

Fancy Posters

RNA-seq Data Analysis With R-bioconductor: An Exercise in Reproducable Research

Pietà Schofield

Data Analysis Group Computational Biology College of Life Sciences University of Dundee

Introduction knitr

This poster is a demonstration of reproducible research. The poster was created as a 300 line R-noweb script. The script contains all the words that appear on the poster and also all the code required to process the raw data and to produce the figures that appear on the poster. R-noweb is an augmented form of LATEX. Similarly Rmarkdown scripts can be written to produce HTML and MS Word documents. They are compiled by the R knitr package

setwd (posterPath) logknit <- knit("rnaseq_poster.rnw")</pre> loglatex <- system("pdflatex rnaseq_poster.tex", intern=T)</pre> system("open rnaseq_poster.pdf")

For completeness this is the code that is used to compile the poster NB although this code is included in the script it is not excuted at compile time as this would create and infinitely recursive process

Quality Checking seqTools

If you have Illumina data generally it is in the form of FASTQ files. The first step is to examine the quality of the data, this can be done using the seqTools package.

First set up the paths to the raw data and use the fastqq function to generate quality metrics for all the files.

homePath <- "/Users/pschofield/"</pre> projPath <- paste0(homePath, "Projects/rna_seq/")</pre> fastqPath <- paste0(homePath, "Projects/BS32010_2015/web/data")</pre> reportPath <- paste0(projPath, "bam/")</pre> files <- list.files(fastqPath, pattern="^(S|F).*fq[.]gz", full=TRUE)</pre> names(files) <- sub(".fq.gz", "", basename(files))</pre> if(!exists("fq")) fq<-fastqq(files, k=6, probeLabel=names(files))</pre>

Significant Genes biomaRt

The significantly differentially expressed genes can be extracted from the topTags listing first we will get the annotations for the significant genes using biomaRt

require(biomaRt)

if(!exists("ttAnno")){

mart <- useMart("ensembl", "scerevisiae_gene_ensembl")</pre>

```
anno <- getBM(attributes=c("ensembl_gene_id", "external_gene_name", "description", "entrezgene"),</pre>
               filter="ensembl_gene_id", values=rownames(tt)[which(tt$FDR<=0.05)], mart=mart)</pre>
colnames(anno) <- c("GeneId", "GeneName", "Description", "EntrezId")</pre>
ttAnno <- merge(anno,tt[,c("logFC", "FDR")], by.x="GeneId", by.y="row.names")</pre>
```

ttAnno\$Description <- paste0("\\parbox{0.5\\textwidth}{",gsub("%"," percent ",ttAnno\$Description),"}")</pre> ttAnno\$FDR <- **sapply**(ttAnno\$FDR, function(x) **sprintf**("%e", x))

downGenes <- ttAnno\$GeneId[which(ttAnno\$logFC<=0)]</pre> upGenes <- ttAnno\$GeneId[which(ttAnno\$logFC>=0)]

Expression	Count
Up regulated	1584
Down regulated	1510

Gratifyingly the most significantly differentially expressed gene with also the highest foldchange is YOR290C (SNF2) which is strongly down regulated in the mutant. However the top five most strongly up regulated annotations are all "Dubious ORF"s.

then visualise some of the quality metrics on all these files, here we show just a couple though it would be best to look at the metrics for each file. For example:

View the gc content distribution of all the reads

View the phred quality distribution for each base by position

plotGCcontent (fq)

plotMergedPhredQuant (fq)

Read Alignment *Rsubread*

The reads must be aligned to a reference genome. We can use the bioconductor package Rsubread to make a reference index from a FASTA file available from the ENSEMBL website and align the reads in the FASTQ files. The subjunc function is used to do the alignment as it copes with reads containing splice junctions.

upTop <- ttAnno[which(ttAnno\$GeneId %in% upGenes),]</pre> kable(head(upTop[rev(order(upTop\$logFC)),],5),row.names=FALSE)

Geneld	GeneName	Description	
YOR376W		\parbox{0.5\textwidth}{Dubious open reading frame; unlikely to encode a functional protein, based on available exp	e
YPL025C		\parbox{0.5\textwidth}{Dubious open reading frame; unlikely to encode a functional protein, based on available exp	e
YHR095W		\parbox{0.5\textwidth}{Dubious open reading frame; unlikely to encode a functional protein, based on available exp	e
YHR125W		\parbox{0.5\textwidth}{Dubious open reading frame; unlikely to encode a functional protein, based on available exp	e
YPL021W	ECM23	\parbox{0.5\textwidth}{Non-essential protein of unconfirmed function; affects pre-rRNA processing, may act as a n	eç

similarly for down regulated genes

Geneld	GeneName	Description	
tN(GUU)P		\parbox{0.5\textwidth}{Asparagine tRNA (tRNA-Asn), predicted by tRNAscan-SE analysis [Source:SGD;Acc:S00)0
YNR034W-A		\parbox{0.5\textwidth}{Putative protein of unknown function; expression is regulated by Msn2p/Msn4p; YNR034	N
YHR136C	SPL2	\parbox{0.5\textwidth}{Protein with similarity to cyclin-dependent kinase inhibitors; downregulates low-affinity ph	05
YDR545W	YRF1-1	\parbox{0.5\textwidth}{Helicase encoded by the Y' element of subtelomeric regions; highly expressed in the mut	ar
YDR545W	YRF1-1	\parbox{0.5\textwidth}{Helicase encoded by the Y' element of subtelomeric regions; highly expressed in the mut	ar

Network Analysis STRINGdb

There are now many packages in R-bioconductor that can be used to investigate gene set and pathway enrichment of the significant genes. Here we show the example of STRINGdb

ref <- paste0(projPath, "annot/Scerevisiae_R64_1_1_dna.fa")</pre> indexname <- paste0(projPath, "annot/sc_R64")</pre> if(!file.exists(paste0(indexname, ".log"))) buildindex(basename=indexname, reference=ref)

lapply(seq(1, length(files)), function(x){ subjunc(indexname, files[x], nthread=4, input_format="gzFASTQ", output_file=paste0(gsub("[.]fq.gz", "", files[x]), "_subjunc.bam"))

The clustering indicates that generally the replicates cluster by treatment, however one of the snf2 replicates stands out. This might indicate a problem with the replicate, or an unexplain source of biological variation and warrents further investigation.

Differential Expression edgeR

hits <- head(downMap\$STRING_id[</pre> order(downMap\$logFC)],100)

http://string905.embl.de/9_05/p/6384101812

string_db\$plot_network(hits) The STRINGdb can also be used to look for enriched GO terms and enriched KEGG pathways

backgroundV <- allMap\$STRING_id[1:2000]</pre> string_db\$set_background(backgroundV) hitsUP <- upMap\$STRING_id</pre> hitsDown <- downMap\$STRING_id upGOBP <- string_db\$get_enrichment(</pre> hitsUP, category = "Process", methodMT = "fdr", iea = TRUE) upKEGG <- string_db\$get_enrichment(</pre> hitsUP, category = "KEGG", methodMT = "fdr", iea = TRUE)

<pre>colnames(upGOBP) <- gsub("_","</pre>	", colnames (upGOBP))
<pre>kable(head(upGOBP, 4))</pre>	

term id	proteins	hits	pvalue	pvalue fdr	term description
GO:0008150	1243	683	0	0	biological_process
GO:0009987	1181	632	0	0	cellular process
GO:0044763	831	464	0	0	single-organism cellular process
GO:0044699	796	452	0	0	single-organism process

colnames(upKEGG) <- gsub("_", " ", colnames(upKEGG))</pre> kable(head(upKEGG, 4))

term id	proteins	hits	pvalue	pvalue fdr	term description
sce04111	56	43	0	0	Cell cycle - yeast
sce04113	51	38	0	0	Meiosis - yeast
sce03030	12	12	0	0	DNA replication
sce04120	18	14	0	0	Ubiquitin mediated proteolysis

Pathway Analysis *pathview*

Then using the pathwiew package it is possible to visualise the second top hit in the enriched pathway, sce:04111

gene.data <- as.numeric(ttAnno\$logFC)</pre> names(gene.data) <- ttAnno\$GeneId</pre> pathID <- gsub("sce", "", head(upKEGG[1,1]))</pre> pathview(gene.data=gene.data, gene.idtype="kegg", pathway.id=pathID, species="sce", out.suffix="kegg", kegg.native=T,

In order to perform a differential expression analysis the data files must be distinguished by treatment, or tissue or whatever factor is relevant. This information can be extracted from the file names

treatment=relevel(as.factor(ifelse(grepl("^W", colnames(fcounts)), "WT", "SNF2")), "WT")

There are many differential expression packages available in R-bioconductor, here we will use the edgeR package. The data must be transformed into a data structure used by edgeR.

require(edgeR, quiet=TRUE) dge <- DGEList(counts=fcounts[rowSums(fcounts)>0,], group=treatment)

The data must also be normalized to account for the difference in library sizes and the variance model.

Data Analysis Group, Barton Lab, Computational Biology,

dge <- calcNormFactors(dge)</pre>

The differential expression test can then be performed

require(ggplot2, quiet=TRUE) mm <- model.matrix(~treatment)</pre> estimateGLMCommonDisp(dge,mm) dge <dge <- estimateGLMTrendedDisp(dge,mm)</pre> estimateGLMTagwiseDisp(dge,mm) dge <fit <- glmFit(dge,mm)</pre> glmLRT (fit, coef=2) lrt <tt <- as.data.frame(topTags(lrt,n=10000))</pre> gp <- ggplot(tt, aes(x=logFC,y=log2(FDR)))</pre> gp <- gp + geom_point(size=1, aes(colour = logCPM))</pre> gp <- gp + scale_colour_gradient(high = 2, low = 4)</pre>

covery rate adjusted significance against the Log2 fold.

p.schofield@dundee.ac.uk http://www.compbio.dundee.ac.uk/user/pschofield