Everything you always wanted to know about statistics*

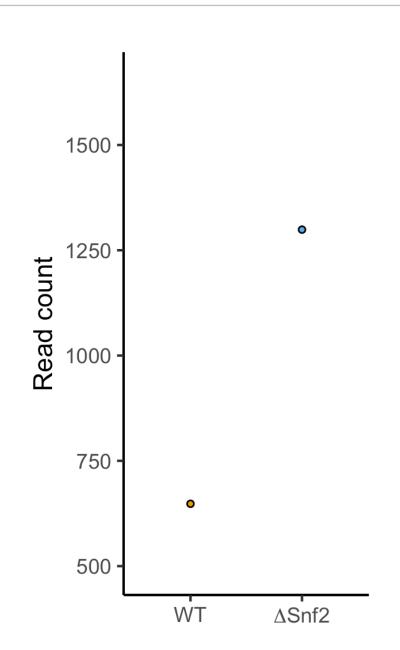
Marek Gierliński Division of Computational Biology

Hand-outs available at http://is.gd/statlec

*but were afraid to ask

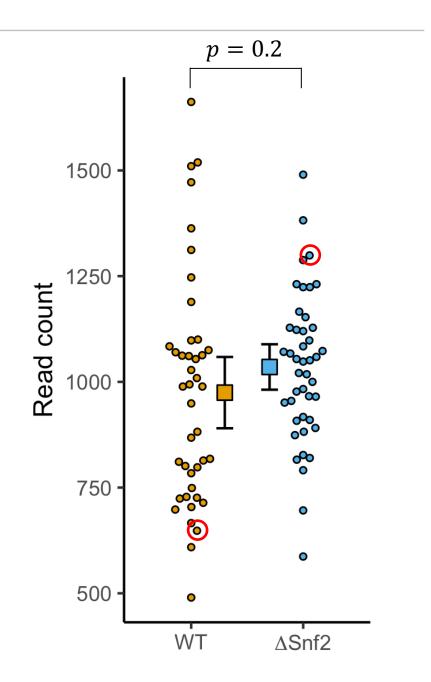
Why do we need statistics?

- Consider an RNA-seq experiment
- Comparing wild type and knock-out
- Expression level of gene IGD1
 - □ WT = 648
 - \square \triangle Snf2 = 1299
- There is a 2-fold change in intensity
- Great! Gene is upregulated!



Why do we need statistics?

- Consider an RNA-seq experiment
- Comparing wild type and knock-out
- Expression level of gene IGD1
 - \Box WT = 648
 - $\square \Delta Snf2 = 1299$
- There is a 2-fold change in intensity
- Great! Gene is upregulated!
- Repeat the experiment in 42/44 replicates
 - \square WT = 975 \pm 84
 - $\triangle Snf2 = 1035 \pm 54$
- Reveal variability of expression
- No difference between WT and knock-out



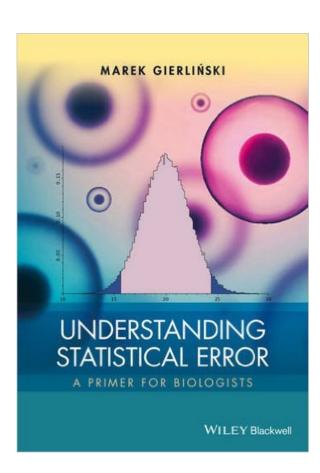
James Abbott

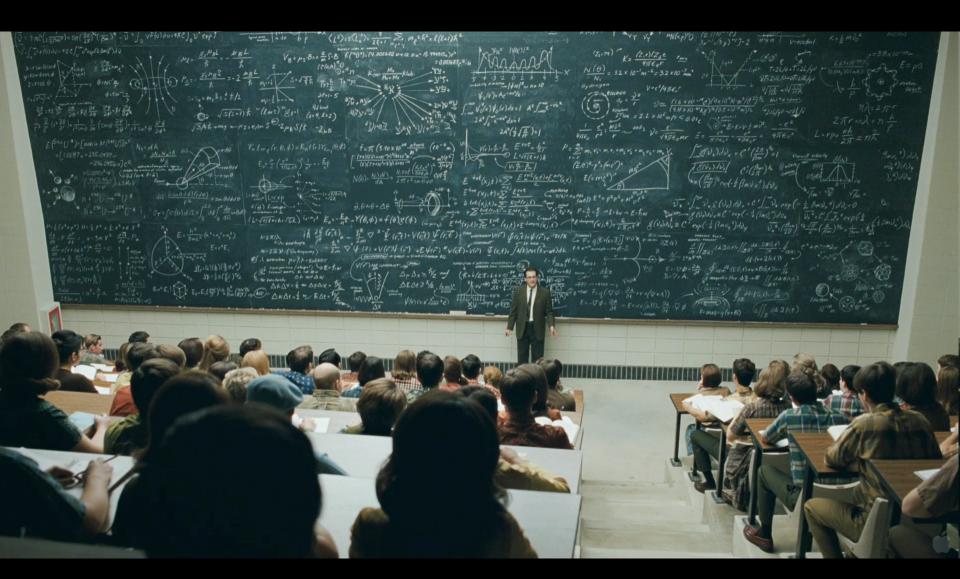
We collaborate on various types of projects

Anything involving data analysis

Course materials

- Lecture slides available (one day before each lecture) at http://is.gd/statlec
- "Understanding statistical error: a primer for biologists", Wiley





1. Probability distributions

Random variables
Normal, log-normal, Poisson, Binomial

2. Errors and statistical estimators

Measurement and random errors
Population and sample
Standard deviation, standard error

3. Confidence intervals 1

Sampling distribution Confidence interval of the mean, median

4. Confidence intervals 2

Confidence interval of count data, correlation, proportion

5. Data presentation

How to make a good plot

6. Introduction to p-values

Null hypothesis, statistical test, p-value Fisher's test

7. Contingency tables

Chi-square test G-test

8. T-test

One- and two-sample, paired One-sample variance test

9. ANOVA

One-way Two-way

10. Non-parametric methods

Mann-Whitney
Wilcoxon signed-rank
Kruskal-Wallis
Kolmogorov-Smirnov

11. Statistical power

Effect size
Power in t-test
Power in ANOVA

12. Multiple test corrections

Family-wise error rate
False discovery rate
Holm-Bonferroni limit
Benjamini-Hochberg limit

13. What's wrong with p-values?

A lot

1. Probability distributions

"Misunderstanding of probability may be the greatest of all general impediments to scientific literacy"

Stephen Jay Gould

Example

Experiment: estimate bacterial concentration using a spectrophotometer

- 6 replicates
- Find the following OD6000.37 0.34 0.41 0.40 0.30 0.33

- Experimental result is a random variable
- It follows a certain probability distribution

Random variable: random numbers

Discrete and continuous random variables

Discrete variables:

- □ sum of 2 dice (2, 3, 4, ..., 12)
- □ categorical outcome
- □ number of mice (5, non random?)
- number of mice in survival experiment (random)

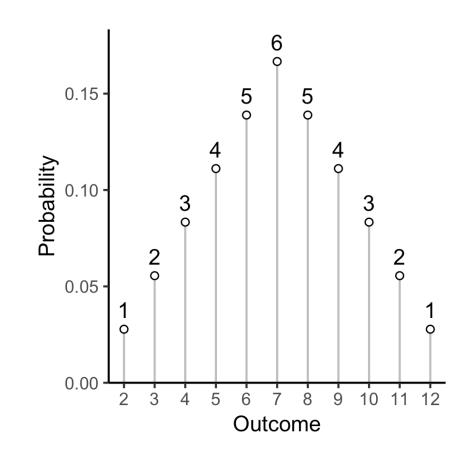
Continuous variables:

- □ weight of a mouse
- □ height of a person
- □ fluorescent marker luminosity
- □ protein abundance

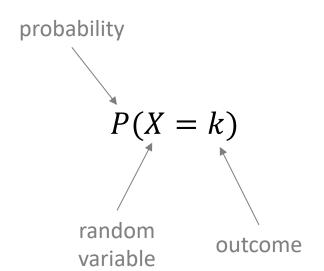
Probability distribution (2 dice)

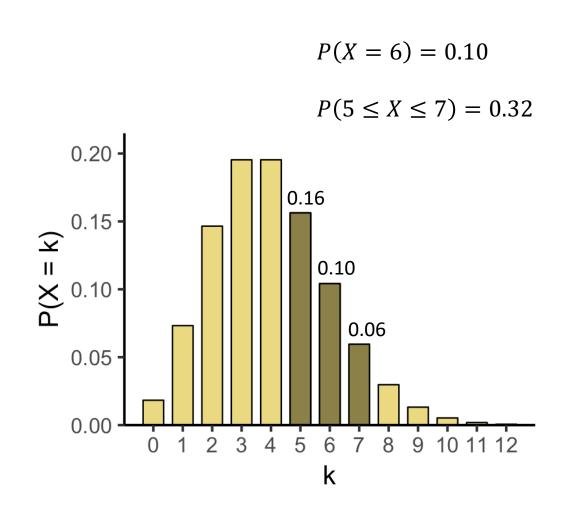
- Assigns a probability to each of the possible outcomes
- Throwing 2 dice

Outcome	Combinations
2	1+1
3	1+2, 2+1
4	1+3, 2+2, 3+1
5	1+4, 2+3, 3+2, 4+1
6	1+5, 2+4, 3+3, 4+2, 5+1
7	1+6, 2+5, 3+4, 4+3, 5+2, 6+1
8	2+6, 3+5, 4+4, 5+3, 6+2
9	3+6, 4+5, 5+4, 6+3
10	4+6, 5+5, 6+4
11	5+6, 6+5
12	6+6

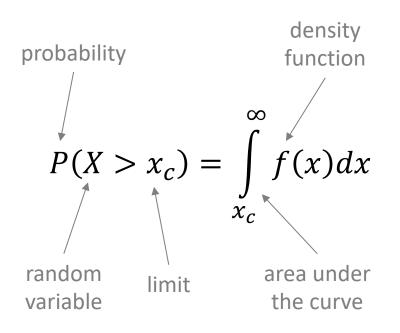


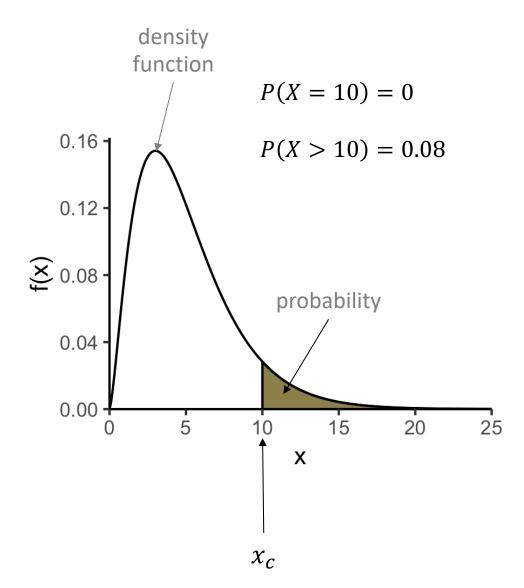
Discrete random variable





Continuous random variable





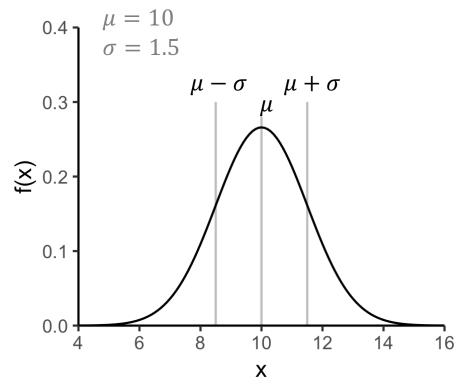
Normal distribution

Normal distribution

Normal (or Gaussian) probability distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

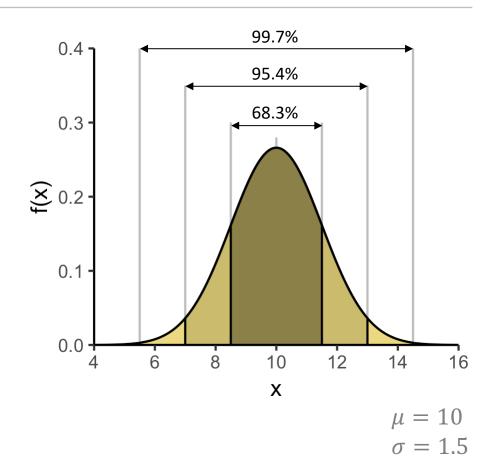
- $\square \mu$ mean
- \square σ standard deviation
- $\square \sigma^2$ variance
- It is called "normal" as it often appears in nature



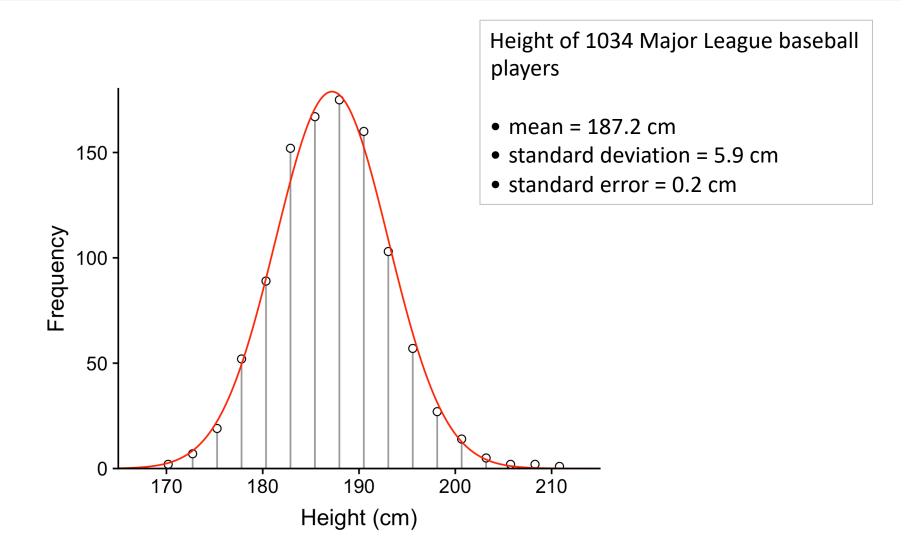
Normal distribution: a few numbers

- Area under the curve = probability
- Probability within one sigma of the mean is about ¾ (68.3%)
- 95% confidence intervals are traditionally used: correspond to about 1.96σ

	In	Out	Odds of out
±1σ	68.3%	31.7%	1:3
±2σ	95.4%	4.6%	1:20
±3σ	99.7%	0.3%	1:400
±4σ	99.994%	0.006%	1:16,000
±5σ	99.99993%	0.00007%	1:1,700,000
±1.96σ	95.0%	5.0%	1:20

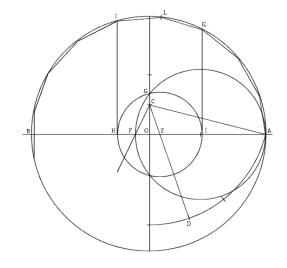


Example: normal distribution



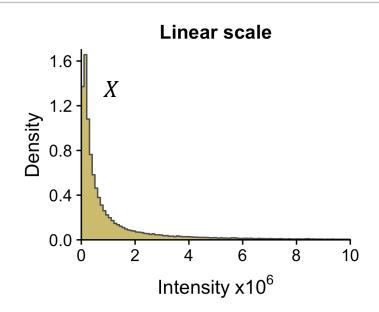
Carl Friedrich Gauss (1777-1855)

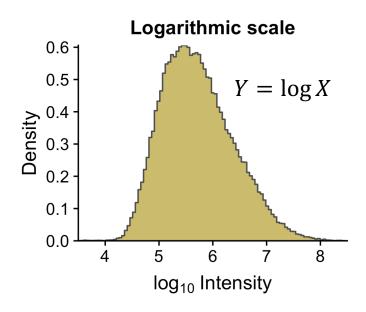
- Brilliant German mathematician
- Constructed a regular heptadecagon with a ruler and a compass
- He requested that a regular heptadecagon should be inscribed on his tombstone
- However, it was Abraham de Moivre (1667-1754) who first formulated "Gaussian" distribution



Log-normal distribution

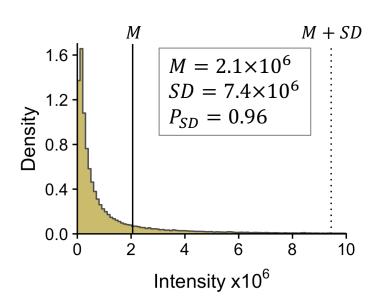
- Probability distribution of a random variable whose logarithm is normally distributed
- Log-normal distribution can be very asymmetric!

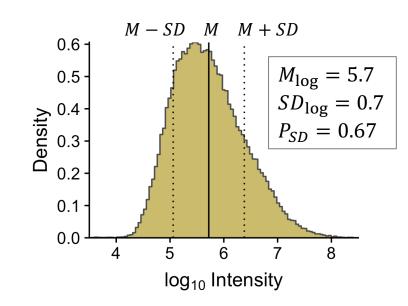




Example: log-normal distribution

- Peptide intensities from a mass spectrometry experiment
- P_{SD} fraction of data within $M \pm SD$
- Data look better in logarithmic space
- Always plot the distribution of your data before analysis
- About two-thirds of data points are within one standard deviation from the mean only when their distribution is approximately Gaussian

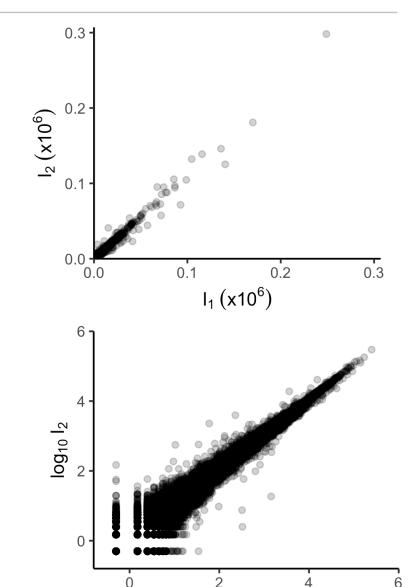




A few notes on log-normal distribution

- Examples of log-normal distributions
 - gene expression (RNA-seq, microarrays)
 - □ mass spectrometry data
 - \Box drug potency IC_{50}
- Plot these data in logarithmic scale!

- It doesn't matter if you use log₂, log₁₀
 or ln, as long as you are consistent
- log_{10} is easier to understand in plots
 - $\Box 10^5 = 100,000$
 - $\Box 2^{10} = 1024$



 $log_{10} I_1$

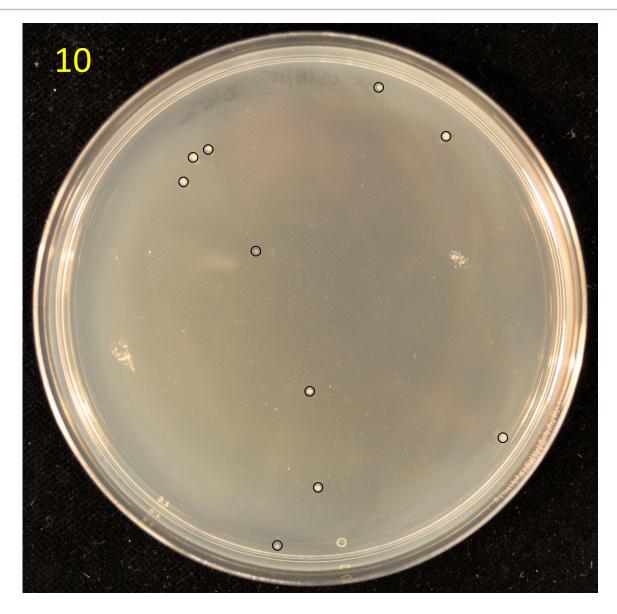
John Napier (1550-1617)

- Scottish mathematician and astronomer
- Invented logarithms and published first tables of natural logarithms
- Created "Napier's bones", the first practical calculator
- Had an interest in theology, calculated the date of the end of the world between 1688 and 1700
- Apparently involved in alchemy and necromancy

Merchiston Castle, Edinburgh

Poisson distribution

Counting bacterial colonies



Courtesy of Katharina Trunk

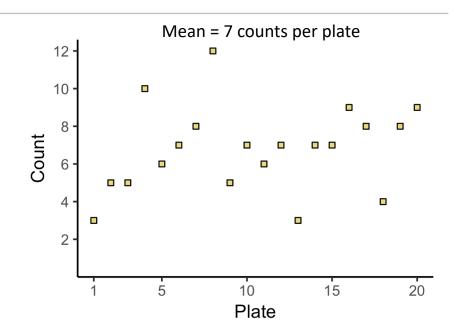
100 μ l of 10⁻⁷ dilution of OD₆₀₀ = 2.0

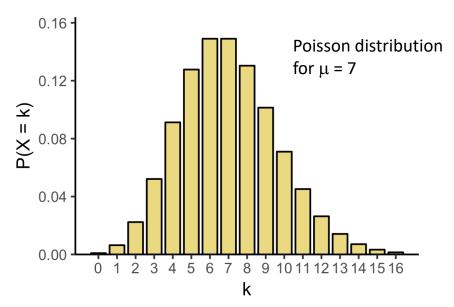
Poisson distribution

 Measure of bacterial count per unit volume

Poisson count: always per bin

- This applies to any counts in time or space
 - □ radioactive decays per second
 - □ number of deaths in a population
 - □ number of cells in a counting chamber
 - □ number of mutations in a DNA fragment





Poisson distribution

- Random and independent events
- Probability of observing exactly k events:

$$P(X=k) = \frac{\mu^k e^{-\mu}}{k!}$$

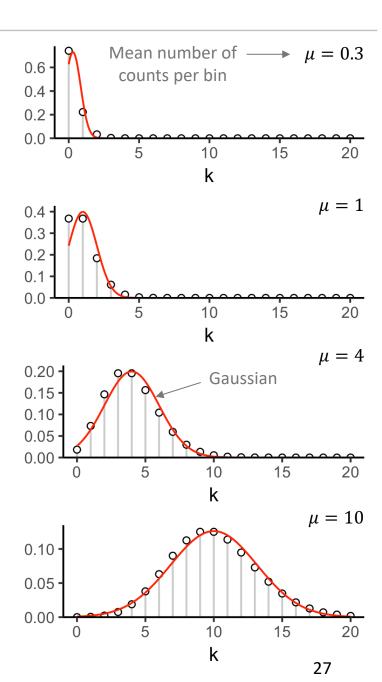
- One parameter: mean count rate, μ
- Standard deviation:

$$\sigma = \sqrt{\mu}$$

$$\sigma^2 = \mu$$

- For large μ Poisson distribution approximates Gaussian
- Example, $\mu = 4$:

$$P(X = 2) = \frac{4^2 e^{-4}}{2!} = \frac{16 \times 0.0183}{2} = 0.147$$



Classic example: horse kicks

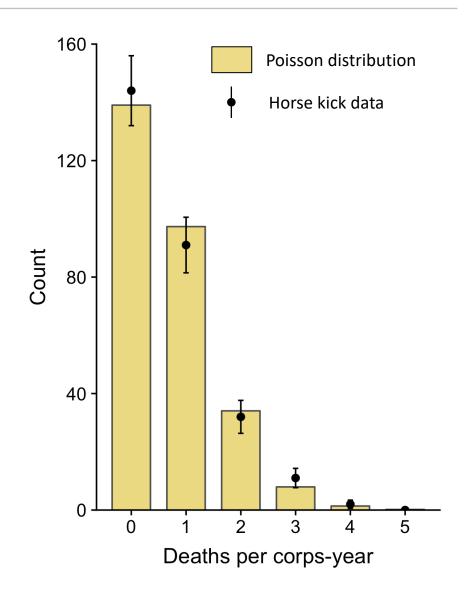
- Ladislaus von Bortkiewicz (1898) "Das Gesetz der kleinen Zahlen"
- Number of soldiers in the Prussian army killed by horse kicks
 - □ 14 army corps, 20 years of data
 - □ Deaths per year per army corps

In nachstehender Tabelle sind die Zahlen der durch Schlag eines Pferdes verunglückten Militärpersonen, nach Armeecorps ("G." bedeutet Gardecorps) und Kalenderjahren nachgewiesen.")

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 1 - 1							L	1	1	79	78		76	75	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 2 1 2 1 3	1 1 1 - 1 2	 1 2 1 - 3 2 1	1 1 1 1 - 1	 1 - 1 - 1	1 2 1 2 1 1 -		1 - 1 - 1 - 1	2 1 1 1 - - 2 1	1 1 2 2 - 1	1 2 2 1 1 - -	1 1 -	2 - - 1 - -		I III IIV V VI VIII VIII VIII IX X

Example: Poisson distribution

- Death distribution follows Poisson law
- mean = 0.70 deaths / corps / year
- 4 deaths in a corps-year are expected to happen from time to time!
- P(X = 4) = 0.078 in 14 corps
- On average it should happen once in 13 years

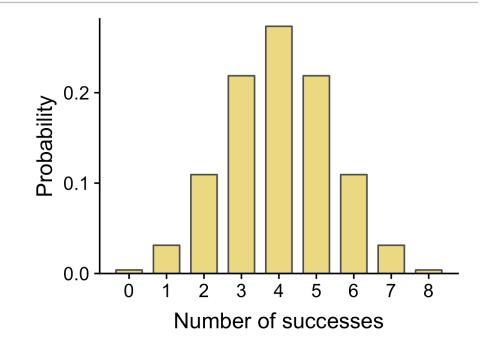


Binomial distribution

Binomial distribution

- A series of n "trials"
- In each trial, the probability of:
 - \Box "success" = p
 - □ "failure" = 1 p
- What is the probability of having exactly k successes in n trials?

- Applications:
 - □ random errors
 - □ error of the proportion
 - □ error of the median



Example: toss a coin

heads = success (p = 0.5)

tails = failure (1 - p = 0.5)

Probability of getting *k* heads from 8 coins

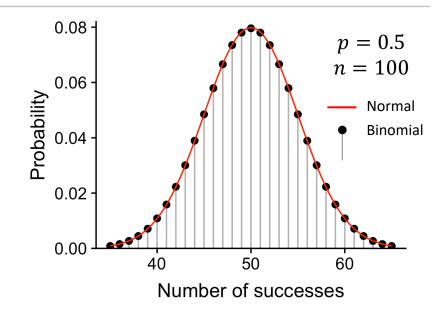
Binomial distribution

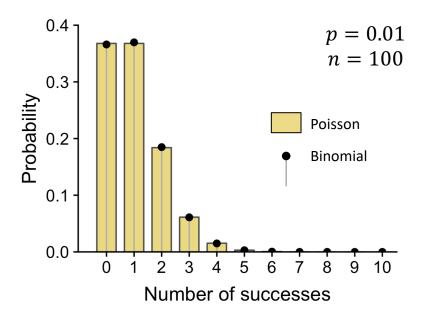
Mean and standard deviation

$$\mu = np$$

$$\sigma = \sqrt{np(1-p)}$$

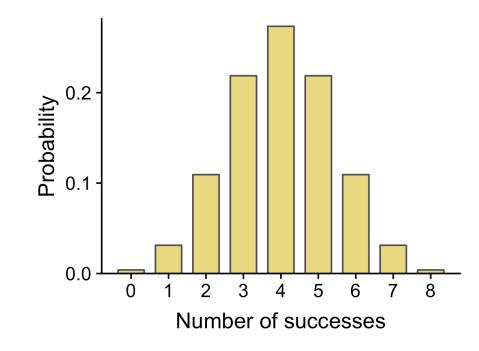
- For large n can be approximated by normal distribution
- For large n and small p it becomes Poisson





Example: tossing a coin

- Toss 8 coins
- Question: why is the probability having heads 4 times much larger than the probability of heads 8 times?



Example: toss a coin

heads = success (p = 0.5)

tails = failure (1 - p = 0.5)

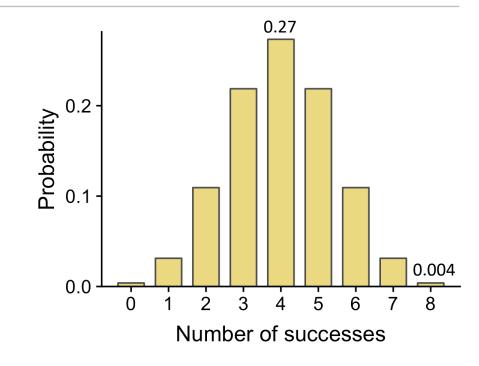
What is the probability of obtaining heads *k* times from 8 coins?

Example: tossing a coin

There is only one way of having heads 8 times

There many are ways of getting 4 heads and 4 tails

$$\binom{8}{4} = 70$$

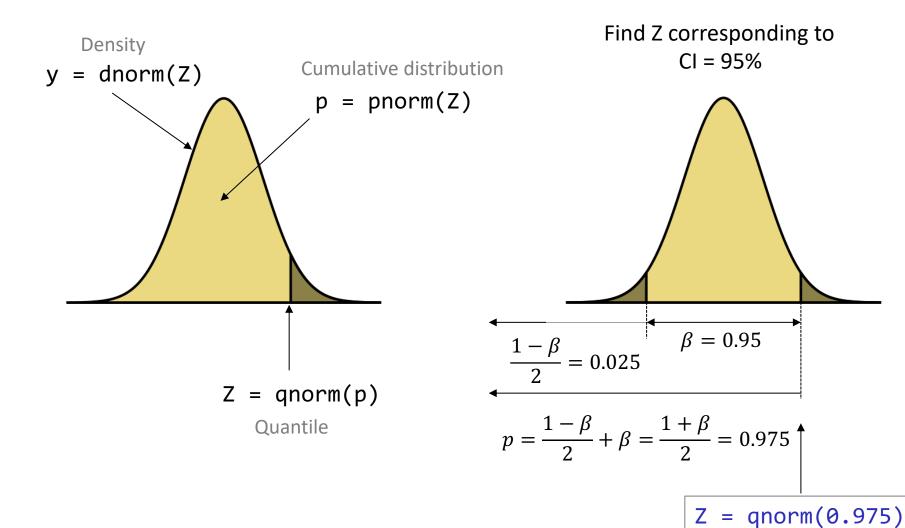


Example: toss a coin

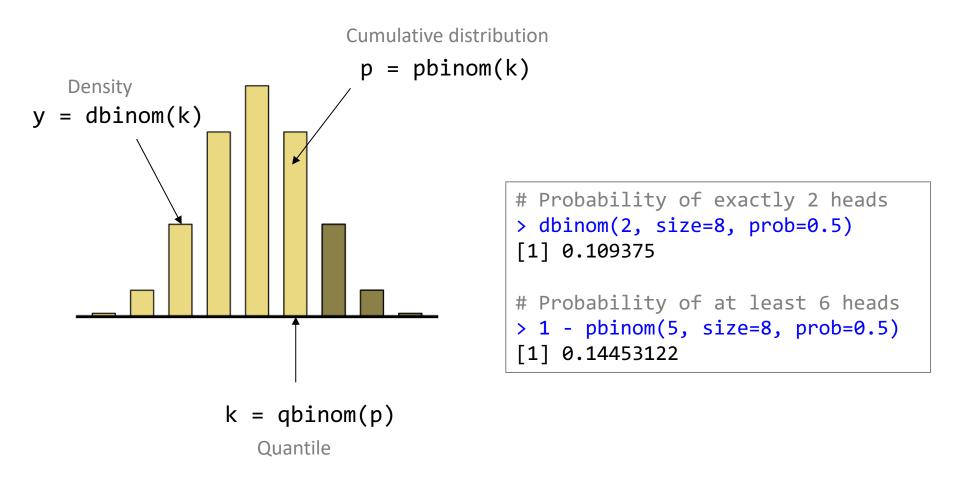
heads = success (p = 0.5) tails = failure (1 - p = 0.5)

What is the probability of abtainin

What is the probability of obtaining heads *k* times from 8 coins?



1.959964



Distribution	Density	Cumulative	Quantiles
Normal	dnorm	pnorm	qnorm
Poisson	dpois	ppois	qpois
Binomial	dbinom	pbinom	qbinom
Log-normal	dlnorm	plnorm	qlnorm
Uniform	dunif	punif	qunif
Student t	dt	pt	qt
Chi-square	dchisq	pchisq	qchisq
Hypergeometric	dhyper	phyper	qhyper
F	df	pf	qf

Summary

Distribution	Description	Examples
Normal	Bell-shaped	Often seen in nature, e.g. human height
Log-normal	Logarithm of this is normal	High-throughput experiments
Poisson	Count distribution	Counts of cells per plate
Binomial	Success vs failure	Male/female distribution

Hand-outs available at http://is.gd/statlec