P-values and statistical tests 7. Statistical power

Marek Gierliński Division of Computational Biology

Hand-outs available at http://is.gd/statlec

Statistical power: what is it about?

How does our ability to call a change "significant" depend on the effect size and the sample size?

Effect size

Effect size describes the alternative hypothesis

Effect size for two sample means

5

Effect size for two sample means

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences*

Effect size depends on the standard deviation

Effect size does not depend on the sample size

Effect size = 0.8

Comparing two samples

Statistic	Formula	Description
Difference	$\Delta M = M_1 - M_2$	Absolute difference between sample means
Ratio	$r = \frac{M_1}{M_2}$	Often used as logarithm
Cohen's d	$d = \frac{M_1 - M_2}{SD}$	Effect size; takes spread in data into account
t-statistic	$t = \frac{M_1 - M_2}{SE}$	Directly relates to statistical significance; takes spread of data and sample size into account

M – mean SD – standard deviation

SE – standard error

Effect size describes the alternative hypothesis

Effect size is not related to statistical significance

Effect size in ANOVA

Test statistic
$$F = \frac{MS_B}{MS_W}$$

$$H_0: MS_B = MS_W$$

$$H_1: MS_B = MS_W + nMS_A$$

Added variance

$$f^2 = \frac{F-1}{n}$$

For the purpose of this calculation we only consider groups of equal sizes, n

Effect size in ANOVA

Effect size

Data	Statistical test	Effect size	Formula
Two sets, size n_1 and n_2	t-test	Cohen's d	$d = t \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$
k groups of n points each	ANOVA	Cohen's <i>f</i>	$f = \sqrt{\frac{F-1}{n}}$
2×2 contingency table	Fisher's exact	Odds ratio	$\omega = \frac{q_B/p_B}{q_A/p_A}$
Paired data x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n	Significance of correlation	Pearson's r	$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - M_x}{SD_x} \right) \left(\frac{y_i - M_y}{SD_y} \right)$

Statistical power t-test

Statistical testing

	H_0 is true	H_0 is false	
H ₀ rejected	type I error (α) false positive	correct decision true positive	Positive
H_0 accepted	correct decision true negative	type II error (β) false negative	Negative
	No effect	Effect	

Gedankenexperiment

One alternative hypothesis

Statistical power

The probability of correctly rejecting the null hypothesis

The probability of detecting an effect which is really there

Multiple alternative hypotheses

Power curve

How to do it in R?

```
# Find sample size required to detect the effect size d = 1
> power.t.test(delta=1, sig.level=0.05, power=0.8, type="two.sample",
alternative="two.sided")
```

```
Two-sample t test power calculation
```

```
n = 16.71477
delta = 1
sd = 1
sig.level = 0.05
power = 0.8
alternative = two.sided
```

```
> power.t.test(delta=1, sig.level=0.05, power=0.95, type="two.sample",
alternative="two.sided")
```

Two-sample t test power calculation

```
n = 26.98922
delta = 1
sd = 1
sig.level = 0.05
power = 0.95
alternative = two.sided
```

Statistical power ANOVA

One alternative hypothesis

Power curves

How to do it in R?

> library(pwr)

```
# Find sample size required to detect a "large" effect size f = 0.4
> pwr.anova.test(k=4, f=0.4, sig.level=0.05, power=0.8)
```

Balanced one-way analysis of variance power calculation

NOTE: n is number in each group

Statistical power Fisher's test

Power test for proportion

	Dead	Alive	Total
Drug A	68	12	80
Drug B	70	30	100
Total	138	42	180

Find sample size required to detect
observed proportions
> power.prop.test(p1=0.85, p2=0.70,
power=0.8)

Two-sample comparison of proportions power calculation

n = 120.4719
p1 = 0.85
p2 = 0.7
sig.level = 0.05
power = 0.8
alternative = two.sided

Proportions in rows

	Dead	Alive	Total
Drug A	0.85	0.15	1
Drug B	0.70	0.30	1

Worked example

Tumour growth in mice

Pilot experiment

WT and 4 KOs mice Observe tumour growth Measure volume after 10 days

Power analysis

How many replicates do we need to...

- 1) detect a 2-fold change between conditions? (power in t-test)
- 2) detect the observed effect in ANOVA? (power in ANOVA)

How many replicates to detect a 2-fold change between WT and a KO?

Estimate standard deviation

Standard error of SD
$$SE_{SD} = \frac{SD}{\sqrt{2(n-1)}}$$

Two scenarios, $SD_1 = 75$ and $SD_2 = 160$

Cohen's d:

$$d_1 = \frac{\Delta M}{SD_1} = \frac{200}{75} = 2.7$$

$$d_2 = \frac{\Delta M}{SD_2} = \frac{200}{160} = 1.25$$

R power calculations

```
# Optimistic case, SD = 75
> power.t.test(delta=200, sd=75, power=0.8)
     Two-sample t test power calculation
              n = 3.484297
          delta = 200
             sd = 75
      sig.level = 0.05
          power = 0.8
    alternative = two.sided
# Pessimistic case, SD = 160
> power.t.test(delta=200, sd=160, power=0.8)
     Two-sample t test power calculation
              n = 11.09423
          delta = 200
             sd = 160
      sig.level = 0.05
          power = 0.8
    alternative = two.sided
```

How many replicates to detect the observed effect in ANOVA?

ANOVA power curves

From ANOVA on our data we have F = 2.31

Then, we find the observed effect size:

$$f = \sqrt{\frac{F-1}{n}} = 0.47$$

How many replicates do we need?

```
> library(pwr)
> tumour <- read.table("http://is.gd/mouse_tumour", header=TRUE)</pre>
# Here n = 6 and k = 5
> tum.aov <- aov(Volume ~ Group, data=tumour) # perform ANOVA</pre>
> F <- summary(tum.aov)[[1]]$F[1] # Extract F value</pre>
> f <- sqrt((F - 1)/6) # Effect size: Cohen's f</pre>
# what is the power of this experiment?
> pwr.anova.test(k=5, n=6, f=f)
               k = 5
              n = 6
              f = 0.4670469
      sig.level = 0.05
          power = 0.4293041
# How many replicates to get power of 0.8?
> pwr.anova.test(k=5, f=f, power=0.8)
               k = 5
               n = 11.93119
               f = 0.4670469
      sig.level = 0.05
          power = 0.8
```

Conclusions from our example

- Request power of 0.8
- To detect 2-fold change between WT and a KO in a pessimistic case we need 11 mice in each group
- To detect a change across all groups (ANOVA) we need 12 mice in each group

 We recommend an experiment with at least 12 mice in each group

Hand-outs available at

http://is.gd/statlec

