-square test G-test

Non-parametric tests

ANOVA

Statistical power

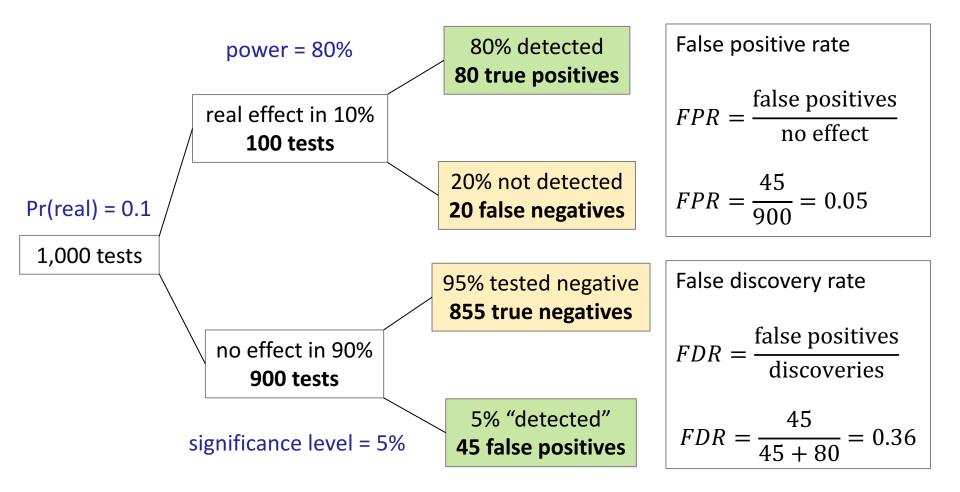
Multiple test corrections

Null hypothesis p-value

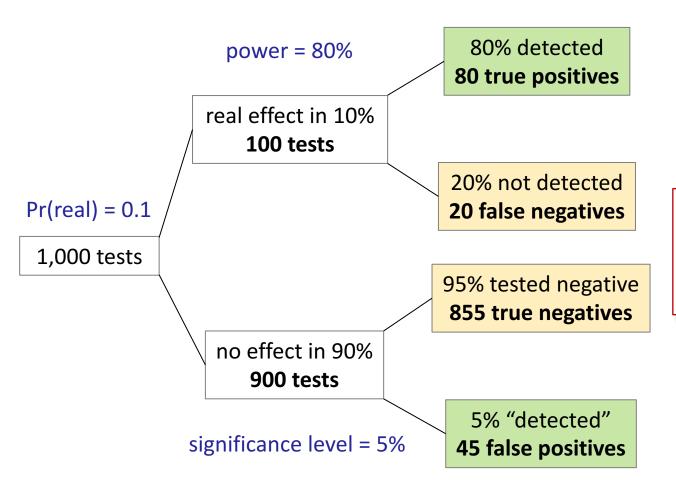
t-test

Non-parametric tests

ANOVA



Colquhoun D., 2014, "An investigation of the false discovery rate and the misinterpretation of *p*-values", *R. Soc. open sci.* **1**: 140216.



If you publish a p < 0.05 result, you have a 36% chance of making a fool of yourself

Colquhoun D., 2014, "An investigation of the false discovery rate and the misinterpretation of *p*-values", *R. Soc. open sci.* **1**: 140216.

What's wrong with p-values?

Marek Gierliński Division of Computational Biology

Hand-outs available at http://is.gd/statlec

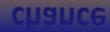
A p-value of 5% implies that the probability of the null hypothesis being true is 5%

hypothesis being true is 570

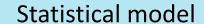
A p-value of 0.005 implies much more significant result than does a p-value of 0.05

than does a p-value of U.U.

The p-value is the likelihood that the findings are due to chance



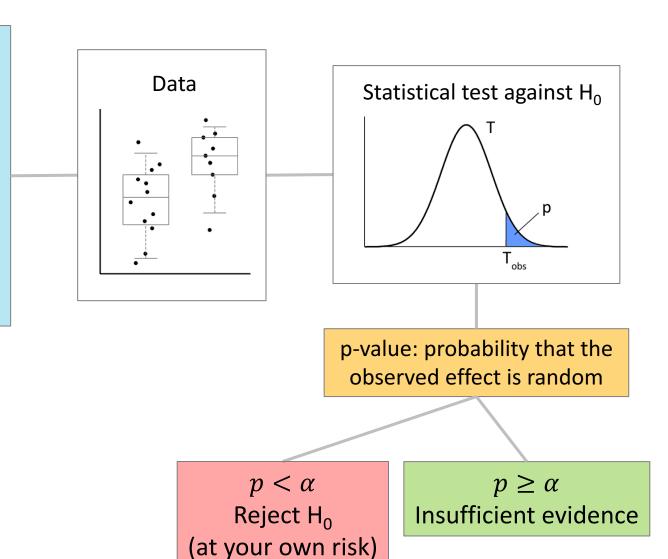
Statistical testing



Null hypothesis H₀: no effect

All other assumptions

Significance level $\alpha = 0.05$



Effect is real

p-value:

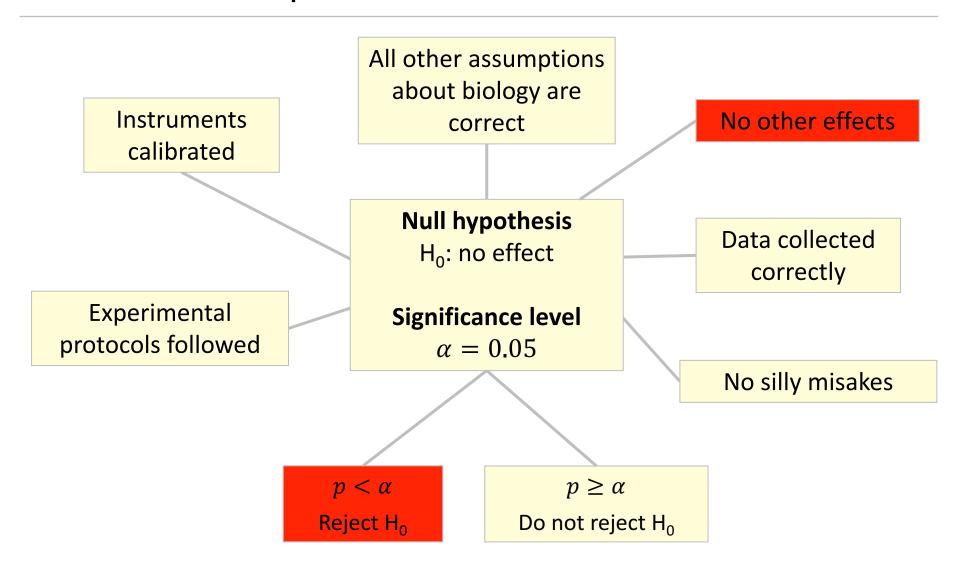
Given that H_o is true, the probability of observed, or more extreme, data

It is **not** the probability that H₀ is true

P-value is the degree to which the data are embarrassed by the null hypothesis

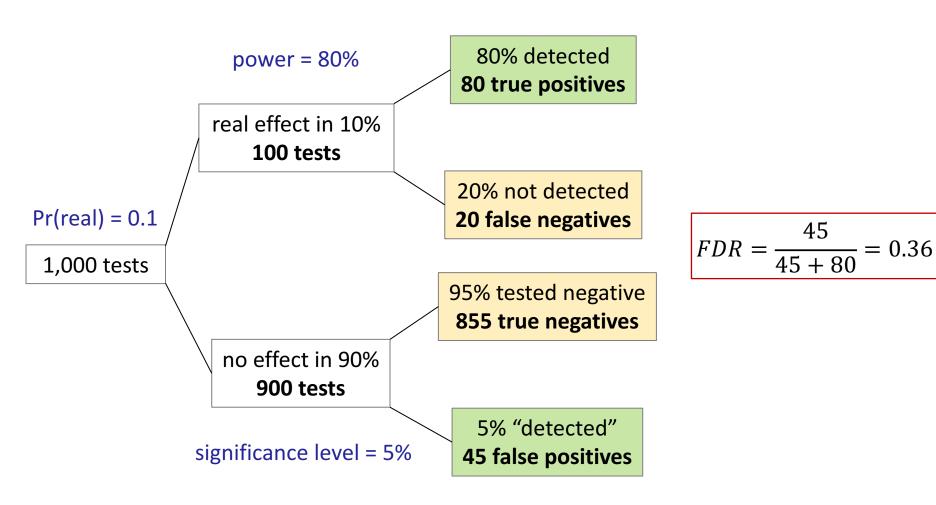
Nicholas Maxwell

"All other assumptions"

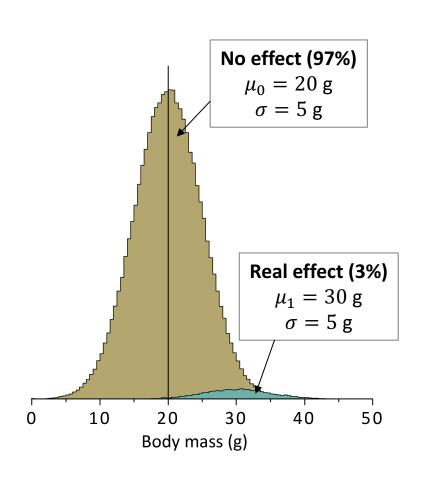


p-values test not only the null hypothesis, but everything else in the experiment

Why large false discovery rate?



Simulated population of mice

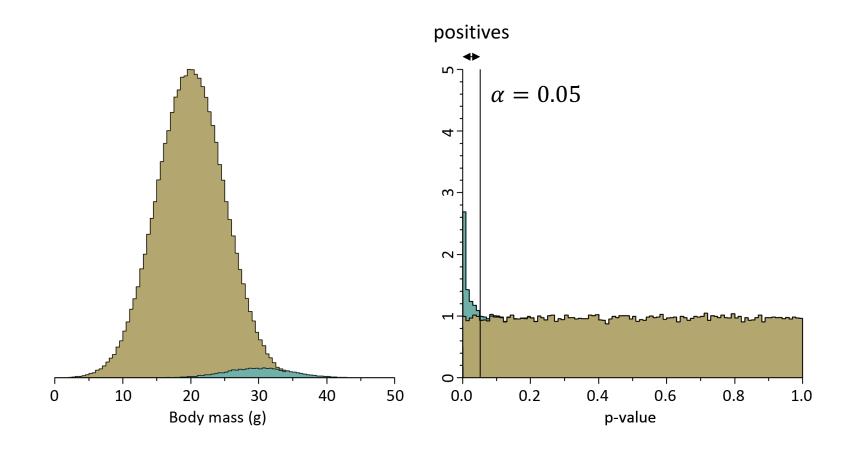


Null hypothesis ${
m H_0}$: $\mu=20~{
m g}$ one-sample t-test

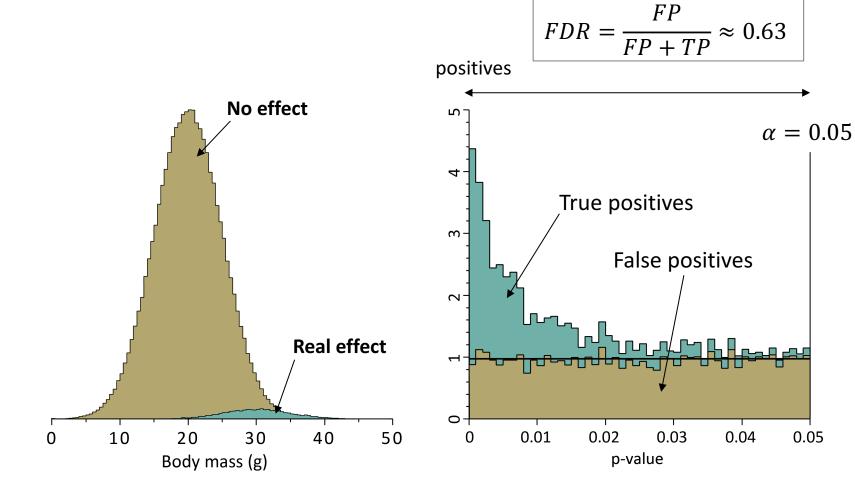
Power analysis

effect size $\Delta m = 10 \, \mathrm{g}$ power $\mathcal{P} = 0.9$ significance level $\alpha = 0.05$ sample size $\alpha = 5$

Gedankenexperiment: distribution of p-values

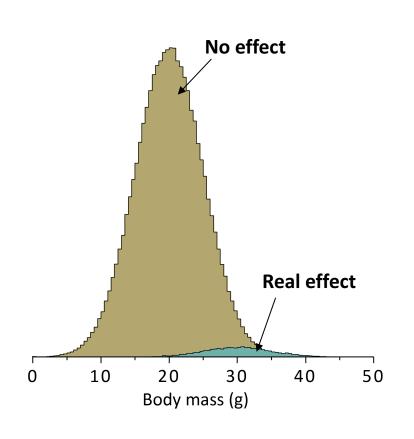


Gedankenexperiment: "significant" p-values

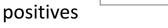


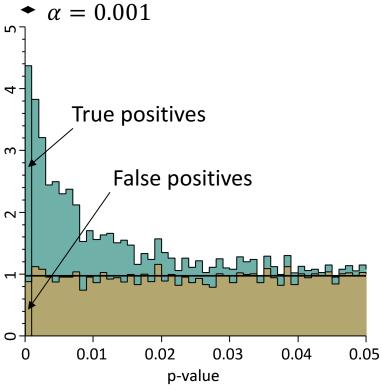
0.05

Small α doesn't help



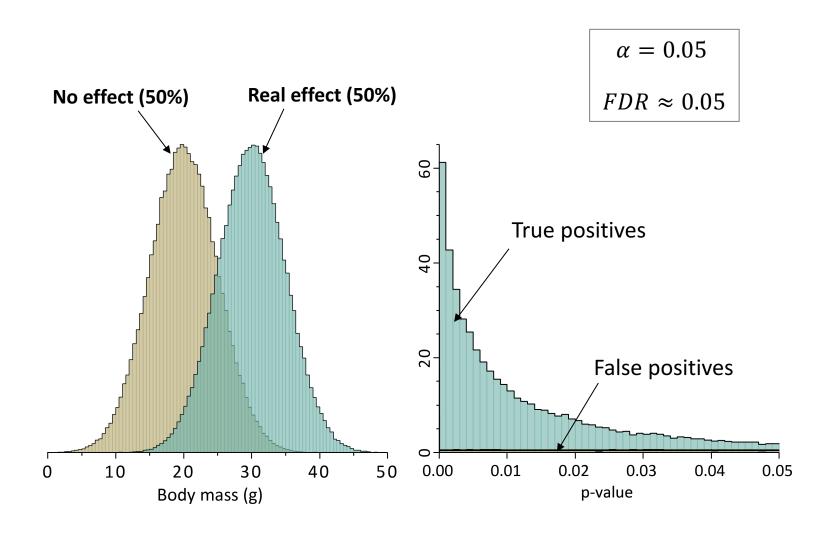
$$FDR = \frac{FP}{FP + TP} \approx 0.20$$





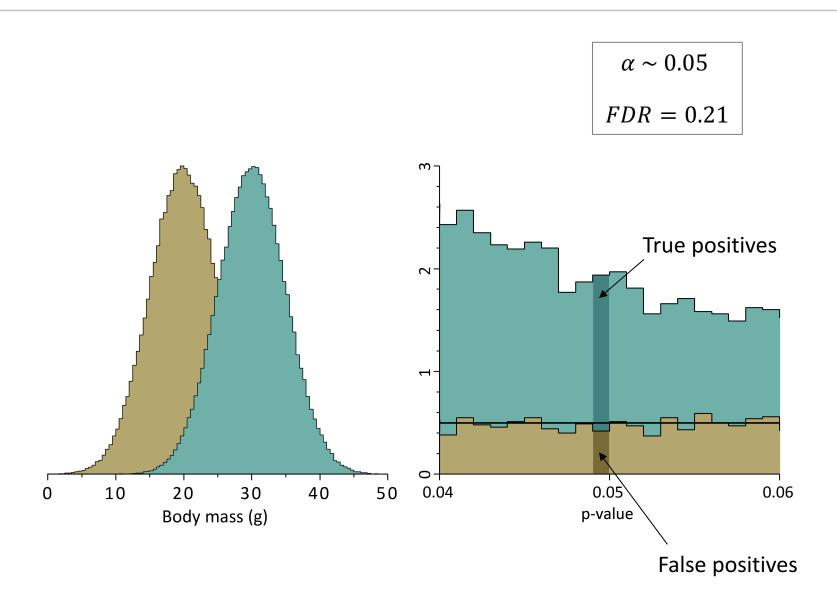
The chance of making a fool of yourself is much larger than $\alpha = 0.05$

FDR depends on the probability of real effect

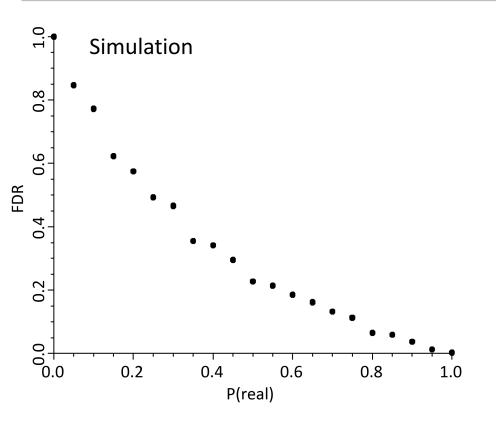


When the effect is rare, you are screwed

What does a p-value ~ 0.05 really mean?



Bayesian approach: consider all prior distributions



Berger & Selke (Bayesian approach)

$$p \sim 0.05 \Rightarrow FDR \ge 0.3$$

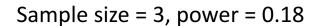
3-sigma approach $p \sim 0.003 \implies FDR \ge 0.04$

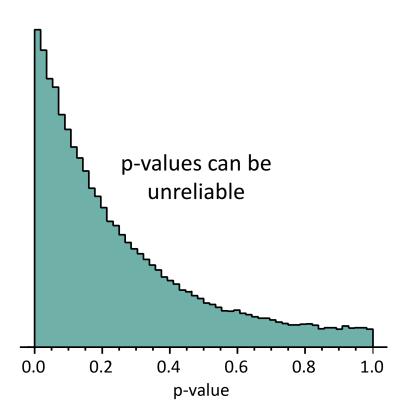
Berger J.O, Selke T., "Testing a point null hypothesis: the irreconcilability of P values and evidence", 1987, JASA, 82, 112-122

When you get a $p \sim 0.05$, you are screwed

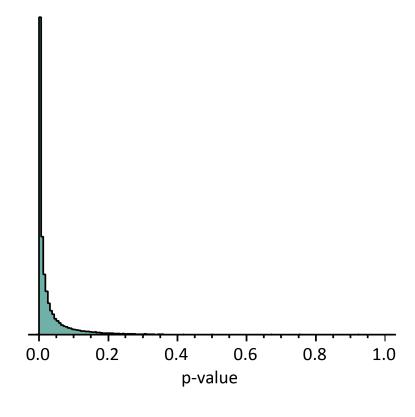
Gedankenexperiment: reliability of p-values

Normal population, 100% real effect One-sample t-test



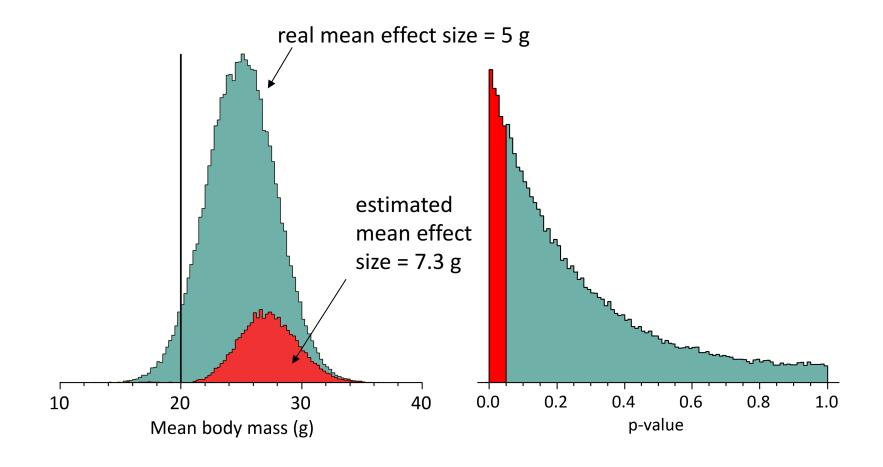


Sample size = 10, power = 0.80



Underpowered studies lead to unreliable p-values

Inflation of the effect size

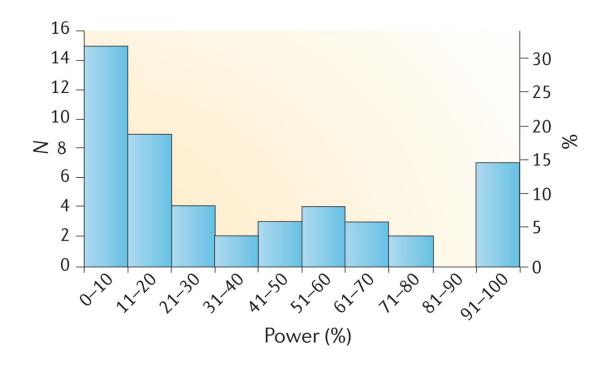


Underpowered studies lead to unreliable p-values

Underpowered studies lead to overestimated effect size

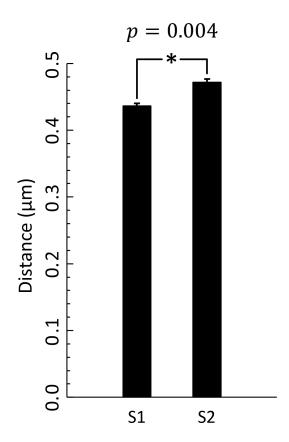
When your experiment is underpowered, you are screwed

Neuroscience: most studies underpowered

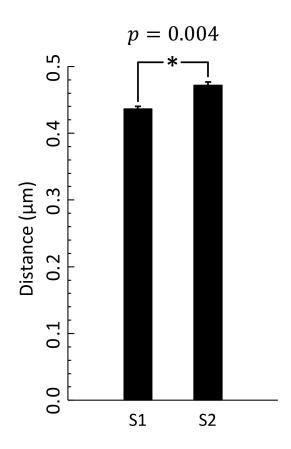


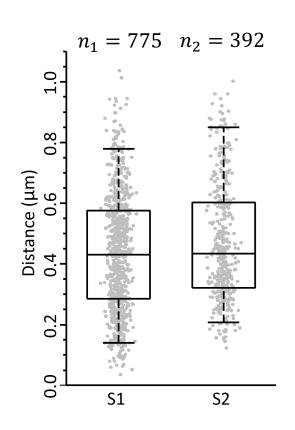
Button et al. (2013) "Power failure: why small sample size undermines the reliability of neuroscience", *Nature Reviews Neuroscience* **14**, 365-376

The effect size



The effect size





With sample size large enough everything is "significant"

Effect size is more important

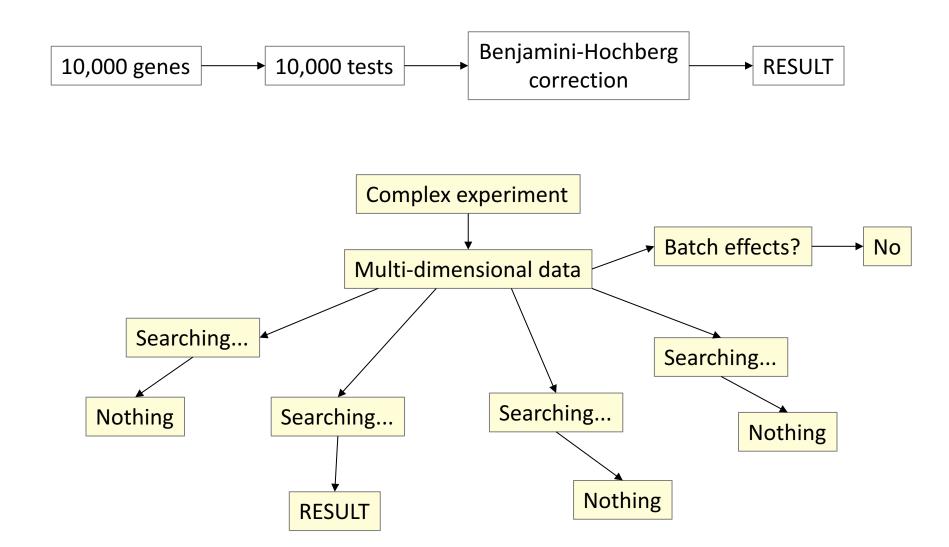
Looking at whole data is even more important

When you have lots of replicates, p-values are useless

Statistical significance does not imply biological relevance

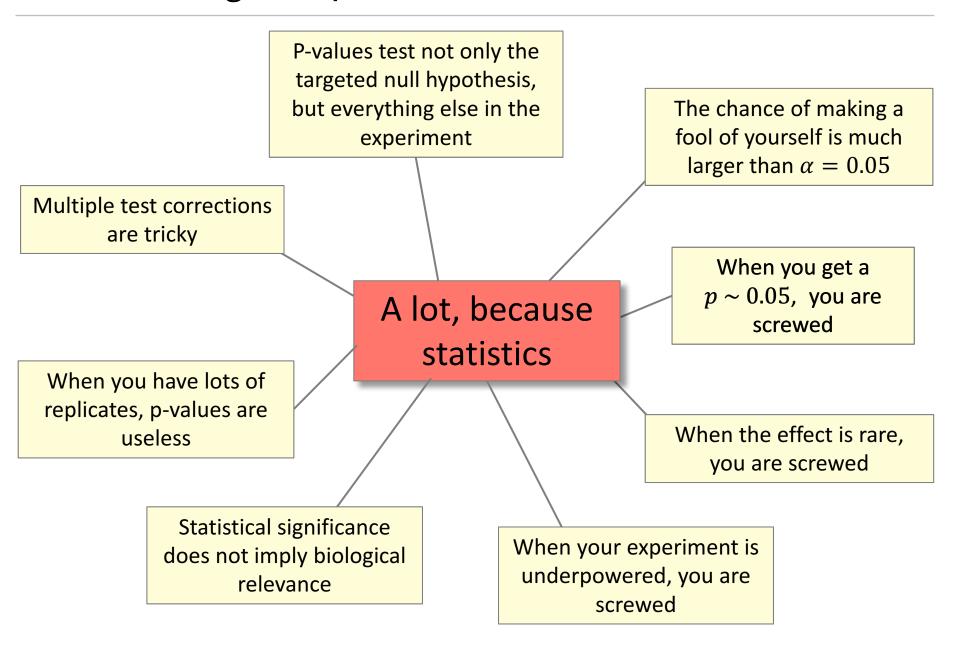
Multiple test corrections can be tricky

Multiple test corrections can be tricky



It is not always obvious how to correct p-values

What's wrong with p-values?



P-Values: Misunderstood and Misused

Bertie Vidgen and Taha Yasseri*

MINI REVIEW

published: 04 March 2016 doi: 10.3389/fphy.2016.00006

The fickle *P* value generates irreproducible results

Lewis G Halsey, Douglas Curran-Everett, Sarah L Vowler & Gordon B Drummond

NATURE METHODS | VOL.12 NO.3 | MARCH 2015 | 179

Open access, freely available online

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

Null hypothesis significance testing is a potent but sterile intellectual rake who leaves in his merry path a long train of ravished maidens but no viable scientific offspring.

Paul Meehl, 1967, *Philosophy of Science*, 34, 103-115

The plain fact is that 70 years ago Ronald Fisher gave scientists a mathematical machine for turning baloney into breakthroughs, and flukes into funding. It is time to pull the plug.

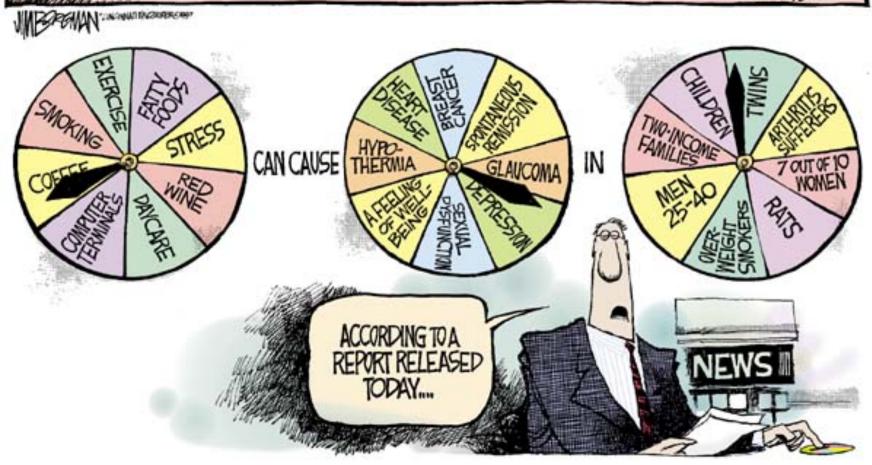
Robert Matthews, *Sunday Telegraph*, 13 September 1998.

The widespread use of "statistical significance" as a license for making a claim of a scientific finding leads to considerable distortion of the scientific process.

ASA statement on statistical significance and p-values (2016)

Today's Random Medical News

from the New England Journal of Panic-Inducing Gatioledysook



What's wrong with us?

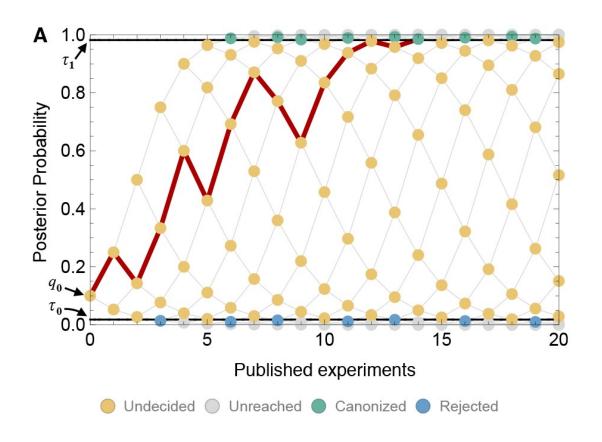
"There is some evidence that [...] research which yields nonsigificant results is not published. Such research being unknown to other investigators may be repeated independently until eventually by chance a significant result occurs [...] The possibility thus arises that the literature [...] consists in substantial part of false conclusions [...]."

PUBLICATION DECISIONS AND THEIR POSSIBLE EFFECTS ON INFERENCES DRAWN FROM TESTS OF SIGNIFICANCE —OR VICE VERSA*

Theodore D. Sterling University of Cincinnati

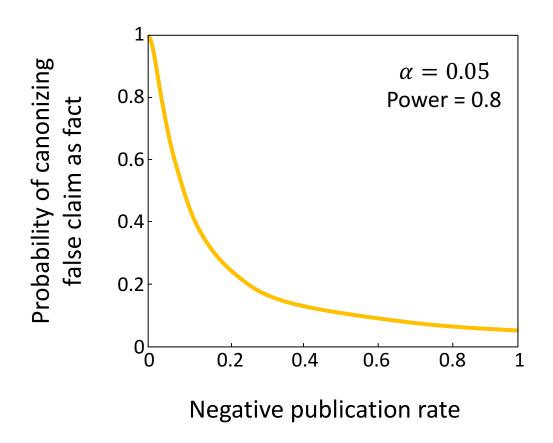
Journal of the American Statistical Association, Vol. 54, No. 285 (Mar., 1959), pp. 30-34

Canonization of false facts



Nissen S.B., et al., "Research: Publication bias and the canonization of false facts", eLife 2016;5:e21451

Canonization of false facts



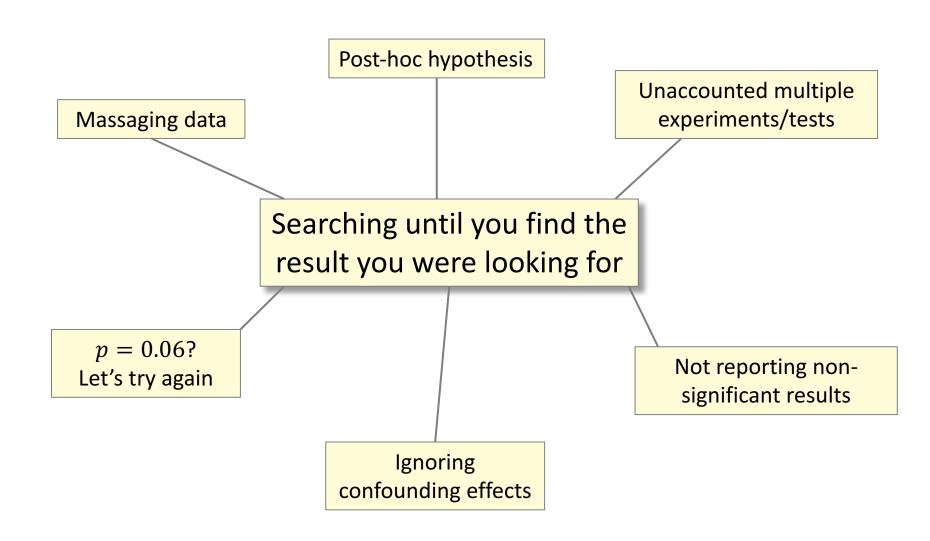
Nissen S.B., et al., "Research: Publication bias and the canonization of false facts", eLife 2016;5:e21451

If you don't publish negative results, science is screwed

but...

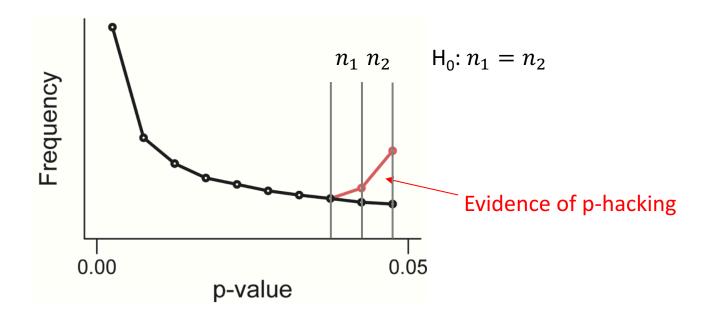
there is a thin line between "negative result" and "no result"

Data dredging, p-hacking



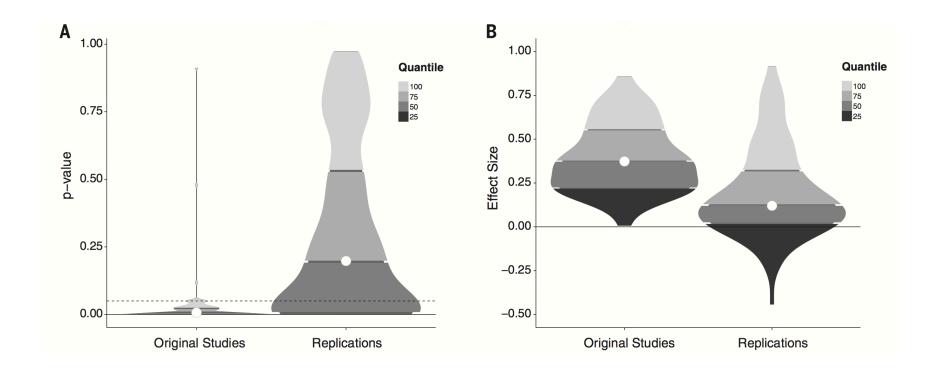
Evidence of p-hacking

Distribution of p-values reported in publications



Head M.L., et al. "The Extent and Consequences of P-Hacking in Science", PLoS Biol 13(3)

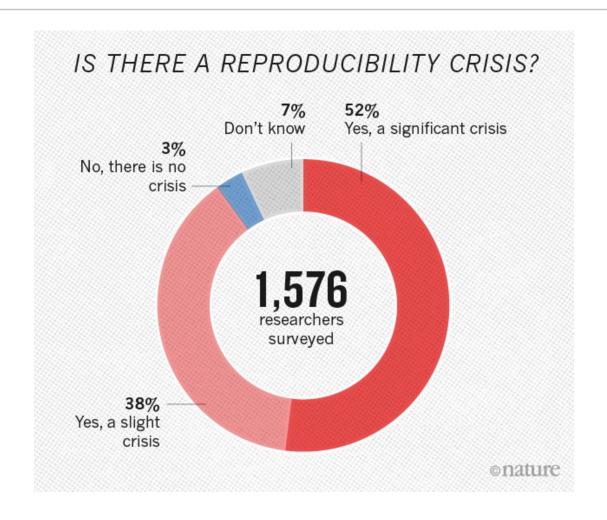
Reproducibility crisis



Open Science Collaboration, "Estimating the reproducibility of psychological science", *Science*, **349** (2015)

Managed to reproduce only 39% results

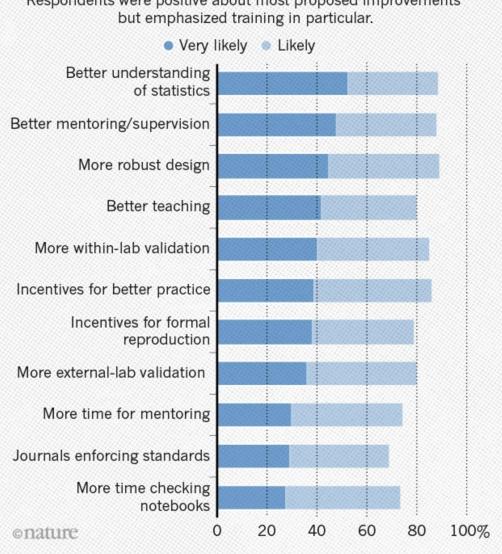
Reproducibility crisis



Nature's survey of 1,576 researchers

WHAT FACTORS COULD BOOST REPRODUCIBILITY?

Respondents were positive about most proposed improvements but emphasized training in particular.



The great reproducibility experiment

Are referees more likely to give red cards to black players?

Mario Balotelli, playing for Manchester City, is shown a red card during a match against Arsenal.

Silberzahn et al., "Many analysts, one dataset: Making transparent how variations in analytical choices affect results", https://osf.io/j5v8f

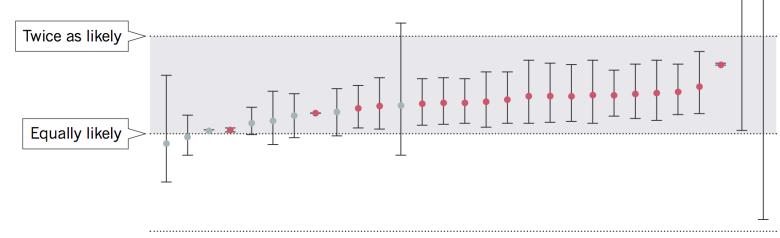
- one data set
- 29 teams
- 61 scientists
- task: find odds ratio

ONE DATA SET, MANY ANALYSTS

Twenty-nine research teams reached a wide variety of conclusions using different methods on the same data set to answer the same question (about football players' skin colour and red cards).

Dark-skinned players four times more likely than light-skinned players to be given a red card.

- Statistically significant effect
- Non-significant effect



Point estimates and 95% confidence intervals. *Truncated upper bounds.

78.7*

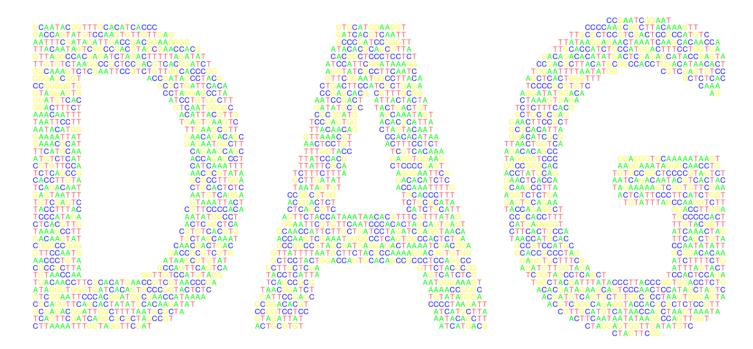
11.5*

P-values are broken

We are broken

What do we do? What the hell do we do?

Before you do the experiment



talk to us

The Data Analysis Group http://www.compbio.dundee.ac.uk/dag.html

Specify the null hypothesis

Design the experiment

- randomization
- statistical power

Quality control

some crap comes out in statistics

Ditch the α limit

use p-values as a continuous measure of data incompatibility with H₀

 $p \sim 0.05$ only means 'worth a look'

Reporting a discovery based only on p < 0.05 is **wrong**

We assumed the null hypothesis

Never, ever say that large p supports H_0

Use the three-sigma rule

that is p < 0.003, to demonstrate a discovery

Reporting

- Always report the effect size and its confidence limits
- Show data (not dynamite plots)
- Don't use the word 'significant'
- Don't use asterisks to mark 'significant' results in figures

Validation

Follow-up experiments to confirm discoveries

Publication

Publish negative results

ASA Statement on Statistical Significance and P-Values

- 1. P-values can indicate how incompatible the data are with a specified statistical model
- 2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone
- 3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold
- 4. Proper inference requires full reporting and transparency
- 5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result
- 6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis

https://is.gd/asa_stat

Hand-outs available at http://is.gd/statlec

