
The JFreeChart Class Library

Version 1.0.9

Developer Guide

Written by David Gilbert

January 7, 2008

c© 2000-2008, Object Refinery Limited. All rights reserved.

IMPORTANT NOTICE:
We work hard to make this document as accurate and informative as we can, but

cannot guarantee that it is error-free.

Contents

1 Introduction 16
1.1 What is JFreeChart? . 16
1.2 This Document . 18
1.3 Acknowledgements . 18
1.4 Comments and Suggestions . 18

2 Sample Charts 19
2.1 Introduction . 19
2.2 Pie Charts . 19
2.3 Bar Charts . 21
2.4 Line Chart . 23
2.5 XY Plots . 24
2.6 Time Series Charts . 25
2.7 Histograms . 26
2.8 Area Charts . 27
2.9 Difference Chart . 27
2.10 Step Chart . 29
2.11 Gantt Chart . 30
2.12 Multiple Axis Charts . 31
2.13 Combined and Overlaid Charts . 32
2.14 Future Development . 33

3 Downloading and Installing JFreeChart 34
3.1 Introduction . 34
3.2 Download . 34
3.3 Unpacking the Files . 34
3.4 Running the Demonstration Applications . 35
3.5 Configuring JFreeChart for use in IDEs . 36
3.6 Compiling the Source . 36
3.7 Generating the Javadoc Documentation . 36

4 Using JFreeChart 37
4.1 Overview . 37
4.2 Creating Your First Chart . 37

5 Pie Charts 40
5.1 Introduction . 40
5.2 Creating a Simple Pie Chart . 40
5.3 Section Colours . 40
5.4 Section Outlines . 41
5.5 Null, Zero and Negative Values . 41
5.6 Section and Legend Labels . 42
5.7 Exploded Sections . 42

1

CONTENTS 2

5.8 3D Pie Charts . 43
5.9 Multiple Pie Charts . 43

6 Bar Charts 45
6.1 Introduction . 45
6.2 A Bar Chart . 45
6.3 The ChartFactory Class . 48
6.4 Simple Chart Customisation . 48
6.5 Customising the Renderer . 49

7 Line Charts 51
7.1 Introduction . 51
7.2 A Line Chart Based On A Category Dataset . 51
7.3 A Line Chart Based On An XYDataset . 56

8 Time Series Charts 61
8.1 Introduction . 61
8.2 Time Series Charts . 61

9 Customising Charts 67
9.1 Introduction . 67
9.2 Chart Attributes . 67
9.3 Plot Attributes . 69
9.4 Axis Attributes . 70

10 Dynamic Charts 72
10.1 Overview . 72
10.2 Background . 72
10.3 The Demo Application . 73

11 Tooltips 77
11.1 Overview . 77
11.2 Generating Tool Tips . 77
11.3 Collecting Tool Tips . 78
11.4 Displaying Tool Tips . 78
11.5 Disabling Tool Tips . 78
11.6 Customising Tool Tips . 78

12 Item Labels 79
12.1 Introduction . 79
12.2 Displaying Item Labels . 80
12.3 Item Label Appearance . 81
12.4 Item Label Positioning . 82
12.5 Customising the Item Label Text . 83
12.6 Example 1 - Values Above a Threshold . 84
12.7 Example 2 - Displaying Percentages . 87

13 Multiple Axes and Datasets 91
13.1 Introduction . 91
13.2 An Example . 91
13.3 Hints and Tips . 93

CONTENTS 3

14 Combined Charts 94
14.1 Introduction . 94
14.2 Combined Domain Category Plot . 94
14.3 Combined Range Category Plot . 95
14.4 Combined Domain XY Plot . 96
14.5 Combined Range XY Plot . 97

15 Datasets and JDBC 99
15.1 Introduction . 99
15.2 About JDBC . 99
15.3 Sample Data . 99
15.4 PostgreSQL . 100
15.5 The JDBC Driver . 101
15.6 The Demo Applications . 102

16 Exporting Charts to Acrobat PDF 103
16.1 Introduction . 103
16.2 What is Acrobat PDF? . 103
16.3 iText . 103
16.4 Graphics2D . 103
16.5 Getting Started . 104
16.6 The Application . 104
16.7 Viewing the PDF File . 108
16.8 Unicode Characters . 108

17 Exporting Charts to SVG Format 111
17.1 Introduction . 111
17.2 Background . 111
17.3 A Sample Application . 111

18 Applets 114
18.1 Introduction . 114
18.2 Issues . 114
18.3 A Sample Applet . 115

19 Servlets 118
19.1 Introduction . 118
19.2 A Simple Servlet . 118
19.3 Compiling the Servlet . 120
19.4 Deploying the Servlet . 121
19.5 Embedding Charts in HTML Pages . 121
19.6 Supporting Files . 126
19.7 Deploying Servlets . 127

20 Miscellaneous 129
20.1 Introduction . 129
20.2 X11 / Headless Java . 129
20.3 Java Server Pages . 129
20.4 Loading Images . 129

21 Packages 130
21.1 Overview . 130

CONTENTS 4

22 Package: org.jfree.chart 131
22.1 Overview . 131
22.2 ChartColor . 131
22.3 ChartFactory . 131
22.4 ChartFrame . 134
22.5 ChartMouseEvent . 135
22.6 ChartMouseListener . 136
22.7 ChartPanel . 136
22.8 ChartRenderingInfo . 141
22.9 ChartUtilities . 142
22.10ClipPath . 144
22.11DrawableLegendItem . 144
22.12Effect3D . 144
22.13HashUtilities . 145
22.14JFreeChart . 145
22.15LegendItem . 150
22.16LegendItemCollection . 152
22.17LegendItemSource . 153
22.18LegendRenderingOrder . 154
22.19PolarChartPanel . 154

23 Package: org.jfree.chart.annotations 155
23.1 Overview . 155
23.2 AbstractXYAnnotation . 155
23.3 CategoryAnnotation . 157
23.4 CategoryLineAnnotation . 157
23.5 CategoryPointerAnnotation . 159
23.6 CategoryTextAnnotation . 161
23.7 TextAnnotation . 162
23.8 XYAnnotation . 164
23.9 XYBoxAnnotation . 165
23.10XYDrawableAnnotation . 166
23.11XYImageAnnotation . 167
23.12XYLineAnnotation . 168
23.13XYPointerAnnotation . 169
23.14XYPolygonAnnotation . 171
23.15XYShapeAnnotation . 173
23.16XYTextAnnotation . 174

24 Package: org.jfree.chart.axis 177
24.1 Overview . 177
24.2 Axis . 177
24.3 AxisCollection . 182
24.4 AxisLocation . 182
24.5 AxisSpace . 183
24.6 AxisState . 183
24.7 CategoryAnchor . 184
24.8 CategoryAxis . 184
24.9 CategoryAxis3D . 189
24.10CategoryLabelPosition . 190
24.11CategoryLabelPositions . 191
24.12CategoryLabelWidthType . 191
24.13CategoryTick . 192
24.14ColorBar . 192
24.15CompassFormat . 192

CONTENTS 5

24.16CyclicNumberAxis . 193
24.17DateAxis . 194
24.18DateTickMarkPosition . 198
24.19DateTick . 198
24.20DateTickUnit . 199
24.21ExtendedCategoryAxis . 200
24.22LogAxis . 200
24.23LogarithmicAxis . 203
24.24MarkerAxisBand . 204
24.25ModuloAxis . 205
24.26MonthDateFormat . 206
24.27NumberAxis . 207
24.28NumberAxis3D . 211
24.29NumberTick . 212
24.30NumberTickUnit . 213
24.31PeriodAxis . 214
24.32PeriodAxisLabelInfo . 216
24.33QuarterDateFormat . 218
24.34SegmentedTimeline . 218
24.35StandardTickUnitSource . 219
24.36SubCategoryAxis . 220
24.37SymbolAxis . 221
24.38Tick . 223
24.39TickType . 223
24.40TickUnit . 223
24.41TickUnits . 224
24.42TickUnitSource . 225
24.43Timeline . 225
24.44ValueAxis . 226
24.45ValueTick . 229

25 Package: org.jfree.chart.block 231
25.1 Introduction . 231
25.2 AbstractBlock . 231
25.3 Arrangement . 233
25.4 Block . 234
25.5 BlockBorder . 234
25.6 BlockContainer . 235
25.7 BlockFrame . 237
25.8 BlockParams . 237
25.9 BlockResult . 237
25.10BorderArrangement . 238
25.11CenterArrangement . 238
25.12ColorBlock . 238
25.13ColumnArrangement . 239
25.14EmptyBlock . 240
25.15EntityBlockParams . 240
25.16EntityBlockResult . 240
25.17FlowArrangement . 240
25.18GridArrangement . 241
25.19LabelBlock . 241
25.20LengthConstraintType . 243
25.21LineBorder . 243
25.22RectangleConstraint . 244

CONTENTS 6

26 Package: org.jfree.chart.editor 246
26.1 Introduction . 246
26.2 ChartEditor . 246
26.3 ChartEditorFactory . 246
26.4 ChartEditorManager . 247
26.5 DefaultAxisEditor . 247
26.6 DefaultChartEditor . 247
26.7 DefaultChartEditorFactory . 248
26.8 DefaultColorBarEditor . 248
26.9 DefaultNumberAxisEditor . 249
26.10DefaultPlotEditor . 249
26.11DefaultTitleEditor . 249
26.12PaletteChooserPanel . 249
26.13PaletteSample . 250

27 Package: org.jfree.chart.encoders 251
27.1 Introduction . 251
27.2 EncoderUtil . 251
27.3 ImageEncoderFactory . 252
27.4 ImageEncoder . 253
27.5 ImageFormat . 253
27.6 KeyPointPNGEncoderAdapter . 253
27.7 SunJPEGEncoderAdapter . 254
27.8 SunPNGEncoderAdapter . 255

28 Package: org.jfree.chart.entity 256
28.1 Introduction . 256
28.2 Background . 256
28.3 CategoryItemEntity . 256
28.4 ChartEntity . 258
28.5 ContourEntity . 258
28.6 EntityCollection . 259
28.7 LegendItemEntity . 259
28.8 PieSectionEntity . 260
28.9 StandardEntityCollection . 260
28.10TickLabelEntity . 261
28.11XYAnnotationEntity . 262
28.12XYItemEntity . 262

29 Package: org.jfree.chart.event 263
29.1 Introduction . 263
29.2 AxisChangeEvent . 263
29.3 AxisChangeListener . 263
29.4 ChartChangeEvent . 264
29.5 ChartChangeEventType . 264
29.6 ChartChangeListener . 265
29.7 ChartProgressEvent . 265
29.8 ChartProgressListener . 266
29.9 MarkerChangeEvent . 266
29.10MarkerChangeListener . 267
29.11PlotChangeEvent . 267
29.12PlotChangeListener . 268
29.13RendererChangeEvent . 268
29.14RendererChangeListener . 268
29.15TitleChangeEvent . 269

CONTENTS 7

29.16TitleChangeListener . 269

30 Package: org.jfree.chart.imagemap 270
30.1 Overview . 270
30.2 DynamicDriveToolTipTagFragmentGenerator . 270
30.3 ImageMapUtilities . 270
30.4 OverLIBToolTipTagFragmentGenerator . 271
30.5 StandardToolTipTagFragmentGenerator . 271
30.6 StandardURLTagFragmentGenerator . 272
30.7 ToolTipTagFragmentGenerator . 272
30.8 URLTagFragmentGenerator . 273

31 Package: org.jfree.chart.labels 274
31.1 Introduction . 274
31.2 AbstractCategoryItemLabelGenerator . 274
31.3 AbstractPieItemLabelGenerator . 275
31.4 AbstractXYItemLabelGenerator . 276
31.5 BoxAndWhiskerToolTipGenerator . 278
31.6 BoxAndWhiskerXYToolTipGenerator . 278
31.7 CategoryItemLabelGenerator . 278
31.8 CategorySeriesLabelGenerator . 279
31.9 CategoryToolTipGenerator . 279
31.10ContourToolTipGenerator . 280
31.11CustomXYToolTipGenerator . 280
31.12HighLowItemLabelGenerator . 280
31.13IntervalCategoryItemLabelGenerator . 281
31.14IntervalCategoryToolTipGenerator . 282
31.15ItemLabelAnchor . 282
31.16ItemLabelPosition . 283
31.17MultipleXYSeriesLabelGenerator . 284
31.18PieSectionLabelGenerator . 285
31.19PieToolTipGenerator . 286
31.20StandardCategoryItemLabelGenerator . 286
31.21StandardCategorySeriesLabelGenerator . 287
31.22StandardCategoryToolTipGenerator . 288
31.23StandardContourToolTipGenerator . 289
31.24StandardPieSectionLabelGenerator . 289
31.25StandardPieToolTipGenerator . 291
31.26StandardXYItemLabelGenerator . 292
31.27StandardXYSeriesLabelGenerator . 293
31.28StandardXYToolTipGenerator . 294
31.29StandardXYZToolTipGenerator . 295
31.30SymbolicXYItemLabelGenerator . 296
31.31XYItemLabelGenerator . 296
31.32XYSeriesLabelGenerator . 296
31.33XYToolTipGenerator . 297
31.34XYZToolTipGenerator . 297

32 Package: org.jfree.chart.needle 299
32.1 Overview . 299
32.2 ArrowNeedle . 299
32.3 LineNeedle . 300
32.4 LongNeedle . 300
32.5 MeterNeedle . 300
32.6 PinNeedle . 301

CONTENTS 8

32.7 PlumNeedle . 301
32.8 PointerNeedle . 302
32.9 ShipNeedle . 302
32.10WindNeedle . 302

33 Package: org.jfree.chart.plot 304
33.1 Overview . 304
33.2 CategoryMarker . 304
33.3 CategoryPlot . 306
33.4 ColorPalette . 311
33.5 CombinedDomainCategoryPlot . 312
33.6 CombinedDomainXYPlot . 313
33.7 CombinedRangeCategoryPlot . 315
33.8 CombinedRangeXYPlot . 316
33.9 CompassPlot . 317
33.10ContourPlot . 320
33.11ContourPlotUtilities . 321
33.12ContourValuePlot . 321
33.13CrosshairState . 321
33.14DatasetRenderingOrder . 321
33.15DefaultDrawingSupplier . 322
33.16DialShape . 323
33.17DrawingSupplier . 324
33.18FastScatterPlot . 325
33.19GreyPalette . 328
33.20IntervalMarker . 328
33.21Marker . 330
33.22MeterInterval . 334
33.23MeterPlot . 335
33.24MultiplePiePlot . 339
33.25PieLabelDistributor . 342
33.26PieLabelRecord . 342
33.27PiePlot . 342
33.28PiePlot3D . 354
33.29PiePlotState . 356
33.30Plot . 356
33.31PlotOrientation . 361
33.32PlotRenderingInfo . 361
33.33PlotState . 363
33.34PlotUtilities . 363
33.35PolarPlot . 363
33.36RainbowPalette . 368
33.37RingPlot . 368
33.38SeriesRenderingOrder . 370
33.39SpiderWebPlot . 370
33.40ThermometerPlot . 375
33.41ValueAxisPlot . 382
33.42ValueMarker . 382
33.43WaferMapPlot . 383
33.44XYPlot . 383
33.45Zoomable . 393

CONTENTS 9

34 Package: org.jfree.chart.plot.dial 395
34.1 Overview . 395
34.2 AbstractDialLayer . 395
34.3 ArcDialFrame . 397
34.4 DialBackground . 398
34.5 DialCap . 399
34.6 DialFrame . 401
34.7 DialLayer . 401
34.8 DialLayerChangeEvent . 402
34.9 DialLayerChangeListener . 403
34.10DialPlot . 403
34.11DialPointer . 406
34.12DialPointer.Pin . 407
34.13DialPointer.Pointer . 408
34.14DialScale . 409
34.15DialTextAnnotation . 410
34.16DialValueIndicator . 411
34.17SimpleDialFrame . 414
34.18StandardDialRange . 415
34.19StandardDialScale . 417

35 Package: org.jfree.chart.renderer 421
35.1 Overview . 421
35.2 AbstractRenderer . 421
35.3 AreaRendererEndType . 440
35.4 DefaultPolarItemRenderer . 440
35.5 GrayPaintScale . 441
35.6 LookupPaintScale . 442
35.7 NotOutlierException . 443
35.8 Outlier . 443
35.9 OutlierList . 444
35.10OutlierListCollection . 444
35.11PaintScale . 444
35.12PolarItemRenderer . 445
35.13RendererState . 446
35.14WaferMapRenderer . 446

36 Package: org.jfree.chart.renderer.category 447
36.1 Overview . 447
36.2 AbstractCategoryItemRenderer . 447
36.3 AreaRenderer . 451
36.4 BarRenderer . 452
36.5 BarRenderer3D . 457
36.6 BoxAndWhiskerRenderer . 459
36.7 CategoryItemRenderer . 460
36.8 CategoryItemRendererState . 470
36.9 CategoryStepRenderer . 471
36.10DefaultCategoryItemRenderer . 473
36.11GanttRenderer . 473
36.12GroupedStackedBarRenderer . 474
36.13IntervalBarRenderer . 475
36.14LayeredBarRenderer . 476
36.15LevelRenderer . 477
36.16LineAndShapeRenderer . 479
36.17LineRenderer3D . 483

CONTENTS 10

36.18MinMaxCategoryRenderer . 485
36.19ScatterRenderer . 487
36.20StackedAreaRenderer . 490
36.21StackedBarRenderer . 490
36.22StackedBarRenderer3D . 492
36.23StatisticalBarRenderer . 494
36.24StatisticalLineAndShapeRenderer . 495
36.25WaterfallBarRenderer . 497

37 Package: org.jfree.chart.renderer.xy 500
37.1 Overview . 500
37.2 AbstractXYItemRenderer . 500
37.3 CandlestickRenderer . 505
37.4 ClusteredXYBarRenderer . 508
37.5 CyclicXYItemRenderer . 509
37.6 DefaultXYItemRenderer . 510
37.7 DeviationRenderer . 510
37.8 HighLowRenderer . 512
37.9 StackedXYAreaRenderer . 513
37.10StackedXYAreaRenderer2 . 515
37.11StackedXYBarRenderer . 516
37.12StandardXYItemRenderer . 518
37.13VectorRenderer . 521
37.14WindItemRenderer . 523
37.15XYAreaRenderer . 523
37.16XYBarRenderer . 525
37.17XYBlockRenderer . 527
37.18XYBoxAndWhiskerRenderer . 529
37.19XYBubbleRenderer . 530
37.20XYDifferenceRenderer . 532
37.21XYDotRenderer . 534
37.22XYErrorRenderer . 535
37.23XYItemRenderer . 537
37.24XYItemRendererState . 547
37.25XYLineAndShapeRenderer . 548
37.26XYSplineRenderer . 554
37.27XYStepRenderer . 556
37.28XYStepAreaRenderer . 557
37.29YIntervalRenderer . 558

38 Package: org.jfree.chart.servlet 560
38.1 Overview . 560
38.2 ChartDeleter . 560
38.3 DisplayChart . 560
38.4 ServletUtilities . 560

39 Package: org.jfree.chart.title 562
39.1 Overview . 562
39.2 Events . 562
39.3 CompositeTitle . 562
39.4 DateTitle . 563
39.5 ImageTitle . 564
39.6 LegendGraphic . 564
39.7 LegendItemBlockContainer . 566
39.8 LegendTitle . 567

CONTENTS 11

39.9 PaintScaleLegend . 570
39.10TextTitle . 572
39.11Title . 574

40 Package: org.jfree.chart.urls 577
40.1 Overview . 577
40.2 CategoryURLGenerator . 577
40.3 CustomPieURLGenerator . 578
40.4 CustomXYURLGenerator . 579
40.5 PieURLGenerator . 579
40.6 StandardCategoryURLGenerator . 579
40.7 StandardPieURLGenerator . 581
40.8 StandardXYURLGenerator . 582
40.9 StandardXYZURLGenerator . 583
40.10TimeSeriesURLGenerator . 583
40.11URLUtilities . 583
40.12XYURLGenerator . 583
40.13XYZURLGenerator . 584

41 Package: org.jfree.chart.util 585
41.1 Overview . 585
41.2 RelativeDateFormat . 585

42 Package: org.jfree.data 588
42.1 Introduction . 588
42.2 ComparableObjectItem . 588
42.3 ComparableObjectSeries . 589
42.4 DataUtilities . 590
42.5 DefaultKeyedValue . 591
42.6 DefaultKeyedValues . 592
42.7 DefaultKeyedValues2D . 594
42.8 DomainInfo . 596
42.9 DomainOrder . 596
42.10KeyedObject . 597
42.11KeyedObjects . 597
42.12KeyedObjects2D . 599
42.13KeyedValue . 601
42.14KeyedValueComparator . 601
42.15KeyedValueComparatorType . 601
42.16KeyedValues . 602
42.17KeyedValues2D . 602
42.18KeyToGroupMap . 603
42.19Range . 604
42.20RangeInfo . 606
42.21RangeType . 606
42.22UnknownKeyException . 607
42.23Value . 607
42.24Values . 607
42.25Values2D . 608

CONTENTS 12

43 Package: org.jfree.data.category 609
43.1 Introduction . 609
43.2 CategoryDataset . 609
43.3 CategoryToPieDataset . 609
43.4 DefaultCategoryDataset . 611
43.5 DefaultIntervalCategoryDataset . 613
43.6 IntervalCategoryDataset . 616

44 Package: org.jfree.data.contour 617
44.1 Introduction . 617
44.2 ContourDataset . 617
44.3 DefaultContourDataset . 618
44.4 NonGridContourDataset . 618

45 Package: org.jfree.data.function 619
45.1 Introduction . 619
45.2 Function2D . 619
45.3 LineFunction2D . 619
45.4 NormalDistributionFunction2D . 620
45.5 PowerFunction2D . 621

46 Package: org.jfree.data.gantt 622
46.1 Introduction . 622
46.2 GanttCategoryDataset . 622
46.3 Task . 623
46.4 TaskSeries . 624
46.5 TaskSeriesCollection . 625

47 Package: org.jfree.data.general 628
47.1 Introduction . 628
47.2 AbstractDataset . 628
47.3 AbstractSeriesDataset . 629
47.4 CombinationDataset . 630
47.5 CombinedDataset . 630
47.6 Dataset . 630
47.7 DatasetChangeEvent . 631
47.8 DatasetChangeListener . 631
47.9 DatasetGroup . 631
47.10DatasetUtilities . 632
47.11DefaultKeyedValueDataset . 636
47.12DefaultKeyedValuesDataset . 636
47.13DefaultKeyedValues2DDataset . 636
47.14DefaultPieDataset . 636
47.15DefaultValueDataset . 638
47.16KeyedValueDataset . 638
47.17KeyedValuesDataset . 639
47.18KeyedValues2DDataset . 639
47.19PieDataset . 639
47.20Series . 640
47.21SeriesChangeEvent . 642
47.22SeriesChangeListener . 642
47.23SeriesDataset . 642
47.24SeriesException . 643
47.25SubSeriesDataset . 643
47.26ValueDataset . 643

CONTENTS 13

47.27WaferMapDataset . 644

48 Package: org.jfree.data.io 645
48.1 Introduction . 645
48.2 CSV . 645

49 Package: org.jfree.data.jdbc 646
49.1 Introduction . 646
49.2 JDBCCategoryDataset . 646
49.3 JDBCPieDataset . 647
49.4 JDBCXYDataset . 647

50 Package: org.jfree.data.statistics 649
50.1 Introduction . 649
50.2 BoxAndWhiskerCalculator . 649
50.3 BoxAndWhiskerCategoryDataset . 650
50.4 BoxAndWhiskerItem . 651
50.5 BoxAndWhiskerXYDataset . 652
50.6 DefaultBoxAndWhiskerCategoryDataset . 653
50.7 DefaultBoxAndWhiskerXYDataset . 656
50.8 DefaultMultiValueCategoryDataset . 658
50.9 DefaultStatisticalCategoryDataset . 660
50.10HistogramBin . 662
50.11HistogramDataset . 663
50.12HistogramType . 665
50.13MeanAndStandardDeviation . 666
50.14MultiValueCategoryDataset . 666
50.15Regression . 667
50.16SimpleHistogramBin . 668
50.17SimpleHistogramDataset . 669
50.18StatisticalCategoryDataset . 671
50.19Statistics . 671

51 Package: org.jfree.data.time 674
51.1 Introduction . 674
51.2 DateRange . 674
51.3 Day . 674
51.4 DynamicTimeSeriesCollection . 676
51.5 FixedMillisecond . 678
51.6 Hour . 678
51.7 Millisecond . 679
51.8 Minute . 680
51.9 Month . 681
51.10MovingAverage . 682
51.11Quarter . 683
51.12RegularTimePeriod . 684
51.13Second . 686
51.14SimpleTimePeriod . 687
51.15TimePeriod . 687
51.16TimePeriodAnchor . 688
51.17TimePeriodFormatException . 688
51.18TimePeriodValue . 688
51.19TimePeriodValues . 689
51.20TimePeriodValuesCollection . 691
51.21TimeSeries . 693

CONTENTS 14

51.22TimeSeriesCollection . 698
51.23TimeSeriesDataItem . 701
51.24TimeSeriesTableModel . 702
51.25TimeTableXYDataset . 702
51.26Week . 704
51.27Year . 705

52 Package: org.jfree.data.time.ohlc 707
52.1 Introduction . 707
52.2 OHLC . 707
52.3 OHLCItem . 708
52.4 OHLCSeries . 709
52.5 OHLCSeriesCollection . 709

53 Package: org.jfree.data.xml 712
53.1 Introduction . 712
53.2 Usage . 712
53.3 CategoryDatasetHandler . 712
53.4 CategorySeriesHandler . 713
53.5 DatasetReader . 713
53.6 DatasetTags . 713
53.7 ItemHandler . 714
53.8 KeyHandler . 714
53.9 PieDatasetHandler . 714
53.10RootHandler . 715
53.11ValueHandler . 715

54 Package: org.jfree.data.xy 716
54.1 Introduction . 716
54.2 AbstractIntervalXYDataset . 716
54.3 AbstractXYDataset . 716
54.4 AbstractXYZDataset . 717
54.5 CategoryTableXYDataset . 717
54.6 DefaultHighLowDataset . 719
54.7 DefaultIntervalXYDataset . 720
54.8 DefaultOHLCDataset . 723
54.9 DefaultTableXYDataset . 724
54.10DefaultWindDataset . 726
54.11DefaultXYDataset . 728
54.12DefaultXYZDataset . 730
54.13IntervalXYDataset . 732
54.14IntervalXYDelegate . 733
54.15IntervalXYZDataset . 734
54.16MatrixSeries . 734
54.17MatrixSeriesCollection . 735
54.18NormalizedMatrixSeries . 736
54.19OHLCDataItem . 737
54.20OHLCDataset . 738
54.21TableXYDataset . 739
54.22Vector . 739
54.23VectorDataItem . 740
54.24VectorSeries . 741
54.25VectorSeriesCollection . 742
54.26VectorXYDataset . 744
54.27WindDataset . 744

CONTENTS 15

54.28XisSymbolic . 745
54.29XYBarDataset . 745
54.30XYCoordinate . 747
54.31XYDataItem . 748
54.32XYDataset . 748
54.33XYDatasetTableModel . 750
54.34XYInterval . 751
54.35XYIntervalDataItem . 752
54.36XYIntervalSeries . 753
54.37XYIntervalSeriesCollection . 754
54.38XYSeries . 756
54.39XYSeriesCollection . 759
54.40XYZDataset . 761
54.41YInterval . 761
54.42YIntervalDataItem . 762
54.43YIntervalSeries . 763
54.44YIntervalSeriesCollection . 764
54.45YisSymbolic . 765

A Migration 767
A.1 Introduction . 767
A.2 1.0.8 to 1.0.9 . 767
A.3 1.0.7 to 1.0.8 . 768
A.4 1.0.6 to 1.0.7 . 768
A.5 1.0.5 to 1.0.6 . 769
A.6 1.0.4 to 1.0.5 . 770
A.7 1.0.3 to 1.0.4 . 771
A.8 1.0.2 to 1.0.3 . 772
A.9 1.0.1 to 1.0.2 . 773
A.10 1.0.0 to 1.0.1 . 773
A.11 0.9.x to 1.0.0 . 774

B JCommon 775
B.1 Introduction . 775
B.2 Align . 775
B.3 GradientPaintTransformer . 776
B.4 GradientPaintTransformType . 776
B.5 PublicCloneable . 776
B.6 RectangleAnchor . 777
B.7 RectangleEdge . 777
B.8 RectangleInsets . 777
B.9 StandardGradientPaintTransformer . 779
B.10 TextAnchor . 781
B.11 UnitType . 781

C Configuring IDEs for JFreeChart 783
C.1 Introduction . 783
C.2 Eclipse . 783
C.3 NetBeans . 787

D The GNU Lesser General Public Licence 790
D.1 Introduction . 790
D.2 The Licence . 790
D.3 Frequently Asked Questions . 796

Chapter 1

Introduction

1.1 What is JFreeChart?

1.1.1 Overview

JFreeChart is a free chart library for the Java(tm) platform. It is designed for use in applications,
applets, servlets and JSP. JFreeChart is distributed with complete source code subject to the terms
of the GNU Lesser General Public Licence, which permits JFreeChart to be used in proprietary or
free software applications (see Appendix D for details).

Dual Axis Chart

S1 S2 S3 S4

Category 1

Category 2

Category 3

Category 4

Category 5

Category 6

Category 7

Category 8

Category

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

V
a

lu
e

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

S
e

co
n

d
a

ry

Figure 1.1: A sample chart

Figure 1.1 shows a typical chart created using JFreeChart. Many more examples are shown in later
sections of this document.

1.1.2 Features

JFreeChart can generate pie charts, bar charts (regular and stacked, with an optional 3D-effect),
line charts, scatter plots, time series charts (including moving averages, high-low-open-close charts
and candlestick plots), Gantt charts, meter charts (dial, compass and thermometer), symbol charts,
wind plots, combination charts and more.

Additional features include:

16

CHAPTER 1. INTRODUCTION 17

• data is accessible from any implementation of the defined interfaces;

• export to PNG and JPEG image file formats (or you can use Java’s ImageIO library to export
to any format supported by ImageIO);

• export to any format with a Graphics2D implementation including:

– PDF via iText (http://www.lowagie.com/iText/);

– SVG via Batik (http://xml.apache.org/batik/);

• tool tips;

• interactive zooming;

• chart mouse events (these can be used for drill-down charts or information pop-ups);

• annotations;

• HTML image map generation;

• works in applications, servlets, JSP (thanks to the Cewolf project1) and applets;

• distributed with complete source code subject to the terms of the GNU Lesser General Public
License (LGPL);

JFreeChart is written entirely in Java, and should run on any implementation of the Java 2 platform
(JDK 1.3.1 or later). It will also work quite well with free runtimes based on GNU Classpath 0.92
or later.2

1.1.3 Home Page

The JFreeChart home page can be found at:

http://www.jfree.org/jfreechart/

Here you will find all the latest information about JFreeChart, including sample charts, download
links, Javadocs, a discussion forum and more.

1See http://cewolf.sourceforge.net for details.
2See http://www.gnu.org/software/classpath/ for details.

CHAPTER 1. INTRODUCTION 18

1.2 This Document

1.2.1 Versions

Two versions of this document are available:

• a free version, the “JFreeChart Installation Guide”, is available from the JFreeChart home
page, and contains chapters up to and including the instructions for installing JFreeChart and
running the demo;

• a premium version, the “JFreeChart Developer Guide”, is available only to those that have
paid for it, and includes additional tutorial chapters and reference documentation for the
JFreeChart classes.

If you wish to purchase the latter version, please visit the following site:

http://www.object-refinery.com/jfreechart/guide.html

We’d like to thank everyone that has supported JFreeChart in the past by purchasing the JFreeChart
Developer Guide!

1.2.2 Disclaimer

Please note that I have put in considerable effort to ensure that the information in this document
is up-to-date and accurate, but I cannot guarantee that it does not contain errors. You must use
this document at your own risk or not use it at all.

1.3 Acknowledgements

JFreeChart contains code and ideas from many people. At the risk of missing someone out, I would
like to thank the following people for contributing to the project:

Eric Alexander, Richard Atkinson, David Basten, David Berry, Chris Boek, Zoheb
Borbora, Anthony Boulestreau, Jeremy Bowman, Daniel Bridenbecker, Nicolas Brodu,
Jody Brownell, David Browning, Søren Caspersen, Chuanhao Chiu, Brian Cole, Pas-
cal Collet, Martin Cordova, Paolo Cova, Michael Duffy, Don Elliott, Rune Fausk,
Jonathan Gabbai, Serge V. Grachov, Daniel Gredler, Hans-Jurgen Greiner, Joao Guil-
herme Del Valle, Nick Guenther, Aiman Han, Cameron Hayne, Jon Iles, Wolfgang Irler,
Sergei Ivanov, Adrian Joubert, Darren Jung, Xun Kang, Bill Kelemen, Norbert Kiesel,
Gideon Krause, Pierre-Marie Le Biot, Arnaud Lelievre, Wolfgang Lenhard, David Li,
Yan Liu, Tin Luu, Craig MacFarlane, Achilleus Mantzios, Thomas Meier, Aaron Met-
zger, Jim Moore, Jonathan Nash, Barak Naveh, David M. O’Donnell, Krzysztof Paz,
Tomer Peretz, Xavier Poinsard, Andrzej Porebski, Luke Quinane, Viktor Rajewski, Ed-
uardo Ramalho, Michael Rauch, Cameron Riley, Klaus Rheinwald, Dan Rivett, Scott
Sams, Michel Santos, Thierry Saura, Andreas Schneider, Jean-Luc Schwab, Bryan Scott,
Tobias Self, Mofeed Shahin, Pady Srinivasan, Greg Steckman, Roger Studner, Gerald
Struck, Irv Thomae, Eric Thomas, Rich Unger, Daniel van Enckevort, Laurence Vanhel-
suwé, Sylvain Vieujot, Jelai Wang, Mark Watson, Alex Weber, Richard West, Matthew
Wright, Benoit Xhenseval, Christian W. Zuckschwerdt, Hari and Sam (oldman).

1.4 Comments and Suggestions

If you have any comments or suggestions regarding this document, please send e-mail to:

david.gilbert@object-refinery.com

Chapter 2

Sample Charts

2.1 Introduction

This section shows some sample charts created using JFreeChart. It is intended to give a reasonable
overview of the types of charts that JFreeChart can generate. For other examples, please run the
demo application included in the JFreeChart distribution:

java -jar jfreechart-1.0.9-demo.jar

The complete source code for the demo application is available to purchasers of the JFreeChart
Developer Guide.1

2.2 Pie Charts

JFreeChart can create pie charts using any data that conforms to the PieDataset interface. Figure
2.1 shows a simple pie chart.

Pie Chart Demo 1

One Two Three Four Five Six

Six

Five

Four

Three

One

Two

Figure 2.1: A simple pie chart (see PieChartDemo1.java)

1See http://www.object-refinery.com/jfreechart/guide.html for details.

19

CHAPTER 2. SAMPLE CHARTS 20

Individual pie sections can be “exploded”, as shown in figure 2.2.

Pie Chart Demo 2

One Two Three Four Five Six

Six (15% percent)

Five (9% percent)

Four (14% percent)

Three (21% percent)

One (34% percent)

Two (8% percent)

Figure 2.2: A pie chart with an “exploded” section (see PieChartDemo2.java)

You can also display pie charts with a 3D effect, as shown in figure 2.3.

Pie Chart 3D Demo 1

Java Visual Basic C / C + + PHP Perl

Visual Basic

Java

C / C + +

PHP

Perl

Visual Basic

Java

C / C + +

PHP

Perl

Visual Basic

Java

C / C + +

PHP

Perl

Visual Basic

Java

C / C + +

PHP

Perl

Figure 2.3: A pie chart drawn with a 3D effect (see PieChart3DDemo1.java)

At the current time it is not possible to explode sections of the 3D pie chart.

CHAPTER 2. SAMPLE CHARTS 21

2.3 Bar Charts

A range of bar charts can be created with JFreeChart, using any data that conforms to the
CategoryDataset interface. Figure 2.4 shows a bar chart with a vertical orientation.

Bar Chart Demo 1

First Second Third

Category 1

Category 2

Category 3

Category 4

Category 5

Category

0

1

2

3

4

5

6

7

8

V
a

lu
e

Figure 2.4: A vertical bar chart (see BarChartDemo1.java)

Bar charts can be displayed with a 3D effect as shown in figure 2.5.

3D Bar Chart Demo

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6 Series 7 Series 8 Series 9

Category 1

Category 2

Category 3

Category 4

Category

-12 .5

-10 .0

- 7 . 5

- 5 . 0

- 2 . 5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

V
a

lu
e

Figure 2.5: A bar chart with 3D effect (see BarChart3DDemo1.java)

CHAPTER 2. SAMPLE CHARTS 22

Another variation, the waterfall chart, is shown in figure 2.6.

Product Cost Breakdown

Labour Administration Marketing Distribution Total Expense

Expense Category

0

5

1 0

1 5

2 0

2 5

3 0
C

o
st

 P
e

r
U

n
it

$15.76

$8.66

$4.71

$3.51

$32.64

Figure 2.6: A waterfall chart (see WaterfallChartDemo1.java)

Bar charts can also be generated from time series data—for example, see figure 2.7:

State Executions - USA

Executions

Source: http://www.amnestyusa.org/abolish/listbyyear.do

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

Year

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

N
u

m
b

e
r

o
f

P
e

o
p

le

Figure 2.7: An XY bar chart (see XYBarChartDemo1.java)

CHAPTER 2. SAMPLE CHARTS 23

2.4 Line Chart

The line chart can be generated using the same CategoryDataset that is used for the bar charts—
figure 2.8 shows an example.

Java Standard Class Library
Number of Classes By Release

Source: Java In A Nutshell (4th Edition) by David Flanagan (O'Reilly)

JDK 1.0 JDK 1.1 SDK 1.2 SDK 1.3 SDK 1.4

Release

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

C
la

ss
 C

o
u

n
t

Figure 2.8: A line chart (see LineChartDemo1.java)

CHAPTER 2. SAMPLE CHARTS 24

2.5 XY Plots

A third type of dataset, the XYDataset, is used to generate a range of chart types.

The standard XY plot has numerical x and y axes. By default, lines are drawn between each data
point—see figure 2.9.

Line Chart Demo 4

y = cosine(x) y = 2*sine(x)

- 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9

X

-2 .00

-1 .75

-1 .50

-1 .25

-1 .00

-0 .75

-0 .50

-0 .25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Y

Figure 2.9: A line chart (see LineChartDemo4.java)

Scatter plots can be drawn by drawing a shape at each data point, rather than connecting the
points with lines—an example is shown in figure 2.10.

Scatter Plot Demo 1

Sample 0 Sample 1 Sample 2 Sample 3

- 1 0 0 - 7 5 - 5 0 - 2 5 0 2 5 5 0 7 5 100

X

- 8 0 0

- 7 0 0

- 6 0 0

- 5 0 0

- 4 0 0

- 3 0 0

- 2 0 0

- 1 0 0

0

100

200

300

400

500

600

700

800

900

Y

Figure 2.10: A scatter plot (see ScatterPlotDemo1.java)

CHAPTER 2. SAMPLE CHARTS 25

2.6 Time Series Charts

JFreeChart supports time series charts, as shown in figure 2.11.

Legal & General Unit Trust Prices

L&G European Index Trust L&G UK Index Trust

Mar-2001 May-2001 Jul-2001 Sep-2001 Nov-2001 Jan-2002 Mar-2002 May-2002 Jul-2002

Date

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185
P

ri
ce

 P
er

 U
ni

t

Figure 2.11: A time series chart (see TimeSeriesDemo1.java)

It is straightforward to add a moving average line to a time series chart—see figure 2.12 for an
example.

Time Series Demo 8

EUR/GBP 30 day moving average

Jan-2001 Mar-2001 May-2001 Jul-2001 Sep-2001 Nov-2001

Date

1.56

1.57

1.58

1.59

1.60

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

V
a

lu
e

Figure 2.12: A time series chart with a moving average (see TimeSeriesDemo8.java)

CHAPTER 2. SAMPLE CHARTS 26

Using an OHLCDataset (an extension of XYDataset) you can display high-low-open-close data, see
figure 2.13 for an example.

OHLC Demo 2

Series 1 Series 1-MAVG

7-Jan 14-Jan 21-Jan 28-Jan 4-Feb 11-Feb 18-Feb

Time

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5
V

a
lu

e

Figure 2.13: A high-low-open-close chart (see HighLowChartDemo2.java)

2.7 Histograms

Histograms can be generated using an IntervalXYDataset (another extension of XYDataset), see
figure 2.14 for an example.

Histogram Demo

H1 H2

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Figure 2.14: A histogram (see HistogramDemo1.java)

CHAPTER 2. SAMPLE CHARTS 27

2.8 Area Charts

You can generate an area chart for data in a CategoryDataset or an XYDataset. Figure 2.15 shows
an example.

XY Area Chart Demo

Random 1 Random 2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Domain (X)

- 8 0 0

- 7 0 0

- 6 0 0

- 5 0 0

- 4 0 0

- 3 0 0

- 2 0 0

- 1 0 0

0

100

200

300

400

500

600

700

800

R
an

ge
 (

Y
)

Test

Figure 2.15: An area chart (see XYAreaChartDemo1.java)

JFreeChart also supports the creation of stacked area charts as shown in figure 2.16.

Stacked XY Area Chart Demo 1

Series 1 Series 2

5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

X Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Y
 V

al
ue

Figure 2.16: A stacked area chart (see StackedXYAreaChartDemo1.java)

2.9 Difference Chart

A difference chart highlights the difference between two series (see figure 2.17).
A second example, shown in figure 2.18 shows how a date axis can be used for the range values.

CHAPTER 2. SAMPLE CHARTS 28

Difference Chart Demo 1

Random 1 Random 2

Aug-2006 Sep-2006 Oct-2006 Nov-2006 Dec-2006 Jan-2007 Feb-2007

Time

- 2 . 5

- 2 . 0

- 1 . 5

- 1 . 0

- 0 . 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
V

a
lu

e

Figure 2.17: A difference chart (see DifferenceChartDemo1.java)

Daylight Hours - London, UK

Sunrise Sunset

Data source: http://www.sunrisesunset.com/

Feb-2004 Apr-2004 Jun-2004 Aug-2004 Oct-2004 Dec-2004

Time

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

T
im

e

British Summer Time

Figure 2.18: A difference chart with times on the range axis (see DifferenceChartDemo2.java)

CHAPTER 2. SAMPLE CHARTS 29

2.10 Step Chart

A step chart displays numerical data as a sequence of “steps”—an example is shown in figure 2.19.

XYStepRenderer Demo 1

Series 1 Series 2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

X

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Y

Figure 2.19: A step chart (see XYStepRendererDemo1.java)

Step charts are generated from data in an XYDataset.

CHAPTER 2. SAMPLE CHARTS 30

2.11 Gantt Chart

Gantt charts can be generated using data from an IntervalCategoryDataset, as shown in figure
2.20.

Gantt Chart Demo

Scheduled Actual

May-2001 Jul-2001 Sep-2001 Nov-2001

Date

Write Proposal

Obtain Approval

Requirements Analysis

Design Phase

Design Signoff

Alpha Implementation

Design Review

Revised Design Signoff

Beta Implementation

Testing

Final Implementation

Signoff

T
a

sk

Figure 2.20: A Gantt chart (see GanttChartDemo1.java)

Another example, showing subtasks and progress indicators, is shown in figure 2.21.

Gantt Chart Demo

Scheduled

May-2001 Jul-2001 Sep-2001 Nov-2001

Date

Write Proposal

Obtain Approval

Requirements Analysis

Design Phase

Design Signoff

Alpha Implementation

Design Review

Revised Design Signoff

Beta Implementation

Testing

Final Implementation

Signoff

T
a

sk

Figure 2.21: A Gantt chart with progress indicators (see GanttChartDemo2.java)

CHAPTER 2. SAMPLE CHARTS 31

2.12 Multiple Axis Charts

JFreeChart has support for charts with multiple axes. Figure 2.22 shows a price-volume chart that
demonstrates this feature.

Eurodollar Futures Contract (MAR03)

Price Volume

Jan-2002 Mar-2002 May-2002 Jul-2002 Sep-2002 Nov-2002

Date

94.25

94.50

94.75

95.00

95.25

95.50

95.75

96.00

96.25

96.50

96.75

97.00

97.25

97.50

97.75

98.00

98.25

98.50

P
ric

e

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

550,000

600,000

650,000

700,000

750,000

V
o

lu
m

e

Figure 2.22: A price-volume chart (see PriceVolumeDemo1.java)

This feature is supported by the CategoryPlot and XYPlot classes. Figure 2.23 shows an example
with four range axes.

Multiple Axis Demo 1

Series 1 Series 2 Series 3 Series 4

Four datasets and four range axes.

11:00 11:30 12:00 12:30 13:00 13:30 14:00

Time of Day

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100

105

110

P
ri

m
a

ry
 R

a
n

g
e

 A
xi

s

800

850

900

950

1,000

1,050

1,100

1,150

1,200

1,250

1,300

R
a

n
g

e
 A

xi
s

2

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

R
a

n
g

e
 A

xis 3

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

R
a

n
g

e
 A

xis 4

Figure 2.23: A chart with multiple axes (see MultipleAxisDemo1.java)

CHAPTER 2. SAMPLE CHARTS 32

2.13 Combined and Overlaid Charts

JFreeChart supports combined and overlaid charts. Figure 2.24 shows a line chart overlaid on top
of a bar chart.

Freshmeat Software Projects

Languages Cumulative

By Programming Language
As at 5 March 2003

C

P
er

l

C
+

+

Ja
va

PH
P

P
yt

h
o

n

U
n

ix
 S

h
e

ll

S
Q

L

R
u

b
y

C
#

Language

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

P
ro

je
ct

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rce
n

t

Figure 2.24: An overlaid chart (see ParetoChartDemo1.java)

It is possible to combine several charts that share a common domain axis, as shown in figure 2.25.

Combined Domain Category Plot Demo

First Second Third Fourth

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8

Category

0

1

2

3

4

5

6

7

8

V
a

lu
e

0

5

1 0

1 5

V
a

lu
e

Figure 2.25: A chart with a combined domain (see CombinedCategoryPlotDemo1.java)

In a similar way, JFreeChart can combine several charts that share a common range axis, see figure
2.26.

CHAPTER 2. SAMPLE CHARTS 33

Combined (Range) XY Plot

Series 1 Series 2

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

15,000

16,000

17,000

18,000

V
a

lu
e

7-Mar 14-Mar

Date
7-Mar 14-Mar

Date

Figure 2.26: A chart with a combined range (see CombinedXYPlotDemo2.java)

2.14 Future Development

JFreeChart is free software,2 so anyone can extend it and add new features to it. Already, more than
80 developers from around the world have contributed code back to the JFreeChart project. It is
likely that many more chart types will be developed in the future as developers modify JFreeChart
to meet their requirements. Check the JFreeChart home page regularly for announcements and
other updates:

http://www.jfree.org/jfreechart/

And if you would like to contribute code to the project, please join in...

2See http://www.fsf.org

Chapter 3

Downloading and Installing
JFreeChart

3.1 Introduction

This section contains instructions for downloading, unpacking, and (optionally) recompiling JFree-
Chart. Also included are instructions for running the JFreeChart demonstration application, and
generating the Javadoc HTML files from the JFreeChart source code.

3.2 Download

You can download the latest version of JFreeChart from:

http://www.jfree.org/jfreechart/download/

There are two versions of the JFreeChart download:

File: Description:

jfreechart-1.0.9.tar.gz JFreeChart for Linux/Unix.
jfreechart-1.0.9.zip JFreeChart for Windows.

The two files contain the same source code. The main difference is that all the text files in the zip

download have been recoded to have both carriage return and line-feed characters at the end of
each line.

JFreeChart uses the JCommon class library (currently version 1.0.12). The JCommon runtime jar
file is included in the JFreeChart download, but if you require the source code (recommended) then
you should also download JCommon from:

http://www.jfree.org/jcommon/

3.3 Unpacking the Files

After downloading JFreeChart, you need to unpack the files. You should move the download file to
a convenient directory—when you unpack JFreeChart, a new subdirectory (jfreechart-1.0.9) will
be created in the same location as the zip or tar.gz archive file.

3.3.1 Unpacking on Linux/Unix

To extract the files from the download on Linux/Unix, enter the following command:

34

CHAPTER 3. DOWNLOADING AND INSTALLING JFREECHART 35

tar xvzf jfreechart-1.0.9.tar.gz

This will extract all the source, run-time and documentation files for JFreeChart into a new directory
called jfreechart-1.0.9.

3.3.2 Unpacking on Windows

To extract the files from the download on Windows, you can use the jar utility. Enter the following
command:

jar -xvf jfreechart-1.0.9.zip

This will extract all the source, run-time and documentation files for JFreeChart into a new directory
called jfreechart-1.0.9.

3.3.3 The Files

The top-level directory (jfreechart-1.0.9) contains the files and directories listed in the following
table:

File/Directory: Description:

README.txt Important information - read this first!
NEWS Project news.
ChangeLog A detailed log of changes made to JFreeChart.
ant A directory containing an Ant build.xml script. You can use

this script to rebuild JFreeChart from the source code included
in the distribution.

checkstyle A directory containing several Checkstyle property files.
These define the coding conventions used in the JFreeChart
source code.

experimental A directory containing source files for classes that are not part
of the standard JFreeChart API (yet). We would appreciate
feedback on this code. Please note that the API for these
classes is subject to change.

lib A directory containing the JFreeChart jar file, and other li-
braries used by JFreeChart.

source A directory containing the source code for JFreeChart.
swt A directory containing the source code for the experimental

SWT code. Please note that the API for these classes is sub-
ject to change.

tests A directory containing the source code for the JFreeChart unit
tests.

jfreechart-1.0.9-demo.jar A runnable jar file containing demo applications.
licence-LGPL.txt The JFreeChart licence (GNU LGPL).

You should spend some time familiarising yourself with the files included in the download. In
particular, you should always read the README.txt file.

3.4 Running the Demonstration Applications

A demonstration application is included in the distribution that shows a wide range of charts that
can be generated with JFreeChart . To run the demo, type the following command:

java -jar jfreechart-1.0.9-demo.jar

The source code for the demo application is not included in the JFreeChart distribution, but is
available to download separately when you purchase the JFreeChart Developer Guide.1

1If you have purchased the guide and you want to download the demo source code, look for the file
jfreechart-1.0.9-demos.zip on the download page for the JFreeChart Developer Guide.

CHAPTER 3. DOWNLOADING AND INSTALLING JFREECHART 36

3.5 Configuring JFreeChart for use in IDEs

If, like most developers, you use an integrated development environment (IDE) such as Eclipse or
NetBeans for your Java development work, you’ll want to configure JFreeChart within that IDE.
The procedure for this is IDE-specific—refer to Appendix C for more details.

3.6 Compiling the Source

To recompile the JFreeChart classes, you can use the Ant build.xml file included in the distribution.
Change to the ant directory and type:

ant compile

This will recompile all the necessary source files and recreate the JFreeChart run-time jar file.

To run the script requires that you have Ant 1.5.1 (or later) installed on your system, to find out
more about Ant visit:

http://ant.apache.org/

It is possible to recompile JFreeChart without using Ant, but there are one or two “gotchas” that
you have to take special care to avoid:

• some JFreeChart classes (particularly resource bundles) are not referenced directly in the code,
and some compilers omit to compile them—this results in runtime errors or problems due to
missing class files;

• if you create your own JFreeChart jar file, you need to be sure to include the non-Java files
(resource bundle .properties files, gorilla.jpg, etc.).

In the end, it’s simpler to learn Ant and use the script included in the JFreeChart distribution.

3.7 Generating the Javadoc Documentation

The JFreeChart source code contains extensive Javadoc comments. You can use the javadoc tool
to generate HTML documentation files directly from the source code.

To generate the documentation, use the javadoc target in the Ant build.xml script:
ant javadoc

This will create a javadoc directory containing all the Javadoc HTML files, inside the main jfreechart-1.0.9

directory.

Chapter 4

Using JFreeChart

4.1 Overview

This section presents a simple introduction to JFreeChart, intended for new users of JFreeChart.

4.2 Creating Your First Chart

4.2.1 Overview

Creating charts with JFreeChart is a three step process. You need to:

• create a dataset containing the data to be displayed in the chart;

• create a JFreeChart object that will be responsible for drawing the chart;

• draw the chart to some output target (often, but not always, a panel on the screen);

To illustrate the process, we describe a sample application (First.java) that produces the pie chart
shown in figure 4.1.

Figure 4.1: A pie chart created using First.java

Each of the three steps outlined above is described, along with sample code, in the following sections.

4.2.2 The Data

Step one requires us to create a dataset for our chart. This can be done easily using the DefaultPieDataset
class, as follows:

37

CHAPTER 4. USING JFREECHART 38

// create a dataset...
DefaultPieDataset dataset = new DefaultPieDataset();
dataset.setValue("Category 1", 43.2);
dataset.setValue("Category 2", 27.9);
dataset.setValue("Category 3", 79.5);

Note that JFreeChart can create pie charts using data from any class that implements the PieDataset
interface. The DefaultPieDataset class (used above) provides a convenient implementation of this
interface, but you are free to develop an alternative dataset implementation if you want to.1

4.2.3 Creating a Pie Chart

Step two concerns how we will present the dataset created in the previous section. We need to
create a JFreeChart object that can draw a chart using the data from our pie dataset. We will use
the ChartFactory class, as follows:

// create a chart...
JFreeChart chart = ChartFactory.createPieChart(

"Sample Pie Chart",
dataset,
true, // legend?
true, // tooltips?
false // URLs?

);

Notice how we have passed a reference to the dataset to the factory method. JFreeChart keeps a
reference to this dataset so that it can obtain data later on when it is drawing the chart.

The chart that we have created uses default settings for most attributes. There are many ways
to customise the appearance of charts created with JFreeChart, but in this example we will just
accept the defaults.

4.2.4 Displaying the Chart

The final step is to display the chart somewhere. JFreeChart is very flexible about where it draws
charts, thanks to its use of the Graphics2D class.

For now, let’s display the chart in a frame on the screen. The ChartFrame class contains the
machinery (a ChartPanel) required to display charts:

// create and display a frame...
ChartFrame frame = new ChartFrame("Test", chart);
frame.pack();
frame.setVisible(true);

And that’s all there is to it...

4.2.5 The Complete Program

Here is the complete program, so that you can see which packages you need to import and the order
of the code fragments given in the preceding sections:

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartFrame;
import org.jfree.chart.JFreeChart;
import org.jfree.data.general.DefaultPieDataset;

public class First {

/**
* The starting point for the demo.
*
* @param args ignored.
*/

public static void main(String[] args) {

1This is similar in concept to the way that Swing’s JTable class obtains data via the TableModel interface. In
fact, this was the inspiration for using interfaces to define the datasets for JFreeChart.

CHAPTER 4. USING JFREECHART 39

// create a dataset...
DefaultPieDataset dataset = new DefaultPieDataset();
dataset.setValue("Category 1", 43.2);
dataset.setValue("Category 2", 27.9);
dataset.setValue("Category 3", 79.5);

// create a chart...
JFreeChart chart = ChartFactory.createPieChart(

"Sample Pie Chart",
dataset,
true, // legend?
true, // tooltips?
false // URLs?

);

// create and display a frame...
ChartFrame frame = new ChartFrame("First", chart);
frame.pack();
frame.setVisible(true);

}

}

Hopefully this has convinced you that it is not difficult to create and display charts with JFreeChart.
Of course, there is much more to learn...

Chapter 5

Pie Charts

5.1 Introduction

This chapter provides information about using some of the standard features of the pie charts in
JFreeChart, including:

• controlling the color and outline of pie sections;

• handling of null and zero values;

• pie section labels (customising the text, altering the space allocated);

• “exploded” sections;

• multiple pie charts.

• displaying charts with a 3D effect;

In addition to this chapter, you should refer to the PiePlot reference documentation in section
33.27.

5.2 Creating a Simple Pie Chart

A step-by-step guide to creating a simple pie chart is included in the previous chapter 4.

5.3 Section Colours

Default fill colours for the pie sections are allocated automatically1 the first time a plot is rendered. If
you don’t like the default colours, you can set them yourself using the setSectionPaint(Comparable,

Paint) method. For example:

PiePlot plot = (PiePlot) chart.getPlot();
plot.setSectionPaint("Section A", new Color(200, 255, 255));
plot.setSectionPaint("Section B", new Color(200, 200, 255));

A demo that uses custom colours (PieChartDemo2.java) is included in the JFreeChart demo collec-
tion.

In addition to the per-series section colour attributes, there is also a base or default setting—for
more information, refer to the documentation for the PiePlot class (section 33.27).

1Inside the lookupSectionPaint(Comparable, boolean) method of the PiePlot class.

40

CHAPTER 5. PIE CHARTS 41

5.4 Section Outlines

Section outlines are drawn, by default, as a thin grey line around each pie section. The PiePlot

class provides options to:

• switch off the outlines completely;

• change the outlines for all sections by changing the default values;

• control the outline for particular pie sections independently;

5.4.1 Outline Visibility

To switch off the section outlines completely, use the following code:
PiePlot plot = (PiePlot) chart.getPlot();
plot.setSectionOutlinesVisible(false);

At any time, you can make the outlines visible again using:
plot.setSectionOutlinesVisible(true);

Calls to this method trigger a PlotChangeEvent, which will cause the chart to be repainted immedi-
ately if it is displayed in a ChartPanel.

5.4.2 Outline Appearance

When outlines are visible, you can change the colour and style of the outline for all pie sections
(using the base settings) or individual pie sections (using the per series settings).

At the base layer, a default setting is defined—this is used when no higher level settings have been
made. You can change the base settings with these methods in the PiePlot class:

public void setBaseSectionOutlinePaint(Paint paint);
public void setBaseSectionOutlineStroke(Stroke stroke);

Sometimes, you may prefer to set the outline paint and stroke on a “per series” basis, perhaps to
highlight a particular section in the chart. For this, you can use the series layer settings, defined
via these methods:

public void setSectionOutlinePaint(Comparable key, Paint paint);
public void setSectionOutlineStroke(Comparable key, Stroke stroke);

The first argument for each method is the section key from the dataset. If you set the value for a
section to null, the base layer setting will be used instead.

5.5 Null, Zero and Negative Values

A PieDataset can contain null, zero or negative values which are awkward or impossible to display
in a pie chart. Some special handling is built into the PiePlot class for these.

If a zero value is found in the dataset, the PiePlot class, by default, will place a label at the position
where the pie section would be displayed if it had a positive value and will also add an item to the
chart’s legend. If you prefer zero values to be ignored, you can set a flag for this, as follows:

PiePlot plot = (PiePlot) chart.getPlot();
plot.setIgnoreZeroValues(true);

A similar approach is taken for null values, which represent a missing or unknown value in the
dataset. The default handling is the same as for zero values, and if you prefer null values to be
ignored, you can set a flag as follows:

PiePlot plot = (PiePlot) chart.getPlot();
plot.setIgnoreNullValues(true);

There does not seem to be a sensible way to represent negative values in a pie chart, and JFreeChart
will always ignore them.

CHAPTER 5. PIE CHARTS 42

5.6 Section and Legend Labels

The text used for the section labels, both on the chart and in the chart’s legend, is fully customisable.
Default label generators are installed automatically, but if you need to you can change these with
the following methods:

public void setLabelGenerator(PieSectionLabelGenerator generator);
public void setLegendLabelGenerator(PieSectionLabelGenerator generator);

The StandardPieSectionLabelGenerator class is typically used as the generator, and provides enough
flexibility to handle most custom labelling requirements (but if not, you are free two write your
own class that implements the PieSectionLabelGenerator interface). The generator works by using
Java’s MessageFormat class to construct labels by substituting values that are derived from the
dataset—see table 5.1 for the available substitutions.

Key: Value:

{0} The section key as a String.
{1} The section value.
{2} The section value as a percentage of the total of all values in the dataset.

Figure 5.1: StandardPieSectionLabelGenerator substitutions

By way of example, suppose you have a PieDataset containing the following values:

Section Key: Section Value:

S1 3.0

S2 5.0

S3 null

S4 2.0

Figure 5.2: A sample dataset

...then the following format strings would generate the labels shown:

Format String: Section: Generated Label:

{0} 0 S1

{0} has value {1} 1 S2 has value 5.0

{0} ({2} percent) 0 S1 (30 percent)

{0} = {1} 2 S3 = null

Figure 5.3: Format string examples

The PieChartDemo2.java application (included in the JFreeChart demo collection) shows a custom
label generator in use.

5.7 Exploded Sections

The PiePlot class supports the display of “exploded” sections, in which a pie section is offset from
the centre of the chart to highlight it. For example, the PieChartDemo2.java application creates the
chart shown in figure 5.6.

The amount by which a section is offset from the chart is specified as a percentage of the radius of
the pie chart, for example 0.30 (30 percent) is used in the example.

PiePlot plot = (PiePlot) chart.getPlot();
plot.setExplodePercent("Section A", 0.30);

To make space for the sections that are offset from the centre of the pie chart, the radius of the
main pie is reduced, so a pie chart with exploded sections will appear smaller than a pie chart with
no exploded sections.

CHAPTER 5. PIE CHARTS 43

Figure 5.4: A pie chart with an “exploded” section

5.8 3D Pie Charts

JFreeChart includes a PiePlot3D class that adds a pseudo-3D effect to pie charts—for example, see
figure 5.5. PiePlot3D is a subclass of PiePlot, so you can just substitute it when you create your
pie chart. Or if you construct your pie charts using the ChartFactory class, it is sufficient to call
the createPieChart3D() method instead of the createPieChart() method.

Figure 5.5: A 3D pie chart

There are some limitations with this class:

• exploded sections are not supported;

• it is not possible to set the angle of “rotation” for the 3D effect—if the plot is wider than it
is tall, the chart usually looks good, but if the plot is taller than it is wide, the 3D effect is a
little distorted.

Some demo applications (PieChart3DDemo1-3.java) are included in the JFreeChart demo collection.

5.9 Multiple Pie Charts

As a convenience, the MultiplePiePlot class enables you to create a single chart that displays
multiple pie plots using data from a CategoryDataset. An example is shown in figure 5.6.

The individual pie charts are created by “rubber stamping” a single pie chart multiple times. For
each rendering of the pie chart, a new PieDataset is extracted from the next row (or column) of the
CategoryDataset.

CHAPTER 5. PIE CHARTS 44

Figure 5.6: A chart using MultiplePiePlot

A number of demos (MultiplePieChartDemo1-4.java) are included in the JFreeChart demo collec-
tion.

Chapter 6

Bar Charts

6.1 Introduction

This chapter provides an introduction to creating bar charts with JFreeChart. We begin with a
very simple bar chart, then go on to describe some of the many options that JFreeChart provides
for customising the charts. After covering the standard bar chart and its options, we’ll move on to
some more complex bar chart variants:

• stacked bar charts;

• bar charts for time series data;

• histograms.

By the end of this chapter, you should have a good overview of the features that JFreeChart supports
for bar chart creation.

6.2 A Bar Chart

6.2.1 Overview

Bar charts are used to provide a visual representation of tabular data. For example, consider the
following table, which contains a simple set of data in two rows and three columns:

Column 1: Column 2: Column 3:

Row 1: 1.0 5.0 3.0
Row 2: 2.0 3.0 2.0

Figure 6.1: Sample data

In JFreeChart, this table is referred to as a dataset, each column heading is a category, and each
row in the table is a series. Each row heading is a series name (or series key). A bar chart that
presents this data is shown in figure 6.2.

You can see in the sample chart that JFreeChart groups the items from each column (category)
together, and uses colours to highlight the data from each row (series). The chart’s legend provides
the link between the bar colours and the series name/key.

6.2.2 Creating a Dataset

The first step in creating a bar chart is to create an appropriate dataset. The set of methods that
JFreeChart uses to access the tabular data for a bar chart is defined by the CategoryDataset interface.

45

CHAPTER 6. BAR CHARTS 46

Figure 6.2: A bar chart (see BarExample1.java)

This interface defines a read-only interface to the dataset, because that is all that JFreeChart
requires to draw charts. A dataset can, but is not required to, provide methods to update the
dataset.

A convenient class that implements this interface is the DefaultCategoryDataset class. Here is how
you might create a dataset for the values given in table 6.1:

DefaultCategoryDataset dataset = new DefaultCategoryDataset();

dataset.addValue(1.0, "Row 1", "Column 1");

dataset.addValue(5.0, "Row 1", "Column 2");

dataset.addValue(3.0, "Row 1", "Column 3");

dataset.addValue(2.0, "Row 2", "Column 1");

dataset.addValue(3.0, "Row 2", "Column 2");

dataset.addValue(2.0, "Row 2", "Column 3");

6.2.3 Creating a Bar Chart

The next step is to create a JFreeChart instance that draws a bar chart for this example dataset.
Taking a short-cut, we use the ChartFactory class to create the JFreeChart instance:

JFreeChart chart = ChartFactory.createBarChart(

"Bar Chart Demo", // chart title

"Category", // domain axis label

"Value", // range axis label

dataset, // data

PlotOrientation.VERTICAL, // orientation

true, // include legend

true, // tooltips?

false // URLs?

);

Most of the arguments to the createBarChart() method are obvious, but a few of them demand
further explanation:

• the plot orientation can be either horizontal or vertical (for bar charts, this corresponds to
the way the bars are drawn, horizontally or vertically);

• the tooltips flag controls whether or not a tool tip generator is added to the chart—in this
example, we’ve set this flag to true so that we’ll see tool tips when we display the chart in a
Swing application;

CHAPTER 6. BAR CHARTS 47

• the URLs flag is only relevant when creating drill-down reports using HTML image maps, so
we set it to cffalse here.

After we’ve completed this first bar chart example, we’ll come back and take a closer look at what
the ChartFactory class is doing “behind the scenes” here.

6.2.4 Displaying the Chart

To complete our first bar chart example, we pass the JFreeChart instance to a ChartPanel and
display it in a simple Swing application. The full source code for this example is listed here:

/* ----------------

* BarExample1.java

* ----------------

* (C) Copyright 2006, by Object Refinery Limited.

*

*/

package tutorial;

import java.awt.Dimension;

/**

* A simple demonstration application showing how to create a bar chart.

*/

public class BarExample1 extends ApplicationFrame {

/**

* Creates a new demo instance.

*

* @param title the frame title.

*/

public BarExample1(String title) {

super(title);

DefaultCategoryDataset dataset = new DefaultCategoryDataset();

dataset.addValue(1.0, "Row 1", "Column 1");

dataset.addValue(5.0, "Row 1", "Column 2");

dataset.addValue(3.0, "Row 1", "Column 3");

dataset.addValue(2.0, "Row 2", "Column 1");

dataset.addValue(3.0, "Row 2", "Column 2");

dataset.addValue(2.0, "Row 2", "Column 3");

JFreeChart chart = ChartFactory.createBarChart(

"Bar Chart Demo", // chart title

"Category", // domain axis label

"Value", // range axis label

dataset, // data

PlotOrientation.VERTICAL, // orientation

true, // include legend

true, // tooltips?

false // URLs?

);

ChartPanel chartPanel = new ChartPanel(chart, false);

chartPanel.setPreferredSize(new Dimension(500, 270));

setContentPane(chartPanel);

}

/**

* Starting point for the demonstration application.

*

* @param args ignored.

*/

public static void main(String[] args) {

BarExample1 demo = new BarExample1("Bar Demo 1");

demo.pack();

RefineryUtilities.centerFrameOnScreen(demo);

demo.setVisible(true);

}

CHAPTER 6. BAR CHARTS 48

}

If you compile and run this example, you should see a frame containing the chart in figure 6.2.

6.3 The ChartFactory Class

In our first example, the ChartFactory class is used to piece together a JFreeChart instance that
renders a bar chart. Here we take a closer look at how this is done, so we can see a little more of the
underlying structure of our bar chart. Understanding this structure is key to being able customise
the appearance of the chart.

Here are the important parts of the code from the createBarChart() method in the ChartFactory

class:

1 CategoryAxis categoryAxis = new CategoryAxis(categoryAxisLabel);

2 ValueAxis valueAxis = new NumberAxis(valueAxisLabel);

3 BarRenderer renderer = new BarRenderer();

[snip...]

4 CategoryPlot plot = new CategoryPlot(dataset, categoryAxis, valueAxis,

renderer);

5 plot.setOrientation(orientation);

6 JFreeChart chart = new JFreeChart(title, JFreeChart.DEFAULT TITLE FONT,

plot, legend);

Here’s what this code is doing:

• Our bar chart has two axes, one that displays categories from the dataset (a CategoryAxis),
and another that provides the numerical scale against which the data values are plotted (a
NumberAxis). You can see these axes being constructed in lines 1 and 2 above, using the axis
labels that we passed to the createBarChart() method.

• At line 3, a BarRenderer is created—this is the class that is used to draw the bar for each
data item. The renderer handles most of the drawing work, and you’ll see later that you can
substitute another type of renderer to change the overall appearance of the chart.

• The dataset, axes and renderer are all managed by a CategoryPlot, which coordinates most
of the interaction between these components. When you customise charts, you’ll often need
to get a reference to the chart’s plot, which in turn can give you access to the axes, renderer
and dataset. At line 4, the plot is created, and the other components are assigned to it.

• Finally, the plot is wrapped in a JFreeChart instance, with the specified title. The JFreeChart

class provides the top-level access to a chart, but most of the “guts” of a chart is defined
at the plot level (or in the objects managed by the plot, such as the axes, dataset(s) and
renderer(s)).

Armed with this knowledge of the internal structure of our chart, in the following sections, we’ll
slowly customise our bar chart.

6.4 Simple Chart Customisation

Some simple modifications to the appearance of a bar chart can be made by calling methods in the
JFreeChart and CategoryPlot classes. For example, to change the background colours for the chart
and plot:

CHAPTER 6. BAR CHARTS 49

chart.setBackgroundPaint(Color.white);

CategoryPlot plot = (CategoryPlot) chart.getPlot();

plot.setBackgroundPaint(Color.lightGray);

plot.setRangeGridlinePaint(Color.white);

This code fragment (from BarExample2.java) changes the background colour for the chart, then
obtains a reference to the chart’s plot and modifies it as well—see figure 6.3.

Figure 6.3: A bar chart (see BarExample2.java)

A cast of the plot reference (to CategoryPlot) is required—it is safe to make this cast, because we
know that a CategoryPlot is used for this chart type. JFreeChart uses other plot types (PiePlot,
XYPlot, and so on) for different kinds of charts. You almost always need to cast the plot reference to
one of these types, because the base class (Plot) only defines a few common attributes and methods.
As you become more familiar with JFreeChart, you’ll learn which Plot subclass is used for each
type of chart.

In our example, we also use the plot reference to change the colour of the grid lines for the range
axis. Take a look through the API documentation for the CategoryPlot class, to see what else you
could modify here.

6.5 Customising the Renderer

Recall from section 6.3 that the CategoryPlot manages a renderer which, in the case of a regular
bar chart, is an instance of BarRenderer. If we obtain a reference to this renderer, a large number
of customisation options become available.

6.5.1 Bar Colours

To change the colours used for each series in the chart:

BarRenderer renderer = (BarRenderer) plot.getRenderer();

renderer.setSeriesPaint(0, Color.gray);

renderer.setSeriesPaint(1, Color.orange);

renderer.setDrawBarOutline(false);

This results in the chart shown in figure 6.4. Note that the setSeriesPaint() method is defined in
the AbstractRenderer base class—you can use this for all types of renderer.

CHAPTER 6. BAR CHARTS 50

Figure 6.4: A bar chart (see BarExample3.java)

6.5.2 Bar Spacing Within Categories

Among other things, the renderer controls the spacing of bars within each category.1 So we could
remove all the space between bars in the same category, as follows:

renderer.setItemMargin(0.0);

This results in the chart shown in figure 6.5. Notice how the bars have grown a little wider—this
is because JFreeChart is now allocating less of the overall space to provide gaps between the bars,
so the bars themselves resize a little bigger.

Figure 6.5: A bar chart (see BarExample4.java)

1The spacing between categories is controlled by the CategoryAxis. That will be covered later.

Chapter 7

Line Charts

7.1 Introduction

This section describes the line charts that can be created with JFreeChart. It is possible to create
line charts using data from either the CategoryDataset interface or the XYDataset interface.

7.2 A Line Chart Based On A Category Dataset

7.2.1 Overview

A line chart based on a CategoryDataset simply connects each (category, value) data item using
straight lines. This section presents a sample application that generates the following chart shown
in figure 7.1.

Figure 7.1: A sample line chart

The full source code for this demo (LineChartDemo1.java) is available for download with the JFreeChart
Developer Guide.

7.2.2 The Dataset

The first step in generating the chart is, as always, to create a dataset. In the example, the
DefaultCategoryDataset class is used:

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(212, "Classes", "JDK 1.0");
dataset.addValue(504, "Classes", "JDK 1.1");
dataset.addValue(1520, "Classes", "SDK 1.2");

51

CHAPTER 7. LINE CHARTS 52

dataset.addValue(1842, "Classes", "SDK 1.3");
dataset.addValue(2991, "Classes", "SDK 1.4");

Note that you can use any implementation of the CategoryDataset interface as your dataset.

7.2.3 Constructing the Chart

The createLineChart() method in the ChartFactory class provides a convenient way to create the
chart. Here is the code:

// create the chart...
JFreeChart chart = ChartFactory.createLineChart(

"Java Standard Class Library", // chart title
"Release", // domain axis label
"Class Count", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
false, // include legend
true, // tooltips
false // urls

);

This method constructs a JFreeChart object with a title, no legend, and plot with appropriate axes,
renderer and tooltip generator. The dataset is the one created in the previous section.

7.2.4 Customising the Chart

The chart will be initialised using default settings for most attributes. You are, of course, free to
modify any of the settings to change the appearance of your chart. In this example, we customise
the chart in the following ways:

• two subtitles are added to the chart;

• the chart background color is set to white;

• the plot background color is set to light gray;

• the gridline color is changed to white;

• the range axis is modified to display integer values only;

• the renderer is modified to fill shapes with white.

The first subtitle is added at the default position (below the main title):

chart.addSubtitle(new TextTitle("Number of Classes By Release"));

The next subtitle takes a little extra code, to change the font, place it at the bottom of the chart,
and align it to the right side:

TextTitle source = new TextTitle(
"Source: Java In A Nutshell (4th Edition) "
+ "by David Flanagan (O’Reilly)"

);
source.setFont(new Font("SansSerif", Font.PLAIN, 10));
source.setPosition(RectangleEdge.BOTTOM);
source.setHorizontalAlignment(HorizontalAlignment.RIGHT);
chart.addSubtitle(source);

Changing the chart’s background color is simple, because this is an attribute maintained by the
JFreeChart class:

chart.setBackgroundPaint(Color.white);

To change other attributes, we first need to obtain a reference to the CategoryPlot object used by
the chart:

CHAPTER 7. LINE CHARTS 53

CategoryPlot plot = (CategoryPlot) chart.getPlot();

To set the background color for the plot, and change the gridline color:

plot.setBackgroundPaint(Color.lightGray);
plot.setRangeGridlinePaint(Color.white);

The plot is responsible for drawing the data and axes on the chart. Some of this work is delegated
to a renderer, which you can access via the getRenderer() method. The renderer maintains most
of the attributes that relate to the appearance of the data items within the chart.

LineAndShapeRenderer renderer = (LineAndShapeRenderer) plot.getRenderer(); renderer.setShapesVisible(true);
renderer.setDrawOutlines(true); renderer.setUseFillPaint(true);

The plot also manages the chart’s axes. In the example, the range axis is modified so that it only
displays integer values for the tick labels:

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());

There are many other ways to customise the chart. Please refer to the reference section of this
document, the API documentation and the source code for details of the methods available.

7.2.5 The Complete Program

The code for the demonstration application is presented in full, complete with the import state-
ments. The source code is available for download from the same location as the JFreeChart Devel-
oper Guide.

/* -------------------
* LineChartDemo1.java
* -------------------
* (C) Copyright 2002-2005, by Object Refinery Limited.
*
*/

package demo;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Font;

import javax.swing.JPanel;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.CategoryPlot;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.renderer.category.LineAndShapeRenderer;
import org.jfree.chart.title.TextTitle;
import org.jfree.data.category.CategoryDataset;
import org.jfree.data.category.DefaultCategoryDataset;
import org.jfree.ui.ApplicationFrame;
import org.jfree.ui.HorizontalAlignment;
import org.jfree.ui.RectangleEdge;
import org.jfree.ui.RefineryUtilities;

/**
* A simple demonstration application showing how to create a line chart using
* data from a {@link CategoryDataset}.
*/

public class LineChartDemo1 extends ApplicationFrame {

/**
* Creates a new demo.
*
* @param title the frame title.
*/

public LineChartDemo1(String title) {
super(title);

CHAPTER 7. LINE CHARTS 54

CategoryDataset dataset = createDataset();
JFreeChart chart = createChart(dataset);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new Dimension(500, 270));
setContentPane(chartPanel);

}

/**
* Creates a sample dataset.
*
* @return The dataset.
*/

private static CategoryDataset createDataset() {
DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(212, "Classes", "JDK 1.0");
dataset.addValue(504, "Classes", "JDK 1.1");
dataset.addValue(1520, "Classes", "SDK 1.2");
dataset.addValue(1842, "Classes", "SDK 1.3");
dataset.addValue(2991, "Classes", "SDK 1.4");
return dataset;

}

/**
* Creates a sample chart.
*
* @param dataset a dataset.
*
* @return The chart.
*/

private static JFreeChart createChart(CategoryDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createLineChart(

"Java Standard Class Library", // chart title
"Release", // domain axis label
"Class Count", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
false, // include legend
true, // tooltips
false // urls

);

chart.addSubtitle(new TextTitle("Number of Classes By Release"));
TextTitle source = new TextTitle(

"Source: Java In A Nutshell (4th Edition) "
+ "by David Flanagan (O’Reilly)"

);
source.setFont(new Font("SansSerif", Font.PLAIN, 10));
source.setPosition(RectangleEdge.BOTTOM);
source.setHorizontalAlignment(HorizontalAlignment.RIGHT);
chart.addSubtitle(source);

chart.setBackgroundPaint(Color.white);

CategoryPlot plot = (CategoryPlot) chart.getPlot();
plot.setBackgroundPaint(Color.lightGray);
plot.setRangeGridlinePaint(Color.white);

// customise the range axis...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());

// customise the renderer...
LineAndShapeRenderer renderer

= (LineAndShapeRenderer) plot.getRenderer();
renderer.setShapesVisible(true);
renderer.setDrawOutlines(true);
renderer.setUseFillPaint(true);
renderer.setFillPaint(Color.white);

return chart;
}

/**
* Creates a panel for the demo (used by SuperDemo.java).
*
* @return A panel.
*/

public static JPanel createDemoPanel() {
JFreeChart chart = createChart(createDataset());

CHAPTER 7. LINE CHARTS 55

return new ChartPanel(chart);
}

/**
* Starting point for the demonstration application.
*
* @param args ignored.
*/

public static void main(String[] args) {
LineChartDemo1 demo = new LineChartDemo1("Line Chart Demo");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo);
demo.setVisible(true);

}

}

CHAPTER 7. LINE CHARTS 56

7.3 A Line Chart Based On An XYDataset

7.3.1 Overview

A line chart based on an XYDataset connects each (x, y) point with a straight line. This section
presents a sample application that generates the chart shown in figure 7.2.

Figure 7.2: A sample line chart using an XYPlot

The complete source code (LineChartDemo2.java) is available to download with the JFreeChart
Developer Guide.

7.3.2 The Dataset

For this chart, an XYSeriesCollection is used as the dataset (you can use any implementation of
the XYDataset interface). For the purposes of the self-contained demo, we create this dataset in
code, as follows:

XYSeries series1 = new XYSeries("First");
series1.add(1.0, 1.0);
series1.add(2.0, 4.0);
series1.add(3.0, 3.0);
series1.add(4.0, 5.0);
series1.add(5.0, 5.0);
series1.add(6.0, 7.0);
series1.add(7.0, 7.0);
series1.add(8.0, 8.0);

XYSeries series2 = new XYSeries("Second");
series2.add(1.0, 5.0);
series2.add(2.0, 7.0);
series2.add(3.0, 6.0);
series2.add(4.0, 8.0);
series2.add(5.0, 4.0);
series2.add(6.0, 4.0);
series2.add(7.0, 2.0);
series2.add(8.0, 1.0);

XYSeries series3 = new XYSeries("Third");
series3.add(3.0, 4.0);
series3.add(4.0, 3.0);
series3.add(5.0, 2.0);
series3.add(6.0, 3.0);
series3.add(7.0, 6.0);
series3.add(8.0, 3.0);
series3.add(9.0, 4.0);
series3.add(10.0, 3.0);

XYSeriesCollection dataset = new XYSeriesCollection();
dataset.addSeries(series1);
dataset.addSeries(series2);
dataset.addSeries(series3);

return dataset;

CHAPTER 7. LINE CHARTS 57

Notice how each series has x-values (not just y-values) that are independent from the other series.
The dataset will also accept null in place of a y-value. When a null value is encountered, no
connecting line is drawn, resulting in a discontinuous line for the series.

7.3.3 Constructing the Chart

The createXYLineChart() method in the ChartFactory class provides a convenient way to create the
chart:

JFreeChart chart = ChartFactory.createXYLineChart(
"Line Chart Demo 2", // chart title
"X", // x axis label
"Y", // y axis label
dataset, // data
PlotOrientation.VERTICAL,
true, // include legend
true, // tooltips
false // urls

);

This method constructs a JFreeChart object with a title, legend and plot with appropriate axes
and renderer. The dataset is the one created in the previous section. The chart is created with a
legend, and tooltips are enabled (URLs are disabled—these are only used in the creation of HTML
image maps).

7.3.4 Customising the Chart

The chart will be initialised using default settings for most attributes. You are, of course, free
to modify any of the settings to change the appearance of your chart. In this example, several
attributes are modified:

• the chart background color;

• the plot background color;

• the axis offsets;

• the color of the domain and range gridlines;

• the renderer is modified to draw shapes as well as lines;

• the tick unit collection for the range axis, so that the tick values always display integer values;

Changing the chart’s background color is simple:

// set the background color for the chart...
chart.setBackgroundPaint(Color.white);

Changing the plot background color, the axis offsets, and the color of the gridlines, requires a
reference to the plot. The cast to XYPlot is required so that we can access methods specific to this
type of plot:

// get a reference to the plot for further customisation...
XYPlot plot = (XYPlot) chart.getPlot();
plot.setBackgroundPaint(Color.lightGray);
plot.setAxisOffset(new RectangleInsets(5.0, 5.0, 5.0, 5.0));
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);

The renderer is modified to display filled shapes in addition to the default lines:

XYLineAndShapeRenderer renderer = (XYLineAndShapeRenderer) plot.getRenderer();
renderer.setShapesVisible(true);
renderer.setShapesFilled(true);

CHAPTER 7. LINE CHARTS 58

The final modification is a change to the range axis. We change the default collection of tick units
(which allow fractional values) to an integer-only collection:

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());

Refer to the source code, Javadoc API documentation or elsewhere in this document for details of
the other customisations that you can make to an XYPlot.

7.3.5 The Complete Program

The code for the demonstration application is presented here in full, complete with the import
statements:

/* -------------------
* LineChartDemo2.java
* -------------------
* (C) Copyright 2002-2005, by Object Refinery Limited.
*
*/

package demo;

import java.awt.Color;

import javax.swing.JPanel;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.xy.XYDataset;
import org.jfree.data.xy.XYSeries;
import org.jfree.data.xy.XYSeriesCollection;
import org.jfree.ui.ApplicationFrame;
import org.jfree.ui.RectangleInsets;
import org.jfree.ui.RefineryUtilities;

/**
* A simple demonstration application showing how to create a line chart using
* data from an {@link XYDataset}.
* <p>
* IMPORTANT NOTE: THIS DEMO IS DOCUMENTED IN THE JFREECHART DEVELOPER GUIDE.
* DO NOT MAKE CHANGES WITHOUT UPDATING THE GUIDE ALSO!!
*/

public class LineChartDemo2 extends ApplicationFrame {

/**
* Creates a new demo.
*
* @param title the frame title.
*/

public LineChartDemo2(String title) {

super(title);
XYDataset dataset = createDataset();
JFreeChart chart = createChart(dataset);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new java.awt.Dimension(500, 270));
setContentPane(chartPanel);

}

/**
* Creates a sample dataset.
*
* @return a sample dataset.
*/

private static XYDataset createDataset() {

XYSeries series1 = new XYSeries("First");
series1.add(1.0, 1.0);
series1.add(2.0, 4.0);

CHAPTER 7. LINE CHARTS 59

series1.add(3.0, 3.0);
series1.add(4.0, 5.0);
series1.add(5.0, 5.0);
series1.add(6.0, 7.0);
series1.add(7.0, 7.0);
series1.add(8.0, 8.0);

XYSeries series2 = new XYSeries("Second");
series2.add(1.0, 5.0);
series2.add(2.0, 7.0);
series2.add(3.0, 6.0);
series2.add(4.0, 8.0);
series2.add(5.0, 4.0);
series2.add(6.0, 4.0);
series2.add(7.0, 2.0);
series2.add(8.0, 1.0);

XYSeries series3 = new XYSeries("Third");
series3.add(3.0, 4.0);
series3.add(4.0, 3.0);
series3.add(5.0, 2.0);
series3.add(6.0, 3.0);
series3.add(7.0, 6.0);
series3.add(8.0, 3.0);
series3.add(9.0, 4.0);
series3.add(10.0, 3.0);

XYSeriesCollection dataset = new XYSeriesCollection();
dataset.addSeries(series1);
dataset.addSeries(series2);
dataset.addSeries(series3);

return dataset;

}

/**
* Creates a chart.
*
* @param dataset the data for the chart.
*
* @return a chart.
*/

private static JFreeChart createChart(XYDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createXYLineChart(

"Line Chart Demo 2", // chart title
"X", // x axis label
"Y", // y axis label
dataset, // data
PlotOrientation.VERTICAL,
true, // include legend
true, // tooltips
false // urls

);

// NOW DO SOME OPTIONAL CUSTOMISATION OF THE CHART...
chart.setBackgroundPaint(Color.white);

// get a reference to the plot for further customisation...
XYPlot plot = (XYPlot) chart.getPlot();
plot.setBackgroundPaint(Color.lightGray);
plot.setAxisOffset(new RectangleInsets(5.0, 5.0, 5.0, 5.0));
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);

XYLineAndShapeRenderer renderer
= (XYLineAndShapeRenderer) plot.getRenderer();

renderer.setShapesVisible(true);
renderer.setShapesFilled(true);

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());
// OPTIONAL CUSTOMISATION COMPLETED.

return chart;

}

CHAPTER 7. LINE CHARTS 60

/**
* Creates a panel for the demo (used by SuperDemo.java).
*
* @return A panel.
*/

public static JPanel createDemoPanel() {
JFreeChart chart = createChart(createDataset());
return new ChartPanel(chart);

}

/**
* Starting point for the demonstration application.
*
* @param args ignored.
*/

public static void main(String[] args) {

LineChartDemo2 demo = new LineChartDemo2("Line Chart Demo 2");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo);
demo.setVisible(true);

}

}

Chapter 8

Time Series Charts

8.1 Introduction

Time series charts are very similar to line charts, except that the values on the domain axis are
dates rather than numbers. This section describes how to create time series charts with JFreeChart.

8.2 Time Series Charts

8.2.1 Overview

A time series chart is really just a line chart using data obtained via the XYDataset interface (see
the example in the previous section). The difference is that the x-values are displayed as dates
on the domain axis. This section presents a sample application that generates the chart shown in
figure 8.1.

Figure 8.1: A time series chart

The complete source code (TimeSeriesDemo1.java) for this example is available for download with
the JFreeChart Developer Guide.

8.2.2 Dates or Numbers?

Time series charts are created using data from an XYDataset. This interface doesn’t have any
methods that return dates, so how does JFreeChart create time series charts?

The x-values returned by the dataset are double primitives, but the values are interpreted in a
special way—they are assumed to represent the number of milliseconds since midnight, 1 January

61

CHAPTER 8. TIME SERIES CHARTS 62

1970 (the encoding used by the java.util.Date class).

A special axis class (DateAxis) converts from milliseconds to dates and back again as necessary,
allowing the axis to display tick labels formatted as dates.

8.2.3 The Dataset

For the demo chart, a TimeSeriesCollection is used as the dataset (you can use any implementation
of the XYDataset interface):

TimeSeries s1 = new TimeSeries("L&G European Index Trust", Month.class);
s1.add(new Month(2, 2001), 181.8);
s1.add(new Month(3, 2001), 167.3);
s1.add(new Month(4, 2001), 153.8);
s1.add(new Month(5, 2001), 167.6);
s1.add(new Month(6, 2001), 158.8);
s1.add(new Month(7, 2001), 148.3);
s1.add(new Month(8, 2001), 153.9);
s1.add(new Month(9, 2001), 142.7);
s1.add(new Month(10, 2001), 123.2);
s1.add(new Month(11, 2001), 131.8);
s1.add(new Month(12, 2001), 139.6);
s1.add(new Month(1, 2002), 142.9);
s1.add(new Month(2, 2002), 138.7);
s1.add(new Month(3, 2002), 137.3);
s1.add(new Month(4, 2002), 143.9);
s1.add(new Month(5, 2002), 139.8);
s1.add(new Month(6, 2002), 137.0);
s1.add(new Month(7, 2002), 132.8);

TimeSeries s2 = new TimeSeries("L&G UK Index Trust", Month.class);
s2.add(new Month(2, 2001), 129.6);
s2.add(new Month(3, 2001), 123.2);
s2.add(new Month(4, 2001), 117.2);
s2.add(new Month(5, 2001), 124.1);
s2.add(new Month(6, 2001), 122.6);
s2.add(new Month(7, 2001), 119.2);
s2.add(new Month(8, 2001), 116.5);
s2.add(new Month(9, 2001), 112.7);
s2.add(new Month(10, 2001), 101.5);
s2.add(new Month(11, 2001), 106.1);
s2.add(new Month(12, 2001), 110.3);
s2.add(new Month(1, 2002), 111.7);
s2.add(new Month(2, 2002), 111.0);
s2.add(new Month(3, 2002), 109.6);
s2.add(new Month(4, 2002), 113.2);
s2.add(new Month(5, 2002), 111.6);
s2.add(new Month(6, 2002), 108.8);
s2.add(new Month(7, 2002), 101.6);

TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(s1);
dataset.addSeries(s2);

In the example, the series contain monthly data. However, the TimeSeries class can be used to
represent values observed at other intervals (annual, daily, hourly etc).

8.2.4 Constructing the Chart

The createTimeSeriesChart() method in the ChartFactory class provides a convenient way to create
the chart:

JFreeChart chart = ChartFactory.createTimeSeriesChart(
"Legal & General Unit Trust Prices", // title
"Date", // x-axis label
"Price Per Unit", // y-axis label
dataset, // data
true, // create legend?
true, // generate tooltips?
false // generate URLs?

);

This method constructs a JFreeChart object with a title, legend and plot with appropriate axes and
renderer. The dataset is the one created in the previous section.

CHAPTER 8. TIME SERIES CHARTS 63

8.2.5 Customising the Chart

The chart will be initialised using default settings for most attributes. You are, of course, free
to modify any of the settings to change the appearance of your chart. In this example, several
attributes are modified:

• the renderer is changed to display series shapes at each data point, in addition to the lines
between data points;

• a date format override is set for the domain axis;

Modifying the renderer requires a couple of steps to obtain a reference to the renderer and then
cast it to a XYLineAndShapeRenderer:

XYItemRenderer r = plot.getRenderer();
if (r instanceof XYLineAndShapeRenderer) {

XYLineAndShapeRenderer renderer = (XYLineAndShapeRenderer) r;
renderer.setBaseShapesVisible(true);
renderer.setBaseShapesFilled(true);

}

In the final customisation, a date format override is set for the domain axis.

DateAxis axis = (DateAxis) plot.getDomainAxis();
axis.setDateFormatOverride(new SimpleDateFormat("MMM-yyyy"));

When this is set, the axis will continue to “auto-select” a DateTickUnit from the collection of
standard tick units, but it will ignore the formatting from the tick unit and use the override format
instead.

8.2.6 The Complete Program

The code for the demonstration application is presented in full, complete with the import state-
ments:

/* -------------------

* TimeSeriesDemo.java

* -------------------

* (C) Copyright 2002-2005, by Object Refinery Limited.

*

*/

package demo;

import java.awt.Color;

import java.text.SimpleDateFormat;

import javax.swing.JPanel;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartPanel;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.axis.DateAxis;

import org.jfree.chart.plot.XYPlot;

import org.jfree.chart.renderer.xy.XYItemRenderer;

import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;

import org.jfree.data.time.Month;

import org.jfree.data.time.TimeSeries;

import org.jfree.data.time.TimeSeriesCollection;

import org.jfree.data.xy.XYDataset;

import org.jfree.ui.ApplicationFrame;

import org.jfree.ui.RectangleInsets;

import org.jfree.ui.RefineryUtilities;

/**

* An example of a time series chart. For the most part, default settings are

CHAPTER 8. TIME SERIES CHARTS 64

* used, except that the renderer is modified to show filled shapes (as well as

* lines) at each data point.

* <p>

* IMPORTANT NOTE: THIS DEMO IS DOCUMENTED IN THE JFREECHART DEVELOPER GUIDE.

* DO NOT MAKE CHANGES WITHOUT UPDATING THE GUIDE ALSO!!

*/

public class TimeSeriesDemo1 extends ApplicationFrame {

/**

* A demonstration application showing how to create a simple time series

* chart. This example uses monthly data.

*

* @param title the frame title.

*/

public TimeSeriesDemo1(String title) {

super(title);

XYDataset dataset = createDataset();

JFreeChart chart = createChart(dataset);

ChartPanel chartPanel = new ChartPanel(chart);

chartPanel.setPreferredSize(new java.awt.Dimension(500, 270));

chartPanel.setMouseZoomable(true, false);

setContentPane(chartPanel);

}

/**

* Creates a chart.

*

* @param dataset a dataset.

*

* @return A chart.

*/

private static JFreeChart createChart(XYDataset dataset) {

JFreeChart chart = ChartFactory.createTimeSeriesChart(

"Legal & General Unit Trust Prices", // title

"Date", // x-axis label

"Price Per Unit", // y-axis label

dataset, // data

true, // create legend?

true, // generate tooltips?

false // generate URLs?

);

chart.setBackgroundPaint(Color.white);

XYPlot plot = (XYPlot) chart.getPlot();

plot.setBackgroundPaint(Color.lightGray);

plot.setDomainGridlinePaint(Color.white);

plot.setRangeGridlinePaint(Color.white);

plot.setAxisOffset(new RectangleInsets(5.0, 5.0, 5.0, 5.0));

plot.setDomainCrosshairVisible(true);

plot.setRangeCrosshairVisible(true);

XYItemRenderer r = plot.getRenderer();

if (r instanceof XYLineAndShapeRenderer) {

XYLineAndShapeRenderer renderer = (XYLineAndShapeRenderer) r;

renderer.setBaseShapesVisible(true);

renderer.setBaseShapesFilled(true);

}

DateAxis axis = (DateAxis) plot.getDomainAxis();

axis.setDateFormatOverride(new SimpleDateFormat("MMM-yyyy"));

return chart;

}

/**

CHAPTER 8. TIME SERIES CHARTS 65

* Creates a dataset, consisting of two series of monthly data.

*

* @return the dataset.

*/

private static XYDataset createDataset() {

TimeSeries s1 = new TimeSeries("L&G European Index Trust", Month.class);

s1.add(new Month(2, 2001), 181.8);

s1.add(new Month(3, 2001), 167.3);

s1.add(new Month(4, 2001), 153.8);

s1.add(new Month(5, 2001), 167.6);

s1.add(new Month(6, 2001), 158.8);

s1.add(new Month(7, 2001), 148.3);

s1.add(new Month(8, 2001), 153.9);

s1.add(new Month(9, 2001), 142.7);

s1.add(new Month(10, 2001), 123.2);

s1.add(new Month(11, 2001), 131.8);

s1.add(new Month(12, 2001), 139.6);

s1.add(new Month(1, 2002), 142.9);

s1.add(new Month(2, 2002), 138.7);

s1.add(new Month(3, 2002), 137.3);

s1.add(new Month(4, 2002), 143.9);

s1.add(new Month(5, 2002), 139.8);

s1.add(new Month(6, 2002), 137.0);

s1.add(new Month(7, 2002), 132.8);

TimeSeries s2 = new TimeSeries("L&G UK Index Trust", Month.class);

s2.add(new Month(2, 2001), 129.6);

s2.add(new Month(3, 2001), 123.2);

s2.add(new Month(4, 2001), 117.2);

s2.add(new Month(5, 2001), 124.1);

s2.add(new Month(6, 2001), 122.6);

s2.add(new Month(7, 2001), 119.2);

s2.add(new Month(8, 2001), 116.5);

s2.add(new Month(9, 2001), 112.7);

s2.add(new Month(10, 2001), 101.5);

s2.add(new Month(11, 2001), 106.1);

s2.add(new Month(12, 2001), 110.3);

s2.add(new Month(1, 2002), 111.7);

s2.add(new Month(2, 2002), 111.0);

s2.add(new Month(3, 2002), 109.6);

s2.add(new Month(4, 2002), 113.2);

s2.add(new Month(5, 2002), 111.6);

s2.add(new Month(6, 2002), 108.8);

s2.add(new Month(7, 2002), 101.6);

TimeSeriesCollection dataset = new TimeSeriesCollection();

dataset.addSeries(s1);

dataset.addSeries(s2);

dataset.setDomainIsPointsInTime(true);

return dataset;

}

/**

* Creates a panel for the demo (used by SuperDemo.java).

*

* @return A panel.

*/

public static JPanel createDemoPanel() {

JFreeChart chart = createChart(createDataset());

return new ChartPanel(chart);

}

/**

* Starting point for the demonstration application.

CHAPTER 8. TIME SERIES CHARTS 66

*

* @param args ignored.

*/

public static void main(String[] args) {

TimeSeriesDemo1 demo = new TimeSeriesDemo1("Time Series Demo 1");

demo.pack();

RefineryUtilities.centerFrameOnScreen(demo);

demo.setVisible(true);

}

}

Chapter 9

Customising Charts

9.1 Introduction

JFreeChart has been designed to be highly customisable. There are many attributes that you can
set to change the default appearance of your charts. In this section, some common techniques for
customising charts are presented.

9.2 Chart Attributes

9.2.1 Overview

At the highest level, you can customise the appearance of your charts using methods in the
JFreeChart class. This allows you to control:

• the chart border;

• the chart title and sub-titles;

• the background color and/or image;

• the rendering hints that are used to draw the chart, including whether or not anti-aliasing is
used;

These items are described in the following sections.

9.2.2 The Chart Border

JFreeChart can draw a border around the outside of a chart. By default, no border is drawn, but
you can change this using the setBorderVisible() method. The color and line-style for the border
are controlled by the setBorderPaint() and setBorderStroke() methods.

Note: if you are displaying your chart inside a ChartPanel, then you might prefer to use the border
facilities provided by Swing.

9.2.3 The Chart Title

A chart has one title that can appear at the top, bottom, left or right of the chart (you can also add
subtitles—see the next section). The title is an instance of TextTitle. You can obtain a reference
to the title using the getTitle() method:

TextTitle title = chart.getTitle();

To modify the title text (without changing the font or position):

67

CHAPTER 9. CUSTOMISING CHARTS 68

chart.setTitle("A Chart Title");

The placement of the title at the top, bottom, left or right of the chart is controlled by a property
of the title itself. To move the title to the bottom of the chart:

chart.getTitle().setPosition(RectangleEdge.BOTTOM);

If you prefer to have no title on your chart, you can set the title to null.

9.2.4 Subtitles

A chart can have any number of subtitles. To add a sub-title to a chart, create a subtitle (any
subclass of Title) and add it to the chart. For example:

TextTitle subtitle1 = new TextTitle("A Subtitle");
chart.addSubtitle(subtitle1);

You can add as many sub-titles as you like to a chart, but keep in mind that as you add more
sub-titles there will be less and less space available for drawing the chart.

To modify an existing sub-title, you need to get a reference to the sub-title. For example:

Title subtitle = chart.getSubtitle(0);

You will need to cast the Title reference to an appropriate subclass before you can change its
properties.

You can check the number of sub-titles using the getSubtitleCount() method.

9.2.5 Setting the Background Color

You can use the setBackgroundPaint() method to set the background color for a chart.1 For example:

chart.setBackgroundPaint(Color.blue);

You can use any implementation of the Paint interface, including the Java classes Color, GradientPaint
and TexturePaint. For example:

Paint p = new GradientPaint(0, 0, Color.white, 1000, 0, Color.green));
chart.setBackgroundPaint(p);

You can also set the background paint to null, which is recommended if you have specified a
background image for your chart.

9.2.6 Using a Background Image

You can use the setBackgroundImage() method to set a background image for a chart.

chart.setBackgroundImage(JFreeChart.INFO.getLogo());

By default, the image will be scaled to fit the area that the chart is being drawn into, but you can
change this using the setBackgroundImageAlignment() method.

chart.setBackgroundImageAlignment(Align.TOP LEFT);

Using the setBackgroundImageAlpha() method, you can control the alpha-transparency for the image.

If you want an image to fill only the data area of your chart (that is, the area inside the axes), then
you need to add a background image to the chart’s Plot (described later).

1You can also set the background color for the chart’s plot area, which has a slightly different effect—refer to the
Plot class for details.

CHAPTER 9. CUSTOMISING CHARTS 69

9.2.7 Rendering Hints

JFreeChart uses the Java2D API to draw charts. Within this API, you can specify rendering hints
to fine tune aspects of the way that the rendering engine works.

JFreeChart allows you to specify the rendering hints to be passed to the Java2D API when charts
are drawn—use the setRenderingHints() method.

As a convenience, a method is provided to turn anti-aliasing on or off. With anti-aliasing on, charts
appear to be smoother but they take longer to draw:

// turn on antialiasing...
chart.setAntiAlias(true);

By default, charts are drawn with anti-aliasing turned on.

9.3 Plot Attributes

9.3.1 Overview

The JFreeChart class delegates a lot of the work in drawing a chart to the Plot class (or, rather, to
a specific subclass of Plot). The getPlot() method in the JFreeChart class returns a reference to
the plot being used by the chart.

Plot plot = chart.getPlot();

You may need to cast this reference to a specific subclass of Plot, for example:
CategoryPlot plot = chart.getCategoryPlot();

...or:
XYPlot plot = chart.getXYPlot();

Note that these methods will throw a ClassCastException if the plot is not an appropriate class.

9.3.2 Which Plot Subclass?

How do you know which subclass of Plot is being used by a chart? As you gain experience with
JFreeChart, it will become clear which charts use CategoryPlot and which charts use XYPlot. If in
doubt, take a look in the ChartFactory class source code to see how each chart type is put together.

9.3.3 Setting the Background Paint

You can use the setBackgroundPaint() method to set the background color for a plot. For example:
Plot plot = chart.getPlot();

plot.setBackgroundPaint(Color.white);

You can use any implementation of the Paint interface, including the Java classes Color, GradientPaint
and TexturePaint. You can also set the background paint to null.

9.3.4 Using a Background Image

You can use the setBackgroundImage() method to set a background image for a plot:
Plot plot = chart.getPlot();

plot.setBackgroundImage(JFreeChart.INFO.getLogo());

By default, the image will be scaled to fit the area that the plot is being drawn into. You can
change this using the setBackgroundImageAlignment() method:

plot.setBackgroundImageAlignment(Align.BOTTOM RIGHT);

Use the setBackgroundAlpha() method to control the alpha-transparency used for the image.

If you prefer your image to fill the entire chart area, then you need to add a background image to
the JFreeChart object (described previously).

CHAPTER 9. CUSTOMISING CHARTS 70

9.4 Axis Attributes

9.4.1 Overview

The majority of charts created with JFreeChart have two axes, a domain axis and a range axis.
Of course, there are some charts (for example, pie charts) that don’t have axes at all. For charts
where axes are used, the Axis objects are managed by the plot.

9.4.2 Obtaining an Axis Reference

Before you can change the properties of an axis, you need to obtain a reference to the axis. The
plot classes CategoryPlot and XYPlot both have methods getDomainAxis() and getRangeAxis().

These methods return a reference to a ValueAxis, except in the case of the CategoryPlot, where the
domain axis is an instance of CategoryAxis.

// get an axis reference...

CategoryPlot plot = chart.getCategoryPlot();

CategoryAxis domainAxis = plot.getDomainAxis();

// change axis properties...

domainAxis.setLabel("Categories");

domainAxis.setLabelFont(someFont);

There are many different subclasses of the CategoryAxis and ValueAxis classes. Sometimes you will
need to cast your axis reference to a more specific subclass, in order to access some of its attributes.
For example, if you know that your range axis is a NumberAxis (and the range axis almost always
is), then you can do the following:

XYPlot plot = chart.getXYPlot();

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();

rangeAxis.setAutoRange(false);

9.4.3 Setting the Axis Label

You can use the setLabel() method to change the axis label. If you would prefer not to have a
label for your axis, just set it to null.

You can change the font, color and insets (the space around the outside of the label) with the
methods setLabelFont(), setLabelPaint(), and setLabelInsets(), defined in the Axis class.

9.4.4 Rotating Axis Labels

When an axis is drawn at the left or right of a plot (a “vertical” axis), the label is automati-
cally rotated by 90 degrees to minimise the space required. If you prefer to have the label drawn
horizontally, you can change the label angle:

XYPlot plot = chart.getXYPlot();

ValueAxis axis = plot.getRangeAxis();

axis.setLabelAngle(Math.PI / 2.0);

Note that the angle is specified in radians (Math.PI = 180 degrees).

9.4.5 Hiding Tick Labels

To hide the tick labels for an axis:
CategoryPlot plot = chart.getCategoryPlot();

ValueAxis axis = plot.getRangeAxis();

axis.setTickLabelsVisible(false);

For a CategoryAxis, setTickLabelsVisible(false) will hide the category labels.

CHAPTER 9. CUSTOMISING CHARTS 71

9.4.6 Hiding Tick Marks

To hide the tick marks for an axis:
XYPlot plot = chart.getXYPlot();

Axis axis = plot.getDomainAxis();

axis.setTickMarksVisible(false);

Category axes do not have tick marks.

9.4.7 Setting the Tick Size

By default, numerical and date axes automatically select a tick size so that the tick labels will not
overlap. You can override this by setting your own tick unit using the setTickUnit() method.

Alternatively, for a NumberAxis or a DateAxis you can specify your own set of tick units from which
the axis will automatically select an appropriate tick size. This is described in the following sections.

9.4.8 Specifying “Standard” Number Tick Units

In the NumberAxis class, there is a method setStandardTickUnits() that allows you to supply your
own set of tick units for the “auto tick unit selection” mechanism.

One common application is where you have a number axis that should only display integers. In this
case, you don’t want tick units of (say) 0.5 or 0.25. There is a (static) method in the NumberAxis

class that returns a set of standard integer tick units:
XYPlot plot = chart.getXYPlot();

NumberAxis axis = (NumberAxis) plot.getRangeAxis();

TickUnitSource units = NumberAxis.createIntegerTickUnits();

axis.setStandardTickUnits(units);

You are free to create your own TickUnits collection, if you want greater control over the standard
tick units.

9.4.9 Specifying “Standard” Date Tick Units

Similar to the case in the previous section, the DateAxis class has a method setStandardTickUnits()

that allows you to supply your own set of tick units for the “auto tick unit selection” mechanism.

The createStandardDateTickUnits() method returns the default collection for a DateAxis, but you
are free to create your own TickUnits collection if you want greater control over the standard tick
units.

Chapter 10

Dynamic Charts

10.1 Overview

To illustrate the use of JFreeChart for creating “dynamic” charts, this section presents a sample
application that displays a frequently updating chart of JVM memory usage and availability.

Figure 10.1: A dynamic chart demo

10.2 Background

10.2.1 Event notification

JFreeChart uses an event notification mechanism that allows it to respond to changes to any com-
ponent of the chart. For example, whenever a dataset is updated, a DatasetChangeEvent is sent to
all listeners that are registered with the dataset. This triggers the following sequence of events:

• the plot (which registers itself with the dataset as a DatasetChangeListener) receives noti-
fication of the dataset change. It updates the axis ranges (if necessary) then passes on a
PlotChangeEvent to all its registered listeners;

• the chart receives notification of the plot change event, and passes on a ChartChangeEvent to
all its registered listeners;

• finally, for charts that are displayed in a ChartPanel, the panel will receive the chart change
event. It responds by redrawing the chart—a complete redraw, not just the updated data.

A similar sequence of events happens for all changes to a chart or its subcomponents.

72

CHAPTER 10. DYNAMIC CHARTS 73

10.2.2 Performance

Regarding performance, you need to be aware that JFreeChart wasn’t designed specifically for
generating real-time charts. Each time a dataset is updated, the ChartPanel reacts by redrawing
the entire chart. Optimisations, such as only drawing the most recently added data point, are
difficult to implement in the general case, even more so given the Graphics2D abstraction (in the
Java2D API) employed by JFreeChart. This limits the number of “frames per second” you will be
able to achieve with JFreeChart. Whether this will be an issue for you depends on your data, the
requirements of your application, and your operating environment.

10.3 The Demo Application

10.3.1 Overview

The MemoryUsageDemo.java demonstration is included in the JFreeChart demo collection (source
code available to purchasers of this guide). You can obtain this from:

http://www.object-refinery.com/jfreechart/premium/index.html

You will need to enter the username and password supplied with your original purchase of the
JFreeChart Developer Guide.

10.3.2 Creating the Dataset

The dataset is created using two TimeSeries objects (one for the total memory and the other for
the free memory) that are added to a single time series collection:

// create two series that automatically discard data > 30 seconds old...
this.total = new TimeSeries("Total", Millisecond.class);
this.total.setMaximumItemAge(30000);
this.free = new TimeSeries("Free", Millisecond.class);
this.free.setMaximumItemAge(30000);
TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(this.total);
dataset.addSeries(this.free);

The maximumItemAge attribute for each time series is set to 30,000 milliseconds (or 30 seconds) so
that whenever new data is added to the series, any observations that are older that 30 seconds are
automatically discarded.

10.3.3 Creating the Chart

The chart creation (and customisation) follows the standard pattern for all charts. No special steps
are required to create a dynamic chart, except that you should ensure that the axes have their
autoRange attribute set to true. It also helps to retain a reference to the dataset used in the chart.

10.3.4 Updating the Dataset

In the demo, the dataset is updated by adding data to the two time series from a separate thread,
managed by the following timer:

class DataGenerator extends Timer implements ActionListener {

DataGenerator(int interval) {
super(interval, null);
addActionListener(this);

}

public void actionPerformed(ActionEvent event) {
long f = Runtime.getRuntime().freeMemory();
long t = Runtime.getRuntime().totalMemory();
addTotalObservation(t);
addFreeObservation(f);

CHAPTER 10. DYNAMIC CHARTS 74

}

}

Note that JFreeChart does not yet use thread synchronisation between the chart drawing code and
the dataset update code, so this approach is a little unsafe.

One other point to note, at one point while investigating reports of a memory leak in JFreeChart, I
left this demo running on a test machine for about six days. As the chart updates, you can see the
effect of the garbage collector. Over the six day period, the total memory used remained constant
while the free memory decreased as JFreeChart discarded temporary objects (garbage), and increased
at the points where the garbage collector did its work.

10.3.5 Source Code

For reference, here is the complete source code for the example:

/* --------------------
* MemoryUsageDemo.java
* --------------------
* (C) Copyright 2002-2006, by Object Refinery Limited.
*/

package demo;

import java.awt.BasicStroke;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Font;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import javax.swing.BorderFactory;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.Timer;

import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.DateAxis;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.xy.XYItemRenderer;
import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.time.Millisecond;
import org.jfree.data.time.TimeSeries;
import org.jfree.data.time.TimeSeriesCollection;
import org.jfree.ui.RectangleInsets;

/**
* A demo application showing a dynamically updated chart that displays the
* current JVM memory usage.
* <p>
* IMPORTANT NOTE: THIS DEMO IS DOCUMENTED IN THE JFREECHART DEVELOPER GUIDE.
* DO NOT MAKE CHANGES WITHOUT UPDATING THE GUIDE ALSO!!
*/

public class MemoryUsageDemo extends JPanel {

/** Time series for total memory used. */
private TimeSeries total;

/** Time series for free memory. */
private TimeSeries free;

/**
* Creates a new application.
*
* @param maxAge the maximum age (in milliseconds).
*/

public MemoryUsageDemo(int maxAge) {

super(new BorderLayout());

// create two series that automatically discard data more than 30

CHAPTER 10. DYNAMIC CHARTS 75

// seconds old...
this.total = new TimeSeries("Total Memory", Millisecond.class);
this.total.setMaximumItemAge(maxAge);
this.free = new TimeSeries("Free Memory", Millisecond.class);
this.free.setMaximumItemAge(maxAge);
TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(this.total);
dataset.addSeries(this.free);

DateAxis domain = new DateAxis("Time");
NumberAxis range = new NumberAxis("Memory");
domain.setTickLabelFont(new Font("SansSerif", Font.PLAIN, 12));
range.setTickLabelFont(new Font("SansSerif", Font.PLAIN, 12));
domain.setLabelFont(new Font("SansSerif", Font.PLAIN, 14));
range.setLabelFont(new Font("SansSerif", Font.PLAIN, 14));

XYItemRenderer renderer = new XYLineAndShapeRenderer(true, false);
renderer.setSeriesPaint(0, Color.red);
renderer.setSeriesPaint(1, Color.green);
renderer.setStroke(new BasicStroke(3f, BasicStroke.CAP_BUTT,

BasicStroke.JOIN_BEVEL));
XYPlot plot = new XYPlot(dataset, domain, range, renderer);
plot.setBackgroundPaint(Color.lightGray);
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);
plot.setAxisOffset(new RectangleInsets(5.0, 5.0, 5.0, 5.0));
domain.setAutoRange(true);
domain.setLowerMargin(0.0);
domain.setUpperMargin(0.0);
domain.setTickLabelsVisible(true);

range.setStandardTickUnits(NumberAxis.createIntegerTickUnits());

JFreeChart chart = new JFreeChart("JVM Memory Usage",
new Font("SansSerif", Font.BOLD, 24), plot, true);

chart.setBackgroundPaint(Color.white);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setBorder(BorderFactory.createCompoundBorder(

BorderFactory.createEmptyBorder(4, 4, 4, 4),
BorderFactory.createLineBorder(Color.black)));

add(chartPanel);

}

/**
* Adds an observation to the ’total memory’ time series.
*
* @param y the total memory used.
*/

private void addTotalObservation(double y) {
this.total.add(new Millisecond(), y);

}

/**
* Adds an observation to the ’free memory’ time series.
*
* @param y the free memory.
*/

private void addFreeObservation(double y) {
this.free.add(new Millisecond(), y);

}

/**
* The data generator.
*/

class DataGenerator extends Timer implements ActionListener {

/**
* Constructor.
*
* @param interval the interval (in milliseconds)
*/

DataGenerator(int interval) {
super(interval, null);
addActionListener(this);

}

/**
* Adds a new free/total memory reading to the dataset.
*
* @param event the action event.

CHAPTER 10. DYNAMIC CHARTS 76

*/
public void actionPerformed(ActionEvent event) {

long f = Runtime.getRuntime().freeMemory();
long t = Runtime.getRuntime().totalMemory();
addTotalObservation(t);
addFreeObservation(f);

}

}

/**
* Entry point for the sample application.
*
* @param args ignored.
*/

public static void main(String[] args) {

JFrame frame = new JFrame("Memory Usage Demo");
MemoryUsageDemo panel = new MemoryUsageDemo(30000);
frame.getContentPane().add(panel, BorderLayout.CENTER);
frame.setBounds(200, 120, 600, 280);
frame.setVisible(true);
panel.new DataGenerator(100).start();

frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

});
}

}

Chapter 11

Tooltips

11.1 Overview

JFreeChart includes mechanisms for generating, collecting and displaying tool tips for individual
components of a chart.

In this section, I describe:

• how to generate tool tips (including customisation of tool tips);

• how tool tips are collected;

• how to display tool tips;

• how to disable tool tips if you don’t need them;

11.2 Generating Tool Tips

If you want to use tool tips, you need to make sure they are generated as your chart is being drawn.
You do this by setting a tool tip generator for your plot or, in many cases, the plot’s item renderer.

In the sub-sections that follow, I describe how to set a tool tip generator for the common chart
types.

11.2.1 Pie Charts

The PiePlot class generates tool tips using the PieToolTipGenerator interface. A standard imple-
mentation (StandardPieToolTipGenerator) is provided, and you are free to create your own imple-
mentations.

To set the tool tip generator, use the following method in the PiePlot class:

å public void setToolTipGenerator(PieToolTipGenerator generator);

Sets the tool tip generator for the pie chart. If you set this to null, no tool tips will be
generated.

11.2.2 Category Charts

Category charts—including most of the bar charts generated by JFreeChart—are based on the
CategoryPlot class and use a CategoryItemRenderer to draw each data item. The CategoryToolTipGenerator
interface specifies the method via which the renderer will obtain tool tips (if required).

To set the tool tip generator for a category plot’s item renderer, use the following method (defined
in the AbstractCategoryItemRenderer class):

77

CHAPTER 11. TOOLTIPS 78

å public void setToolTipGenerator(CategoryToolTipGenerator generator);

Sets the tool tip generator for the renderer. If you set this to null, no tool tips will be generated.

11.2.3 XY Charts

XY charts—including scatter plots and all the time series charts generated by JFreeChart—are
based on the XYPlot class and use an XYItemRenderer to draw each data item. The renderer generates
tool tips (if required) using an XYToolTipGenerator.

To set the tool tip generator for an XY plot’s item renderer, use the following method (defined in
the AbstractXYItemRenderer class):

å public void setToolTipGenerator(XYToolTipGenerator generator);

Sets the tool tip generator for the renderer. If you set this to null, no tool tips will be generated.

11.3 Collecting Tool Tips

Tool tips are collected, along with other chart entity information, using the ChartRenderingInfo

class. You need to supply an instance of this class to JFreeChart’s draw() method, otherwise no
tool tip information will be recorded (even if a generator has been registered with the plot or the
plot’s item renderer, as described in the previous sections).

Fortunately, the ChartPanel class takes care of this automatically, so if you are displaying your
charts using the ChartPanel class you do not need to worry about how tool tips are collected—it is
done for you.

11.4 Displaying Tool Tips

Tool tips are automatically displayed by the ChartPanel class, provided that you have set up a tool
tip generator for the plot (or the plot’s renderer).

You can also enable or disable the display of tool tips in the ChartPanel class, using this method:

å public void setDisplayToolTips(boolean flag);

Switches the display of tool tips on or off.

11.5 Disabling Tool Tips

The most effective way to disable tool tips is to set the tool tip generator to null. This ensures that
no tool tip information is even generated, which can save memory and processing time (particularly
for charts with large datasets).

You can also disable the display of tool tips in the ChartPanel class, using the method given in the
previous section.

11.6 Customising Tool Tips

You can take full control of the text generated for each tool tip by providing your own implemen-
tation of the appropriate tool tip generator interface.

Chapter 12

Item Labels

12.1 Introduction

12.1.1 Overview

For many chart types, JFreeChart will allow you to display item labels in, on or near to each data
item in a chart. For example, you can display the actual value represented by the bars in a bar
chart—see figure 12.1.

Figure 12.1: A bar chart with item labels

This chapter covers how to:

• make item labels visible (for the chart types that support item labels);

• change the appearance (font and color) of item labels;

• specify the location of item labels;

• customise the item label text.

A word of advice: use this feature sparingly. Charts are supposed to summarise your data—if you
feel it is necessary to display the actual data values all over your chart, then perhaps your data is
better presented in a table format.

79

CHAPTER 12. ITEM LABELS 80

12.1.2 Limitations

There are some limitations with respect to the item labels in the current release of JFreeChart:

• some renderers do not support item labels;

• axis ranges are not automatically adjusted to take into account the item labels—some labels
may disappear off the chart if sufficient margins are not set (use the setUpperMargin() and/or
setLowerMargin() methods in the relevant axis to adjust this).

In future releases of JFreeChart, some or all of these limitations will be addressed.

12.2 Displaying Item Labels

12.2.1 Overview

Item labels are not visible by default, so you need to configure the renderer to create and display
them. This involves two steps:

• assign a CategoryItemLabelGenerator or XYItemLabelGenerator to the renderer—this is an ob-
ject that assumes responsibility for creating the labels;

• set a flag in the renderer to make the labels visible, either for all series or, if you prefer, on a
per series basis.

In addition, you have the option to customise the position, font and color of the item labels. These
steps are detailed in the following sections.

12.2.2 Assigning a Label Generator

Item labels are created by a label generator that is assigned to a renderer (the same mechanism is
also used for tooltips).

To assign a generator to a CategoryItemRenderer, use the following code:
CategoryItemRenderer renderer = plot.getRenderer();
CategoryItemLabelGenerator generator = new StandardCategoryItemLabelGenerator(

"{2}", new DecimalFormat("0.00"));
renderer.setLabelGenerator(generator);

Similarly, to assign a generator to an XYItemRenderer, use the following code:
XYItemRenderer renderer = plot.getRenderer();
XYItemLabelGenerator generator = new StandardXYItemLabelGenerator(

"{2}", new DecimalFormat("0.00"));
renderer.setLabelGenerator(generator);

You can customise the behaviour of the standard generator via settings that you can apply in the
constructor, or you can create your own generator as described in section 12.5.2.

12.2.3 Making Labels Visible For All Series

The setItemLabelsVisible() method sets a flag that controls whether or not the item labels are
displayed (note that a label generator must be assigned to the renderer, or there will be no labels
to display). For a CategoryItemRenderer:

CategoryItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(true);

Similarly, for a XYItemRenderer:
XYItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(true);

Once set, this flag takes precedence over any per series settings you may have made elsewhere. In
order for the per series settings to apply, you need to set this flag to null (see section 12.2.4).

CHAPTER 12. ITEM LABELS 81

12.2.4 Making Labels Visible For Selected Series

If you prefer, you can set flags that control the visibility of the item labels on a per series basis.
For example, item labels are displayed only for the first series in figure 12.2.

Figure 12.2: Item labels for selected series only

You can use code similar to the following:

CategoryItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(null); // clears the ALL series flag
renderer.setSeriesItemLabelsVisible(0, true);
renderer.setSeriesItemLabelsVisible(1, false);

Notice that the flag for “all series” has been set to null—this is important, because the “all series”
flag takes precedence over the “per series” flags.

12.2.5 Troubleshooting

If, after following the steps outlined in the previous sections, you still can’t see any labels on your
chart, there are a couple of things to consider:

• the renderer must have a label generator assigned to it—this is an object that creates the text
items that are used for each label.

• some renderers don’t yet support the display of item labels (refer to the documentation for
the renderer you are using).

12.3 Item Label Appearance

12.3.1 Overview

You can change the appearance of the item labels by changing the font and/or the color used to
display the labels. As for most other renderer attributes, the settings can be made once for all
series, or on a per series basis.

In the current release of JFreeChart, labels are drawn with a transparent background.
You cannot set a background color for the labels, nor can you specify that a border be
drawn around the labels. This may change in the future.

CHAPTER 12. ITEM LABELS 82

12.3.2 Changing the Label Font

To change the font for the item labels in all series, you can use code similar to the following:
CategoryItemRenderer renderer = plot.getRenderer();

renderer.setItemLabelFont(new Font("SansSerif", Font.PLAIN, 10));

Similarly, to set the font for individual series:
CategoryItemRenderer renderer = plot.getRenderer();

// clear the settings for ALL series...

renderer.setItemLabelFont(null);

// add settings for individual series...

renderer.setSeriesItemLabelFont(0, new Font("SansSerif", Font.PLAIN, 10));

renderer.setSeruesItemLabelFont(1, new Font("SansSerif", Font.BOLD, 10));

Notice how the font for all series has be set to null to prevent it from overriding the per series
settings.

12.3.3 Changing the Label Color

To change the color for the item labels in all series, you can use code similar to the following:
CategoryItemRenderer renderer = plot.getRenderer();

renderer.setItemLabelPaint(Color.red);

Similarly, to set the color for individual series:
CategoryItemRenderer renderer = plot.getRenderer();

// clear the settings for ALL series...

renderer.setItemLabelPaint(null);

// add settings for individual series...

renderer.setSeriesItemLabelPaint(0, Color.red);

renderer.setSeriesItemLabelPaint(1, Color.blue);

Once again, notice how the paint for all series has been set to null to prevent it from overriding
the per series settings.

12.4 Item Label Positioning

12.4.1 Overview

The positioning of item labels is controlled by four attributes that are combined into an ItemLabelPosition

object. You can define label positions for items with positive and negative values independently,
via the following methods in the CategoryItemRenderer interface:

public void setPositiveItemLabelPosition(ItemLabelPosition position);
public void setNegativeItemLabelPosition(ItemLabelPosition position);

Understanding how these attributes impact the final position of individual labels is key to getting
good results from the item label features in JFreeChart.

There are four attributes:

• the item label anchor - determines the base location for the item label;

• the text anchor - determines the point on the label that is aligned to the base location;

• the rotation anchor - this is the point on the label text about which the rotation (if any) is
applied;

• the rotation angle - the angle through which the label is rotated.

These are described in the following sections.

CHAPTER 12. ITEM LABELS 83

12.4.2 The Item Label Anchor

The purpose of the item label anchor setting is to determine an (x, y) location on the chart that is
near to the data item that is being labelled. The label is then aligned to this anchor point when it
is being drawn. Refer to the ItemLabelAnchor documentation for more information.

12.4.3 The Text Anchor

The text anchor determines which point on the label should be aligned with the anchor point
described in the previous section. It is possible to align the center of the label with the anchor point,
or the top-right of the label, or the bottom-left, and so on...refer to the TextAnchor documentation
for all the options.

Running the DrawStringDemo application in the org.jfree.demo package (included in the JCommon
distribution) is a good way to gain an understanding of how the text anchor is used to align labels
to a point on the screen.

12.4.4 The Rotation Anchor

The rotation anchor defines a point on the label about which the rotation (if any) will be applied
to the label. The DrawStringDemo class also demonstrates this feature.

12.4.5 The Rotation Angle

The rotation angle defines the angle through which the label is rotated. The angle is specified in
radians, and the rotation point is defined by the rotation anchor described in the previous section.

12.5 Customising the Item Label Text

12.5.1 Overview

Up to this point, we’ve relied on the label generator built in to JFreeChart to create the text for
the item labels. If you want to have complete control over the label text, you can write your own
class that implements the CategoryItemLabelGenerator interface.

In this section I provide a brief overview of the technique for implementing a custom label generator,
then present two examples to illustrate the type of results you can achieve with this technique.

12.5.2 Implementing a Custom Item Label Generator

To develop a custom label generator, you simply need to write a class that implements the method
defined in the CategoryItemLabelGenerator interface:

public String generateLabel(CategoryDataset dataset, int series, int category);

The renderer will call this method at the point that it requires a String use for a label, and will
pass in the CategoryDataset and the series and category indices for the current item. This means
that you have full access to the entire dataset (not just the current item) for the creation of the
label.

The method can return an arbitrary String value, so you can apply any formatting you want to
the result. It is also valid to return null if you prefer no label to be displayed.

All this is best illustrated by way of examples, which are provided in the following sections.

CHAPTER 12. ITEM LABELS 84

12.6 Example 1 - Values Above a Threshold

12.6.1 Overview

In this first example, the goal is to display labels for the items that have a value greater than some
predefined threshold value (see figure 12.3).

Figure 12.3: Item labels above a threshold

It isn’t all that difficult to achieve, we simply need to:

• write a class that implements the CategoryItemLabelGenerator interface, and implement the
generateItemLabel() method in such a way that it returns null for any item where the value
is less than the threshold;

• create an instance of this new class, and assign it to the renderer using the setLabelGenerator()
method.

12.6.2 Source Code

The complete source code is presented below.

/* -------------------
* ItemLabelDemo1.java
* -------------------
* (C) Copyright 2004, 2005, by Object Refinery Limited.
*
*/

package demo;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Font;
import java.text.NumberFormat;

import javax.swing.JPanel;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.labels.AbstractCategoryItemLabelGenerator;
import org.jfree.chart.labels.CategoryItemLabelGenerator;
import org.jfree.chart.plot.CategoryPlot;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.renderer.category.CategoryItemRenderer;
import org.jfree.data.category.CategoryDataset;
import org.jfree.data.category.DefaultCategoryDataset;

CHAPTER 12. ITEM LABELS 85

import org.jfree.ui.ApplicationFrame;
import org.jfree.ui.RefineryUtilities;

/**
* A simple demo showing a label generator that only displays labels for items
* with a value that is greater than some threshold.
*/

public class ItemLabelDemo1 extends ApplicationFrame {

/**
* A custom label generator.
*/

static class LabelGenerator extends AbstractCategoryItemLabelGenerator
implements CategoryItemLabelGenerator {

/** The threshold. */
private double threshold;

/**
* Creates a new generator that only displays labels that are greater
* than or equal to the threshold value.
*
* @param threshold the threshold value.
*/

public LabelGenerator(double threshold) {
super("", NumberFormat.getInstance());
this.threshold = threshold;

}

/**
* Generates a label for the specified item. The label is typically a
* formatted version of the data value, but any text can be used.
*
* @param dataset the dataset (<code>null</code> not permitted).
* @param series the series index (zero-based).
* @param category the category index (zero-based).
*
* @return the label (possibly <code>null</code>).
*/

public String generateLabel(CategoryDataset dataset,
int series,
int category) {

String result = null;
Number value = dataset.getValue(series, category);
if (value != null) {

double v = value.doubleValue();
if (v > this.threshold) {

result = value.toString(); // could apply formatting here
}

}
return result;

}

}

/**
* Creates a new demo instance.
*
* @param title the frame title.
*/

public ItemLabelDemo1(String title) {

super(title);
CategoryDataset dataset = createDataset();
JFreeChart chart = createChart(dataset);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new Dimension(500, 270));
setContentPane(chartPanel);

}

/**
* Returns a sample dataset.
*
* @return The dataset.
*/

private static CategoryDataset createDataset() {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();

CHAPTER 12. ITEM LABELS 86

dataset.addValue(11.0, "S1", "C1");
dataset.addValue(44.3, "S1", "C2");
dataset.addValue(93.0, "S1", "C3");
dataset.addValue(35.6, "S1", "C4");
dataset.addValue(75.1, "S1", "C5");
return dataset;

}

/**
* Creates a sample chart.
*
* @param dataset the dataset.
*
* @return the chart.
*/

private static JFreeChart createChart(CategoryDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createBarChart(

"Item Label Demo 1", // chart title
"Category", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.VERTICAL, // orientation
false, // include legend
true, // tooltips?
false // URLs?

);

chart.setBackgroundPaint(Color.white);

CategoryPlot plot = chart.getCategoryPlot();
plot.setBackgroundPaint(Color.lightGray);
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setUpperMargin(0.15);

CategoryItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelGenerator(new LabelGenerator(50.0));
renderer.setItemLabelFont(new Font("Serif", Font.PLAIN, 20));
renderer.setItemLabelsVisible(true);

return chart;

}

/**
* Creates a panel for the demo (used by SuperDemo.java).
*
* @return A panel.
*/

public static JPanel createDemoPanel() {
JFreeChart chart = createChart(createDataset());
return new ChartPanel(chart);

}

/**
* Starting point for the demonstration application.
*
* @param args ignored.
*/

public static void main(String[] args) {

ItemLabelDemo1 demo = new ItemLabelDemo1("Item Label Demo 1");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo);
demo.setVisible(true);

}

}

CHAPTER 12. ITEM LABELS 87

12.7 Example 2 - Displaying Percentages

12.7.1 Overview

In this example, the requirement is to display a bar chart where each bar is labelled with the
value represented by the bar and also a percentage (where the percentage is calculated relative to
a particular bar within the series OR the total of all the values in the series)—see figure 12.4.

Figure 12.4: Percentage item labels

In this implementation, the label generator calculates the percentage value on-the-fly. If a category
index is supplied in the constructor, the base value used to calculate the percentage is taken from
the specified category within the current series. If no category index is available, then the total of
all the values in the current series is used as the base.

A default percentage formatter is created within the label generator—a more sophisticated im-
plementation would provide the ability for the formatter to be customised via the generator’s
constructor.

12.7.2 Source Code

The complete source code follows.

/* -------------------
* ItemLabelDemo2.java
* -------------------
* (C) Copyright 2005, by Object Refinery Limited.
*
*/

package demo;

import java.awt.Color;

/**
* A simple demo showing a label generator that displays labels that include
* a percentage calculation.
*/

public class ItemLabelDemo2 extends ApplicationFrame {

/**
* A custom label generator.
*/

static class LabelGenerator extends AbstractCategoryItemLabelGenerator
implements CategoryItemLabelGenerator {

/**
* The index of the category on which to base the percentage

CHAPTER 12. ITEM LABELS 88

* (null = use series total).
*/

private Integer category;

/** A percent formatter. */
private NumberFormat formatter = NumberFormat.getPercentInstance();

/**
* Creates a new label generator that displays the item value and a
* percentage relative to the value in the same series for the
* specified category.
*
* @param category the category index (zero-based).
*/

public LabelGenerator(int category) {
this(new Integer(category));

}

/**
* Creates a new label generator that displays the item value and
* a percentage relative to the value in the same series for the
* specified category. If the category index is <code>null</code>,
* the total of all items in the series is used.
*
* @param category the category index (<code>null</code> permitted).
*/

public LabelGenerator(Integer category) {
super("", NumberFormat.getInstance());
this.category = category;

}

/**
* Generates a label for the specified item. The label is typically
* a formatted version of the data value, but any text can be used.
*
* @param dataset the dataset (<code>null</code> not permitted).
* @param series the series index (zero-based).
* @param category the category index (zero-based).
*
* @return the label (possibly <code>null</code>).
*/

public String generateLabel(CategoryDataset dataset,
int series,
int category) {

String result = null;
double base = 0.0;
if (this.category != null) {

final Number b = dataset.getValue(series, this.category.intValue());
base = b.doubleValue();

}
else {

base = calculateSeriesTotal(dataset, series);
}
Number value = dataset.getValue(series, category);
if (value != null) {

final double v = value.doubleValue();
// you could apply some formatting here
result = value.toString()

+ " (" + this.formatter.format(v / base) + ")";
}
return result;

}

/**
* Calculates a series total.
*
* @param dataset the dataset.
* @param series the series index.
*
* @return The total.
*/

private double calculateSeriesTotal(CategoryDataset dataset, int series) {
double result = 0.0;
for (int i = 0; i < dataset.getColumnCount(); i++) {

Number value = dataset.getValue(series, i);
if (value != null) {

result = result + value.doubleValue();
}

}

CHAPTER 12. ITEM LABELS 89

return result;
}

}

/**
* Creates a new demo instance.
*
* @param title the frame title.
*/

public ItemLabelDemo2(String title) {

super(title);
CategoryDataset dataset = createDataset();
JFreeChart chart = createChart(dataset);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new Dimension(500, 270));
setContentPane(chartPanel);

}

/**
* Returns a sample dataset.
*
* @return the dataset.
*/

private static CategoryDataset createDataset() {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(100.0, "S1", "C1");
dataset.addValue(44.3, "S1", "C2");
dataset.addValue(93.0, "S1", "C3");
dataset.addValue(80.0, "S2", "C1");
dataset.addValue(75.1, "S2", "C2");
dataset.addValue(15.1, "S2", "C3");
return dataset;

}

/**
* Creates a sample chart.
*
* @param dataset the dataset.
*
* @return the chart.
*/

private static JFreeChart createChart(CategoryDataset dataset) {

// create the chart...
JFreeChart chart = ChartFactory.createBarChart(

"Item Label Demo 2", // chart title
"Category", // domain axis label
"Value", // range axis label
dataset, // data
PlotOrientation.HORIZONTAL, // orientation
true, // include legend
true, // tooltips?
false // URLs?

);

chart.setBackgroundPaint(Color.white);

CategoryPlot plot = chart.getCategoryPlot();
plot.setBackgroundPaint(Color.lightGray);
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);
plot.setRangeAxisLocation(AxisLocation.BOTTOM_OR_LEFT);

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setUpperMargin(0.25);

CategoryItemRenderer renderer = plot.getRenderer();
renderer.setItemLabelsVisible(true);

// use one or the other of the following lines to see the
// different modes for the label generator...
renderer.setItemLabelGenerator(new LabelGenerator(null));
//renderer.setLabelGenerator(new LabelGenerator(0));

return chart;

CHAPTER 12. ITEM LABELS 90

}

/**
* Creates a panel for the demo (used by SuperDemo.java).
*
* @return A panel.
*/

public static JPanel createDemoPanel() {
JFreeChart chart = createChart(createDataset());
return new ChartPanel(chart);

}

/**
* Starting point for the demonstration application.
*
* @param args ignored.
*/

public static void main(String[] args) {

ItemLabelDemo2 demo = new ItemLabelDemo2("Item Label Demo 2");
demo.pack();
RefineryUtilities.centerFrameOnScreen(demo);
demo.setVisible(true);

}

}

Chapter 13

Multiple Axes and Datasets

13.1 Introduction

JFreeChart supports the use of multiple axes and datasets in the CategoryPlot and XYPlot classes.
You can use this feature to display two or more datasets on a single chart, while making allowance
for the fact that the datasets may contain data of vastly different magnitudes—see figure 13.1 for
an example.

Figure 13.1: A chart with multiple axes

Typical charts constructed with JFreeChart use a plot that has a single dataset, a single renderer,
a single domain axis and a single range axis. However, it is possible to add multiple datasets,
renderers and axes to a plot. In this section, an example is presented showing how to use these
additional datasets, renderers and axes.

13.2 An Example

13.2.1 Introduction

The MultipleAxisDemo1.java application (included in the JFreeChart Demo distribution) provides
a good example of how to create a chart with multiple axes. This section provides some notes on
the steps taken within that code.

91

CHAPTER 13. MULTIPLE AXES AND DATASETS 92

13.2.2 Create a Chart

To create a chart with multiple axes, datasets, and renderers, you should first create a regular chart
(for example, using the ChartFactory class). You can use any chart that is constructed using a
CategoryPlot or an XYPlot. In the example, a time series chart is created as follows:

XYDataset dataset1 = createDataset("Series 1", 100.0, new Minute(), 200);
JFreeChart chart = ChartFactory.createTimeSeriesChart(

"Multiple Axis Demo 1",
"Time of Day",
"Primary Range Axis",
dataset1,
true,
true,
false

);

13.2.3 Adding an Additional Axis

To add an additional axis to a plot, you can use the setRangeAxis() method:

NumberAxis axis2 = new NumberAxis("Range Axis 2");
plot.setRangeAxis(1, axis2);
plot.setRangeAxisLocation(1, AxisLocation.BOTTOM OR RIGHT);

The setRangeAxis() method is used to add the axis to the plot. Note that an index of 1 (one) has
been used—you can add as many additional axes as you require, by incrementing the index each
time you add a new axis.

The setRangeAxisLocation() method allows you to specify where the axis will appear on the chart,
using the AxisLocation class. You can have the axis on the same side as the primary axis, or on
the opposite side—the choice is yours. In the example, BOTTOM OR RIGHT is specified, which means
(for a range axis) on the right if the plot has a vertical orientation, or at the bottom if the plot has
a horizontal orientation.

At this point, no additional dataset has been added to the chart, so if you were to display the chart
you would see the additional axis, but it would have no data plotted against it.

13.2.4 Adding an Additional Dataset

To add an additional dataset to a plot, use the setDataset() method:

XYDataset dataset2 = ... // up to you
plot.setDataset(1, dataset2);

By default, the dataset will be plotted against the primary range axis. To have the dataset plotted
against a different axis, use the mapDatasetToDomainAxis() and mapDatasetToRangeAxis() methods.
These methods accept two arguments, the first is the index of the dataset, and the second is the
index of the axis.

13.2.5 Adding an Additional Renderer

When you add an additional dataset, usually it makes sense to add an additional renderer to go
with the dataset. Use the setRenderer() method:

XYItemRenderer renderer2 = ... // up to you

plot.setRenderer(1, renderer2);

The index (1 in this case) should correspond to the index of the dataset added previously.

Note: if you don’t specify an additional renderer, the primary renderer will be used instead. In
that case, the series colors will be shared between the primary dataset and the additional dataset.

CHAPTER 13. MULTIPLE AXES AND DATASETS 93

13.3 Hints and Tips

When using multiple axes, you need to provide some visual cue to readers to indicate which axis
applies to a particular series. In the MultipleAxisDemo1.java application, the color of the axis label
text has been changed to match the series color.

Additional demos available for download with the JFreeChart Developer Guide include:

• DualAxisDemo1.java

• DualAxisDemo2.java

• DualAxisDemo3.java

• DualAxisDemo4.java

• MultipleAxisDemo1.java

• MultipleAxisDemo2.java

• MultipleAxisDemo3.java

Chapter 14

Combined Charts

14.1 Introduction

JFreeChart supports combined charts via several plot classes that can manage any number of sub-
plots:

• CombinedDomainCategoryPlot / CombinedRangeCategoryPlot;

• CombinedDomainXYPlot / CombinedRangeXYPlot;

This section presents a few examples that use the combined chart facilities provided by JFreeChart.
All the examples are included in the JFreeChart demo collection.

14.2 Combined Domain Category Plot

14.2.1 Overview

A combined domain category plot is a plot that displays two or more subplots (instances of CategoryPlot)
that share a common domain axis. Each subplot maintains its own range axis. An example is shown
in figure 14.1.

Figure 14.1: A combined domain category plot

It is possible to display this chart with a horizontal or vertical orientation—the example shown has
a vertical orientation.

94

CHAPTER 14. COMBINED CHARTS 95

14.2.2 Constructing the Chart

A demo application (CombinedCategoryPlotDemo1.java, available for download with the JFreeChart
Developer Guide) provides an example of how to create this type of chart. The key step is the
creation of a CombinedDomainCategoryPlot instance, to which subplots are added:

CategoryAxis domainAxis = new CategoryAxis("Category");
CombinedDomainCategoryPlot plot = new CombinedDomainCategoryPlot(domainAxis);
plot.add(subplot1, 2);
plot.add(subplot2, 1);

JFreeChart result = new JFreeChart(
"Combined Domain Category Plot Demo",
new Font("SansSerif", Font.BOLD, 12),
plot,
true

);

Notice how subplot1 has been added with a weight of 2 (the second argument in the add() method,
while subplot2 has been added with a weight of 1. This controls the amount of space allocated to
each plot.

The subplots are regular CategoryPlot instances that have had their domain axis set to null. For
example, in the demo application the following code is used (it includes some customisation of the
subplots):

CategoryDataset dataset1 = createDataset1();
NumberAxis rangeAxis1 = new NumberAxis("Value");
rangeAxis1.setStandardTickUnits(NumberAxis.createIntegerTickUnits());
LineAndShapeRenderer renderer1 = new LineAndShapeRenderer();
renderer1.setBaseToolTipGenerator(new StandardCategoryToolTipGenerator());
CategoryPlot subplot1 = new CategoryPlot(dataset1, null, rangeAxis1, renderer1);
subplot1.setDomainGridlinesVisible(true);

CategoryDataset dataset2 = createDataset2();
NumberAxis rangeAxis2 = new NumberAxis("Value");
rangeAxis2.setStandardTickUnits(NumberAxis.createIntegerTickUnits());
BarRenderer renderer2 = new BarRenderer();
renderer2.setBaseToolTipGenerator(new StandardCategoryToolTipGenerator());
CategoryPlot subplot2 = new CategoryPlot(dataset2, null, rangeAxis2, renderer2);
subplot2.setDomainGridlinesVisible(true);

14.3 Combined Range Category Plot

14.3.1 Overview

A combined range category plot is a plot that displays two or more subplots (instances of CategoryPlot)
that share a common range axis. Each subplot maintains its own domain axis. An example is shown
in figure 14.2.

It is possible to display this chart with a horizontal or vertical orientation (the example above has
a vertical orientation).

14.3.2 Constructing the Chart

A demo application (CombinedCategoryPlotDemo2.java, available for download with the JFreeChart
Developer Guide) provides an example of how to create this type of chart. The key step is the
creation of a CombinedRangeCategoryPlot instance, to which subplots are added:

ValueAxis rangeAxis = new NumberAxis("Value");
CombinedRangeCategoryPlot plot = new CombinedRangeCategoryPlot(rangeAxis);
plot.add(subplot1, 3);
plot.add(subplot2, 2);

JFreeChart result = new JFreeChart(
"Combined Range Category Plot Demo",
new Font("SansSerif", Font.BOLD, 12),
plot,
true

);

CHAPTER 14. COMBINED CHARTS 96

Figure 14.2: A combined range category plot.

Notice how subplot1 has been added with a weight of 3 (the second argument in the add() method),
while subplot2 has been added with a weight of 2. This controls the amount of space allocated to
each plot.

The subplots are regular CategoryPlot instances that have had their range axis set to null. For
example, in the demo application the following code is used (it includes some customisation of the
subplots):

CategoryDataset dataset1 = createDataset1();
CategoryAxis domainAxis1 = new CategoryAxis("Class 1");
domainAxis1.setCategoryLabelPositions(CategoryLabelPositions.UP 45);
domainAxis1.setMaxCategoryLabelWidthRatio(5.0f);
LineAndShapeRenderer renderer1 = new LineAndShapeRenderer();
renderer1.setBaseToolTipGenerator(new StandardCategoryToolTipGenerator());
CategoryPlot subplot1 = new CategoryPlot(dataset1, domainAxis1, null, renderer1);
subplot1.setDomainGridlinesVisible(true);

CategoryDataset dataset2 = createDataset2();
CategoryAxis domainAxis2 = new CategoryAxis("Class 2");
domainAxis2.setCategoryLabelPositions(CategoryLabelPositions.UP 45);
domainAxis2.setMaxCategoryLabelWidthRatio(5.0f);
BarRenderer renderer2 = new BarRenderer();
renderer2.setBaseToolTipGenerator(new StandardCategoryToolTipGenerator());
CategoryPlot subplot2 = new CategoryPlot(dataset2, domainAxis2, null, renderer2);
subplot2.setDomainGridlinesVisible(true);

14.4 Combined Domain XY Plot

14.4.1 Overview

A combined domain XY plot is a plot that displays two or more subplots (instances of XYPlot) that
share a common domain axis. Each subplot maintains its own range axis. An example is shown in
figure 14.3.

It is possible to display this chart with a horizontal or vertical orientation (the example shown has
a vertical orientation).

14.4.2 Constructing the Chart

A demo application (CombinedXYPlotDemo1.java, available for download with the JFreeChart Devel-
oper Guide) provides an example of how to create this type of chart. The key step is the creation
of a CombinedDomainXYPlot instance, to which subplots are added:

CombinedDomainXYPlot plot = new CombinedDomainXYPlot(new NumberAxis("Domain"));
plot.setGap(10.0);

CHAPTER 14. COMBINED CHARTS 97

Figure 14.3: A combined domain XY plot

plot.add(subplot1, 1);
plot.add(subplot2, 1);
plot.setOrientation(PlotOrientation.VERTICAL);

return new JFreeChart(
"CombinedDomainXYPlot Demo",
JFreeChart.DEFAULT TITLE FONT, plot, true

);

Notice how the subplots are added with weights (both 1 in this case). This controls the amount of
space allocated to each plot.

The subplots are regular XYPlot instances that have had their domain axis set to null. For example,
in the demo application the following code is used (it includes some customisation of the subplots):

XYDataset data1 = createDataset1();
XYItemRenderer renderer1 = new StandardXYItemRenderer();
NumberAxis rangeAxis1 = new NumberAxis("Range 1");
XYPlot subplot1 = new XYPlot(data1, null, rangeAxis1, renderer1);
subplot1.setRangeAxisLocation(AxisLocation.BOTTOM OR LEFT);

XYTextAnnotation annotation = new XYTextAnnotation("Hello!", 50.0, 10000.0);
annotation.setFont(new Font("SansSerif", Font.PLAIN, 9));
annotation.setRotationAngle(Math.PI / 4.0);
subplot1.addAnnotation(annotation);

// create subplot 2...
XYDataset data2 = createDataset2();
XYItemRenderer renderer2 = new StandardXYItemRenderer();
NumberAxis rangeAxis2 = new NumberAxis("Range 2");
rangeAxis2.setAutoRangeIncludesZero(false);
XYPlot subplot2 = new XYPlot(data2, null, rangeAxis2, renderer2);
subplot2.setRangeAxisLocation(AxisLocation.TOP OR LEFT);

14.5 Combined Range XY Plot

14.5.1 Overview

A combined range XY plot is a plot that displays two or more subplots (instances of XYPlot) that
share a common range axis. Each subplot maintains its own domain axis. An example is shown in
figure 14.4.

It is possible to display this chart with a horizontal or vertical orientation (the example shown has
a vertical orientation).

CHAPTER 14. COMBINED CHARTS 98

Figure 14.4: A combined range XY plot

14.5.2 Constructing the Chart

A demo application (CombinedXYPlotDemo2.java, available for download with the JFreeChart Devel-
oper Guide) provides an example of how to create this type of chart. The key step is the creation
of a CombinedRangeXYPlot instance, to which subplots are added:

// create the plot...
CombinedRangeXYPlot plot = new CombinedRangeXYPlot(new NumberAxis("Value"));
plot.add(subplot1, 1);
plot.add(subplot2, 1);

return new JFreeChart(
"Combined (Range) XY Plot",
JFreeChart.DEFAULT TITLE FONT, plot, true

);

Notice how the subplots are added with weights (both 1 in this case). This controls the amount of
space allocated to each plot.

The subplots are regular XYPlot instances that have had their range axis set to null. For example,
in the demo application the following code is used (it includes some customisation of the subplots):

// create subplot 1...
IntervalXYDataset data1 = createDataset1();
XYItemRenderer renderer1 = new XYBarRenderer(0.20);
renderer1.setToolTipGenerator(

new StandardXYToolTipGenerator(
new SimpleDateFormat("d-MMM-yyyy"), new DecimalFormat("0,000.0")

)
);
XYPlot subplot1 = new XYPlot(data1, new DateAxis("Date"), null, renderer1);

// create subplot 2...
XYDataset data2 = createDataset2();
XYItemRenderer renderer2 = new StandardXYItemRenderer();
renderer2.setToolTipGenerator(

new StandardXYToolTipGenerator(
new SimpleDateFormat("d-MMM-yyyy"), new DecimalFormat("0,000.0")

)
);
XYPlot subplot2 = new XYPlot(data2, new DateAxis("Date"), null, renderer2);

Chapter 15

Datasets and JDBC

15.1 Introduction

In this section, I describe the use of several datasets that are designed to work with JDBC to obtain
data from database tables:

• JDBCPieDataset

• JDBCCategoryDataset

• JDBCXYDataset

These datasets have been developed by Bryan Scott of the Australian Antarctic Division.

15.2 About JDBC

JDBC is a high-level Java API for working with relational databases. JDBC does a good job of
furthering Java’s platform independence, making it possible to write portable code that will work
with many different database systems.

JDBC provides a mechanism for loading a JDBC driver specific to the database system actually
being used. JDBC drivers are available for many databases, on many different platforms.

15.3 Sample Data

To see the JDBC datasets in action, you need to create some sample data in a test database.

Here is listed some sample data that will be used to create a pie chart, a bar chart and a time series
chart.

A pie chart will be created using this data (in a table called piedata1):

CATEGORY | VALUE

---------+------

London | 54.3

New York | 43.4

Paris | 17.9

Similarly, a bar chart will be created using this data (in a table called categorydata1):

CATEGORY | SERIES1 | SERIES2 | SERIES3

---------+---------+---------+--------

London | 54.3 | 32.1 | 53.4

New York | 43.4 | 54.3 | 75.2

Paris | 17.9 | 34.8 | 37.1

99

CHAPTER 15. DATASETS AND JDBC 100

Finally, a time series chart will be generated using this data (in a table called xydata1):

X | SERIES1 | SERIES2 | SERIES3

-----------+---------+---------+--------

1-Aug-2002 | 54.3 | 32.1 | 53.4

2-Aug-2002 | 43.4 | 54.3 | 75.2

3-Aug-2002 | 39.6 | 55.9 | 37.1

4-Aug-2002 | 35.4 | 55.2 | 27.5

5-Aug-2002 | 33.9 | 49.8 | 22.3

6-Aug-2002 | 35.2 | 48.4 | 17.7

7-Aug-2002 | 38.9 | 49.7 | 15.3

8-Aug-2002 | 36.3 | 44.4 | 12.1

9-Aug-2002 | 31.0 | 46.3 | 11.0

You should set up a test database containing these tables...ask your database administrator to help
you if necessary. I’ve called my test database jfreechartdb, but you can change the name if you
want to.

In the next section I document the steps I used to set up this sample data usingPostgreSQL, the
database system that I have available for testing purposes. If you are using a different system,
you may need to perform a slightly different procedure—refer to your database documentation for
information.

15.4 PostgreSQL

15.4.1 About PostgreSQL

PostgreSQL is a powerful object-relational database server, distributed under an open-source licence.
You can find out more about PostgreSQL at:

http://www.postgresql.org

Note: although PostgreSQL is free, it has most of the features of large commercial relational
database systems. I encourage you to install it and try it out.

15.4.2 Creating a New Database

First, while logged in as the database administrator, I create a test database called jfreechartdb:

CREATE DATABASE jfreechartdb;

Next, I create a user jfreechart:

CREATE USER jfreechart WITH PASSWORD ’password’;

This username and password will be used to connect to the database via JDBC.

15.4.3 Creating the Pie Chart Data

To create the table for the pie dataset:

CREATE TABLE piedata1 (

category VARCHAR(32),

value FLOAT

);

...and to populate it:

INSERT INTO piedata1 VALUES (’London’, 54.3);

INSERT INTO piedata1 VALUES (’New York’, 43.4);

INSERT INTO piedata1 VALUES (’Paris’, 17.9);

CHAPTER 15. DATASETS AND JDBC 101

15.4.4 Creating the Category Chart Data

To create the table for the category dataset:

CREATE TABLE categorydata1 (

category VARCHAR(32),

series1 FLOAT,

series2 FLOAT,

series3 FLOAT

);

...and to populate it:

INSERT INTO categorydata1 VALUES (’London’, 54.3, 32.1, 53.4);

INSERT INTO categorydata1 VALUES (’New York’, 43.4, 54.3, 75.2);

INSERT INTO categorydata1 VALUES (’Paris’, 17.9, 34.8, 37.1);

15.4.5 Creating the XY Chart Data

To create the table for the XY dataset:

CREATE TABLE xydata1 (

date DATE,

series1 FLOAT,

series2 FLOAT,

series3 FLOAT

);

...and to populate it:

INSERT INTO xydata1 VALUES (’1-Aug-2002’, 54.3, 32.1, 53.4);

INSERT INTO xydata1 VALUES (’2-Aug-2002’, 43.4, 54.3, 75.2);

INSERT INTO xydata1 VALUES (’3-Aug-2002’, 39.6, 55.9, 37.1);

INSERT INTO xydata1 VALUES (’4-Aug-2002’, 35.4, 55.2, 27.5);

INSERT INTO xydata1 VALUES (’5-Aug-2002’, 33.9, 49.8, 22.3);

INSERT INTO xydata1 VALUES (’6-Aug-2002’, 35.2, 48.4, 17.7);

INSERT INTO xydata1 VALUES (’7-Aug-2002’, 38.9, 49.7, 15.3);

INSERT INTO xydata1 VALUES (’8-Aug-2002’, 36.3, 44.4, 12.1);

INSERT INTO xydata1 VALUES (’9-Aug-2002’, 31.0, 46.3, 11.0);

Granting Table Permissions

The last step in setting up the sample database is to grant read access to the new tables to the user
jfreechart:

GRANT SELECT ON piedata1 TO jfreechart;

GRANT SELECT ON categorydata1 TO jfreechart;

GRANT SELECT ON xydata1 TO jfreechart;

15.5 The JDBC Driver

To access the sample data via JDBC, you need to obtain a JDBC driver for your database. For
PostgreSQL, I downloaded a free driver from:

http://jdbc.postgresql.org

In order to use this driver, I need to ensure that the jar file containing the driver is on the classpath.

CHAPTER 15. DATASETS AND JDBC 102

15.6 The Demo Applications

15.6.1 JDBCPieChartDemo

The JDBCPieChartDemo application will generate a pie chart using the data in the piedata1 table,
providing that you have configured your database correctly.

The code for reading the data is in the readData() method:
private PieDataset readData() {

JDBCPieDataset data = null;

String url = "jdbc:postgresql://nomad/jfreechartdb";
Connection con;

try {
Class.forName("org.postgresql.Driver");

}
catch (ClassNotFoundException e) {

System.err.print("ClassNotFoundException: ");
System.err.println(e.getMessage());

}

try {
con = DriverManager.getConnection(url, "jfreechart", "password");

data = new JDBCPieDataset(con);
String sql = "SELECT * FROM PIEDATA1;";
data.executeQuery(sql);
con.close();

}

catch (SQLException e) {
System.err.print("SQLException: ");
System.err.println(e.getMessage());

}

catch (Exception e) {
System.err.print("Exception: ");
System.err.println(e.getMessage());

}

return data;

}

Important things to note in the code are:

• the url used to reference the test database includes the name of my test server (nomad), you
will need to modify this;

• a connection is made to the database using the username/password combination jfreechart/password;

• the query used to pull the data from the database is a standard SELECT query, but you
can use any SQL query as long as it returns columns in the required format (refer to the
JDBCPieDataset class documentation for details).

15.6.2 JDBCCategoryChartDemo

The JDBCCategoryChartDemo application generates a bar chart using the data in the categorydata1
table. The code is almost identical to the JDBCPieChartDemo. Once again, you can use any SQL
query as long as it returns columns in the required format (refer to the JDBCCategoryDataset class
documentation for details).

15.6.3 JDBCXYChartDemo

The JDBCXYChartDemo application generates a time series chart using the data in the xydata1 table.
The code is almost identical to the JDBCPieChartDemo. Once again, you can use any SQL query as
long as it returns columns in the required format (refer to the JDBCXYDataset class documentation
for details).

Chapter 16

Exporting Charts to Acrobat PDF

16.1 Introduction

In this section, I describe how to export a chart to an Acrobat PDF file using JFreeChart and
iText. Along with the description, I provide a small demonstration application that creates a PDF
file containing a basic chart. The resulting file can be viewed using Acrobat Reader, or any other
software that is capable of reading and displaying PDF files.

16.2 What is Acrobat PDF?

Acrobat PDF is a widely used electronic document format. Its popularity is due, at least in part,
to its ability to reproduce high quality output on a variety of different platforms.

PDF was created by Adobe Systems Incorporated. Adobe provide a free (but closed source) ap-
plication called Acrobat Reader for reading PDF documents. Acrobat Reader is available on most
end-user computing platforms, including GNU/Linux, Windows, Unix, Macintosh and others.

If your system doesn’t have Acrobat Reader installed, you can download a copy from:

http://www.adobe.com/products/acrobat/readstep.html

On some platforms, there are free (in the GNU sense) software packages available for viewing PDF
files. Ghostview on Linux is one example.

16.3 iText

iText is a popular free Java class library for creating documents in PDF format. It is developed by
Bruno Lowagie, Paulo Soares and others. The home page for iText is:

http://www.lowagie.com/iText

At the time of writing, the latest version of iText is 2.0.1.

16.4 Graphics2D

JFreeChart can work easily with iText because iText provides a Graphics2D implementation. Before
I proceed to the demonstration application, I will briefly review the Graphics2D class.

The java.awt.Graphics2D class, part of the standard Java 2D API, defines a range of methods for
drawing text and graphics in a two dimensional space. Particular subclasses of Graphics2D handle
all the details of mapping the output (text and graphics) to specific devices.

103

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 104

JFreeChart has been designed to draw charts using only the methods defined by the Graphics2D
class. This means that JFreeChart can generate output to any target that can provide a Graphics2D
subclass.

JFreeChart

+draw(Graphics2D)

PDF

Graphics2D

Figure 16.1: The JFreeChart draw() method

iText incorporates a PdfGraphics2D class, which means that iText is capable of generating PDF
content based on calls to the methods defined by the Graphics2D class...and this makes it easy to
produce charts in PDF format, as you will see in the following sections.

16.5 Getting Started

To compile and run the demonstration application, you will need the following jar files:

File: Description:

jfreechart-1.0.9.jar The JFreeChart class library.
jcommon-1.0.12.jar The JCommon class library (used by JFreeChart).
itext-2.0.1.jar The iText class library.

The first two files are included with JFreeChart, and the third is the iText runtime.

16.6 The Application

The first thing the sample application needs to do is create a chart. Here we create a time series
chart:

// create a chart...
XYDataset dataset = createDataset();
JFreeChart chart = ChartFactory.createTimeSeriesChart(

"Legal & General Unit Trust Prices",
"Date",
"Price Per Unit",
dataset,
true,
true,
false

);

// some additional chart customisation here...

There is nothing special here—in fact you could replace the code above with any other code that
creates a JFreeChart object. You are encouraged to experiment.

Next, I will save a copy of the chart in a PDF file:

// write the chart to a PDF file...
File fileName = new File(System.getProperty("user.home") + "/jfreechart1.pdf");
saveChartAsPDF(fileName, chart, 400, 300, new DefaultFontMapper());

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 105

There are a couple of things to note here.

First, I have hard-coded the filename used for the PDF file. I’ve done this to keep the sample
code short. In a real application, you would provide some other means for the user to specify the
filename, perhaps by presenting a file chooser dialog.

Second, the saveChartAsPDF() method hasn’t been implemented yet! To create that method, I’ll
first write another more general method, writeChartAsPDF(). This method performs most of the
work that will be required by the saveChartAsPDF() method, but it writes data to an output stream
rather than a file.

public static void writeChartAsPDF(OutputStream out,
JFreeChart chart,
int width,
int height,
FontMapper mapper) throws IOException {

Rectangle pagesize = new Rectangle(width, height);
Document document = new Document(pagesize, 50, 50, 50, 50);
try {

PdfWriter writer = PdfWriter.getInstance(document, out);
document.addAuthor("JFreeChart");
document.addSubject("Demonstration");
document.open();
PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(width, height);
Graphics2D g2 = tp.createGraphics(width, height, mapper);
Rectangle2D r2D = new Rectangle2D.Double(0, 0, width, height);
chart.draw(g2, r2D);
g2.dispose();
cb.addTemplate(tp, 0, 0);

}
catch (DocumentException de) {

System.err.println(de.getMessage());
}
document.close();

}

Inside this method, you will see some code that sets up and opens an iText document, obtains a
Graphics2D instance from the document, draws the chart using the Graphics2D object, and closes
the document.

You will also notice that one of the parameters for this method is a FontMapper object. The
FontMapper interface maps Java Font objects to the BaseFont objects used by iText.

The DefaultFontMapper class is predefined with default mappings for the Java logical fonts. If you
use only these fonts, then it is enough to create a DefaultFontMapper using the default constructor.
If you want to use other fonts (for example, a font that supports a particular character set) then
you need to do more work. I’ll give an example of this later.

In the implementation of the writeChartAsPDF() method, I’ve chosen to create a PDF document
with a custom page size (matching the requested size of the chart). You can easily adapt the code
to use a different page size, alter the size and position of the chart and even draw multiple charts
inside one PDF document.

Now that I have a method to send PDF data to an output stream, it is straightforward to imple-
ment the saveChartAsPDF() method. Simply create a FileOutputStream and pass it on to the
writeChartAsPDF() method:

public static void saveChartAsPDF(File file,
JFreeChart chart,
int width,
int height,
FontMapper mapper) throws IOException {

OutputStream out = new BufferedOutputStream(new FileOutputStream(file));
writeChartAsPDF(out, chart, width, height, mapper);
out.close();

}

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 106

This is all the code that is required. The pieces can be assembled into the following program
(reproduced in full here so that you can see all the required import statements and the context in
which the code is run):

/* -------------------
* PDFExportDemo1.java
* -------------------
* (C) Copyright 2002-2005, by Object Refinery Limited.
*
*/

package demo.pdf;

import java.awt.Graphics2D;
import java.awt.geom.Rectangle2D;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.text.SimpleDateFormat;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.DateAxis;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.time.Month;
import org.jfree.data.time.TimeSeries;
import org.jfree.data.time.TimeSeriesCollection;
import org.jfree.data.xy.XYDataset;

import com.lowagie.text.Document;
import com.lowagie.text.DocumentException;
import com.lowagie.text.Rectangle;
import com.lowagie.text.pdf.DefaultFontMapper;
import com.lowagie.text.pdf.FontMapper;
import com.lowagie.text.pdf.PdfContentByte;
import com.lowagie.text.pdf.PdfTemplate;
import com.lowagie.text.pdf.PdfWriter;

/**
* A simple demonstration showing how to write a chart to PDF format using
* JFreeChart and iText.
* <P>
* You can download iText from http://www.lowagie.com/iText.
*/

public class PDFExportDemo1 {

/**
* Saves a chart to a PDF file.
*
* @param file the file.
* @param chart the chart.
* @param width the chart width.
* @param height the chart height.
*/

public static void saveChartAsPDF(File file,
JFreeChart chart,
int width,
int height,
FontMapper mapper) throws IOException {

OutputStream out = new BufferedOutputStream(new FileOutputStream(file));
writeChartAsPDF(out, chart, width, height, mapper);
out.close();

}

/**
* Writes a chart to an output stream in PDF format.
*
* @param out the output stream.
* @param chart the chart.
* @param width the chart width.
* @param height the chart height.
*
*/

public static void writeChartAsPDF(OutputStream out,
JFreeChart chart,

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 107

int width,
int height,
FontMapper mapper) throws IOException {

Rectangle pagesize = new Rectangle(width, height);
Document document = new Document(pagesize, 50, 50, 50, 50);
try {

PdfWriter writer = PdfWriter.getInstance(document, out);
document.addAuthor("JFreeChart");
document.addSubject("Demonstration");
document.open();
PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(width, height);
Graphics2D g2 = tp.createGraphics(width, height, mapper);
Rectangle2D r2D = new Rectangle2D.Double(0, 0, width, height);
chart.draw(g2, r2D);
g2.dispose();
cb.addTemplate(tp, 0, 0);

}
catch (DocumentException de) {

System.err.println(de.getMessage());
}
document.close();

}

/**
* Creates a dataset, consisting of two series of monthly data. * *
*
* @return the dataset.
*/

public static XYDataset createDataset() {

TimeSeries s1 = new TimeSeries("L&G European Index Trust", Month.class);
s1.add(new Month(2, 2001), 181.8);
s1.add(new Month(3, 2001), 167.3);
s1.add(new Month(4, 2001), 153.8);
s1.add(new Month(5, 2001), 167.6);
s1.add(new Month(6, 2001), 158.8);
s1.add(new Month(7, 2001), 148.3);
s1.add(new Month(8, 2001), 153.9);
s1.add(new Month(9, 2001), 142.7);
s1.add(new Month(10, 2001), 123.2);
s1.add(new Month(11, 2001), 131.8);
s1.add(new Month(12, 2001), 139.6);
s1.add(new Month(1, 2002), 142.9);
s1.add(new Month(2, 2002), 138.7);
s1.add(new Month(3, 2002), 137.3);
s1.add(new Month(4, 2002), 143.9);
s1.add(new Month(5, 2002), 139.8);
s1.add(new Month(6, 2002), 137.0);
s1.add(new Month(7, 2002), 132.8);

TimeSeries s2 = new TimeSeries("L&G UK Index Trust", Month.class);
s2.add(new Month(2, 2001), 129.6);
s2.add(new Month(3, 2001), 123.2);
s2.add(new Month(4, 2001), 117.2);
s2.add(new Month(5, 2001), 124.1);
s2.add(new Month(6, 2001), 122.6);
s2.add(new Month(7, 2001), 119.2);
s2.add(new Month(8, 2001), 116.5);
s2.add(new Month(9, 2001), 112.7);
s2.add(new Month(10, 2001), 101.5);
s2.add(new Month(11, 2001), 106.1);
s2.add(new Month(12, 2001), 110.3);
s2.add(new Month(1, 2002), 111.7);
s2.add(new Month(2, 2002), 111.0);
s2.add(new Month(3, 2002), 109.6);
s2.add(new Month(4, 2002), 113.2);
s2.add(new Month(5, 2002), 111.6);
s2.add(new Month(6, 2002), 108.8);
s2.add(new Month(7, 2002), 101.6);

TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(s1);
dataset.addSeries(s2);

return dataset;
}

public static void main(String[] args) {
try {

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 108

// create a chart...
XYDataset dataset = createDataset();
JFreeChart chart = ChartFactory.createTimeSeriesChart(

"Legal & General Unit Trust Prices",
"Date",
"Price Per Unit",
dataset,
true,
true,
false

);

// some additional chart customisation here...
XYPlot plot = chart.getXYPlot();
XYLineAndShapeRenderer renderer

= (XYLineAndShapeRenderer) plot.getRenderer();
renderer.setShapesVisible(true);
DateAxis axis = (DateAxis) plot.getDomainAxis();
axis.setDateFormatOverride(new SimpleDateFormat("MMM-yyyy"));

// write the chart to a PDF file...
File fileName = new File(System.getProperty("user.home")

+ "/jfreechart1.pdf");
saveChartAsPDF(fileName, chart, 400, 300, new DefaultFontMapper());

}
catch (IOException e) {

System.out.println(e.getMessage());
}

}

}

Before you compile and run the application, remember to change the file name used for the PDF
file to something appropriate for your system! And include the jar files listed in section 16.5 on
your classpath.

16.7 Viewing the PDF File

After compiling and running the sample application, you can view the resulting PDF file using a
PDF viewer like Acrobat Reader (or, in my case, Gnome PDF Viewer):

Most PDF viewer applications provide zooming features that allow you to get a close up view of
your charts.

16.8 Unicode Characters

It is possible to use the full range of Unicode characters in JFreeChart and iText, as long as you
are careful about which fonts you use. In this section, I present some modifications to the previous
example to show how to do this.

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 109

16.8.1 Background

Internally, Java uses the Unicode character encoding to represent text strings. This encoding uses
sixteen bits per character, which means there are potentially 65,536 different characters available
(the Unicode standard defines something like 38,000 characters).

You can use any of these characters in both JFreeChart and iText, subject to one proviso: the font
you use to display the text must define the characters used or you will not be able to see them.

Many fonts are not designed to display the entire Unicode character set. The following website
contains useful information about fonts that do support Unicode (at least to some extent):

http://www.slovo.info/unifonts.htm

I have tried out the tahoma.ttf font with success. In fact, I will use this font in the example
that follows. The Tahoma font doesn’t support every character defined in Unicode, so if you have
specific requirements then you need to choose an appropriate font. At one point I had the Arial
Unicode MS font (arialuni.ttf) installed on my system—this has support for the full Unicode
character set, although this means that the font definition file is quite large (around 24 megabytes!)

16.8.2 Fonts, iText and Java

iText has to handle fonts according to the PDF specification. This deals with document portability
by allowing fonts to be (optionally) embedded in a PDF file. This requires access to the font
definition file.

Java, on the other hand, abstracts away some of the details of particular font formats with the use
of the Font class.

To support the Graphics2D implementation in iText, it is necessary to map Font objects from Java
to BaseFont objects in iText. This is the role of the FontMapper interface.

If you create a new DefaultFontMapper instance using the default constructor, it will already
contain sensible mappings for the logical fonts defined by the Java specification. But if you want
to use additional fonts—and you must if you want to use a wide range of Unicode characters—then
you need to add extra mappings to the DefaultFontMapper object.

16.8.3 Mapping Additional Fonts

I’ve decided to use the Tahoma font to display a chart title that incorporates some Unicode charac-
ters. The font definition file (tahoma.ttf) is located, on my system, in the directory:

/opt/sun-jdk-1.4.2.08/jre/lib/fonts

Here’s the code used to create the FontMapper for use by iText—I’ve based this on an example
written by Paulo Soares:

DefaultFontMapper mapper = new DefaultFontMapper();
mapper.insertDirectory("/opt/sun-jdk-1.4.2.08/jre/lib/fonts");
DefaultFontMapper.BaseFontParameters pp =

mapper.getBaseFontParameters("Tahoma");
if (pp!=null) {

pp.encoding = BaseFont.IDENTITY_H;
}

Now I can modify the code that creates the chart, in order to add a custom title to the chart (I’ve
changed the data and chart type also):

// create a chart...
TimeSeries series = new TimeSeries("Random Data");
Day current = new Day(1, 1, 2000);
double value = 100.0;
for (int i = 0; i < 1000; i++) {

try {
value = value + Math.random() - 0.5;

CHAPTER 16. EXPORTING CHARTS TO ACROBAT PDF 110

series.add(current, new Double(value));
current = (Day) current.next();

}
catch (SeriesException e) {

System.err.println("Error adding to series");
}

}
XYDataset data = new TimeSeriesCollection(series);
JFreeChart chart = ChartFactory.createTimeSeriesChart(

"Test",
"Date",
"Value",
data,
true,
false,
false

);

// Unicode test...
String text = "\u278A\u20A0\u20A1\u20A2\u20A3\u20A4\u20A5\u20A6\u20A7\u20A8\u20A9";
//String text = "hi";
Font font = new Font("Tahoma", Font.PLAIN, 12);
TextTitle subtitle = new TextTitle(text, font);
chart.addSubtitle(subtitle);

Notice that the subtitle (a random collection of currency symbols) is defined using escape sequences
to specify each Unicode character. This avoids any problems with encoding conversions when I save
the Java source file.

The output from the modified sample program is shown in figure 16.2. The example has been
embedded in this document in PDF format, so it is a good example of the type of output you can
expect by following the instructions in this document.

Test

Random Data

Jan-2000 Jul-2000 Jan-2001 Jul-2001 Jan-2002 Jul-2002

Date

85.0

87.5

90.0

92.5

95.0

97.5

100.0

102.5

V
a

lu
e

Figure 16.2: A Unicode subtitle

Chapter 17

Exporting Charts to SVG Format

17.1 Introduction

In this section, I present an example that shows how to export charts to SVG format, using
JFreeChart and Batik (an open source library for working with SVG).

17.2 Background

17.2.1 What is SVG?

Scalable Vector Graphics (SVG) is a standard language for describing two-dimensional graphics in
XML format. It is a Recommendation of the World Wide Web Consortium (W3C).

17.2.2 Batik

Batik is an open source toolkit, written in Java, that allows you to generate SVG content. Batik is
available from:

http://xml.apache.org/batik

At the time of writing, the latest stable version of Batik is 1.6.

17.3 A Sample Application

17.3.1 JFreeChart and Batik

JFreeChart and Batik can work together relatively easily because:

• JFreeChart draws all chart output using Java’s Graphics2D abstraction; and

• Batik provides a concrete implementation of Graphics2D that generates SVG output (SVGGraphics2D).

In this section, a simple example is presented to get you started using JFreeChart and Batik. The
example is based on the technique described here:

http://xml.apache.org/batik/svggen.html

111

CHAPTER 17. EXPORTING CHARTS TO SVG FORMAT 112

17.3.2 Getting Started

First, you should download Batik and install it according to the instructions provided on the Batik
web page.

To compile and run the sample program presented in the next section, you need to ensure that the
following jar files are on your classpath:

File: Description:

jcommon-1.0.12.jar Common classes from JFree.
jfreechart-1.0.9.jar The JFreeChart class library.
batik-awt-util.jar Batik runtime files.
batik-dom.jar Batik runtime files.
batik-svggen.jar Batik runtime files.
batik-util.jar Batik runtime files.

17.3.3 The Application

Create a project in your favourite Java development environment, add the libraries listed in the
previous section, and type in the following program (or easier, grab a copy of the source from the
JFreeChart demo collection):

/* ------------------
* SVGExportDemo.java
* ------------------
* (C) Copyright 2002-2005, by Object Refinery Limited.
*
*/

package demo.svg;

import java.awt.geom.Rectangle2D;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.Writer;

import org.apache.batik.dom.GenericDOMImplementation;
import org.apache.batik.svggen.SVGGraphics2D;
import org.jfree.chart.ChartFactory;
import org.jfree.chart.JFreeChart;
import org.jfree.data.general.DefaultPieDataset;
import org.w3c.dom.DOMImplementation;
import org.w3c.dom.Document;

/**
* A demonstration showing the export of a chart to SVG format.
*/

public class SVGExportDemo {

/**
* Starting point for the demo.
*
* @param args ignored.
*/

public static void main(String[] args) throws IOException {

// create a dataset...
DefaultPieDataset data = new DefaultPieDataset();
data.setValue("Category 1", new Double(43.2));
data.setValue("Category 2", new Double(27.9));
data.setValue("Category 3", new Double(79.5));

// create a chart
JFreeChart chart = ChartFactory.createPieChart(

"Sample Pie Chart",
data,
true,
false,
false

);

// THE FOLLOWING CODE BASED ON THE EXAMPLE IN THE BATIK DOCUMENTATION...
// Get a DOMImplementation

CHAPTER 17. EXPORTING CHARTS TO SVG FORMAT 113

DOMImplementation domImpl
= GenericDOMImplementation.getDOMImplementation();

// Create an instance of org.w3c.dom.Document
Document document = domImpl.createDocument(null, "svg", null);

// Create an instance of the SVG Generator
SVGGraphics2D svgGenerator = new SVGGraphics2D(document);

// set the precision to avoid a null pointer exception in Batik 1.5
svgGenerator.getGeneratorContext().setPrecision(6);

// Ask the chart to render into the SVG Graphics2D implementation
chart.draw(svgGenerator, new Rectangle2D.Double(0, 0, 400, 300), null);

// Finally, stream out SVG to a file using UTF-8 character to
// byte encoding
boolean useCSS = true;
Writer out = new OutputStreamWriter(

new FileOutputStream(new File("test.svg")), "UTF-8");
svgGenerator.stream(out, useCSS);

}

}

Running this program creates a file test.svg in SVG format.

17.3.4 Viewing the SVG

Batik includes a viewer application (“Squiggle”) which you can use to open and view the SVG file.
The Batik download includes instructions for running the viewer, effectively all you require is:

java -jar batik-squiggle.jar

The following screen shot shows the pie chart that we created earlier, displayed using the browser
application. A transformation (rotation) has been applied to the chart from within the browser:

If you play about with the viewer, zooming in and out and applying various transformations to the
chart, you will begin to appreciate the power of the SVG format.

Chapter 18

Applets

18.1 Introduction

Subject to a couple of provisos, using JFreeChart in an applet is relatively straightforward. This
section provides a brief overview of the important issues and describes a working example that
should be sufficient to get you started.

Figure 18.1: An applet using JFreeChart

Figure 18.1 shows a sample applet that uses JFreeChart. This applet is available online at:

http://www.object-refinery.com/jfreechart/applet.html

The source code for this applet appears later in this section.

18.2 Issues

The main issues to consider when developing applets (whether with or without JFreeChart) are:

• browser support;

• security restrictions;

• code size.

Be sure that you understand these issues before you commit significant resources to writing applets.

114

CHAPTER 18. APPLETS 115

18.2.1 Browser Support

The vast majority of web browsers provide support for the latest version of Java (JDK 1.5.0) and
will therefore have no problems running applets that use JFreeChart (recall that JFreeChart will
run on any version of the JDK from 1.3.1 onwards).

However, the vast majority of users on the web use (by default in most cases) the one web browser—
Microsoft Internet Explorer (MSIE)—that only supports a version of Java (JDK 1.1) that is now
hopelessly out-of-date. This is a problem, because applets that use JFreeChart will not work on
a default installation of MSIE. There is a workaround—users can download and install Sun’s Java
plugin—but, like many workarounds, it is too much effort and inconvenience for many people. The
end result is a deployment problem for developers who choose to write applets.

This single issue has caused many developers to abandon their plans to develop applets1 and instead
choose an easier-to-deploy technology such as Java Servlets (see the next chapter).

18.2.2 Security

Applets (and Java more generally) have been designed with security in mind. When an applet runs
in your web browser, it is restricted in the operations that it is permitted to perform. For example,
an applet typically will not be allowed to read or write to the local filesystem. Describing the details
of Java’s security mechanism is beyond the scope of this text, but you should be aware that some
functions provided by JFreeChart (for example, the option to save charts to PNG format via the
pop-up menu) will not work in applets that are subject to the default security policy. If you need
these functions to work, then you will need to study Java’s security mechanism in more detail.

18.2.3 Code Size

A final issue to consider is the size of the “runtime” code required for your applet. Before an applet
can run, the code (typically packed into jar files) has to be downloaded to the end user’s computer.
Clearly, for users with limited bandwidth connections, the size of the code can be an issue.

The JFreeChart code is distributed in a jar file that is around 1,000KB in size. That isn’t large—
especially when you consider the number and variety of charts that JFreeChart supports—but, at
the same time, it isn’t exactly optimal for a user on a dial-up modem connection. And you need to
add to that the JCommon jar file (around 290KB) plus whatever code you have for your applet.

As always with JFreeChart, you have the source code so you could improve this by repackaging the
JFreeChart jar file to include only those classes that are used by your applet (directly or indirectly).

18.3 A Sample Applet

As mentioned in the introduction, a sample applet that uses JFreeChart can be seen at the following
URL:2

http://www.object-refinery.com/jfreechart/applet.html

Two aspects of the sample applet are interesting, the source code that is used to create the applet
and the HTML file that is used to invoke the applet.

1For some people this issue won’t be a concern. For example, you may be developing applets for internal corporate
use, and your standard desktop configuration includes a browser that supports JDK 1.5.0. Alternatively, you may
be providing an applet for public use via the World Wide Web, but it is not critical that every user be able to run
the applet.

2If the applet does not work for you, please check that your web browser is configured correctly and supports
JDK 1.3.1 or later.

CHAPTER 18. APPLETS 116

18.3.1 The HTML

The HTML used to invoke the applet is important, since it needs to reference the necessary jar
files. The HTML applet tag used is:

<APPLET ARCHIVE="jfreechart-1.0.9-applet-demo.jar,
jfreechart-1.0.9.jar,jcommon-1.0.12.jar"
CODE="demo.applet.Applet1" width=640 height=260
ALT="You should see an applet, not this text.">
</APPLET>

Notice that three jar files are referenced. The first contains the applet class (source code in the
next section) only, while the remaining two jar files are the standard JFreeChart and JCommon
class libraries (the version numbers reflect the age of the demo rather than the current releases).

You can place the applet tag anywhere in your HTML file that you might place some other element
(such as an image).

18.3.2 The Source Code

The sample applet is created using the following source code (which is included in the “support
demos” package). There is very little applet-specific code here—we just extend JApplet:

/* ------------
* Applet1.java
* ------------
* (C) Copyright 2002-2005, by Object Refinery Limited.
*/

package demo.applet;

import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JApplet;
import javax.swing.Timer;

import org.jfree.chart.ChartPanel;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.DateAxis;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.xy.XYItemRenderer;
import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.time.Millisecond;
import org.jfree.data.time.TimeSeries;
import org.jfree.data.time.TimeSeriesCollection;

/**
* A simple applet demo.
*/

public class Applet1 extends JApplet {

/** Time series for total memory used. */
private TimeSeries total;

/** Time series for free memory. */
private TimeSeries free;

/**
* Creates a new instance.
*/

public Applet1() {

// create two series that automatically discard data more than
// 30 seconds old...
this.total = new TimeSeries("Total", Millisecond.class);
this.total.setMaximumItemAge(30000);
this.free = new TimeSeries("Free", Millisecond.class);
this.free.setMaximumItemAge(30000);
TimeSeriesCollection dataset = new TimeSeriesCollection();
dataset.addSeries(total);
dataset.addSeries(free);

CHAPTER 18. APPLETS 117

DateAxis domain = new DateAxis("Time");
NumberAxis range = new NumberAxis("Memory");

XYItemRenderer renderer = new XYLineAndShapeRenderer(true, false);

XYPlot plot = new XYPlot(dataset, domain, range, renderer);
plot.setBackgroundPaint(Color.lightGray);
plot.setDomainGridlinePaint(Color.white);
plot.setRangeGridlinePaint(Color.white);
renderer.setSeriesPaint(0, Color.red);
renderer.setSeriesPaint(1, Color.green);
renderer.setSeriesStroke(0, new BasicStroke(1.5f));
renderer.setSeriesStroke(1, new BasicStroke(1.5f));

domain.setAutoRange(true);
domain.setLowerMargin(0.0);
domain.setUpperMargin(0.0);
domain.setTickLabelsVisible(true);

range.setStandardTickUnits(NumberAxis.createIntegerTickUnits());

JFreeChart chart = new JFreeChart(
"Memory Usage", JFreeChart.DEFAULT_TITLE_FONT, plot, true

);
chart.setBackgroundPaint(Color.white);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPopupMenu(null);

getContentPane().add(chartPanel);
new Applet1.DataGenerator().start();

}

/**
* Adds an observation to the ’total memory’ time series.
*
* @param y the total memory used.
*/

private void addTotalObservation(double y) {
total.add(new Millisecond(), y);

}

/**
* Adds an observation to the ’free memory’ time series.
*
* @param y the free memory.
*/

private void addFreeObservation(double y) {
free.add(new Millisecond(), y);

}

/**
* The data generator.
*/

class DataGenerator extends Timer implements ActionListener {

/**
* Constructor.
*/

DataGenerator() {
super(100, null);
addActionListener(this);

}

/**
* Adds a new free/total memory reading to the dataset.
*
* @param event the action event.
*/

public void actionPerformed(ActionEvent event) {
long f = Runtime.getRuntime().freeMemory();
long t = Runtime.getRuntime().totalMemory();
addTotalObservation(t);
addFreeObservation(f);

}

}

}

Chapter 19

Servlets

19.1 Introduction

The Java Servlets API is a popular technology for creating web applications. JFreeChart is well
suited for use in a servlet environment and, in this section, some examples are presented to help
those developers that are interested in using JFreeChart for web applications.

All the sample code in this section is available for download from:

http://www.object-refinery.com/jfreechart/premium/index.html

The file to download is jfreechart-1.0.9-demo.zip.1

19.2 A Simple Servlet

The ServletDemo1 class implements a very simple servlet that returns a PNG image of a bar chart
generated using JFreeChart. When it is run, the servlet will return a raw image to the client (web
browser) which will display the image without any surrounding HTML—see figure 19.1. Typically,

Figure 19.1: ServletDemo1 in a browser

you will not present raw output in this way, so this servlet is not especially useful on its own, but
the example is:

1To access this page you need to enter the username and password provided to you in the confirmation e-mail you
received when you purchased the JFreeChart Developer Guide.

118

CHAPTER 19. SERVLETS 119

• a good illustration of the request-response nature of servlets;

• useful as a test case if you are configuring a server environment and want to check that
everything is working.

We will move on to a more complex example later, showing how to request different charts using
HTML forms, and embedding the generated charts within HTML output.

Here is the code for the basic servlet:

/* -----------------
* ServletDemo1.java
* -----------------
* (C) Copyright 2002-2004, by Object Refinery Limited.
*
*/

package demo;

import java.io.IOException;
import java.io.OutputStream;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartUtilities;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.data.category.DefaultCategoryDataset;

/**
* A basic servlet that returns a PNG image file generated by JFreeChart.
* This class is described in the JFreeChart Developer Guide in the
* "Servlets" chapter.
*/

public class ServletDemo1 extends HttpServlet {

/**
* Creates a new demo.
*/

public ServletDemo1() {
// nothing required

}

/**
* Processes a GET request.
*
* @param request the request.
* @param response the response.
*
* @throws ServletException if there is a servlet related problem.
* @throws IOException if there is an I/O problem.
*/

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

OutputStream out = response.getOutputStream();
try {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(10.0, "S1", "C1");
dataset.addValue(4.0, "S1", "C2");
dataset.addValue(15.0, "S1", "C3");
dataset.addValue(14.0, "S1", "C4");
dataset.addValue(-5.0, "S2", "C1");
dataset.addValue(-7.0, "S2", "C2");
dataset.addValue(14.0, "S2", "C3");
dataset.addValue(-3.0, "S2", "C4");
dataset.addValue(6.0, "S3", "C1");
dataset.addValue(17.0, "S3", "C2");
dataset.addValue(-12.0, "S3", "C3");
dataset.addValue(7.0, "S3", "C4");
dataset.addValue(7.0, "S4", "C1");
dataset.addValue(15.0, "S4", "C2");
dataset.addValue(11.0, "S4", "C3");
dataset.addValue(0.0, "S4", "C4");
dataset.addValue(-8.0, "S5", "C1");

CHAPTER 19. SERVLETS 120

dataset.addValue(-6.0, "S5", "C2");
dataset.addValue(10.0, "S5", "C3");
dataset.addValue(-9.0, "S5", "C4");
dataset.addValue(9.0, "S6", "C1");
dataset.addValue(8.0, "S6", "C2");
dataset.addValue(null, "S6", "C3");
dataset.addValue(6.0, "S6", "C4");
dataset.addValue(-10.0, "S7", "C1");
dataset.addValue(9.0, "S7", "C2");
dataset.addValue(7.0, "S7", "C3");
dataset.addValue(7.0, "S7", "C4");
dataset.addValue(11.0, "S8", "C1");
dataset.addValue(13.0, "S8", "C2");
dataset.addValue(9.0, "S8", "C3");
dataset.addValue(9.0, "S8", "C4");
dataset.addValue(-3.0, "S9", "C1");
dataset.addValue(7.0, "S9", "C2");
dataset.addValue(11.0, "S9", "C3");
dataset.addValue(-10.0, "S9", "C4");

JFreeChart chart = ChartFactory.createBarChart(
"Bar Chart",
"Category",
"Value",
dataset,
PlotOrientation.VERTICAL,
true, true, false

);
response.setContentType("image/png");
ChartUtilities.writeChartAsPNG(out, chart, 400, 300);

}
catch (Exception e) {

System.err.println(e.toString());
}
finally {

out.close();
}

}

}

The doGet() method is called by the servlet engine when a request is made by a client (usually a
web browser). In response to the request, the servlet performs several steps:

• an OutputStream reference is obtained for returning output to the client;

• a chart is created;

• the content type for the response is set to image/png. This tells the client what type of data
it is receiving;

• a PNG image of the chart is written to the output stream;

• the output stream is closed.

19.3 Compiling the Servlet

Note that the classes in the javax.servlet.* package (and sub-packages), used by the demo servlet,
are not part of the Java 2 Standard Edition (J2SE). In order to compile the above code using J2SE,
you will need to obtain a servlet.jar file. I’ve used the one that is redistributed with Tomcat (an
open source servlet engine written using Java). You can find out more about Tomcat at:

http://tomcat.apache.org/

You will also require the JFreeChart and JCommon jar files to compile the above servlet. Change
your working directory to jfreechart-1.0.9-demo, then enter the following command (on Windows,
you need to change the colons to semi-colons, and the forward slashes to backward slashes):

javac -classpath jfreechart-1.0.9.jar:lib/jcommon-1.0.12.jar:lib/servlet.jar
source/demo/ServletDemo1.java

CHAPTER 19. SERVLETS 121

This should create a ServletDemo1.class file. The next section describes how to deploy this servlet
using Tomcat.

19.4 Deploying the Servlet

Servlets are deployed in the webapps directory provided by your servlet engine. In my case, I am
using Tomcat 5.5.15 on Ubuntu Linux 5.10, and the directory is:2

/home/dgilbert/apache-tomcat-5.5.15/webapps

Within the webapps directory, create a jfreechart1 directory to hold the first servlet demo, then
create the following structure within the directory:

.../jfreechart1/WEB-INF/web.xml

.../jfreechart1/WEB-INF/lib/jfreechart-1.0.9.jar

.../jfreechart1/WEB-INF/lib/jcommon-1.0.12.jar

.../jfreechart1/WEB-INF/classes/demo/ServletDemo1.class

You need to create the web.xml file—it provides information about the servlet:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<servlet>

<servlet-name>
ServletDemo1

</servlet-name>
<servlet-class>

demo.ServletDemo1
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>ServletDemo1</servlet-name>
<url-pattern>/servlet/ServletDemo1</url-pattern>

</servlet-mapping>
</web-app>

Once you have all these files in place, restart your servlet engine and type in the following URL
using your favourite web browser:

http://localhost:8080/jfreechart1/servlet/ServletDemo1

If all is well, you will see the chart image displayed in your browser, as shown in figure 19.1.

19.5 Embedding Charts in HTML Pages

It is possible to embed a chart image generated by a servlet inside an HTML page (that is gen-
erated by another servlet). This is demonstrated by ServletDemo2, which is also available in the
jfreechart-1.0.9-demo.zip file.

ServletDemo2 processes a request by returning a page of HTML that, in turn, references another
servlet (ServletDemo2ChartGenerator) that returns a PNG image of a chart. The end result is a
chart embedded in an HTML page, as shown in figure 19.2.

Here is the code for ServletDemo2:
2Servlets are portable between different servlet engines, so if you are using a different servlet engine, consult the

documentation to find the location of the webapps folder.

CHAPTER 19. SERVLETS 122

Figure 19.2: ServletDemo2 in a browser

/* -----------------
* ServletDemo2.java
* -----------------
* (C) Copyright 2002-2004, by Object Refinery Limited.
*
*/

package demo;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* A basic servlet that generates an HTML page that displays a chart generated by
* JFreeChart.
* <P>
* This servlet uses another servlet (ServletDemo2ChartGenerator) to create a PNG image
* for the embedded chart.
* <P>
* This class is described in the JFreeChart Developer Guide.
*/

public class ServletDemo2 extends HttpServlet {

/**
* Creates a new servlet demo.
*/

public ServletDemo2() {
// nothing required

}

/**
* Processes a POST request.
* <P>
* The chart.html page contains a form for generating the first request, after that
* the HTML returned by this servlet contains the same form for generating subsequent
* requests.
*
* @param request the request.
* @param response the response.
*
* @throws ServletException if there is a servlet related problem.
* @throws IOException if there is an I/O problem.
*/

public void doPost(HttpServletRequest request, HttpServletResponse response)

CHAPTER 19. SERVLETS 123

throws ServletException, IOException {

PrintWriter out = new PrintWriter(response.getWriter());
try {

String param = request.getParameter("chart");

response.setContentType("text/html");
out.println("<HTML>");
out.println("<HEAD>");
out.println("<TITLE>JFreeChart Servlet Demo 2</TITLE>");
out.println("</HEAD>");
out.println("<BODY>");
out.println("<H2>JFreeChart Servlet Demo</H2>");
out.println("<P>");
out.println("Please choose a chart type:");

out.println("<FORM ACTION=\"ServletDemo2\" METHOD=POST>");
String pieChecked = (param.equals("pie") ? " CHECKED" : "");
String barChecked = (param.equals("bar") ? " CHECKED" : "");
String timeChecked = (param.equals("time") ? " CHECKED" : "");
out.println("<INPUT TYPE=\"radio\" NAME=\"chart\" VALUE=\"pie\"" + pieChecked

+ "> Pie Chart");
out.println("<INPUT TYPE=\"radio\" NAME=\"chart\" VALUE=\"bar\"" + barChecked

+ "> Bar Chart");
out.println("<INPUT TYPE=\"radio\" NAME=\"chart\" VALUE=\"time\"" + timeChecked

+ "> Time Series Chart");
out.println("<P>");
out.println("<INPUT TYPE=\"submit\" VALUE=\"Generate Chart\">");
out.println("</FORM>");

out.println("<P>");
out.println("<IMG SRC=\"ServletDemo2ChartGenerator?type=" + param

+ "\" BORDER=1 WIDTH=400 HEIGHT=300/>");
out.println("</BODY>");
out.println("</HTML>");
out.flush();
out.close();

}
catch (Exception e) {

System.err.println(e.toString());
}
finally {

out.close();
}

}

}

Notice how this code gets a reference to a Writer from the response parameter, rather than an
OutputStream as in the previous example. The reason for this is because this servlet will be returning
text (HTML), compared to the previous servlet which returned binary data (a PNG image).3

The response type is set to text/html since this servlet returns HTML text. An important point to
note is that the tag in the HTML references another servlet (ServletDemo2ChartGenerator),
and this other servlet creates the required chart image. The actual chart returned is controlled by
the chart parameter, which is set up in the HTML using a <FORM> element.

Here is the source code for ServletDemo2ChartGenerator:

/* -------------------------------
* ServletDemo2ChartGenerator.java
* -------------------------------
* (C) Copyright 2002-2004, by Object Refinery Limited.
*
*/

package demo;

import java.io.IOException;
import java.io.OutputStream;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;

3The Writer is wrapped in a PrintWriter in order to use the more convenient methods available in the latter
class.

CHAPTER 19. SERVLETS 124

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartUtilities;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.data.category.DefaultCategoryDataset;
import org.jfree.data.general.DefaultPieDataset;
import org.jfree.data.time.Day;
import org.jfree.data.time.TimeSeries;
import org.jfree.data.time.TimeSeriesCollection;
import org.jfree.data.xy.XYDataset;
import org.jfree.date.SerialDate;

/**
* A servlet that returns one of three charts as a PNG image file. This servlet is
* referenced in the HTML generated by ServletDemo2.
* <P>
* Three different charts can be generated, controlled by the ’type’ parameter. The possible
* values are ’pie’, ’bar’ and ’time’ (for time series).
* <P>
* This class is described in the JFreeChart Developer Guide.
*/

public class ServletDemo2ChartGenerator extends HttpServlet {

/**
* Default constructor.
*/

public ServletDemo2ChartGenerator() {
// nothing required

}

/**
* Process a GET request.
*
* @param request the request.
* @param response the response.
*
* @throws ServletException if there is a servlet related problem.
* @throws IOException if there is an I/O problem.
*/

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

OutputStream out = response.getOutputStream();
try {

String type = request.getParameter("type");
JFreeChart chart = null;
if (type.equals("pie")) {

chart = createPieChart();
}
else if (type.equals("bar")) {

chart = createBarChart();
}
else if (type.equals("time")) {

chart = createTimeSeriesChart();
}
if (chart != null) {

response.setContentType("image/png");
ChartUtilities.writeChartAsPNG(out, chart, 400, 300);

}
}
catch (Exception e) {

System.err.println(e.toString());
}
finally {

out.close();
}

}

/**
* Creates a sample pie chart.
*
* @return a pie chart.
*/

private JFreeChart createPieChart() {

// create a dataset...
DefaultPieDataset data = new DefaultPieDataset();

CHAPTER 19. SERVLETS 125

data.setValue("One", new Double(43.2));
data.setValue("Two", new Double(10.0));
data.setValue("Three", new Double(27.5));
data.setValue("Four", new Double(17.5));
data.setValue("Five", new Double(11.0));
data.setValue("Six", new Double(19.4));

JFreeChart chart = ChartFactory.createPieChart(
"Pie Chart", data, true, true, false

);
return chart;

}

/**
* Creates a sample bar chart.
*
* @return a bar chart.
*/

private JFreeChart createBarChart() {

DefaultCategoryDataset dataset = new DefaultCategoryDataset();
dataset.addValue(10.0, "S1", "C1");
dataset.addValue(4.0, "S1", "C2");
dataset.addValue(15.0, "S1", "C3");
dataset.addValue(14.0, "S1", "C4");
dataset.addValue(-5.0, "S2", "C1");
dataset.addValue(-7.0, "S2", "C2");
dataset.addValue(14.0, "S2", "C3");
dataset.addValue(-3.0, "S2", "C4");
dataset.addValue(6.0, "S3", "C1");
dataset.addValue(17.0, "S3", "C2");
dataset.addValue(-12.0, "S3", "C3");
dataset.addValue(7.0, "S3", "C4");
dataset.addValue(7.0, "S4", "C1");
dataset.addValue(15.0, "S4", "C2");
dataset.addValue(11.0, "S4", "C3");
dataset.addValue(0.0, "S4", "C4");
dataset.addValue(-8.0, "S5", "C1");
dataset.addValue(-6.0, "S5", "C2");
dataset.addValue(10.0, "S5", "C3");
dataset.addValue(-9.0, "S5", "C4");
dataset.addValue(9.0, "S6", "C1");
dataset.addValue(8.0, "S6", "C2");
dataset.addValue(null, "S6", "C3");
dataset.addValue(6.0, "S6", "C4");
dataset.addValue(-10.0, "S7", "C1");
dataset.addValue(9.0, "S7", "C2");
dataset.addValue(7.0, "S7", "C3");
dataset.addValue(7.0, "S7", "C4");
dataset.addValue(11.0, "S8", "C1");
dataset.addValue(13.0, "S8", "C2");
dataset.addValue(9.0, "S8", "C3");
dataset.addValue(9.0, "S8", "C4");
dataset.addValue(-3.0, "S9", "C1");
dataset.addValue(7.0, "S9", "C2");
dataset.addValue(11.0, "S9", "C3");
dataset.addValue(-10.0, "S9", "C4");

JFreeChart chart = ChartFactory.createBarChart3D(
"Bar Chart",
"Category",
"Value",
dataset,
PlotOrientation.VERTICAL,
true,
true,
false

);
return chart;

}

/**
* Creates a sample time series chart.
*
* @return a time series chart.
*/

private JFreeChart createTimeSeriesChart() {

// here we just populate a series with random data...

CHAPTER 19. SERVLETS 126

TimeSeries series = new TimeSeries("Random Data");
Day current = new Day(1, SerialDate.JANUARY, 2001);
for (int i = 0; i < 100; i++) {

series.add(current, Math.random() * 100);
current = (Day) current.next();

}
XYDataset data = new TimeSeriesCollection(series);

JFreeChart chart = ChartFactory.createTimeSeriesChart(
"Time Series Chart", "Date", "Rate",
data, true, true, false

);
return chart;

}

}

To compile these two servlets, you can enter the following command at the command line:

javac -classpath jfreechart-1.0.9.jar:lib/jcommon-1.0.12.jar:lib/servlet.jar

source/demo/ServletDemo2.java source/demo/ServletDemo2ChartGenerator.java

The following sections describe the supporting files required for the servlet, and how to deploy
them.

19.6 Supporting Files

Servlets typically generate output for clients that access the web application via a web browser.
Most web applications will include at least one HTML page that is used as the starting point for
the application.

For the demo servlets above, the following index.html page4 is used:

<HTML>

<HEADER>
<TITLE>JFreeChart : Basic Servlet Demo</TITLE>

</HEADER>

<BODY>
<H2>JFreeChart: Basic Servlet Demo</H2>
<P>
There are two sample servlets available:

a very basic servlet to generate a bar chart;

another servlet that allow you to select one of three sample charts. The selected chart is
displayed in an HTML page.

</BODY>

</HTML>

There are two hyperlinks in this page, the first references the first demo servlet (ServletDemo1) and
the second references another HTML page, chart.html:

<HTML>

<HEADER>
<TITLE>JFreeChart Servlet Demo 2</TITLE>

</HEADER>

<BODY>
<H2>JFreeChart Servlet Demo</H2>
<P>
Please choose a chart type:
<FORM ACTION="servlet/ServletDemo2" METHOD=POST>

<INPUT TYPE="radio" NAME="chart" VALUE="pie" CHECKED> Pie Chart
<INPUT TYPE="radio" NAME="chart" VALUE="bar"> Bar Chart

4You’ll find this file in the servlets directory of the demo distribution, along with the other servlet support files.

CHAPTER 19. SERVLETS 127

<INPUT TYPE="radio" NAME="chart" VALUE="time"> Time Series Chart
<P>
<INPUT TYPE="submit" VALUE="Generate Chart">

</FORM>
</BODY>

</HTML>

This second HTML page contains a <FORM> element used to specify a parameter for the second
servlet (ServletDemo2). When this servlet runs, it returns its own HTML that is almost identical to
the above but also includes an element with a reference to the ServletDemo2ChartGenerator

servlet.

19.7 Deploying Servlets

After compiling the demo servlets, they need to be deployed to a servlet engine, along with the sup-
porting files, so that they can be accessed by clients. Fortunately, this is relatively straightforward.

The first requirement is a web.xml file to describe the web application being deployed:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<servlet>

<servlet-name>
ServletDemo1

</servlet-name>
<servlet-class>

demo.ServletDemo1
</servlet-class>

</servlet>
<servlet>

<servlet-name>
ServletDemo2

</servlet-name>
<servlet-class>

demo.ServletDemo2
</servlet-class>

</servlet>
<servlet>

<servlet-name>
ServletDemo2ChartGenerator

</servlet-name>
<servlet-class>

demo.ServletDemo2ChartGenerator
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>ServletDemo1</servlet-name>
<url-pattern>/servlet/ServletDemo1</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>ServletDemo2</servlet-name>
<url-pattern>/servlet/ServletDemo2</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>ServletDemo2ChartGenerator</servlet-name>
<url-pattern>/servlet/ServletDemo2ChartGenerator</url-pattern>

</servlet-mapping>
</web-app>

This file lists the servlets by name, and specifies the class file that implements the servlet. The
actual class files will be placed in a directory where the servlet engine will know to find them (the
classes sub-directory within a directory specific to the application).

The final step is copying all the files to the appropriate directory for the servlet engine. In testing
with Tomcat, I created a jfreechart2 directory within Tomcat’s webapps directory. The index.html

and chart.html files are copied to this directory.

CHAPTER 19. SERVLETS 128

webapps/jfreechart2/index.html
webapps/jfreechart2/chart.html

Next, a subdirectory WEB-INF is created within the jfreechart2 directory, and the web.xml file is
copied to here.

webapps/jfreechart2/WEB-INF/web.xml

A classes subdirectory is created within WEB-INF to hold the .class files for the three demo servlets.
These need to be saved in a directory hierarchy matching the package hierarchy:

webapps/jfreechart2/WEB-INF/classes/demo/ServletDemo1.class
webapps/jfreechart2/WEB-INF/classes/demo/ServletDemo2.class
webapps/jfreechart2/WEB-INF/classes/demo/ServletDemo2ChartGenerator.class

Finally, the servlets make use of classes in the JFreeChart and JCommon class libraries. The jar
files for these libraries need to be added to a lib directory within WEB-INF. You will need:

webapps/jfreechart2/WEB-INF/lib/jcommon-1.0.12.jar
webapps/jfreechart2/WEB-INF/lib/jfreechart-1.0.9.jar

Now restart your servlet engine, and point your browser to:

http://localhost:8080/jfreechart2/index.html

If all the files have been put in the correct places, you should see the running servlet demonstration
(this has been tested using Tomcat 5.5.15 running on Ubuntu Linux 5.10 for AMD64).

Chapter 20

Miscellaneous

20.1 Introduction

This section contains miscellaneous information about JFreeChart.

20.2 X11 / Headless Java

If you are using JFreeChart in a server environment running Unix / Linux, you may encounter the
problem that JFreeChart won’t run without X11. This is a common problem for Java code that
relies on AWT, see the following web page for further information:

http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html#xvfb

There is also a thread in the JFreeChart forum with lots of info:
http://www.jfree.org/phpBB2/viewtopic.php?t=1012

20.3 Java Server Pages

Developers that are interested in using JFreeChart with JSP will want to check out the Cewolf
project:

http://cewolf.sourceforge.net/

Thanks to Guido Laures for leading this effort.

20.4 Loading Images

Images in Java are represented by the Image class. You can load an image using the createImage()

method in the Toolkit class, but you need to be aware that this method loads the image asynchronously—
in other words, the method returns immediately (before the image is loaded) and the image loading
continues in a separate thread. This can cause problems if you use the image without first waiting
for it to complete loading.

You can use the MediaTracker class to check the progress of an image as it loads. But in the case
where you just want to ensure that you have a fully loaded image, a useful technique is to use
Swing’s ImageIcon class to do the image loading for you:

ImageIcon icon = new ImageIcon("/home/dgilbert/temp/daylight.png");

Image image = icon.getImage();

In this case, the constructor doesn’t return until the image is fully loaded, so by the time you call
the getImage() method, you know that the image loading is complete.

129

Chapter 21

Packages

21.1 Overview

The following sections contain reference information for the classes, arranged by package, that make
up the JFreeChart class library.

Package: Description:

org.jfree.chart The main chart classes.
org.jfree.chart.annotations A simple framework for annotating charts.
org.jfree.chart.axis Axis classes and related interfaces.
org.jfree.chart.editor A framework (incomplete) for providing property editors

for charts.
org.jfree.chart.encoders Classes for writing image files.
org.jfree.chart.entity Classes representing chart entities.
org.jfree.chart.event The event classes.
org.jfree.chart.imagemap HTML image map utility classes.
org.jfree.chart.labels The item label and tooltip classes.
org.jfree.chart.needle Needle classes for the compass plot.
org.jfree.chart.plot Plot classes and interfaces.
org.jfree.chart.plot.dial Dial plot classes and interfaces.
org.jfree.chart.renderer The base package for renderers.
org.jfree.chart.renderer.category Plug-in renderers for use with the CategoryPlot class.
org.jfree.chart.renderer.xy Plug-in renderers for use with the XYPlot class.
org.jfree.chart.servlet Servlet utility classes.
org.jfree.chart.title Chart title classes.
org.jfree.chart.urls Interfaces and classes for generating URLs in image maps.
org.jfree.chart.util Utility classes.
org.jfree.data Dataset interfaces and classes.
org.jfree.data.category The CategoryDataset interface and related classes.
org.jfree.data.contour The ContourDataset interface and related classes.
org.jfree.data.function The Function2D interface and related classes.
org.jfree.data.gantt Dataset interfaces and classes for Gantt charts.
org.jfree.data.general General dataset classes.
org.jfree.data.io General I/O classes for datasets.
org.jfree.data.jdbc Some JDBC dataset classes.
org.jfree.data.statistics Classes that are used for generating statistics.
org.jfree.data.time Time-based dataset interfaces and classes.
org.jfree.data.time.ohlc Classes to represent an open-high-low-close dataset.
org.jfree.data.xml Classes for reading datasets from XML.
org.jfree.data.xy The XYDataset interface and related classes.

Additional information can be found in the HTML format API documentation that is generated
from the JFreeChart source files.

130

Chapter 22

Package: org.jfree.chart

22.1 Overview

This package contains the major classes and interfaces in the JFreeChart Class Library, including
the all important JFreeChart class.

22.2 ChartColor

22.2.1 Overview

This class defines some standard colors.

22.2.2 Methods

This class defines the following methods:

å public static Paint[] createDefaultPaintArray();

Returns an array of Paint instances. This array is used by the DefaultDrawingSupplier class as
the default series colors for most plots.

22.3 ChartFactory

22.3.1 Overview

This class contains a range of convenient methods for creating standard types of charts.

HINT: The use of these methods is optional. Take a look at the source code for the
method you are using to see if it might be a better option to cut-and-paste the code into
your application, and then customise it to meet your requirements.

22.3.2 Pie Charts

To create a regular pie chart, you can use either of the following methods:

å public static JFreeChart createPieChart(String title, PieDataset dataset,

boolean legend, boolean tooltips, Locale locale); [1.0.7]

Creates a pie chart based on the specified dataset (null permitted), with tooltips formatted
according to the specified locale. The resulting chart is constructed using a PiePlot.

å public static JFreeChart createPieChart(String title, PieDataset dataset,

boolean legend, boolean tooltips, boolean urls);

Creates a pie chart based on the specified dataset (null permitted). The chart is constructed

131

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 132

using a PiePlot. Note that URL support is only applicable to the creation of HTML image
maps.

To create a pie chart with a “3D effect”:

å public static JFreeChart createPieChart3D(String title, PieDataset dataset,

boolean legend, boolean tooltips, Locale locale); [1.0.7]

Creates a pie chart with a 3D perspective, using the specified dataset (which may be null).
The chart is constructed using a PiePlot3D. The locale is used to create default formatters for
the tool tip generator.

å public static JFreeChart createPieChart3D(String title, PieDataset dataset,

boolean legend, boolean tooltips, boolean urls)

Creates a 3D pie chart for the specified PieDataset (null permitted). The chart is constructed
using a PiePlot3D.

To create a single chart containing multiple pie charts:

å public static JFreeChart createMultiplePieChart(String title, CategoryDataset dataset,

TableOrder order, boolean legend, boolean tooltips, boolean urls);

Creates a multiple pie chart for the specified CategoryDataset. This chart is constructed using a
MultiplePiePlot. The order argument can be either TableOrder.BY ROW or TableOrder.BY COLUMN.

To create a single chart containing multiple pie charts with a “3D effect”:

å public static JFreeChart createMultiplePieChart3D(String title, CategoryDataset dataset,

TableOrder order, boolean legend, boolean tooltips, boolean urls);

Creates a multiple pie chart for the specified CategoryDataset. This chart is constructed using a
MultiplePiePlot. The order argument can be either TableOrder.BY ROW or TableOrder.BY COLUMN.

A special case of pie chart can be created to display the “difference” between two datasets:

å public static JFreeChart createPieChart(String title, PieDataset dataset,

PieDataset previousDataset, int percentDiffForMaxScale, boolean greenForIncrease,

boolean legend, boolean tooltips, Locale locale, boolean subTitle, boolean showDifference);

[1.0.7]

Returns a pie chart that displays the difference between the two supplied datasets.

å public static JFreeChart createPieChart(String title, PieDataset dataset,

PieDataset previousDataset, int percentDiffForMaxScale, boolean greenForIncrease,

boolean legend, boolean tooltips, boolean urls, boolean subTitle, boolean showDifference);

As above.

A ring chart is a customised form of pie chart:

å public static JFreeChart createRingChart(String title, PieDataset dataset, boolean legend,

boolean tooltips, Locale locale); [1.0.7]

Creates a ring chart based on the supplied dataset (which may be null). Numerical values in
the default tool tip generator will be formatted according to the specified locale.

å public static JFreeChart createRingChart(String title, PieDataset dataset, boolean legend,

boolean tooltips, boolean urls);

Creates a ring chart based on the supplied dataset (which may be null). Note that URL
support is only applicable for charts that are used to create HTML image maps.

22.3.3 Bar Charts

To create a bar chart:

å public static JFreeChart createBarChart(String title, String categoryAxisLabel,

String valueAxisLabel, CategoryDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a horizontal or vertical bar chart for the given CategoryDataset (see the BarRenderer

class documentation for an example).

To create a bar chart with a “3D effect”:

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 133

å public static JFreeChart createBarChart3D(String title, String categoryAxisLabel,

String valueAxisLabel, CategoryDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a bar chart with 3D effect for the given CategoryDataset (see the BarRenderer3D class
documentation for an example).

To create a stacked bar chart:

å public static JFreeChart createStackedBarChart(String title, String categoryAxisLabel,

String valueAxisLabel, CategoryDataset data, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a stacked bar chart for the given CategoryDataset.

To create a stacked bar chart with a “3D effect”:

å public static JFreeChart createStackedBarChart3D(String title, String categoryAxisLabel,

String valueAxisLabel, CategoryDataset data, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a stacked bar chart with 3D effect for the given CategoryDataset.

To create a bar chart using an IntervalXYDataset (bearing in mind that you can use the XYBarDataset
wrapper to convert any XYDataset to the required type):

å public static JFreeChart createXYBarChart(String title, String xAxisLabel,

boolean dateAxis, String yAxisLabel, IntervalXYDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates an XY bar chart for the given IntervalXYDataset. The dateAxis argument allows you
to select whether the chart is created with a DateAxis or a NumberAxis for the domain axis. The
chart created with this method uses a XYPlot and XYBarRenderer.

22.3.4 Line Charts

To create a line chart based on a CategoryDataset:

å public static JFreeChart createLineChart(String title, String categoryAxisLabel,

String valueAxisLabel, CategoryDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a line chart for the given CategoryDataset. The chart will be constructed with a
CategoryPlot and a LineAndShapeRenderer.

å public static JFreeChart createLineChart3D(String title, String categoryAxisLabel,

String valueAxisLabel, CategoryDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a line chart for the given CategoryDataset, with a pseudo 3D effect. The chart will be
constructed with a CategoryPlot and a LineRenderer3D.

To create a line chart based on a XYDataset:

å public static JFreeChart createXYLineChart(String title, String xAxisLabel,

String yAxisLabel, XYDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls)

Creates a XY line chart for the given XYDataset.

22.3.5 Other Chart Types

To create a scatter plot:

å public static JFreeChart createScatterPlot(String title, String xAxisLabel, String yAxisLabel,

XYDataset data, PlotOrientation orientation, boolean legend, boolean tooltips, boolean urls);

Creates a scatter plot for the given XYDataset.

To create a time series chart:

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 134

å public static JFreeChart createTimeSeriesChart(String title, String timeAxisLabel,

String valueAxisLabel, XYDataset data, boolean legend, boolean tooltips, boolean urls);

Creates a time series chart for the given XYDataset.

To create a high-low-open-close chart:

å public static JFreeChart createHighLowChart(String title, String timeAxisLabel,

String valueAxisLabel, OHLCDataset dataset, Timeline timeline, boolean legend);

Creates a high-low-open-close chart for the given OHLCDataset.

To create a candlestick chart:

å public static JFreeChart createCandlestickChart(String title, String timeAxisLabel,

String valueAxisLabel, OHLCDataset data, boolean legend);

Creates a candlestick chart for the given OHLCDataset.

To create an area chart using data from a XYDataset:

å public static JFreeChart createXYAreaChart(String title, String xAxisLabel,

String yAxisLabel, XYDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates an area chart for the specified dataset. The chart that is created uses a XYPlot and a
XYAreaRenderer.

To create a stacked area chart using data from a TableXYDataset:

å public static JFreeChart createStackedXYAreaChart(String title, String xAxisLabel,

String yAxisLabel, TableXYDataset dataset, PlotOrientation orientation,

boolean legend, boolean tooltips, boolean urls);

Creates a stacked area chart for the specified dataset (notice that the dataset must be a
TableXYDataset for stacking). The chart that is created uses a XYPlot and a StackedXYAreaRenderer.

To create a box-and-whisker chart where the domain values are categories:

å public static JFreeChart createBoxAndWhiskerChart(String title, String categoryAxisLabel,

String valueAxisLabel, BoxAndWhiskerCategoryDataset dataset, boolean legend); [1.0.4]

Creates a box-and-whisker chart from the specified dataset. This chart will use a CategoryPlot

and a BoxAndWhiskerRenderer.

To create a box-and-whisker chart where the domain values are numbers or dates:

å public static JFreeChart createBoxAndWhiskerChart(String title, String timeAxisLabel,

String valueAxisLabel, BoxAndWhiskerXYDataset dataset, boolean legend);

Creates a box-and-whisker chart from the specified dataset. This chart will use a XYPlot and a
BoxAndWhiskerRenderer.

22.3.6 Notes

This class contains methods for common chart types only. There are many other chart types that
you can create by mixing and matching plots and renderers. It is worthwhile to review the source
code for the methods in this class, then consider how you could substitute different renderers or
axes to create different types of charts. Don’t be afraid to copy, paste and modify the code from
this class!

22.4 ChartFrame

22.4.1 Overview

A frame containing a chart within a ChartPanel.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 135

22.4.2 Constructors

There are two constructors:

å public ChartFrame(String title, JFreeChart chart);

Creates a new ChartFrame containing the specified chart.

The second constructor gives you the opportunity to request that the chart is contained within a
JScrollPane:

å public ChartFrame(String title, JFreeChart chart, boolean scrollPane);

Creates a new ChartFrame containing the specified chart. The scrollPane flag indicates whether
or not the chart should be displayed within a ScrollPane.

22.4.3 Methods

To access the chart’s panel:

å public ChartPanel getChartPanel();

Returns the panel that contains the chart.

Notes

This class is used in a few demo applications, but you won’t generally need to use it yourself—
instead, you’ll most likely create a ChartPanel and add that directly to your own forms.

22.5 ChartMouseEvent

22.5.1 Overview

An event generated by the ChartPanel class to represent a mouse click or a mouse movement over
a chart. These events are passed to listeners via the ChartMouseListener interface.

22.5.2 Constructor

To create a new event:

å public ChartMouseEvent(JFreeChart chart, MouseEvent trigger, ChartEntity entity);

Creates a new event for the specified chart. The event also records the underlying trigger

event and the entity underneath the mouse pointer (possibly null).

Event objects will usually be created by the ChartPanel class and sent to all registered listeners—you
won’t normally need to create an instance of this class yourself.

22.5.3 Methods

Use the following methods to access the attributes for the event:

å public JFreeChart getChart();

Returns the chart (never null) that the event relates to.

å public MouseEvent getTrigger();

Returns the underlying mouse event (never null) that triggered the generation of this event.
This contains information about the mouse location, among other things. Note that the
mouse location here is given in coordinates relative to the source component (which is the
ChartPanel)—to convert to the corresponding (x, y) values in data space, you need to take
into account the axis ranges and the current data area (see MouseListenerDemo4.java for an
example).

å public ChartEntity getEntity();

Returns the chart entity underneath the mouse pointer (this may be null). There are many
subclasses of the ChartEntity class, and by determining which subclass is used you can find
additional information about the entity “underneath” the mouse pointer.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 136

22.5.4 Notes

Some points to note:

• to receive notification of these events, an object first needs to implement the ChartMouseListener
interface and then register itself with a ChartPanel object, via the addChartMouseListener()

method (see section 22.7.6);1

• some demos (MouseListenerDemo1-4.java) are included in the JFreeChart demo collection.

22.6 ChartMouseListener

22.6.1 Overview

An interface that defines the callback methods for a chart mouse listener. Any class that implements
this interface can be registered with a ChartPanel and receive notification of mouse events. This
mechanism can be used to implement interactive charts in Swing applications (information about
the chart element at the current mouse location is contained in the ChartMouseEvent object). This
is a low-level mechanism, but very flexible.

22.6.2 Methods

This receives notification of mouse click events:

å void chartMouseClicked(ChartMouseEvent event);

A callback method for receiving notification of a mouse click on a chart.

This method receives notification of mouse movement events:

å void chartMouseMoved(ChartMouseEvent event);

A callback method for receiving notification of a mouse movement event on a chart.

22.6.3 Notes

Some points to note:

• some demo applications (MouseListenerDemo1-4.java) are included in the JFreeChart demo
collection.

22.7 ChartPanel

22.7.1 Overview

A panel that provides a convenient means to display a JFreeChart instance in a Swing-based user-
interface (extends javax.swing.JPanel).

The panel can be set up to include a popup menu providing access to:

• chart properties – the property editors are incomplete, but allow you to customise many chart
properties;

• printing – print a chart via the standard Java printing facilities;

• saving – write the chart to a PNG format file;
1It should be obvious, but apparently needs stating in some cases, that the mouse events relate to JFreeChart

usage in a Swing-based application—if you are developing web-applications (and don’t want to employ applets or
Java Web Start) then you’ll need to rely on chart images plus HTML image maps (all of which JFreeChart can help
with, but none of which have anything to do with ChartMouseEvents).

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 137

• zooming – zoom in or out by adjusting the axis ranges;

In addition, the panel can:

• provide offscreen buffering to improve performance when redrawing overlapping frames;

• display tool tips;

All of these features are used in the demonstration applications included with the JFreeChart
Developer Guide.

22.7.2 Constructors

The standard constructor accepts a JFreeChart as the only parameter, and creates a panel that
displays the chart:

å public ChartPanel(JFreeChart chart);

Creates a new panel for displaying the specified chart.

By default, the panel is automatically updated whenever the chart changes (for example, if you
modify the range for an axis, the chart will be redrawn automatically).

å public ChartPanel(JFreeChart chart, boolean useBuffer);

Creates a new panel for displaying the specified chart. If useBuffer is true, the panel draws
the chart to an off-screen buffered image, then copies the image to the screen as required.
For charts that draw slowly (for example, those with a large number of data points), this will
improve performance by ensuring that the chart is only redrawn when necessary.

22.7.3 The Chart

The chart that is displayed by the panel is accessible via the following methods:

å public JFreeChart getChart();

Returns the chart that is displayed in the panel.

å public void setChart(JFreeChart chart);

Sets the chart that is displayed in the panel. The panel registers with the chart as a change
listener, so that it can repaint the chart whenever it changes.

22.7.4 Chart Scaling

JFreeChart is designed to draw charts at arbitrary sizes. In the case of the ChartPanel class, the
chart is drawn to fit the current size of the panel (which is usually determined externally by a layout
manager). When the panel gets very small (or very large) the layout procedure used by JFreeChart
may not produce good results. To counteract this, the ChartPanel class specifies minimum and
maximum drawing thresholds. When the panel dimensions fall below the minimum threshold (or
above the maximum threshold) the chart is drawn at the maximum (minimum) size then scaled
down (up) to fit the actual panel size.

You can control the threshold values with the following methods:

å public int getMinimumDrawWidth();

Returns the lower threshold for the chart drawing width. The default is 300 pixels.

å public void setMinimumDrawWidth(double width);

Sets the lower threshold for the chart drawing width. If the panel is narrower than this, the
chart is drawn at the specified width then scaled down to fit the panel.

å public int getMinimumDrawHeight();

Returns the lower threshold for the chart drawing height. The default is 200 pixels.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 138

å public void setMinimumDrawHeight(double height);

Sets the lower threshold for the chart drawing height. If the panel is shorter than this, the
chart is drawn at the specified height then scaled down to fit the panel.

For the maximum drawing size threshold, you can use the following methods:

å public int getMaximumDrawWidth();

Returns the upper threshold for the chart drawing width. The default value is 800 pixels.

å public void setMaximumDrawWidth(double width);

Sets the upper threshold for the chart drawing width. If the panel is wider than this, the chart
is drawn at the specified width then scaled up to fit the panel.

å public int getMaximumDrawHeight();

Returns the upper threshold for the chart drawing height. The default value is 600 pixels.

å public void setMaximumDrawHeight(double height);

Sets the upper threshold for the chart drawing height. If the panel is taller than this, the chart
is drawn at the specified height then scaled up to fit the panel.

When chart scaling is being applied, the getScreenDataArea() can be used to determine the data
area in the coordinate space of the panel.

22.7.5 Tooltips

The panel includes support for displaying tool tips (assuming that tool tips have been generated by
the plot or renderer). To disable (or re-enable) the display of tool tips, use the following method:

å public void setDisplayToolTips(boolean flag);

Switches the display of tool tips on or off for this panel.

The panel uses the standard Swing tool tip mechanism, which means that the tool tip timings
(initial delay, dismiss delay and reshow delay) can be controlled application-wide using the usual
Swing API calls. In addition, the panel has a facility to temporarily override the application wide
settings while the mouse pointer is within the bounds of the panel:

å public void setInitialDelay(int delay);

Sets the initial delay (in milliseconds) before tool tips are displayed.

å public void setDismissDelay(int delay);

Sets the delay (in milliseconds) before tool tips are dismissed.

å public void setReshowDelay(int delay);

Sets the delay (in milliseconds) before tool tips are reshown.

22.7.6 Chart Mouse Events

Any object that implements the ChartMouseListener interface can register with the panel to receive
notification of any mouse events that relate to the chart.

å public void addChartMouseListener(ChartMouseListener listener)

Adds an object to the list of objects that should receive notification of any ChartMouseEvents
that occur.

å public void removeChartMouseListener(ChartMouseListener listener);

Removes an object from the list of objects that should receive notification of chart mouse
events.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 139

22.7.7 The Popup Menu

The chart panel has a popup menu that provides menu items for property editing, saving charts
to PNG, printing charts, and some zooming options. The constructors provide options for includ-
ing/excluding any of these options.

You can access the popup menu with the following methods:

å public JPopupMenu getPopupMenu();

Returns the popup menu for the panel.

å public void setPopupMenu(JPopupMenu popup);

Sets the popup menu for the panel. Set this to null if you don’t want a popup menu at all.

A couple of the functions that can be accessed via the popup menu can also be called via the API:

å public void doEditChartProperties(); [1.0.3]

Presents a chart property editor that allows some chart properties to be updated. As mentioned
elsewhere, the property editors are incomplete.

å public void doSaveAs() throws IOException;

Presents a file chooser component that allows the user to save the chart to a file in PNG format.

å public void createChartPrintJob();

Presents a print dialog and prints the chart to a single page.

A default directory can be specified for the “save as” option:

å public File getDefaultDirectoryForSaveAs(); [1.0.7]

Returns the default directory presented in the file chooser when saving a chart via the “Save
As...” menu item. The default value is null, which means the user’s home directory is selected.

å public void setDefaultDirectoryForSaveAs(File directory); [1.0.7]

Sets the default directory that is presented in the file chooser when saving a chart via the
“Save As...” menu item. If you set this to null, the user’s home directory will be used
as the default. If the directory argument is not in fact a directory, this method throws an
IllegalArgumentException.

22.7.8 Zooming

The chart panel supports chart zooming for many types of charts. From the user perspective,
zooming is initiated either via the popup menu or via a mouse drag on the displayed chart. The
following methods are used to switch zooming on or off, for one or both axes:

å public boolean isDomainZoomable();

Returns true if the panel will update the domain axis bounds in response to zoom requests,
and false otherwise.

å public void setDomainZoomable(boolean flag);

Sets the flag that controls whether or not the panel will update the domain axis bounds (as-
suming the axis supports this) in response to zoom requested.

å public boolean isRangeZoomable();

Returns true if the panel will update the range axis bounds in response to zoom requests, and
false otherwise.

å public void setRangeZoomable(boolean flag);

Sets the flag that controls whether or not the panel will update the range axis bounds (assuming
the axis supports this) in response to zoom requested.

å public void setMouseZoomable(boolean flag);

A convenience method that sets the domainZoomable and rangeZoomable flags simultaneously.

å public void setMouseZoomable(boolean flag, boolean fillRectangle)

A convenience method that sets the domainZoomable and rangeZoomable flags simultaneously.

The fillZoomRectangle flag controls the appearance of the rectangle drawn on the panel to show
the zoom area while the user drags the mouse over the chart panel:

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 140

å public boolean getFillZoomRectangle();

Returns true if the zoom rectangle should be filled, and false if it should be drawn as an outline
only.

å public void setFillZoomRectangle(boolean flag);

Sets the flag that controls whether or not the zoom rectangle is filled or drawn as an outline.
The zoom rectangle is displayed while the mouse is dragged within the chart panel, to highlight
the area that will be displayed in the chart once the zoom is completed.

The zoom trigger distance specifies the minimum distance that the mouse must be dragged before
a zoom operation is triggered:

å public int getZoomTriggerDistance();

Returns the minimum distance (in Java2D units) that the mouse must be dragged in order to
trigger a zoom operation. The default value is 10.

å public void setZoomTriggerDistance(int distance);

Sets the minimum distance (in Java2D units) that the mouse must be dragged in order to
trigger a zoom operation.

The zooming operations interact with the plot via the Zoomable interface—plots that do not imple-
ment this interface will not be zoomable.

22.7.9 Other Methods

To get information about the entities in the chart drawn within the panel:

å public ChartRenderingInfo getChartRenderingInfo();

Returns a structure containing information about the chart drawn within the panel. Note that
any dimensions in this structure do not take into account the scaling that may be applied by
the panel.

Some convenience methods can return information about the chart. To find the data area for a
chart (that is, the area inside the axes where the data is plotted) in the coordinate space of the
panel, you can use the following methods:

å public Rectangle2D getScreenDataArea();

Returns the area within which the data is plotted, in screen coordinates. This takes into
account any scaling applied by the panel—see section 22.7.4.

å public Rectangle2D getScreenDataArea(int x, int y);

Returns the area within which the data is plotted on the screen, for the subplot at the screen
coordinate (x, y). The returned data area is also specified in screen coordinates—this takes
into account any scaling applied by the panel. If the chart doesn’t have any subplots, this
method is equivalent to the getScreenDataArea() method (that is, it returns the data area for
the main plot).

22.7.10 Notes

The size of the ChartPanel is determined by the layout manager used to arrange components in
your user interface. In some cases, the layout manager will respect the preferred size of the panel,
which you can set like this:

chartPanel.setPreferredSize(new Dimension(500, 270));

This class implements the Printable interface, to provide a simple mechanism for printing a chart.
An option in the panel’s popup menu calls the createPrintJob() method. The print job ends up
calling the print() method to draw the chart on a single piece of paper.

If you need greater control over the printing process—for example, you want to display several
charts on one page—you can write your own implementation of the Printable interface (in any
class that has access to the chart(s) you want to print). The implementation incorporated with the
ChartPanel class is a basic example, provided for convenience only.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 141

See Also
JFreeChart.

22.8 ChartRenderingInfo

22.8.1 Overview

This class can be used to collect information about a chart as it is rendered, particularly information
concerning the dimensions of various sub-components of the chart.

In the current implementation, four pieces of information are recorded for most chart types:

• the chart area;

• the plot area (including the axes);

• the data area (“inside” the axes);

• the dimensions and other information (including tool tips) for the entities within a chart;

You have some control over the information that is generated. For instance, tool tips will not be
generated unless you set up a generator in the renderer.

22.8.2 Constructors

The default constructor:

å public ChartRenderingInfo();

Creates a ChartRenderingInfo object. Entity information will be collected using an instance of
StandardEntityCollection.

An alternative constructor allows you to supply a specific entity collection:

å public ChartRenderingInfo(EntityCollection entities);

Creates a ChartRenderingInfo object.

22.8.3 Methods

To get the area in which the chart is drawn:

å public Rectangle2D getChartArea();

Returns the area in which the chart has been drawn.

å public void setChartArea(Rectangle2D area);

Sets the area (in Java2D space) into which the chart has been drawn. This method is called
by JFreeChart, you won’t normally call it yourself. You should note that this method records
(after the fact) where a chart has been drawn—setting this attribute has no impact on the
chart itself.

To access the entity collection:

å public EntityCollection getEntityCollection();

Returns the entity collection (which may be null).

å public void setEntityCollection(EntityCollection entities);

Sets the entity collection. If you set this to null, no entity information is retained as the chart
is rendered (which saves a lot of resources, but means that tooltips and HTML image maps
cannot be generated).

å public void clear();

Clears all the information from this instance.

å public PlotRenderingInfo getPlotInfo();

Returns the PlotRenderingInfo state object for this instance. You can use this to obtain ren-
dering information for the chart’s plot.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 142

22.8.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

å public Object clone() throws CloneNotSupportedException;

Returns a deep clone of this instance.

22.8.5 Notes

The ChartPanel class automatically collects entity information using this class, because it needs it
to generate tool tips.

22.9 ChartUtilities

22.9.1 Overview

This class contains utility methods for:

• creating images from charts—supported formats are PNG and JPEG;

• generating HTML image maps.

All of the methods in this class are static.

22.9.2 Generating PNG Images

The Portable Network Graphics (PNG) format is a good choice for creating chart images. The
format offers:

• a free and open specification;

• fast and effective compression;

• no loss of quality when images are reconstructed from the compressed binary format;

• excellent support in most web clients;

JFreeChart provides support for writing charts in PNG format via either:

• an encoder developed by J. David Eisenberg (published as free software under the terms of
the GNU LGPL). You can find this encoder at:

http://www.catcode.com

• Java’s ImageIO library;

The former option is used on JDK 1.3.1, while the latter option is used with JDK 1.4.2 or later.

The most general method allows you to write the image data directly to an output stream:

å public static void writeChartAsPNG(OutputStream out, JFreeChart chart,

int width, int height) throws IOException

Writes a chart image of the specified size directly to the output stream in PNG format.

If you need to retain information about the chart dimensions and content (to create an HTML
image map, for example) you can pass in a newly created ChartRenderingInfo object using this
method:

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 143

å public static void writeChartAsPNG(OutputStream out, JFreeChart chart,

int width, int height, ChartRenderingInfo info)

Writes a chart image of the specified size directly to the output stream, and collects chart
information in the supplied info object. If info is null, no chart info is collected.

The above methods have counterparts that write image data directly to a file:

å public static void saveChartAsPNG(File file, JFreeChart chart, int width, int height);

Saves a chart image of the specified size into the specified file, using the PNG format.

å public static void saveChartAsPNG(File file, JFreeChart chart, int width, int height,

ChartRenderingInfo info);

Saves a chart to a PNG format image file. If an info object is supplied, it will be populated
with information about the structure of the chart.

22.9.3 Generating JPEG Images

The Joint Photographic Experts Group (JPEG) image format is supported using methods that are
almost identical to those listed for PNG in the previous section.

NOTE: JPEG is not an ideal format for charts. Images lose some definition after
decompression from this format. This is most noticeable in high color contrast areas,
which are common in charts. It is recommended that you use PNG format instead of
JPEG, if at all possible.

Since JFreeChart must rely on Java’s ImageIO API to write images in JPEG format, these methods
can only be used on Java 1.4.2 or later.

To write a chart to a file in JPEG format:

å public static void saveChartAsJPEG(File file, JFreeChart chart, int width, int height);

Equivalent to saveChartAsJPEG(file, chart, width, height, null)—see the next method.

As with the PNG methods, if you need to know more information about the structure of the chart
within the generated image, you will need to pass in a ChartRenderingInfo object:

å public static void saveChartAsJPEG(File file, JFreeChart chart, int width, int height,

ChartRenderingInfo info);

Saves a chart to a JPEG format image file with the specified dimensions. If info is not null,
it will be populated with information about the structure of the chart. If file or chart is null,
this method throws an IllegalArgumentException.

Alternative methods allow you to specify the quality setting for the JPEG encoding:

å public static void saveChartAsJPEG(File file, float quality, JFreeChart chart, int width,

int height) throws IOException;

Equivalent to saveChartAsJPEG(file, quality, chart, width, height, null)—see the next method.

å public static void saveChartAsJPEG(File file, float quality, JFreeChart chart, int width,

int height, ChartRenderingInfo info) throws IOException;

Saves a chart to a JPEG format image file with the specified dimensions. The quality setting
should be in the range 0.0 (low quality) to 1.0 (high quality). If file or chart is null, this
method throws an IllegalArgumentException.

22.9.4 HTML Image Maps

An HTML image map is an HTML fragment used to describe the characteristics of an image file.
The image map can define regions within the image, and associate these with URLs and tooltip
information.

NOTE: Most methods supporting HTML image map creation have been relocated in the
ImageMapUtilities class.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 144

To generate a simple HTML image map for a JFreeChart instance, first generate an image for the
chart and be sure to retain the ChartRenderingInfo object from the image drawing. Then, generate
the image map using the following method:

å public static void writeImageMap(PrintWriter writer, String name,

ChartRenderingInfo info, boolean useOverLibForToolTips);

Writes a <MAP> element containing the region definitions for a chart that has been converted to
an image. The info object should be the structure returned from the method call that wrote
the chart to an image file.

There are two demonstration applications in the JFreeChart download that illustrate how this
works: ImageMapDemo1 and ImageMapDemo2.

22.9.5 Notes

Some points to note:

• when writing charts to image files, PNG tends to be a better format for charts than JPEG
since the compression is “lossless” for PNG.

22.10 ClipPath

22.10.1 Overview

This class is used by the ContourPlot class. This class is deprecated as of version 1.0.4.

22.11 DrawableLegendItem

22.11.1 Overview

Used to represent a LegendItem plus it’s physical drawing characteristics (position, label location
etc.) as it is being laid out on the chart.

This class is deprecated (as of version 1.0.2) as it is no longer used by JFreeChart.

22.12 Effect3D

22.12.1 Overview

An interface that should be implemented by renderers that use a “3D effect”. This allows the 3D
axis classes to synchronise their own “3D effect” with that of the renderer and plot.

22.12.2 Methods

This interface defines two methods:

å public double getXOffset();

Returns the x-offset (in Java2D units) for the 3D effect.

å public double getYOffset();

Returns the y-offset (in Java2D units) for the 3D effect.

See Also
BarRenderer3D, CategoryAxis3D, NumberAxis3D.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 145

22.13 HashUtilities

22.13.1 Overview

A utility class to assist with the generation of hash codes. This class was first introduced in
JFreeChart 1.0.3.

22.13.2 Methods

The following methods compute hash codes for the specified input:

å public static int hashCodeForPaint(Paint p); [1.0.3]

å public static int hashCodeForDoubleArray(double[] a); [1.0.3]

å public static int hashCode(int pre, boolean b); [1.0.7]

å public static int hashCode(int pre, double d); [1.0.7]

å public static int hashCode(int pre, Paint p); [1.0.7]

å public static int hashCode(int pre, Stroke s); [1.0.7]

å public static int hashCode(int pre, String s); [1.0.7]

å public static int hashCode(int pre, Comparable c); [1.0.7]

å public static int hashCode(int pre, int i); [1.0.8]

å public static int hashCode(int pre, Object obj); [1.0.8]

å public static int hashCode(int pre, BooleanList list); [1.0.9]

å public static int hashCode(int pre, PaintList list); [1.0.9]

å public static int hashCode(int pre, StrokeList list); [1.0.9]

22.14 JFreeChart

22.14.1 Overview

The JFreeChart class coordinates the entire process of drawing charts. One method:

public void draw(Graphics2D g2, Rectangle2D area);

...instructs the JFreeChart object to draw a chart onto a specific area on some graphics device.

Java supports several graphics devices—including the screen, the printer, and buffered images—via
different implementations of the abstract class java.awt.Graphics2D. Thanks to this abstraction,
JFreeChart can generate charts on any of these target devices, as well as others implemented by
third parties (for example, the SVG Generator implemented by the Batik Project).

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 146

In broad terms, the JFreeChart class sets up a context for drawing a Plot. The plot obtains data
from a Dataset, and may delegate the drawing of individual data items to a CategoryItemRenderer

or an XYItemRenderer, depending on the plot type (not all plot types use renderers).

The JFreeChart class can work with many different Plot subclasses. Depending on the type of
plot, a specific dataset will be required. Table 22.1 summarises the combinations that are currently
available:

Dataset: Compatible Plot Types:

BoxAndWhiskerCategoryDataset CategoryPlot with a BoxAndWhiskerRenderer.
BoxAndWhiskerXYDataset XYPlot with a XYBoxAndWhiskerRenderer.
CategoryDataset CategoryPlot subclasses with various renderers, or a

SpiderWebPlot.
ContourDataset ContourPlot.
GanttCategoryDataset CategoryPlot with a GanttRenderer.
IntervalCategoryDataset CategoryPlot with an IntervalBarRenderer.
IntervalXYDataset XYPlot with an XYBarRenderer.
OHLCDataset XYPlot with a HighLowRenderer or a

CandlestickRenderer.
PieDataset PiePlot.
StatisticalCategoryDataset CategoryPlot with a classfStatisticalBarRenderer.
ValueDataset CompassPlot, MeterPlot and ThermometerPlot.
WaferMapDataset WaferMapPlot.
WindDataset XYPlot with a WindItemRenderer.
XYDataset XYPlot with various renderers.
XYZDataset XYPlot with an XYBubbleRenderer.

Table 22.1: Compatible plot and dataset types

22.14.2 Constructors

All constructors require you to supply a Plot instance (the Plot maintains a reference to the dataset
used for the chart).

The simplest constructor is:

å public JFreeChart(Plot plot);

Creates a new JFreeChart instance. The chart will have no title, and no legend.

For greater control, a more complete constructor is available:

å public JFreeChart(Plot plot, String title, Font titleFont, boolean createLegend);

Creates a new JFreeChart instance. This constructor allows you to specify a single title (you
can add additional titles, later, if necessary).

The ChartFactory class provides some utility methods that can make the process of constructing
charts simpler.

22.14.3 Attributes

The attributes maintained by the JFreeChart class are listed in Table 22.2.

22.14.4 Anti-Aliasing

When drawing to pixel-based displays, the use of a technique called anti-aliasing can improve the
appearance of the output by “smoothing” the edges of lines and shapes. Using anti-aliasing for
drawing operations is usually slower, but the results often look better. You can control whether or
not JFreeChart uses anti-aliasing with the following methods:

å public boolean getAntiAlias();

Returns true if this chart is drawn with anti-aliased graphics, and false otherwise.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 147

Attribute: Description:

borderVisible A flag that controls whether or not a border is drawn
around the outside of the chart.

borderStroke The Stroke used to draw the chart’s border.
borderPaint The Paint used to paint the chart’s border.
title The chart title (an instance of TextTitle).
subTitles A list of subtitles.
legend The chart legend.
plot The plot.
antialias A flag that indicates whether or not the chart should

be drawn with anti-aliasing.
backgroundPaint The background paint for the chart.
backgroundImage An optional background image for the chart.
backgroundImageAlignment The alignment of the background image (if there is

one).
backgroundImageAlpha The alpha transparency for the background image.
notify A flag that controls whether or not change events are

passed on to the chart’s registered listeners;
renderingHints The Java2D rendering hints that will be applied when

the chart is drawn.

Table 22.2: Attributes for the JFreeChart class

å public void setAntiAlias(boolean flag);

Sets a flag controlling whether or not anti-aliasing is used when drawing the chart, and sends
a ChartChangeEvent to all registered listeners.

While people generally agree that anti-aliased shapes and lines look better, opinion is divided when
it comes to text. Fortunately, the anti-aliasing setting can be controlled independently for text
items, using the following methods:

å public Object getTextAntiAlias(); [1.0.5]

Returns the current hint for text anti-aliasing—see the java.awt.RenderingHints class for valid
values. The default value is null, which generally means that the text follows the general
anti-aliasing hint (see getAntiAlias()).

å public void setTextAntiAlias(boolean flag); [1.0.5]

A convenience method that switches text anti-aliasing on or off—see the following method.

å public void setTextAntiAlias(Object val); [1.0.5]

Sets the text anti-aliasing hint value to val and sends a ChartChangeEvent to all registered
listeners. Valid arguments include:

• null – clears the setting, in which case the text will generally follow the hint that applies
to general graphics (see getAntiAlias());

• RenderingHints.VALUE TEXT ANTIALIAS ON – text anti-aliasing on;

• RenderingHints.VALUE TEXT ANTIALIAS OFF – text anti-aliasing off;

• RenderingHints.VALUE TEXT ANTIALIAS GASP – introduced in Java 1.6.0, this setting turns
anti-aliasing off for certain font sizes where hinting is optimal, and on for other sizes.

22.14.5 Methods

The most important method for a chart is the draw() method:

å public void draw(Graphics2D g2, Rectangle2D chartArea);

Draws the chart on the Graphics2D device, within the specified area.

The chart does not retain any information about the location or dimensions of the items it draws.
Callers that require such information should use the alternative method:

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 148

å public void draw(Graphics2D g2, Rectangle2D chartArea, ChartRenderingInfo info);

Draws the chart on the Graphics2D device, within the specified area. If info is not null, it will
be populated with information about the items drawn within the chart (to be returned to the
caller).

To set the title for a chart:
å public void setTitle(String title);

Sets the title for a chart and sends a ChartChangeEvent to all registered listeners.

An alternative method for setting the chart title is:
å public void setTitle(TextTitle title);

Sets the title for a chart and sends a ChartChangeEvent to all registered listeners.

Although a chart can have only one title, it can have any number of subtitles:
å public void addSubtitle(Title title);

Adds a title to the chart.

The legend shows the names of the series (or sometimes categories) in a chart, next to a small color
indicator. To add a legend to the chart:

å public void addLegend(LegendTitle legend);

Adds a legend to the chart and triggers a ChartChangeEvent. An IllegalArgumentException is
thrown if legend is null. Note that legends are implemented as chart titles, so they can be
positioned in the same way as any subtitle (at the top, bottom, left or right of the chart).

å public void removeLegend();

Removes the first legend from the chart and triggers a ChartChangeEvent.

To set the background paint for the chart:
å public void setBackgroundPaint(Paint paint);

Sets the background paint for the chart and sends a ChartChangeEvent to all registered listeners.
If this is set to null, the chart background will be transparent.

22.14.6 Background Image

A chart can have a background image (optional)—for an example, see TimeSeriesDemo4.java in the
JFreeChart demo collection.

å public Image getBackgroundImage();

Returns the background image for the chart (possibly null).

å public void setBackgroundImage(Image image);

Sets the background image for the chart (null permitted) and sends a ChartChangeEvent to all
registered listeners. You must ensure that the image is fully loaded before passing it to this
method—see section 20.4 for more information.

To control the alignment of the background image:
å public int getBackgroundImageAlignment();

Returns a code that specifies the alignment of the background image.

å public void setBackgroundImageAlignment(int alignment);

Sets the alignment for the background image and sends a ChartChangeEvent to all registered
listeners. Standard alignment codes are defined by the Align class.

To control the alpha transparency of the background image:
å public float getBackgroundImageAlpha();

Returns the alpha transparency for the background image.

å public void setBackgroundImageAlpha(float alpha);

Sets the alpha transparency for the background image then sends a ChartChangeEvent to all
registered listeners. The alpha should be a value between 0.0 (fully transparent) and 1.0

(opaque).

An alternative option is to set a background image for the chart’s Plot—this image will be positioned
within the plot area only rather than the entire chart area.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 149

22.14.7 The Chart Border

A border can be drawn around the outside of a chart, if required. By default, no border is drawn,
since in many cases a border can be added externally (for example, in an HTML page). If you do
require a border, use the following methods:

å public boolean isBorderVisible();

Returns the flag that controls whether or not a border is drawn around the outside of the chart.
The default value is false.

å public void setBorderVisible(boolean visible);

Sets the flag that controls whether or not a border is drawn around the outside of the chart,
and sends a ChartChangeEvent to all registered listeners.

To control the appearance of the border:

å public Stroke getBorderStroke();

Returns the Stroke used to draw the chart border, if there is one.

å public void setBorderStroke(Stroke stroke);

Sets the Stroke used to draw the chart border, if there is one, and sends a ChartChangeEvent to
all registered listeners.

å public Paint getBorderPaint();

Returns the Paint used to draw the chart border, if there is one.

å public void setBorderPaint(Paint paint);

Sets the Paint used to paint the chart border, if there is one, and sends a ChartChangeEvent to
all registered listeners.

22.14.8 Chart Change Listeners

If an object wants to “listen” for changes that are made to a chart, it needs to implement the
ChartChangeListener interface so that it can register with the chart instance to receive ChartChangeEvent
notifications.

For example, a ChartPanel instance automatically registers itself with the chart that it displays—any
change to the chart results in the panel being repainted.

To receive notification of any change to a chart, a listener object should register via this method:

å public void addChangeListener(ChartChangeListener listener);

Register to receive chart change events.

To stop receiving change notifications, a listener object should deregister via this method:

å public void removeChangeListener(ChartChangeListener listener);

Deregister to stop receiving chart change events.

There are situations where you might want to temporarily disable the event notification mechanism—
use the following methods:

å public boolean isNotify();

Returns the flag that controls whether or not change events are sent to registered listeners.

å public void setNotify(boolean notify);

Sets the flag that controls whether or not change events are sent to registered listeners. You
can use this method to temporarily turn off the notification mechanism.

For example, when a chart is displayed in a ChartPanel, every update to the chart’s data will trigger
a repaint of the chart. If you need to add several items to the chart’s dataset, typically you’ll only
want the chart to be repainted once, after the last data item is added. You can achieve that as
follows:

chart.setNotify(false);

// do several dataset updates here...

chart.setNotify(true);

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 150

22.14.9 Creating Images

The JFreeChart class includes utility methods for creating a BufferedImage containing the chart:

å public BufferedImage createBufferedImage(int width, int height);

Creates a buffered image containing the chart. The size of the image is specified by the width

and height arguments.

å public BufferedImage createBufferedImage(int width, int height,

ChartRenderingInfo info);

Creates a buffered image containing the chart. The size of the image is specified by the width

and height arguments. The info argument is used to collect information about the chart as it
is being drawn (required if you want to create an HTML image map for the image).

One other variation draws the chart at one size then scales it (up or down) to fit a different image
size:

å public BufferedImage createBufferedImage(int imageWidth, int imageHeight,

double drawWidth, double drawHeight, ChartRenderingInfo info)

Creates an image containing a chart that has been drawn at one size then scaled (up or down)
to fit the image size.

22.14.10 Notes

Some points to note:

• the ChartFactory class provides a large number of methods for creating “ready-made” charts.

• the Java2D API is used throughout JFreeChart, so JFreeChart does not work with JDK1.1
(a common question from applet developers).

22.15 LegendItem

22.15.1 Overview

A class that records the attributes of an item that should appear in a legend (see the LegendTitle

class). Instances of this class are usually created by a renderer, which should set the attributes to
match the visual representation of the corresponding series. Table 22.3 lists the attributes defined
by the class.

Attribute: Description:

label The label (usually the series name).
description A description of the item (not currently used).
shapeVisible A flag that indicates whether or not the shape is visible.
shape The shape displayed for the legend item.
shapeFilled A flag that controls whether or not the shape is filled.
fillPaint The fill paint.
shapeOutlineVisible A flag that indicates whether or not the shape outline is visible.
outlinePaint The outline paint.
outlineStroke The outline stroke.
lineVisible A flag that indicates whether or not the line is visible.
lineStroke The line stroke.
linePaint The line paint.

Table 22.3: Attributes for the LegendItem class

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 151

22.15.2 Constructors

To create a legend item:

å public LegendItem(String label, String description, String toolTipText,

String urlText, Shape shape, Paint fillPaint);

Creates a new legend item record.

å public LegendItem(String label, String description, String toolTipText,

String urlText, Shape shape, Paint fillPaint, Stroke outlineStroke, Paint outlinePaint);

Creates a new legend item record.

å public LegendItem(String label, String description, String toolTipText,

String urlText, Shape line, Stroke lineStroke, Paint linePaint);

Creates a new legend item record.

å public LegendItem(String label, String description, String toolTipText,

String urlText, boolean shapeVisible, Shape shape, boolean shapeFilled, Paint fillPaint, boolean

shapeOutlineVisible, Paint outlinePaint, Stroke outlineStroke, boolean lineVisible, Shape line,

Stroke lineStroke, Paint linePaint);

Creates a new legend item record.

å public LegendItem(AttributedString label, String description, String toolTipText,

String urlText, Shape shape, Paint fillPaint);

Creates a new legend item record.

å public LegendItem(AttributedString label, String description, String toolTipText,

String urlText, Shape shape, Paint fillPaint, Stroke outlineStroke, Paint outlinePaint);

Creates a new legend item record.

å public LegendItem(AttributedString label, String description, String toolTipText,

String urlText, Shape line, Stroke lineStroke, Paint linePaint);

Creates a new legend item record.

å public LegendItem(AttributedString label, String description, String toolTipText,

String urlText, boolean shapeVisible, Shape shape, boolean shapeFilled, Paint fillPaint, boolean

shapeOutlineVisible, Paint outlinePaint, Stroke outlineStroke, boolean lineVisible, Shape line,

Stroke lineStroke, Paint linePaint);

Creates a new legend item record.

22.15.3 Methods

The following methods are defined:

å public int getDatasetIndex(); [1.0.2]

Returns the dataset index for this legend item.

å public void setDatasetIndex(int index); [1.0.2]

Sets the dataset index for this legend item.

å public int getSeriesIndex(); [1.0.2]

Returns the series index for this legend item.

å public void setSeriesIndex(int index); [1.0.2]

Sets the series index for the legend item.

å public String getLabel();

Returns the legend item label.

å public AttributedString getAttributedLabel();

Returns an attributed legend item label, or null.

å public String getDescription();

Returns the description for the legend item (not used).

å public String getToolTipText();

Returns the tool tip text for the legend item.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 152

å public String getURLText();

Returns the URL for the legend item (only used in HTML image maps).

å public boolean isShapeVisible();

Returns a flag that controls whether or not the legend item shape should be displayed.

å public Shape getShape();

Returns the shape to display as the graphic for this legend item.

å public boolean isShapeFilled();

Returns a flag that controls whether or not the legend item shape should be filled.

å public Paint getFillPaint();

Returns the fill paint for the series represented by this legend item.

å public boolean isShapeOutlineVisible();

Returns a flag that controls whether or not the legend item shape should have its outline drawn.

å public Stroke getLineStroke();

Returns the stroke used to draw the line for the legend item graphic.

å public Paint getLinePaint();

Returns the line paint.

å public Paint getOutlinePaint();

Returns the outline paint for the series represented by this legend item.

å public Stroke getOutlineStroke();

Returns the outline stroke for the series represented by this legend item.

å public boolean isLineVisible();

Returns a flag that controls whether or not a line is drawn as part of the legend item graphic.

å public Shape getLine();

Returns the line, if any, to be drawn for the legend item graphic.

å public GradientPaintTransformer getFillPaintTransformer(); [1.0.4]

Returns the gradient paint transformer, if any, used by the renderer for the series represented
by this legend item.

å public void setFillPaintTransformer(GradientPaintTransformer transformer); [1.0.4]

Sets the gradient paint transformer used by the renderer for the series represented by this
legend item.

22.15.4 Notes

Some points to note:

• the LegendItemSource interface defines a method that should return a collection of legend
items;

• originally this was an immutable class, which is why there are so many constructors with
varying arguments, and some attributes with no setter methods;

• this class implements the Serializable interface.

See Also
LegendItemCollection, LegendTitle.

22.16 LegendItemCollection

22.16.1 Overview

A collection of legend items, typically returned by the getLegendItems() method in the plot classes.

You can create your own collection of legend items and pass it to a CategoryPlot or XYPlot via the
setFixedLegendItems() method, as a way of overriding the automatically generated legend items.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 153

22.16.2 Constructors

There is a single constructor:
å public LegendItemCollection();

Creates a new empty collection.

22.16.3 Methods

To add an item to the collection:
å public void add(LegendItem item);

Adds the specified item to the collection.

To add a collection of items to this collection:
å public void addAll(LegendItemCollection collection);

Adds all the items from the given collection to this collection (by copying references, the items
themselves are not duplicated/cloned).

To find out how many items there are in the collection:
å public int getItemCount();

Returns the number of items in the collection.

To retrieve an item from the collection:
å public LegendItem get(int index);

Returns the item with the specified index.

To get an iterator that provides access to the items in the collection:
å public Iterator iterator();

Returns an iterator that provides access to the items in the collection.

22.16.4 Equals, Cloning and Serialization

This class overrides the equals() method:
å public boolean equals(Object obj);

Tests this collection for equality with an arbitrary object. This method returns true if and
only if:

• obj is not null;

• obj is an instance of LegendItemCollection;

• both collections contain the same items in the same order.

Instances of this class are Cloneable and Serializable.

See Also
LegendItem.

22.17 LegendItemSource

22.17.1 Overview

An interface for obtaining a collection of legend items. This interface is implemented (or extended)
by:

• Plot (to work for all plot types);

• CategoryItemRenderer;

• XYItemRenderer;

A LegendTitle will use one or more of these sources to obtain legend items for display on the chart.
This provides an opportunity for the legend to display just a subset of the items from a chart, if
required.

CHAPTER 22. PACKAGE: ORG.JFREE.CHART 154

ID: Description:

LegendRenderingOrder.STANDARD Items are rendered in order.
LegendRenderingOrder.REVERSE Items are rendered in reverse order.

Table 22.4: Tokens defined by LegendRenderingOrder

22.17.2 Methods

To obtain a collection of legend items:

å public LegendItemCollection getLegendItems();

Returns a collection of legend items (possibly empty, but never null).

See Also
LegendItem, LegendItemCollection.

22.18 LegendRenderingOrder

22.18.1 Overview

A class that defines tokens that control the order of the items in the legend. See table 22.4 for the
tokens that are defined.

22.18.2 Notes

This class is a left-over from older versions of JFreeChart, and is not currently used. It should
probably be deprecated.

22.19 PolarChartPanel

22.19.1 Overview

An extension of the ChartPanel class with a pop-up menu that applies to polar charts.

Chapter 23

Package:
org.jfree.chart.annotations

23.1 Overview

The annotations framework provides a mechanism for adding small text and graphics items to
charts, usually to highlight a particular data item. In the current release, annotations can be added
to the CategoryPlot and XYPlot classes. This framework is relatively basic at present, additional
features are likely to be added in the future.

23.2 AbstractXYAnnotation

23.2.1 Overview

A base class that can be used by classes that need to implement the XYAnnotation interface. Sub-
classes provided by JFreeChart include:

• XYBoxAnnotation – draws a box at specified data coordinates;

• XYDrawableAnnotation – draws an instance of Drawable;

• XYImageAnnotation – draws an image;

• XYLineAnnotation – draws a line between specified data coordinates;

• XYPointerAnnotation – draws some text plus an arrow pointing at a data point;

• XYPolygonAnnotation – draws a polygon;

• XYShapeAnnotation – draws an arbitrary Shape;

• XYTextAnnotation – draws a string.

If you create your own custom annotations, you don’t have to subclass AbstractXYAnnotation, but
it will save you some work.

23.2.2 Constructors

This class defines a single (protected) constructor:

å protected AbstractXYAnnotation();

Initialises the tool tip text and URL to null.

155

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 156

23.2.3 General Attributes

To access the tool tip text for the annotation:

å public String getToolTipText();

Returns the tool tip text for this annotation. The default value is null.

å public void setToolTipText(String text);

Sets the tool tip text for this annotation (null is permitted). No change event is generated.

To access the URL for the annotation:

å public String getURL();

Returns the URL that will be used for this annotation in an HTML image map. The default
value is null.

å public void setURL(String url);

Sets the URL that will be used for this annotation in an HTML image map (null is permitted).
No change event is generated.

23.2.4 Other Methods

The draw method is abstract, and must be implemented by subclasses:

å public abstract void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis, int rendererIndex, PlotRenderingInfo info);

To be implemented by subclasses. This method will be called by JFreeChart when the anno-
tation needs to be drawn—you won’t normally call this method directly from your own code.

A utility method is provided for subclasses to add an entity:

å protected void addEntity(PlotRenderingInfo info, Shape hotspot, int rendererIndex,

String toolTipText, String urlText);

A utility method for adding an entity—this is available for calling by subclasses (typically from
the draw() method).

23.2.5 Equals, Cloning and Serialization

This class overrides the equals(Object) method:

å public boolean equals(Object obj);

Tests this annotation for equality with an arbitrary object. This method returns true if and
only if:

• obj is not null;

• obj is an instance of AbstractXYAnnotation;

• both annotations have the same tool tip and URL text.

Subclasses of this class should be Cloneable and Serializable, otherwise charts that use these
annotations won’t support cloning and serialization.

23.2.6 Notes

Some points to note:

• there is no event notification mechanism for annotations, so when you update an annotation,
the chart display will not automatically be refreshed. One way to trigger a repaint (at least,
if your chart is displayed in a ChartPanel) is to call chart.setNotify(true).

See Also
XYAnnotation.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 157

23.3 CategoryAnnotation

23.3.1 Overview

The interface that must be supported by annotations that are to be added to a CategoryPlot. The
classes that implement this interface are:

• CategoryLineAnnotation;

• CategoryPointerAnnotation;

• CategoryTextAnnotation.

You can write your own annotation that implements this interface. Annotations are added to a
plot using the addAnnotation() method (in the CategoryPlot class).

23.3.2 Interface

This interface defines a single method:

å public void draw(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,

CategoryAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation. This method is typically called by JFreeChart, not user code.

23.3.3 Notes

Some points to note:

• for now, a CategoryAnnotation can only be added directly to a CategoryPlot, and is positioned
relative to the plot’s primary axes. It would make sense to allow annotations to be assigned to
a renderer (as can be done with XYAnnotation) so that the annotation can be plotted against
secondary axes.

See Also
CategoryLineAnnotation, CategoryPointerAnnotation, CategoryTextAnnotation.

23.4 CategoryLineAnnotation

23.4.1 Overview

An annotation that draws a line between two points on a CategoryPlot (each defined by a (category,
value) data item).1 This class implements CategoryAnnotation.

23.4.2 Constructor

To create a new instance:

å public CategoryLineAnnotation(Comparable category1, double value1,

Comparable category2, double value2, Paint paint, Stroke stroke);

Creates a new annotation that connects (category1, value1) and (category2, value2) with a
straight line drawn using the specified paint and stroke.

1This class was requested by a client. Personally, I don’t see a compelling use for it—if you know of one, please
let me know!

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 158

23.4.3 General Attributes

To access the location used for the start of the line:
å public Comparable getCategory1();

Returns the category for the start of the line (never null).

å public void setCategory1(Comparable category);

Sets the category for the start of the line (null is not permitted). You should ensure that this
category actually exists in the dataset.

å public double getValue1();

Returns the value for the start of the line.

å public void setValue1(double value);

Sets the value for the start of the line.

To access the location used for the end of the line:
å public Comparable getCategory2();

Returns the category for the start of the line (never null).

å public void setCategory2(Comparable category);

Sets the category for the end of the line (null is not permitted). You should ensure that this
category actually exists in the dataset.

å public double getValue2();

Returns the value for the end of the line.

å public void setValue2(double value);

Sets the value for the end of the line.

To access the paint used to draw the line:
å public Paint getPaint();

Returns the paint used to draw the line (never null).

å public void setPaint(Paint paint);

Sets the paint used to draw the line (null is not permitted).

To access the stroke used to draw the line:
å public Stroke getStroke();

Returns the stroke used to draw the line (never null).

å public void setStroke(Stroke stroke);

Sets the stroke used to draw the line (null is not permitted).

23.4.4 Other Methods

The annotation is drawn by the following method, which is typically called by JFreeChart rather
than user code:

å public void draw(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,

CategoryAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation.

23.4.5 Equals, Cloning and Serialization

This class overrides the equals(Object) method:
å public boolean equals(Object obj);

Tests this annotation for equality with an arbitrary object. This method returns true if and
only if:

• obj is not null;

• obj is an instance of CategoryLineAnnotation;

• both annotations have the same field values.

Instances of this class are Cloneable and Serializable.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 159

See Also
CategoryAnnotation.

23.5 CategoryPointerAnnotation

23.5.1 Overview

An annotation for a CategoryPlot that displays a text item and an arrow pointing towards a point
on a chart defined by a (category, value) pair—see figure 23.1 for an example. This class implements
the CategoryAnnotation interface, and was first introduced in JFreeChart 1.0.3.

Java Standard Class Library
Number of Classes By Release

Source: Java In A Nutshell (4th Edition) by David Flanagan (O'Reilly)

JDK 1.0 JDK 1.1 JDK 1.2 JDK 1.3 JDK 1.4

Release

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

C
la

ss
 C

o
u

n
t

Released 4-Dec-1998

Figure 23.1: A CategoryPointerAnnotation (see CategoryPointerAnnotationDemo1.java)

23.5.2 Constructors

To create a new instance:

å public CategoryPointerAnnotation(String label, Comparable key, double value,

double angle);

Creates a new pointer annotation. The label is the text to be displayed (null not permitted).
The key and value specify the location on the chart for the annotation. The angle specifies the
rotation of the arrow that points at the specified point, in radians. To customise the appearance
of the arrow, use the methods documented in the next section.

23.5.3 General Attributes

In addition to the attributes inherited from CategoryTextAnnotation, this class defines a number of
items concerning the appearance of the arrow that points towards a fixed location on the chart.

To control the angle of the pointer:

å public double getAngle(); [1.0.3]

Returns the angle of the pointer (in radians, using the same conventions as Java’s Arc2D class).

å public void setAngle(double angle); [1.0.3]

Sets the angle of the pointer (in radians, using the same conventions as Java’s Arc2D class).
The arrow points towards a location on the chart (specified in the constructor).

To control the distance between the tip of the arrow and the anchor point on the chart:

å public double getTipRadius(); [1.0.3]

Returns the distance from the anchor point to the tip of the arrow, in Java2D units. The
default value is 10.0.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 160

å public void setTipRadius(double radius); [1.0.3]

Sets the distance from the anchor point to the tip of the arrow, in Java2D units. Since the tip
of the arrow is pointing towards the anchor point, this should be a lower value than the base
radius.

To control the length of the arrow:

å public double getBaseRadius(); [1.0.3]

Returns the distance from the anchor point to the base of the arrow, in Java2D units. The
default value is 30.0. The difference between the base radius and the tip radius is the overall
length of the arrow.

å public void setBaseRadius(double radius); [1.0.3]

Sets the distance from the anchor point to the base of the arrow, in Java2D units.

To control the offset from the base of the arrow to the label anchor point:

å public double getLabelOffset(); [1.0.3]

Returns the offset from the base of the arrow to the label, in Java2D units. The default value
is 3.0.

å public void setLabelOffset(double offset); [1.0.3]

Sets the offset from the base of the arrow to the label, in Java2D units.

To control the length of the arrow head:

å public double getArrowLength(); [1.0.3]

Returns the length of the arrow head, in Java2D units. The default value is 5.0.

å public void setArrowLength(double length); [1.0.3]

Sets the length of the arrow head, in Java2D units.

To control the width of the arrow head:

å public double getArrowWidth(); [1.0.3]

Returns the width of the arrow head, in Java2D units. The default value is 3.0.

å public void setArrowWidth(double width); [1.0.3]

Sets the width of the arrow head, in Java2D units.

To control the stroke used to draw the arrow:

å public Stroke getArrowStroke(); [1.0.3]

Returns the stroke used to draw the arrow. The default is BasicStroke(1.0f).

å public void setArrowStroke(Stroke stroke); [1.0.3]

Sets the stroke used to draw the arrow.

To control the color of the arrow:

å public Paint getArrowPaint(); [1.0.3]

Returns the paint used to draw/fill the arrow. The default is Color.black.

å public void setArrowPaint(Paint paint); [1.0.3]

Sets the paint used to draw/fill the arrow.

23.5.4 Other Methods

The following method is called by JFreeChart as required:

å public void draw(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,

CategoryAxis domainAxis, ValueAxis rangeAxis); [1.0.3]

Draws the annotation. This method is typically called by JFreeChart, not user code.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 161

23.5.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.3]

Tests this annotation for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

23.5.6 Notes

Some points to note:

• this class is a subclass of CategoryTextAnnotation;

• a demo (CategoryPointerAnnotationDemo1.java) is included in the JFreeChart demo collection.

See Also
CategoryTextAnnotation.

23.6 CategoryTextAnnotation

23.6.1 Overview

A CategoryAnnotation that can be used to display an item of text at some location (defined by a
(category, value) pair) on a CategoryPlot. This class extends TextAnnotation.

23.6.2 Constructor

To create a new annotation:

å public CategoryTextAnnotation(String text, Comparable category, double value);

Creates a new annotation that displays the specified text at a point corresponding to the
specified value for the given category.

23.6.3 General Attributes

This class inherits a number of attributes from TextAnnotation, and adds a few of its own. The
text for the annotation is drawn relative to an alignment point that is defined on the chart using
the following attributes:

• the category;

• the category anchor point;

• the data value.

To control the category:

å public Comparable getCategory();

Returns the category key for this annotation.

å public void setCategory(Comparable category);

Sets the category key for this annotation. If category is null, this method throws an IllegalArgumentException.

To control the category anchor point:

å public CategoryAnchor getCategoryAnchor();

Returns the category anchor point, which helps to determine the position of the alignment
point for the annotation. The default value is CategoryAnchor.MIDDLE.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 162

å public void setCategoryAnchor(CategoryAnchor anchor);

Sets the category anchor point, which is used to determine the position of the alignment point
for the annotation. If anchor is null, this method throws an IllegalArgumentException.

To control the value:

å public double getValue();

Returns the value that determines the alignment point for the annotation.

å public void setValue(double value);

Sets the value that determines the alignment point for the annotation.

23.6.4 Other Methods

To draw the annotation:

å public void draw(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,

CategoryAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation. This method is called by JFreeChart, you shouldn’t need to call it
directly.

23.6.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this annotation for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

23.6.6 Notes

Some points to note:

• there is no event notification for annotations, so automatic chart redrawing does not occur
when an annotation is updated;

• CategoryTextAnnotation is a subclass of TextAnnotation;

• a demo (SurveyResultsDemo1.java) is included in the JFreeChart demo collection.

See Also
CategoryAnnotation.

23.7 TextAnnotation

23.7.1 Overview

The base class for a text annotation. The class includes font, paint, alignment and rotation settings.
Subclasses will add location information to the content represented by this class. At present, the
only subclass in JFreeChart is CategoryTextAnnotation.

23.7.2 Constructor

The constructor for this class is protected since you won’t create an instance of this class directly
(use a subclass):

å protected TextAnnotation(String text);

Creates a new text annotation that displays the given text. Default values for the remaining
attributes are:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 163

• font = new Font("SansSerif", Font.PLAIN, 10);

• paint = Color.black;

• textAnchor = TextAnchor.CENTER;

• rotationAnchor = TextAnchor.CENTER;

• rotationAngle = 0.0;

23.7.3 General Attributes

To control the text displayed by the annotation:
å public String getText();

Returns the text displayed by the annotation (never null).

å public void setText(String text);

Sets the text displayed by the annotation (null is not permitted).

To control the font:
å public Font getFont();

Returns the font used to display the text. This method never returns null.

å public void setFont(Font font);

Sets the font used to display the text. If font is null, this method throws an IllegalArgumentException.

To control the text color:
å public Paint getPaint();

Returns the paint used to draw the text (never null).

å public void setPaint(Paint paint);

Sets the paint used to draw the text. If paint is null, this method throws an IllegalArgumentException.

To control the anchor point that will be aligned to some point (defined by the subclass):
å public TextAnchor getTextAnchor();

Returns the anchor point for the text, this will be aligned to a specified point on the chart
(that is defined by the subclass).

å public void setTextAnchor(TextAnchor anchor);

Sets the anchor point for the text. This will be aligned to some point on the chart (that is
specified by the subclass).

To control the rotation anchor point:
å public TextAnchor getRotationAnchor();

Returns the text anchor point about which any rotation is performed.

å public void setRotationAnchor(TextAnchor anchor);

Sets the rotation anchor point for the text.

To control the rotation angle:
å public double getRotationAngle();

Returns the rotation angle (in radians).

å public void setRotationAngle(double angle);

Sets the rotation angle for the text (in radians). The text is rotated about the rotation anchor
point (see the getRotationAnchor() method).

23.7.4 Equals, Cloning and Serialization

This class overrides the equals() method:
å public boolean equals(Object obj);

Tests this annotation for equality with an arbitrary object. This method returns true if and
only if:

• obj is not null;

• obj is an instance of TextAnnotation;

• obj has the same attributes as this annotation.

Instances of this class are Serializable, but not Cloneable.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 164

23.7.5 Notes

Some points to note:

• the XYTextAnnotation class is NOT a subclass of this class.

See Also
CategoryTextAnnotation.

23.8 XYAnnotation

23.8.1 Overview

An XYAnnotation is a small text or graphical item that can be added to an arbitrary location on a
chart. This interface defines the drawing method that must be supported by annotations that are
to be added to an XYPlot (or an XYItemRenderer). This interface is implemented by:

• XYBoxAnnotation;

• XYDrawableAnnotation;

• XYImageAnnotation;

• XYLineAnnotation;

• XYPointerAnnotation;

• XYPolygonAnnotation;

• XYShapeAnnotation;

• XYTextAnnotation;

You can, of course, provide your own implementations of the interface.

23.8.2 Interface

This interface defines one method for drawing the annotation:

å public void draw(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

ValueAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation. The dataArea is the space defined by (within) the two axes. If the
annotation defines its location in terms of data values, the axes can be used to convert these
values to Java2D coordinates.

23.8.3 Notes

Some points to note:

• there is no event notification mechanism (yet) for annotations. If you modify an anno-
tation, you will need to manually trigger a redraw of the chart (for example, by calling
chart.setNotify(true));

• a couple of demos (AnnotationDemo1.java and AnnotationDemo2.java) are included in the
JFreeChart demo collection.

See Also
AbstractXYAnnotation.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 165

23.9 XYBoxAnnotation

23.9.1 Overview

An XYAnnotation that highlights a rectangular region within the data area of an XYPlot—see figure
23.2 for an example. XYBoxAnnotation is a subclass of AbstractXYAnnotation.

Breakdowns

Old New

N
o

v.
0

3

D
e

c.
0

3

Ja
n.

04

F
e

b
.0

4

M
a

r.
0

4

A
p

r.
0

4

M
a

y.
0

4

Ju
n

.0
4

Ju
l.0

4

A
u

g
.0

4

S
e

p
.0

4

O
ct

.0
4

N
o

v.
0

4

D
e

c.
0

4

Ja
n.

05

F
e

b
.0

5

M
a

r.
0

5

A
p

r.
0

5

M
a

y.
0

5

Ju
n

.0
5

Ju
l.0

5

A
u

g
.0

5

Production Date

0

50,000

100,000

150,000

200,000
H

o
u

rs
 o

f
O

p
e

ra
ti

o
n

Figure 23.2: An XYBoxAnnotation (see XYBoxAnnotationDemo1.java)

23.9.2 Constructors

To create a new annotation:

å public XYBoxAnnotation(double x0, double y0, double x1, double y1);

Creates a new annotation covering the rectangular region from (x0, y0) to (x1, y1). The box
annotation will be drawn as a black outline using a 1 unit wide plain stroke (BasicStroke(1.0f)).

å public XYBoxAnnotation(double x0, double y0, double x1, double y1,

Stroke stroke, Paint outlinePaint);

Creates a new annotation covering the rectangular region from (x0, y0) to (x1, y1). The box
annotation will be drawn as an outline using the specified stroke and paint. If either stroke or
paint is null, the annotation will not be visible.

å public XYBoxAnnotation(double x0, double y0, double x1, double y1,

Stroke stroke, Paint outlinePaint, Paint fillPaint);

Creates a new annotation covering the rectangular region from (x0, y0) to (x1, y1). The box
annotation will be drawn and filled using the specified stroke, outline paint and fill paint. If
stroke or outlinePaint is null, no outline will be drawn. If fillPaint is null, the box will not
be filled.

23.9.3 Methods

JFreeChart calls the following method to draw the annotation:

å public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis, int rendererIndex, PlotRenderingInfo info);

Draws the annotation within the specified area of the plot. This method is called by JFreeChart,
you won’t normally call it directly from your own code.

23.9.4 Equals, Cloning and Serialization

This class overrides the equals(Object) method:

å public boolean equals(Object obj);

Tests this annotation for equality with an arbitrary object. The method returns true if and
only if:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 166

• obj is not null;

• obj is an instance of XYBoxAnnotation;

• both annotations have the same attributes.

Instances of this class are Cloneable (PublicCloneable) and Serializable.

23.9.5 Notes

Some points to note:

• the annotation will only be visible if it falls within the current bounds of the plot’s axes;

• you can define a tool tip and/or URL for the annotation, using methods inherited from
AbstractXYAnnotation;

• you can use this annotation with an XYPlot that uses a DateAxis—just specify the relevant
coordinates in terms of milliseconds since 1-Jan-1970;

• a demo (XYBoxAnnotationDemo1.java) is included in the JFreeChart demo collection.

See Also
XYAnnotation.

23.10 XYDrawableAnnotation

23.10.1 Overview

An XYAnnotation that draws an object at some (x, y) location on an XYPlot. The object can be
any implementation of the Drawable interface (defined in the JCommon class library). Figure 23.3
shows a chart with such an annotation—the small red circle containing the blue crosshair is an
XYDrawableAnnotation.

Marker Demo 1

Supplier 1

Supplier 2

01:20 01:30 01:40 01:50 02:00 02:10 02:20 02:30

Time

145

150

155

160

165

170

175

180

185

190

195

200

205

210

Y

Original Close (02:00) Close Date (02:15)

Bid Start Price

Target Price

Best Bid

Figure 23.3: An XYDrawableAnnotation (see MarkerDemo1.java)

23.10.2 Constructors

To create a new annotation:

å public XYDrawableAnnotation(double x, double y, double width, double height, Drawable drawable);

Creates a new annotation that will be drawn within the specified rectangular area (in data
space).

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 167

23.10.3 Notes

Some points to note:

• a demo (MarkerDemo1.java) is included in the JFreeChart demo collection.

See Also
XYAnnotation.

23.11 XYImageAnnotation

23.11.1 Overview

An annotation that allows an image to be displayed at an arbitrary (x, y) location on an XYPlot.
To add an image annotation to a plot, use code similar to the following:

XYPlot plot = (XYPlot) chart.getPlot();
Image image = ... // fetch a small image from somewhere
XYImageAnnotation a1 = new XYImageAnnotation(5.0, 2.0, image);
plot.addAnnotation(a1);

You need to ensure that the image is fully loaded before you supply it to the XYImageAnnotation

constructor, otherwise it may not appear the first time your chart is drawn (see section 20.4).

23.11.2 Constructor

The following constructors are defined:
å public XYImageAnnotation(double x, double y, Image image);

Equivalent to XYImageAnnotation(x, y, image, RectangleAnchor.CENTER)—see the next construc-
tor.

å public XYImageAnnotation(double x, double y, Image image, RectangleAnchor anchor); [1.0.4]

Creates an annotation that will display the specified image at the given (x, y) location. The
coordinates are specified in data-space (that is, the axis coordinates of the chart) and the image
will be aligned to this point according to the anchor setting. If image or anchor is null, this
method throws an IllegalArgumentException.

23.11.3 Attributes

All the attributes for this class are specified via the constructor and cannot be updated:
å public double getX(); [1.0.4]

Returns the x-coordinate for the anchor point to which the image will be aligned.

å public double getY(); [1.0.4]

Returns the y-coordinate for the anchor point to which the image will be aligned.

å public Image getImage(); [1.0.4]

Returns the image to be displayed by this renderer.

å public RectangleAnchor getImageAnchor(); [1.0.4]

Returns the image anchor, which will be aligned to the (x, y) location on the chart when the
image annotation is displayed.

23.11.4 Drawing

Once an annotation has been added to a plot, the plot will take care of drawing it every time the
chart is redrawn. The following method is used:

å public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation within the specified dataArea. This method is called by the plot, you
shouldn’t need to call it yourself.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 168

23.11.5 Equals, Cloning and Serialization

This class overrides the equals() method specified in Object:

å public boolean equals(Object object);

Tests this annotation for equality with an arbitrary object. This method will return true

if object is an instance of XYImageAnnotation with the same coordinates and image as this
annotation.

The annotation can be cloned:

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the annotation.

At present, serialization is not supported because images are not automatically serializable. Hope-
fully this will be fixed in a future release by writing our own image serialization code (for instance,
by writing the image data to PNG format, then decoding it again upon deserialization).

23.11.6 Notes

Some points to note:

• the PlotOrientationDemo1 application (source code is included in the JFreeChart Demo dis-
tribution) includes an image annotation for each sub-chart.

See Also
XYAnnotation.

23.12 XYLineAnnotation

23.12.1 Overview

A simple annotation that draws a line between a starting point (x0, y0) and an ending point (x1,
y1) on an XYPlot. To add a line annotation to a plot, use code similar to the following:

XYPlot plot = (XYPlot) chart.getPlot();
XYLineAnnotation a1 = new XYLineAnnotation(1.0, 2.0, 3.0, 4.0,
new BasicStroke(1.5f), Color.red);
plot.addAnnotation(a1);

23.12.2 Constructors

To create a new annotation:

å public XYLineAnnotation(double x1, double y1, double x2, double y2);

Creates an annotation that will draw a line from (x1, y1) to (x2, y2) on the chart. By default,
the line is black and uses a stroke width of 1.0.

å public XYLineAnnotation(double x1, double y1, double x2, double y2,

Stroke stroke, Paint paint);

Creates an annotation that will draw a line from (x1, y1) to (x2, y2) on the chart. The line
is drawn using the specified stroke and paint.

23.12.3 Drawing

Once an annotation has been added to a plot, the plot will take care of drawing it every time the
chart is redrawn. The following method is used:

å public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea, ValueAxis domainAxis,

ValueAxis rangeAxis);

Draws the annotation within the specified dataArea. This method is called by the plot, you
shouldn’t need to call it yourself.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 169

23.12.4 Equals, Cloning and Serialization

This class overrides the equals() method specified in Object:

å public boolean equals(Object object);

Tests this annotation for equality with an arbitrary object. This method will return true if
object is an instance of XYLineAnnotation with the same coordinates, stroke and paint settings
as this annotation.

The annotation can be cloned:

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the annotation.

This class is Serializable.

23.12.5 Notes

Some points to note:

• if you want to use a line annotation on a time series chart, the x-coordinates of the annotation
should be specified in “milliseconds since 1-Jan-1970, GMT”.

See Also
XYAnnotation.

23.13 XYPointerAnnotation

23.13.1 Overview

An annotation that displays an arrow pointing towards a specific (x, y) location on an XYPlot (see
figure 23.4). The arrow can have a label at one end.

Figure 23.4: An XYPointerAnnotation example

23.13.2 Usage

To add a pointer annotation to an XYPlot:
XYPlot plot = (XYPlot) chart.getPlot();

XYPointerAnnotation pointer = new XYPointerAnnotation(

"Best Bid", millis, 163.0, 3.0 * Math.PI / 4.0

);

pointer.setTipRadius(10.0);

pointer.setBaseRadius(35.0);

pointer.setFont(new Font("SansSerif", Font.PLAIN, 9));

pointer.setPaint(Color.blue);

pointer.setTextAnchor(TextAnchor.HALF ASCENT RIGHT);

plot.addAnnotation(pointer);

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 170

23.13.3 Constructor

To create a new pointer annotation:
å public XYPointerAnnotation(String label, double x, double y, double angle);

Creates a new pointer annotation to highlight the specified (x, y) location on the chart.

23.13.4 General Attributes

To control the angle of the arrow:
å public double getAngle();

Returns the angle of the arrow (in radians).

å public void setAngle(double angle);

Sets the angle of the arrow (in radians). If you imagine a clockface, an angle of 0 results in an
arrow pointing from 3 o’clock to the center of the clock face, with positive values proceeding
from 3 o’clock in a clockwise direction.

To control the distance between the (x, y) location and the tip of the arrow:
å public double getTipRadius();

Returns the radius of the circle that determines how far from the (x, y) location the tip of the
arrow is.

å public void setTipRadius(double radius);

Sets the radius of the circle that determines the end point of the arrow.

To control the distance between the (x, y) location and the base of the arrow:
å public double getBaseRadius();

Returns the radius of the circle that determines how far from the (x, y) location to the base of
the arrow.

å public void setBaseRadius(double radius);

Sets the radius of the circle that determines the base point for the arrow.

To control the offset between the base of the arrow and the label anchor point:
å public double getLabelOffset();

Returns the label offset (in Java2D units).

å public void setLabelOffset(double offset);

Sets the label offset from the base of the arrow (in Java2D units).

To control the length of the arrow head:
å public double getArrowLength();

Returns the length of the arrow head (in Java2D units).

å public void setArrowLength(double length);

Sets the length of the arrow head (in Java2D units).

To control the width of the arrow head:
å public double getArrowWidth();

Returns the width of the arrow head in Java2D units.

å public void setArrowWidth(double width);

Sets the width of the arrow head in Java2D units.

To control the Stroke used to draw the arrow:
å public Stroke getArrowStroke();

Returns the stroke used to draw the arrow (never null).

å public void setArrowStroke(Stroke stroke);

Sets the stroke used to draw the arrow (null not permitted).

To control the Paint used to draw the arrow:
å public Paint getArrowPaint();

Returns the paint used to draw the arrow (never null).

å public void setArrowPaint(Paint paint);

Sets the paint used to draw the arrow (null not permitted).

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 171

23.13.5 Other Methods

To draw the annotation (this method is called by the plot, you shouldn’t need to call it directly
yourself):

å public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea, ValueAxis domainAxis,

ValueAxis rangeAxis);

Draws the annotation.

23.13.6 Notes

Some points to note:

• annotations don’t current have a change notification mechanism, so charts do not automati-
cally refresh when an annotation is modified;

• a demo (XYPointerAnnotationDemo1.java) is included in the JFreeChart demo collection.

See Also
XYAnnotation.

23.14 XYPolygonAnnotation

23.14.1 Overview

A simple annotation that draws a polygon on an XYPlot. The polygon’s coordinates are specified
in data space (that is, the coordinate system defined by the plot’s axes). See figure 23.5 for an
example.

XYPolygonAnnotationDemo1

Series 1 Series 2

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

X

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Y

Figure 23.5: An XYPolygonAnnotation (see XYPolygonAnnotationDemo1.java)

23.14.2 Usage

A demo is provided by XYPolygonAnnotationDemo1.java.

23.14.3 Constructors

There are several constructors for this class. For each one, the first argument is an array containing
the (x, y) coordinates of the polygon’s vertices. These coordinates should be specified using the
coordinate system defined by the chart’s axes.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 172

å public XYPolygonAnnotation(double[] polygon);

Creates a new annotation that draws a polygon with the supplied coordinates. The polygon
will be drawn with a black outline, one Java2D unit wide. The polygon is not filled.

å public XYPolygonAnnotation(double[] polygon, Stroke stroke, Paint outlinePaint)

Creates a new annotation that draws the specified polygon with the given stroke and outline

paint. The polygon is not filled.

å public XYPolygonAnnotation(double[] polygon, Stroke stroke, Paint outlinePaint,

Paint fillPaint);

Creates a new annotation that draws a polygon with the specified vertices, using the supplied
stroke, outlinePaint and fillPaint.

For all constructors, the polygon array must contain an even number of items, since it contains a
sequence of (x, y) coordinates.

23.14.4 Methods

To get the coordinates of the polygon:

å public double[] getPolygonCoordinates(); [1.0.2]

Returns the coordinates of the polygon’s vertices.

To get the outline attributes for the annotation:

å public Stroke getOutlineStroke(); [1.0.2]

Returns the stroke used to draw the outline of the polygon. If this is null, no outline is drawn.

å public Paint getOutlinePaint(); [1.0.2]

Returns the paint used to draw the outline of the polygon. If this is null, no outline is drawn.

To get the fill paint for the annotation:

å public Paint getFillPaint(); [1.0.2]

Returns the paint used to fill the polygon. If this is null, the polygon is not filled.

The annotation is drawn (by the plot) using this method (which you shouldn’t need to call yourself):

å public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis, int rendererIndex,

PlotRenderingInfo info);

Draws the annotation within the specified dataArea.

23.14.5 Equals, Cloning and Serialization

To test this class for equality with an arbitrary object:

å public boolean equals(Object obj);

Returns true if this annotation is equal to the specified obj. This method will return true if
and only if:

• obj is not null;

• obj is an instance of XYPolygonAnnotation;

• obj defines a polygon with the same vertices (in the same order) as this annotation;

• obj has the same stroke, outlinePaint and fillPaint as this annotation;

This class is cloneable and implements the PublicCloneable interface. This class is also serializable.

23.14.6 Notes

Some points to note:

• the polygon annotation will only be visible on a chart if it falls within the current axis bounds;

• for a demo, see XYPolygonAnnotationDemo1.java.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 173

See Also
XYAnnotation.

23.15 XYShapeAnnotation

23.15.1 Overview

A simple annotation that draws a shape on an XYPlot. The shape’s coordinates are specified in
“data space” (that is, the coordinate system defined by the plot’s axes).

23.15.2 Constructors

This class has several constructors. The attributes of the annotation are specified via the constructor
and cannot be modified subsequently:

å public XYShapeAnnotation(Shape shape);

Creates a new annotation that will draw the given shape with a black outline.

å public XYShapeAnnotation(Shape shape, Stroke stroke, Paint outlinePaint);

Creates a new annotation that will draw the given shape with the specified stroke and outline
paint.

å public XYShapeAnnotation(Shape shape, Stroke stroke, Paint outlinePaint, Paint fillPaint);

Creates a new annotation that will draw the given shape with the specified stroke, outline paint
and fill paint. If either the stroke or outlinePaint is null, no outline is drawn. If the fillPaint

is null, the shape is not filled.

23.15.3 Methods

There are no methods for setting the attributes of the annotation—these are set in the constructor
and cannot be modified.

The following method is called by the plot to draw the annotation, normally you won’t need to call
it directly:

å public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea, ValueAxis domainAxis,

ValueAxis rangeAxis, int rendererIndex, PlotRenderingInfo info);

Draws the annotation.

23.15.4 Equals, Cloning and Serialization

To test this annotation for equality with an arbitrary object:

å public boolean equals(Object obj);

Tests the annotation for equality with obj. This method returns true if and only if:

• obj is not null;

• obj is an instance of XYShapeAnnotation;

• obj has the same attributes as this annotation.

This class is Cloneable2 and Serializable.

23.15.5 Notes

Before drawing, the shape must be transformed to Java2D coordinates. The transformation code
assumes linear scales on the axes, so this type of annotation may not work well with logarithmic
axes.

2Technically, this probably isn’t necessary since instances of this class are immutable.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 174

See Also
XYAnnotation.

23.16 XYTextAnnotation

23.16.1 Overview

A text annotation that can be added to an XYPlot. You can use this class to add a small text label
at some (x, y) location on a chart. This class is a subclass of AbstractXYAnnotation.

23.16.2 Usage

To add a simple annotation to an XYPlot:
XYPlot plot = (XYPlot) chart.getPlot();

XYAnnotation annotation = new XYTextAnnotation("Hello World!", 10.0, 25.0);

plot.addAnnotation(annotation);

The text will be centered on the specified (x, y) location.

23.16.3 Constructors

To create a new annotation:

å public XYTextAnnotation(String text, double x, double y);

Creates a new text annotation for display at the specified (x, y) location (in data space). An
exception is thrown if the text argument is null.

23.16.4 General Attributes

To control the text for the annotation:

å public String getText();

Returns the text displayed by the annotation (never null). The initial value is specified in the
constructor.

å public void setText(String text);

Sets the text for the annotation (no event is generated). If text is null, this method throws an
IllegalArgumentException.

To control the location on the chart that the annotation will be aligned to:

å public double getX();

Returns the x-coordinate (in data space).

å public void setX(double x);

Sets the x-coordinate (in data space) for the annotation. No event is generated.

å public double getY();

Returns the y-coordinate (in data space).

å public void setY(double y);

Sets the y-coordinate (in data space) for the annotation. No event is generated.

To control the font used to display the text annotation:

å public Font getFont();

Returns the font used to display the text annotation (never null). The default value is
Font("SansSerif", Font.PLAIN, 10).

å public void setFont(Font font);

Sets the font used to display the text annotation (no event is generated). If font is null, this
method throws an IllegalArgumentException.

To control the paint used to display the text annotation:

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 175

å public Paint getPaint();

Returns the paint used to display the text (never null). The default value is Color.black.

å public void setPaint(Paint paint);

Sets the paint used to display the text annotation (no event is generated). If paint is null, this
method throws an IllegalArgumentException.

The text anchor defines a point on the text’s framing rectangle that will be aligned to the (x, y)
location on the chart:

å public TextAnchor getTextAnchor();

Returns the text anchor (never null). This is a point on the framing rectangle for the text that
is aligned to the (x, y) location on the chart. The default value is TextAnchor.CENTER (in other
words, the text annotation will be centered over the (x, y) location).

å public void setTextAnchor(TextAnchor anchor)

Sets the text anchor (no event is generated). If anchor is null, this method throws an IllegalArgumentException.

The rotation anchor defines a point on the text’s framing rectangle about which the text will be
rotated:

å public TextAnchor getRotationAnchor();

Returns the rotation anchor (never null). The default value is TextAnchor.CENTER.

å public void setRotationAnchor(TextAnchor anchor);

Sets the rotation anchor (no event is generated). If anchor is null, this method throws an
IllegalArgumentException.

To control the rotation angle:

å public double getRotationAngle();

Returns the rotation angle, which is measured in radians (clockwise). The default value is 0.0.

å public void setRotationAngle(double angle);

Sets the rotation angle in radians (no event is generated).

23.16.5 Other Methods

The following method is used to draw the annotation. It is called by the plot, you won’t normally
need to call this method yourself:

å public void draw(Graphics2D g2, XYPlot plot, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis);

Draws the annotation.

23.16.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this annotation for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

23.16.7 Notes

Some points to note:

• annotations added directly to the plot are positioned relative to the primary axes. You can
also add the annotation to an XYItemRenderer, in which case the annotation is drawn relative
to the axes used by that renderer;

• a demo (AnnotationDemo1.java) is included in the JFreeChart demo collection;

• the XYPointerAnnotation subclass can be used to display a label with an arrow pointing to
some (x, y) value.

CHAPTER 23. PACKAGE: ORG.JFREE.CHART.ANNOTATIONS 176

See Also
XYAnnotation.

Chapter 24

Package: org.jfree.chart.axis

24.1 Overview

This package contains all the axis classes plus a few assorted support classes and interfaces:

• the CategoryPlot and XYPlot classes maintain references to two axes (by default), which we
refer to as the domain axis and range axis. These terms are based on the idea that these plots
are providing a visual representation of a function that maps a set of domain values onto a
set of range values. For most purposes, you can think of the domain axis as the X-axis and
the range axis as the Y-axis, but we prefer the more generic terms.

• the default settings provided by the axis classes should work well for a wide range of appli-
cations. However, there are many ways to customise the behaviour of the axes by modifying
attributes via the JFreeChart API. Be sure to read through the API documentation to become
familiar with the options that are available.

• a powerful feature of JFreeChart is the support for multiple domain and range axes on a
single plot. If you plan to make use of this feature, you should refer to section 13 for more
information.

The axis classes are Cloneable and Serializable.

24.2 Axis

24.2.1 Overview

An abstract base class representing an axis. Some subclasses of Plot, including CategoryPlot and
XYPlot, will use axes to display data.

Figure 24.1 illustrates the axis class hierarchy.

24.2.2 Constructors

The constructors for this class are protected, you cannot create an instance of this class directly—
you must use a subclass.

24.2.3 Attributes

The attributes maintained by the Axis class are listed in Table 24.1. There are methods to read
and update most of these attributes. In most cases, updating an axis attribute will result in an
AxisChangeEvent being sent to all (or any) registered listeners.

The default values used to initialise the axis attributes are listed in Table 24.2.

177

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 178

Axis

CategoryAxis

CategoryAxis3D

ValueAxis

NumberAxis

NumberAxis3D

LogarithmicAxis

SymbolAxis

DateAxisSubCategoryAxis

Figure 24.1: Axis classes

Attribute: Description:

plot The plot to which the axis belongs.
visible A flag that controls whether or not the axis is visible.
label The axis label.
labelFont The font for the axis label.
labelPaint The foreground colour for the axis label.
labelInsets The space to leave around the outside of the axis label.
labelAngle The angle of rotation for the axis label.
axisLineVisible A flag that controls whether or not a line is drawn for the axis.
axisLinePaint The paint used to draw the axis line if it is visible.
axisLineStroke The stroke used to draw the axis line if it is visible.
tickLabelsVisible A flag controlling the visibility of tick labels.
tickLabelFont The font for the tick labels.
tickLabelPaint The color for the tick labels.
tickLabelInsets The space to leave around the outside of the tick labels.
tickMarksVisible A flag controlling the visibility of tick marks.
tickMarkStroke The stroke used to draw the tick marks.
tickMarkPaint The paint used to draw the tick marks.
tickMarkInsideLength The amount by which the tick marks extend into the plot area

(in Java2D units).
tickMarkOutsideLength The amount by which the tick marks extend outside the plot

area (in Java2D units).

Table 24.1: Attributes for the Axis class

24.2.4 Usage

To change the attributes of an axis, you must first obtain a reference to the axis. Usually, you will
obtain the reference from the plot that uses the axis. For example:

CategoryPlot plot = (CategoryPlot) chart.getPlot();

CategoryAxis axis = plot.getDomainAxis();

// change axis attributes here...

Notice that the getDomainAxis() method returns a particular subclass of Axis (CategoryAxis in this
case). That’s okay, because the subclass inherits all the attributes defined by Axis anyway.

24.2.5 The Axis Label

The axis label typically describes what an axis is measuring (for example, “Sales in US$”). To
access the axis label:

å public String getLabel();

Returns the axis label (possibly null).

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 179

Name: Value:

DEFAULT AXIS LABEL FONT new Font("SansSerif", Font.PLAIN, 14);

DEFAULT AXIS LABEL PAINT Color.black;

DEFAULT AXIS LABEL INSETS new Insets(2, 2, 2, 2);

DEFAULT TICK LABEL FONT new Font("SansSerif", Font.PLAIN, 10);

DEFAULT TICK LABEL PAINT Color.black;

DEFAULT TICK LABEL INSETS new Insets(2, 1, 2, 1);

DEFAULT TICK STROKE new BasicStroke(1);

Table 24.2: Axis class default attribute values

å public void setLabel(String label);

Sets the axis label and sends an AxisChangeEvent to all registered listeners. If you set the label
to null, no label is displayed for the axis.

To access the font used to display the axis label:

å public Font getLabelFont();

Returns the Font used to display the axis label.

å public void setLabelFont(Font font);

Sets the Font used to display the axis label and sends an AxisChangeEvent to all registered
listeners.

To access the paint used to display the axis label:

å public Paint getLabelPaint();

Returns the paint used to display the axis label.

å public void setLabelPaint(Paint paint);

Sets the paint used to display the axis label and sends an AxisChangeEvent to all registered
listeners.

To control the rotation angle for the axis label:

å public double getLabelAngle();

Returns the angle of rotation (in radians) for the axis label. The default value is 0.0.

å public void setLabelAngle(double angle);

Sets the angle of rotation for the axis label and sends an AxisChangeEvent to all registered
listeners. The angle is specified in radians.

24.2.6 The Axis Line

The axis draws a line along the edge of the plot’s data area:

å public boolean isAxisLineVisible();

Returns true if the axis draws a line along the edge of the data area, and false otherwise. The
default value is true.

å public void setAxisLineVisible(boolean visible);

Sets the flag that controls whether or not a line is drawn along the edge of the data area by
the axis, and sends an AxisChangeEvent to all registered listeners.

The stroke used to draw the axis line (if it is visible) is controlled by the following methods:

å public Stroke getAxisLineStroke();

Returns the stroke used to draw the axis line (never null). The default value is BasicStroke(1.0f).

å public void setAxisLineStroke(Stroke stroke);

Sets the stroke used to draw the axis line and sends an AxisChangeEvent to all registered listeners.
If stroke is null, this method throws an IllegalArgumentException.

The paint used to draw the axis line (if it is visible) is controlled by the following methods:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 180

å public Paint getAxisLinePaint();

Returns the paint used to draw the axis line (never null). The default value is Color.GRAY.

å public void setAxisLinePaint(Paint paint);

Sets the paint used to draw the axis line and sends an AxisChangeEvent to all registered listeners.
If paint is null, this method throws an IllegalArgumentException.

Note that the CategoryPlot and XYPlot classes also draw an outline around the data area. The
outline is drawn before (under) the axis line(s). The plot outline stroke and paint are defined in
the Plot class.

24.2.7 Tick Marks and Labels

It is common for axes to have small marks at regular intervals to show the scale of values displayed
by the axis. In JFreeChart, we refer to these marks as “tick marks”, and the labels corresponding
to these marks as “tick labels”. This class defines the basic attributes that control the appearance
of tick marks and labels, but leaves the actual generation and formatting up to specific subclasses.

To control the visibility of the tick marks for an axis:

å public boolean isTickMarksVisible();

Returns the flag that controls whether or not the tick marks are visible. The default value is
true.

å public void setTickMarksVisible(boolean flag);

Sets the flag that controls whether or not tick marks are visible, then sends an AxisChangeEvent

to all registered listeners.

To control the stroke used to draw the tick marks:

å public Stroke getTickMarkStroke();

Returns the stroke used to draw the tick marks (never null). The default value is BasicStroke(1.0f).

å public void setTickMarkStroke(Stroke stroke);

Sets the stroke used to draw the tick marks (null not permitted) then sends an AxisChangeEvent

to all registered listeners.

To control the paint used to draw the tick marks:

å public Paint getTickMarkPaint();

Returns the paint used to draw the tick marks (never null). The default value is Color.black.

å public void setTickMarkPaint(Paint paint);

Sets the paint used to draw the tick marks (null not permitted) then sends an AxisChangeEvent

to all registered listeners.

To control the length of the tick marks, you can set the “inside” and “outside” lengths:

å public float getTickMarkInsideLength();

Returns the length of the tick mark on the inside of the data area, in Java2D units. The default
value is 0.0f.

å public void setTickMarkInsideLength(float length);

Sets the length of the tick mark on the inside of the data area, in Java2D units, and sends an
AxisChangeEvent to all registered listeners.

å public float getTickMarkOutsideLength();

Returns the length of the tick mark extension into the plot area, in Java2D units. The default
value is 2.0f.

å public void setTickMarkOutsideLength(float length);

Sets the length of the tick mark on the outside of the data area, in Java2D units, and sends an
AxisChangeEvent to all registered listeners.

To control the visibility of the tick labels for an axis:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 181

å public boolean isTickLabelsVisible();

Returns the flag that controls whether or not the tick labels are visible. The default value is
true.

å public void setTickLabelsVisible(boolean flag);

Sets the flag that controls whether or not the tick labels are visible and sends an AxisChangeEvent

to all registered listeners.

To control the font used to draw the tick labels:

å public Font getTickLabelFont();

Returns the tick label font (never null). The default value is Font("SansSerif", Font.PLAIN,

10).

å public void setTickLabelFont(Font font);

Sets the tick label font and sends an AxisChangeEvent to all registered listeners. If font is null,
this method throws an IllegalArgumentException.

To control the paint used to draw the tick labels:

å public Paint getTickLabelPaint();

Returns the tick label paint. The default value is Color.black.

å public void setTickLabelPaint(Paint paint);

Sets the tick label paint and sends an AxisChangeEvent to all registered listeners. If paint is
null, this method throws an IllegalArgumentException.

24.2.8 The Fixed Dimension

It is possible to specify a fixed “dimension” for an axis. This is an ugly hack to help align subplots
in the combined plots. For a vertical axis, the fixed dimension applies to the width of the axis and
for a horizontal axis the fixed dimension applies to the height of the axis.

å public double getFixedDimension();

Returns the fixed dimension for the axis, in Java2D units.

å public void setFixedDimension(double dimension);

Sets the fixed dimension for the axis, in Java2D units. During layout, if the axis width or
height (depending on the orientation) is less than this value, it is increased to match dimension.
The value defaults to 0.0 which means it is ignored.

Note that the CategoryAxis class completely ignores this setting.

24.2.9 Other Methods

All axes are drawn by the plot that owns the axis, using this method:

å public abstract AxisState draw(Graphics2D g2, double cursor,

Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);

Draws the axis along the specified edge of the data area. Given that there may be more than
one axis on a particular edge, the cursor value specifies the distance from the edge that the axis
should be drawn (to take account of other axes that have already been drawn). An AxisState

object is returned which provides information about the axis (for example, the tick values which
the plot will use to draw gridlines if they are visible).

All axes are given the opportunity to refresh the axis ticks during the drawing process, which allows
for dynamic adjustment depending on the amount of space available for drawing the axis:

å public abstract List refreshTicks(Graphics2D g2, AxisState state,

Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);

Creates a list of ticks for the axis and updates the axis state.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 182

24.2.10 Change Notification

This class implements a change notification mechanism that is used to notify other objects whenever
an axis is changed in some way. This is part of a JFreeChart-wide mechanism that makes it possible
to receive notifications whenever a component of a chart is changed. Most often, such notifications
result in the chart being redrawn.

The following methods are used:

å public void addChangeListener(AxisChangeListener listener);

Registers an object to receive notification whenever the axis changes.

å public void removeChangeListener(AxisChangeListener listener);

Deregisters an object, so that it no longer receives notification when the axis changes.

å public void notifyListeners(AxisChangeEvent event);

Notifies all registered listeners that a change has been made to the axis.

See Also
AxisChangeEvent, AxisChangeListener, CategoryAxis, DateAxis, NumberAxis.

24.3 AxisCollection

24.3.1 Overview

A storage structure that is used to record the axes that have been assigned to the top, bottom, left
and right sides of a plot.

24.3.2 Notes

Axis collections are maintained only temporarily during the process of drawing a chart.

24.4 AxisLocation

24.4.1 Overview

This class is used to represent the possible axis locations for a 2D chart:

• AxisLocation.TOP OR LEFT;

• AxisLocation.TOP OR RIGHT;

• AxisLocation.BOTTOM OR LEFT;

• AxisLocation.BOTTOM OR RIGHT;

The final position of the axis is dependent on the orientation of the plot (horizontal or vertical) and
whether the axis is being used as a domain or a range axis.

24.4.2 Notes

The axis location is set using methods in the CategoryPlot and XYPlot classes.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 183

24.5 AxisSpace

24.5.1 Overview

This class is used to record the amount of space (in Java2D units) required to display the axes
around the edges of a plot. Since the plot may contain many axes (or, in the most complex case,
many subplots containing many axes) this class is used to collate the space requirements for all the
axes.

dataArea

plotArea
top

bottom

rightleft

Figure 24.2: AxisSpace Attributes

Axes are always drawn around the edges of the data area but should never extend outside the plot
area.

24.5.2 Methods

There are methods to get and set each of the attributes top, bottom, left and right maintained by
this class.

To add space to a particular edge:

å public void add(double space, RectangleEdge edge);

Adds the specified amount of space (in Java2D units) to one edge.

Sometimes you want to ensure that there is at least a specified amount of space for the axis along
a particular edge (this is used to ensure that the data areas in combined plots are aligned). The
following methods achieve this:

å public void ensureAtLeast(double space, RectangleEdge edge);

Ensures that there is at least the specified amount of space for the axes along the specified
edge.

å public void ensureAtLeast(AxisSpace space);

As above, but applied to all the edges.

Given a rectangle and an instance of AxisSpace, you can calculate the size of an inner rectangle
(essentially this is how the data area is computed from the plot area):

å public Rectangle2D shrink(Rectangle2D area, Rectangle2D result);

Calculates an inner rectangle based on the current space settings. If result is null a new
Rectangle2D is created for the result, otherwise the supplied rectangle is recycled.

24.6 AxisState

24.6.1 Overview

Instances of this class are used to record state information for an axis during the process of drawing
the axis to some output target.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 184

24.6.2 Notes

By recording state information per drawing of an axis, it should be possible for separate threads to
draw the same axis to different output targets simultaneously without interfering with one another.
This is part of an effort to (eventually) make JFreeChart thread-safe.

24.7 CategoryAnchor

24.7.1 Overview

An enumeration of the anchor points within the space allocated for a single category on a CategoryAxis:

Default: Value:

CategoryAnchor.START The start of the category.
CategoryAnchor.MIDDLE The middle of the category.
CategoryAnchor.END The end of the category.

24.7.2 Usage

This class is used to control the position of the domain axis gridlines drawn in a CategoryPlot (see
the setDomainGridlinePosition() method).

24.8 CategoryAxis

24.8.1 Overview

A category axis is used as the domain axis in a CategoryPlot. Categories are displayed at regular
intervals along the axis, with a gap before the first category (the lower margin), a gap after the last
category (the upper margin) and a gap between each category (the category margin).

lowerMargin
CATEGORY 1

upperMargin
categoryMargin

Category Axis
CATEGORY 2 CATEGORY N

Figure 24.3: The CategoryAxis margins

The axis will usually display a label for each category. There are a range of options for controlling
the position, alignment and rotation of the labels—these are described in section 24.8.6.

24.8.2 Constructor

This class has two contructors:

å public CategoryAxis();

Equivalent to CategoryAxis(null)—see the next constructor.

å public CategoryAxis(String label);

Creates a new category axis with the specified label. If you prefer no axis label, you can use
null for the label argument. All other attributes are set to default values.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 185

Attribute: Description:

lowerMargin The margin that appears before the first category, expressed as
a percentage of the overall axis length (defaults to 0.05 or five
percent).

upperMargin The margin that appears after the last category, expressed as a
percentage of the overall axis length (defaults to 0.05 or five per-
cent).

categoryMargin The margin between categories, expressed as a percentage of the
overall axis length (to be distributed between N-1 gaps, where N
is the number of categories). The default value is 0.20 (twenty
percent).

categoryLabelPositionOffset The offset between the axis line and the category labels.
categoryLabelPositions A structure that defines label positioning information for each

possible axis location (the axis may be located at the top, bottom,
left or right of the plot).

Table 24.3: Attributes for the CategoryAxis class

24.8.3 Attributes

The attributes maintained by the CategoryAxis class are listed in Table 24.3. These attributes are
in addition to those inherited from the Axis class (see section 24.2.3 for details).
The following default values are used:

Default: Value:

DEFAULT AXIS MARGIN 0.05 (5 percent).
DEFAULT CATEGORY MARGIN 0.20 (20 percent).

24.8.4 Setting Axis Margins

To control the lower margin for the axis:

å public double getLowerMargin();

Returns the lower margin for the axis, as a percentage of the total axis length. The default
value is 0.05 (five percent).

å public void setLowerMargin(double margin);

Sets the lower margin for the axis and sends an AxisChangeEvent to all registered listeners. The
margin is a percentage of the axis length (for example, 0.05 for a five percent margin).

To control the upper margin for the axis:

å public double getUpperMargin();

Returns the upper margin for the axis, as a percentage of the total axis length. The default
value is 0.05 (five percent).

å public void setUpperMargin(double margin);

Sets the upper margin for the axis and sends an AxisChangeEvent to all registered listeners. The
margin is a percentage of the axis length (for example, 0.05 for a five percent margin).

To control the margin between categories:

å public double getCategoryMargin();

Returns the (total) margin between all categories, as a percentage of the total axis length. The
default value is 0.20 (that is, twenty percent of the axis length is allocated to the gaps between
categories).

å public void setCategoryMargin(double margin);

Sets the category margin for the axis and sends an AxisChangeEvent to all registered listeners.
The margin is a percentage of the axis length (for example, 0.20 for a twenty percent margin).
The overall margin is distributed over N-1 gaps where N is the number of categories displayed
on the axis.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 186

24.8.5 Category Labels

The labels displayed on the axis to represent each category are obtained directly from the dataset,
by calling the toString() method on the dataset’s column key (similarly, the series label displayed
in the legend is obtained by calling the toString() method on the row key).

There are many options available for positioning, aligning and rotating the category labels on the
axis—these options are described in more detail in the next section. Here, we simply describe the
technique for rotating the category labels by 90 degrees, which is a common requirement:

CategoryPlot plot = (CategoryPlot) chart.getPlot();

CategoryAxis axis = plot.getDomainAxis();

axis.setCategoryLabelPositions(CategoryLabelPositions.UP 90);

24.8.6 Category Label Positioning and Alignment

There are many options for controlling the positioning, alignment and rotation of category labels.
This provides a great deal of flexibility, but at the price of being somewhat complex.

By default, JFreeChart will display category labels on a single line, truncated if necessary. However,
multi-line labels are supported:

å public int getMaximumCategoryLabelLines();

Returns the current maximum number of lines for displaying category labels. The default value
is 1.

å public void setMaximumCategoryLabelLines(int lines);

Sets the maximum number of lines for displaying category labels and sends an AxisChangeEvent

to all registered listeners.

Line wrapping occurs when longer labels reach the maximum width allowed for category labels.
This maximum category label width is specified in a relative way, in the CategoryLabelPosition class.
In addition, there is an override setting in this class:

å public float getMaximumCategoryLabelWidthRatio();

Returns the maximum category label width setting, which is expressed as a percentage of either
(a) the category label rectangle, or (b) the length of the range axis. The default value is 0.0,
which means this override setting is ignored.

å public void setMaximumCategoryLabelWidthRatio(float ratio);

Sets the maximum category label width, expressed as a percentage of (a) the category label
rectangle, or (b) the length of the range axis. This setting overrides the value specified in the
CategoryLabelPosition class (see below). After setting the value, an AxisChangeEvent is sent to
all registered listeners.

To control the offset between the axis and the category labels:

å public int getCategoryLabelPositionOffset();

Returns the offset (in Java2D units) between the axis and the category labels. The default
value is 4.

å public void setCategoryLabelPositionOffset(int offset);

Sets the offset, in Java2D units, between the axis and the category labels, then sends an
AxisChangeEvent to all registered listeners.

To control the position and rotation of the category labels:

å public CategoryLabelPositions getCategoryLabelPositions();

Returns an object containing the four CategoryLabelPosition instances that apply for each
possible location of the axis. This method never returns null.

å public void setCategoryLabelPositions(CategoryLabelPositions positions);

Sets the attribute that controls the position, alignment and rotation of the category labels
along the axis, then sends an AxisChangeEvent to all registered listeners.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 187

The CategoryLabelPositions class is just a structure containing four instances of the CategoryLabelPosition
class. When the axis needs to determine where it is going to draw the category labels, it will select
one of those instances depending on the current location of the axis (at the top, bottom, left or
right of the plot). It is the attributes of the CategoryLabelPosition object that ultimately determine
where the labels are drawn.

• the first attribute is an anchor point relative to a notional category rectangle that is computed
by the axis (see figure 24.4).Within this rectangle, an anchor point is specified using the
RectangleAnchor class.

Category Axis
CATEGORY 2 CATEGORY N

Category 1 Label Rectangle

Figure 24.4: A category label rectangle

• the second attribute is a text anchor, which defines a point on the category label which is
aligned with the anchor point on within the category rectangle mentioned previously. This
is specified using the TextBlockAnchor class. Try running the DrawStringDemo class in the
JCommon distribution to see how the anchor is used to align text to a point on the screen.

• two additional attributes define a rotation anchor point and a rotation angle. These are
applied once the label text has been positioned using the previous two attributes;

• a width ratio and width ratio type control the maximum width of the category labels.

24.8.7 Per Category Tick Label Settings

The category label font and paint settings are inherited from the Axis class. However, the CategoryAxis
class also provides the ability to override these settings on a per-category basis:

å public Font getTickLabelFont(Comparable category);

Returns the override font for the specified category, or null if there is no setting for that
category.

å public void setTickLabelFont(Comparable category, Font font);

Sets the override font for the specified category, and sends an AxisChangeEvent to all registered
listeners.

å public Paint getTickLabelPaint(Comparable category);

Returns the override paint for the specified category, or null if there is no setting for that
category.

å public void setTickLabelPaint(Comparable category, Paint paint);

Sets the override paint for the specified category, and sends an AxisChangeEvent to all registered
listeners.

24.8.8 Category Label Tool Tips

It is possible to specify tooltips for the labels along the category axis. This can be useful if you
want to use short category names, but have the opportunity to display a longer description. To
add a tool tip:

å public void addCategoryLabelToolTip(Comparable category, String tooltip);

Adds a tooltip for the specified category.

To remove a tool tip:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 188

å public void removeCategoryLabelToolTip(Comparable category);

Removes the tooltip for the specified category.

To remove all tool tips:

å public void clearCategoryLabelToolTips();

Removes all category label tool tips.

This feature is not supported by other axis types yet.

24.8.9 Other Methods

To control whether or not a line is drawn for the axis:

å public void setAxisLineVisible(boolean visible);

Sets the flag that controls whether or not a line is drawn for the axis. Often, this isn’t required
because the CategoryPlot draws an outline around itself by default. However, sometimes the
plot will have no outline OR the axis may be offset from the plot.

The Java2D coordinates for the start, middle and end of the category along the axis are given by:

å public double getCategoryStart(int category, int categoryCount, Rectangle2D area,

RectangleEdge edge);

Returns the start of the specified category (in Java2D units), assuming the axis lies along the
specified edge of the given area.

å public double getCategoryMiddle(int category, int categoryCount, Rectangle2D area,

RectangleEdge edge);

Returns the middle of the specified category (in Java2D units), assuming the axis lies along
the specified edge of the given area.

å public double getCategoryEnd(int category, int categoryCount, Rectangle2D area,

RectangleEdge edge);

Returns the end of the specified category (in Java2D units), assuming the axis lies along the
specified edge of the given area.

24.8.10 Internals

In JFreeChart, axes are owned/managed by a plot. The plot is responsible for assigning drawing
space to all of the axes in a plot, which it does by first asking the axes to estimate the space they
require (primarily for the axis labels). The following method is used:

å public AxisSpace reserveSpace(Graphics2D g2, Plot plot,

Rectangle2D plotArea, RectangleEdge edge, AxisSpace space);

Updates the axis space to allow room for this axis to be drawn.

When reserving space, the axis needs to determine the tick marks along the axis, which it does via
the following method:

å public List refreshTicks(Graphics2D g2, AxisState state,

Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);

Returns a list of the ticks along the axis.

After the plot has estimated the space required for each axis, it then computes the “data area” and
draws all the axes around the edges of this area:

å public AxisState draw(Graphics2D g2, double cursor,

Rectangle2D plotArea, Rectangle2D dataArea, RectangleEdge edge);

Draws the axis along a specific edge of the data area. The cursor is a measure of how far from
the edge of the data area the axis should be drawn (another axis may have been drawn along
the same edge already, for example) and the plot area is the region inside which all the axes
should fit (it contains the data area).

For a given rectangular region in Java2D space, the axis can be used to calculate an x-coordinate or
a y-coordinate (depending on which edge of the rectangle the axis is aligned) for the start, middle
or end of a particular category on the axis:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 189

å public double getCategoryJava2DCoordinate(CategoryAnchor anchor,

int category, int categoryCount, Rectangle2D area, RectangleEdge edge);

Returns the x- or y-coordinate (in Java2D space) of the specified category.

å protected double calculateCategorySize(int categoryCount, Rectangle2D area,

RectangleEdge edge);

Returns the width (in Java2D units) of one category assuming the axis lies along the specified
edge of the given area. The size is a function of the length of the edge along which the axis lies,
the number of categories, and the upper, lower and category margins specified for the axis.

å protected double calculateCategoryGapSize(int categoryCount, Rectangle2D area,

RectangleEdge edge);

Returns the width (in Java2D units) of the gap between categories, assuming the axis lies
along the specified edge of the given area. The gap size is a function of the length of the edge
along which the axis lies, the number of categories, and the upper, lower and category margins
specified for the axis.

To draw the category labels, JFreeChart calls the following method:

å protected AxisState drawCategoryLabels(Graphics2D g2, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, AxisState state,

PlotRenderingInfo plotState); [1.0.2]

Draws the category labels.1

24.8.11 Cloning and Serialization

This class is Cloneable and Serializable.

24.8.12 Notes

Some points to note:

• tick marks are not supported by this axis (yet);

• the foreground paint can be set for tick labels, but not the background paint.

See Also
CategoryPlot, CategoryAxis3D.

24.9 CategoryAxis3D

24.9.1 Overview

An extension of the CategoryAxis class that adds a 3D effect. If you use a CategoryItemRenderer

that draws items with a 3D effect, then you need to ensure that you are using this class rather than
a regular CategoryAxis. Eventually, the aim is to combine this class into the CategoryAxis class.

24.9.2 Constructors

There are two constructors:

å public CategoryAxis3D();

Creates a new axis with no label.

å public CategoryAxis3D(String label);

Creates a new axis with the specified label (null is permitted).

1Prior to 1.0.2, a drawCategoryLabels() method without the dataArea argument was used.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 190

24.9.3 Methods

The 3D effect is implemented simply by overriding two key methods:

å public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);

Draws the axis with a 3D effect. The offsets for the 3D effect are obtained from the plot’s main
renderer.

å public double getCategoryJava2DCoordinate(CategoryAnchor anchor, int category,

int categoryCount, Rectangle2D area, RectangleEdge edge);

Returns the Java2D coordinate for the specified category, taking into account the 3D effect.

See Also
NumberAxis3D.

24.10 CategoryLabelPosition

24.10.1 Overview

This class records the attributes that control the positioning (including alignment and rotation) of
category labels along a CategoryAxis:

• the category anchor - a RectangleAnchor that is used to determine the point on the axis against
which the category label is aligned. This is specified relative to a rectangular area that the
CategoryAxis allocates for the category (see figure 24.4);

• the label anchor - a TextBlockAnchor that determines the point on the category label (a
TextBlock) that is aligned with the category anchor;

• the rotation anchor - the point on the category label about which the label is rotated (note
that there may be no rotation);

• the rotation angle - the angle of the rotation, specified in radians;

• the category label width type - controls whether the maximum width for the labels is relative
to the width of the category label rectangle (the default) or the length of the range axis (useful
when labels are rotated so that they are perpendicular to the category axis);

• the maximum category label width ratio, measured as a percentage of either the category
label rectangle or the length of the range axis (see the previous setting).

24.10.2 Usage

To customise the label positioning, alignment and rotation, you would typically create four instances
of this class (one for each of the possible axis locations) and use these to create a CategoryLabelPositions

object.

24.10.3 Notes

The following points should be noted:

• instances of this class are immutable, a fact that is relied upon by code elsewhere in the
JFreeChart library.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 191

24.11 CategoryLabelPositions

24.11.1 Overview

This class is used to specify the positions of category labels on a CategoryAxis. To account for the
fact that an axis can appear in one of four different locations (the top, bottom, left or right of the
plot) this class contains four instances of the CategoryLabelPosition class—the axis will choose the
appropriate one when the labels are being drawn.

Several static instances of this class have been predefined in order to simplify general usage of the
CategoryAxis class:

Value: Description:

STANDARD The default label positions.
UP 90 The labels are rotated 90 degrees, with the text running from

the bottom to the top of the chart.
DOWN 90 The labels are rotated 90 degrees, with the text running from

the top to the bottom of the chart.
UP 45 The labels are rotated 45 degrees, with the text running to-

wards the top of the chart.
DOWN 45 The labels are rotated 45 degrees, with the text running to-

wards the bottom of the chart.

Table 24.4: Static instances of the CategoryLabelPositions class

24.11.2 Usage

For example, to change the category axis labels to a 45 degree angle:

CategoryAxis domainAxis = plot.getDomainAxis();
domainAxis.setCategoryLabelPositions(CategoryLabelPositions.UP 45);

The above example uses one of the predefined instances of this class. However, you can also
experiment with creating your own instance, to fully customise the category label positions.

24.12 CategoryLabelWidthType

24.12.1 Overview

This class defines tokens that are used to specify how the maximum category label width ratio—a
setting that limits the width of category labels relative to the size of the plot—is applied. See table
24.5 for the tokens that are defined.

24.12.2 Usage

This class is used for the creation of CategoryLabelPosition instances.

ID: Description:

CategoryLabelWidthType.CATEGORY The maximum width is a percentage of the
category width (for example, 0.90 for 90 per-
cent).

CategoryLabelWidthType.RANGE The maximum width is a percentage of the
length of the range axis (typically used when
the labels are displayed perpendicular to the
category axis).

Table 24.5: Tokens defined by CategoryLabelWidthType

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 192

24.12.3 Notes

Some points to note:

• the maximum category label width ratio is set using the
setMaximumCategoryLabelWidthRatio() method in the CategoryPlot class (or, if this is 0.0, the
ratio is taken from the CategoryLabelPosition instance);

• when a category label reaches its maximum width, it will wrap to another line (up to the
maximum number of lines allowed). If the full label cannot be displayed within the maximum
number of lines allowed, the label is truncated.

24.13 CategoryTick

24.13.1 Overview

A class used to represent a single tick on a CategoryAxis. This class is used internally and it is
unlikely that you should ever need to use it directly.

24.14 ColorBar

24.14.1 Overview

A color bar is used with a ContourPlot. This class is deprecated as of version 1.0.4.

24.15 CompassFormat

24.15.1 Overview

A custom NumberFormat class that can be used to display numerical values as compass directions—
see figure 24.5 for an example. In the example, the range axis on the left side of the chart displays

Figure 24.5: A chart that uses the CompassFormat class

compass directions in place of numerical values.

24.15.2 Usage

There is a demo (CompassFormatDemo1.java) included in the JFreeChart demo collection.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 193

24.15.3 Methods

To convert an angle (in degrees) to a compass direction (for example, “NE”):

å public String getDirectionCode(double direction);

Returns the compass direction (as a String) that corresponds to the given direction (which is
expressed in degrees). The return value is one of: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW,
WSW, W, WNW, NW, NNW.

The following methods perform the required formatting, but are usually not called directly (see
Java’s NumberFormat class for more details):

å public StringBuffer format(double number, StringBuffer toAppendTo, FieldPosition pos);

Converts the given number to a string containing the corresponding direction.

å public StringBuffer format(long number, StringBuffer toAppendTo, FieldPosition pos);

Converts the given number to a string containing the corresponding direction.

Parsing is not supported:

å public Number parse(String source, ParsePosition parsePosition);

This method always returns null, which means this formatter cannot be used for parsing.

24.15.4 Notes

Some points to note:

• this class cannot be used for parsing numbers;

• a demo application (CompassFormatDemo1.java) is included in the JFreeChart demo collection.

24.16 CyclicNumberAxis

24.16.1 Overview

An extension of the NumberAxis class that is used to generate cyclic plots.

24.16.2 Constructors

To create a new axis:

å public CyclicNumberAxis(double period);

Creates a new axis with the specified period and a zero offset. No label is set for the axis.

å public CyclicNumberAxis(double period, double offset);

Creates a new axis with the specified period and offset. No label is set for the axis.

å public CyclicNumberAxis(double period, String label);

Creates a new axis with the specified period and axis label. The offset is zero.

å public CyclicNumberAxis(double period, double offset, String label);

Creates a new axis with the specified period, offset and label.

24.16.3 Methods

To control the visibility of the “advance line”:

å public boolean isAdvanceLineVisible();

Returns the flag that controls whether or not the advance line is displayed.

å public void setAdvanceLineVisible(boolean visible);

Sets the flag that controls whether or not the advance line is displayed.

å public Paint getAdvanceLinePaint();

Returns the paint used to draw the advance line (never null).

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 194

å public void setAdvanceLinePaint(Paint paint);

Sets the paint used to draw the advance line (null not permitted).

å public Stroke getAdvanceLineStroke();

Returns the stroke used to draw the advance line (never null).

å public void setAdvanceLineStroke(Stroke stroke);

Sets the stroke used to draw the advance line (null not permitted).

å public boolean isBoundMappedToLastCycle();

To be documented.

å public void setBoundMappedToLastCycle(boolean boundMappedToLastCycle);

To be documented.

24.17 DateAxis

24.17.1 Overview

An axis that displays date/time values—extends ValueAxis. This class is designed to be flexible
about the range of dates/times that it can display—anything from a few milliseconds to several
centuries can be handled.

A date axis can be used for the domain and/or range axis in an XYPlot. In a CategoryPlot, a date
axis can only be used for the range axis.

24.17.2 Usage

To change the attributes of the axis, you need to obtain a DateAxis reference—because of the way
JFreeChart is designed, this usually involves a “cast”:

XYPlot plot = (XYPlot) chart.getPlot();

ValueAxis domainAxis = plot.getDomainAxis();

if (domainAxis instanceof DateAxis) {
DateAxis axis = (DateAxis) domainAxis;

// customise axis here...

}

Given a DateAxis reference, you can change:

• the axis range, see section 24.17.5;

• the size and formatting of the tick labels, see section 24.17.7;

• other inherited attributes, see section 24.44.4.

24.17.3 Constructors

The default constructor creates a new axis with no label:

å public DateAxis();

Creates a new date axis with no label.

You can specify the label using:

å public DateAxis(String label);

Creates a new axis with the specified label (null permitted, in which case no label is displayed
for the axis).

Sometimes it is useful to be able to specify the time zone used for the tick marks and labels on the
axis:

å public DateAxis(String label, TimeZone zone);

Creates a new date axis where the tick marks and labels are calculated for the specified time
zone.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 195

24.17.4 Attributes

The following attributes are defined, in addition to those inherited from the ValueAxis class:

Attribute: Description:

dateFormatOverride A date formatter that, if set, overrides the format of the tick labels
displayed on the axis.

tickUnit Controls the size and formatting of the tick labels on the axis (an
instance of DateTickUnit).

minimumDate The minimum date/time visible on the axis.
maximumDate The maximum date/time visible on the axis.
verticalTickLabels A flag that controls whether or not the tick labels on the axis are

displayed “vertically” (that is, rotated 90 degrees from horizontal).

Refer to section 24.44.3 for information about the attributes inherited by this class.

24.17.5 The Axis Range

The range of dates displayed by the axis is controlled with the following methods:

å public Date getMinimumDate();

Returns the earliest date along the axis range.

å public void setMinimumDate(Date date);

Sets the earliest date for the axis.

å public Date getMaximumDate();

Returns the latest date along the axis range.

å public void setMaximumDate(Date maximumDate);

Sets the latest date for the axis.

To set the axis range:2

å public void setRange(Range range);

Sets the range of values to be displayed by the axis and sends an AxisChangeEvent to all registered
listeners.

å public void setRange(Range range, boolean turnOffAutoRange, boolean notify);

Sets the range of values to be displayed by the axis. The turnOffAutoRange flag controls whether
the auto range calculation is disabled or not (usually you want to disable it) and the notify

flag controls whether or not an AxisChangeEvent is sent to all registered listeners.

å public void setRange(Date lower, Date upper);

Sets the range of values to be displayed by the axis.

å public void setRange(double lower, double upper);

Sets the range of values to be displayed by the axis and sends an AxisChangeEvent to all registered
listeners.

For example:

// start and end are instances of java.util.Date

axis.setRange(start, end);

24.17.6 Time Zone

To control the time zone for the axis (which affects the conversion of date values to string labels):

å public TimeZone getTimeZone(); [1.0.4]

Returns the time zone for the axis (normally specified in the constructor).

å public void setTimeZone(TimeZone zone); [1.0.4]

Sets the time zone for the axis and sends an AxisChangeEvent to all registered listeners.

2Note that when you set the axis range in this way, the auto-range attribute is set to false. It is assumed that
by setting a range manually, you do not want that subsequently overridden by the auto-range calculation.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 196

24.17.7 Tick Units

The tick units on the date axis are controlled by a similar “auto tick unit selection” mechanism to
that used in the NumberAxis class. This mechanism relies on a collection of “standard” tick units
(stored in an instance of TickUnits). The axis will try to select the smallest tick unit that doesn’t
cause the tick labels to overlap.

If you want to specify a fixed tick size and format, you can use code similar to this:

// set the tick size to one week, with formatting...

DateFormat formatter = new SimpleDateFormat("d-MMM-yyyy");

DateTickUnit unit = new DateTickUnit(DateTickUnit.DAY, 7, formatter);

axis.setTickUnit(unit);

Note that setting a tick unit manually in this way disables the “auto” tick unit selection mechanism.
You may find that the tick size you have requested results in overlapping labels.

If you just want to control the tick label format, one option is to specify an override format :

// specify an override format...

DateFormat formatter = new SimpleDateFormat("d-MMM");

axis.setDateFormatOverride(formatter);

This is a simple and effective approach in some situations, but has the limitation that the same
format is applied to all tick sizes.

A final approach to controlling the formatting of tick labels is to create your own TickUnits col-
lection. The collection can contain any number of DateTickUnit objects, and should be registered
with the axis as follows:

// supply a new tick unit collection...

axis.setStandardTickUnits(myCollection);

24.17.8 Tick Label Orientation

To control the orientation of the tick labels on the axis:

axis.setVerticalTickLabels(true);

This code survives from the early days of JFreeChart development when there were sep-
arate classes HorizontalDateAxis and VerticalDateAxis...it needs to be changed to be
more generic for axes that could have either a horizontal or vertical orientation.

24.17.9 Timelines

This class uses a Timeline to provide an opportunity for the axis to map from Java time (measured
in milliseconds since 1 January 1970, 00:00:00 GMT), to some other time scale. The default time
line performs an “identity” mapping—that is, the millisecond values are not changed.

Use the following methods to change the time line:

å public Timeline getTimeline();

Returns the current time line.

å public void setTimeline(Timeline timeline);

Sets the time line and sends an AxisChangeEvent to all registered listeners.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 197

24.17.10 Other Methods

You can specify a fixed tick unit for the axis:

å public DateTickUnit getTickUnit();

Returns the tick unit (possibly null, in which case a tick unit will be selected automatically.)

å public void setTickUnit(DateTickUnit unit);

Sets the fixed tick unit for the axis and sends an AxisChangeEvent to all registered listeners.

å public void setTickUnit(DateTickUnit unit, boolean notify,

boolean turnOffAutoSelection);

Sets the fixed tick unit for the axis.

You can specify an override formatter for the tick labels:

å public DateFormat getDateFormatOverride();

Returns the formatter for the tick labels. If this is non-null, it is used to override any other
formatter.

å public void setDateFormatOverride(DateFormat formatter)

Sets the formatter and sends an AxisChangeEvent to all registered listeners. You should be
careful using this method, it overrides the date formatting without consideration for the size
of the tick units. If you choose an inappropriate date format you will get bad axis labelling.

Tick marks and labels are displayed at regular intervals along the axis. You can control whether
the marks are positioned at the start, middle or end of the interval:

å public DateTickMarkPosition getTickMarkPosition();

Returns the position for the tick marks within each interval along the axis.

å public void setTickMarkPosition(DateTickMarkPosition position);

Sets the position for the tick marks within each interval along the axis and sends an AxisChangeEvent

to all registered listeners.

å public void configure();

Configures the axis which involves recalculating the axis range (if the autoRange flag is switched
on).

å public boolean isHiddenValue(long millis);

Returns true if the specified millisecond is hidden by the Timeline, and false otherwise.

å public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge);

Converts a data value to Java2D coordinates, assuming that the axis lies along one edge of the
specified area.

å public double dateToJava2D(Date date, Rectangle2D area, RectangleEdge edge);

Converts a date to Java2D coordinates, assuming that the axis lies along one edge of the
specified area.

å public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge);

Translates a Java2D coordinate into a data value.

å public Date calculateLowestVisibleTickValue(DateTickUnit unit);

Calculates the value of the first tick mark on the axis.

å public Date calculateHighestVisibleTickValue(DateTickUnit unit);

Calculates the value of the last tick mark on the axis.

å public static TickUnitSource createStandardDateTickUnits();

Creates a set of standard tick units for a date axis.

å public static TickUnitSource createStandardDateTickUnits(TimeZone zone);

Creates a set of standard tick units for a date axis.

å public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D plotArea, Rectangle2D

dataArea, RectangleEdge edge);

Returns a list of ticks for the axis. You can override this method to customise the list of
ticks displayed on the axis—see YieldCurveDemo.java in the JFreeChart demo collection for an
example.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 198

å public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea, Rectangle2D dataArea,

RectangleEdge edge, PlotRenderingInfo plotState);

Draws the axis. Normally, this method is called by the plot that owns the axis—you shouldn’t
need to call this method yourself.

å public void zoomRange(double lowerPercent, double upperPercent);

Changes the axis range to simulate a “zoom” function.

å public boolean equals(Object obj);

Tests for equality with an arbitrary object.

24.17.11 Notes

Some points to note:

• although the axis displays dates for tick labels, at the lowest level it is still working with
double primitives obtained from the Number objects supplied by the plot’s dataset. The
values are interpreted as the number of milliseconds since 1 January 1970 (that is, the same
encoding used by java.util.Date).

• a DateAxis is typically used as the domain axis (or x-axis) in a chart, but it can also be
used as the range axis (or y-axis)—for example, see the EventFrequencyDemo1.java application
included in the JFreeChart demo collection.

24.18 DateTickMarkPosition

24.18.1 Overview

A simple enumeration of the possible tick mark positions for a DateAxis. The positions are:

• DateTickMarkPosition.START;

• DateTickMarkPosition.MIDDLE;

• DateTickMarkPosition.END.

Use the setTickMarkPosition() method in the DateAxis class to change this setting.

24.19 DateTick

24.19.1 Overview

A class used to represent a single tick on a DateAxis.

24.19.2 Usage

This class is used internally and it is unlikely that you should ever need to use it directly.

24.19.3 Constructor

To create a new instance:

å public DateTick(Date date, String label, TextAnchor textAnchor,

TextAnchor rotationAnchor, double angle);

Creates a new tick representing the specified date.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 199

24.19.4 General Methods

To get the date for this tick:

å public Date getDate();

Returns the date for this tick.

24.19.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this tick for equality with an arbitrary object.

24.20 DateTickUnit

24.20.1 Overview

A date tick unit for use by subclasses of DateAxis (extends the TickUnit class).

The unit size can be specified as a multiple of one of the following time units:

Time Unit: Constant:

Year DateTickUnit.YEAR

Month DateTickUnit.MONTH

Day DateTickUnit.DAY

Hour DateTickUnit.HOUR

Minute DateTickUnit.MINUTE

Second DateTickUnit.SECOND

Millisecond DateTickUnit.MILLISECOND

Note that these constants are not the same as those defined by Java’s Calendar class.

24.20.2 Usage

There are two ways to make use of this class. The first is where you know the exact tick size that
you want for your axis. In this case, you create a new date tick unit then call the setTickUnit()

method in the DateAxis class. For example, to set the tick unit size on the axis to one week:

XYPlot plot = myChart.getXYPlot();

ValueAxis axis = plot.getDomainAxis();

axis.setTickUnit(new DateTickUnit(DateTickUnit.DAY, 7));

The second usage is to create a collection of tick units using the TickUnits class, and then allow
the DateAxis to automatically select an appropriate unit. See the setStandardTickUnits() method
for more details.

24.20.3 Constructors

To create a new date tick unit:

å public DateTickUnit(int unit, int count);

Creates a new tick unit with a default date formatter for the current locale.

Alternatively, you can supply your own date formatter:

å public DateTickUnit(int unit, int count, DateFormat formatter);

Creates a new date tick unit with the specified date formatter.

For both constructors, the unit argument should be defined using one of the constants listed in
section 24.20.1. The count argument specifies the multiplier (often just 1).

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 200

24.20.4 Methods

To get the units used to specify the tick size:

å public int getUnit();

Returns a constant representing the units used to specify the tick size. The constants are listed
in section 24.20.1.

To get the number of units:

å public int getCount();

Returns the number of units.

To format a date using the tick unit’s internal formatter:

å public String dateToString(Date date);

Formats the date as a String.

The following method is used for simple date addition:

å public Date addToDate(Date base);

Creates a new Date that is calculated by adding this DateTickUnit to the base date.

24.20.5 Notes

This class is immutable, a requirement for all subclasses of TickUnit.

See Also
NumberTickUnit.

24.21 ExtendedCategoryAxis

24.21.1 Overview

An extension of the CategoryAxis class that allows sublabels to be displayed with the categories.

24.21.2 Notes

Some points to note:

• a couple of demos (SurveyResultsDemo2.java and SurveyResultsDemo3.java) are included in
the JFreeChart demo collection.

24.22 LogAxis

24.22.1 Overview

An axis that displays a logarithmic scale. This class was first introduced in JFreeChart version
1.0.7.

24.22.2 Constructors

To create a new axis instance:

å public LogAxis(); [1.0.7]

Equivalent to LogAxis(null)—see the next constructor.

å public LogAxis(String label); [1.0.7]

Creates a new axis with the specified label. If label is null, the axis will be drawn without a
label.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 201

24.22.3 General Attributes

To control the base of the logarithm calculation used by the axis:

å public double getBase(); [1.0.7]

Returns the base for the logarithm calculation. The default value is 10.0.

å public void setBase(double base); [1.0.7]

Sets the base for the logarithm calculation, and sends an AxisChangeEvent to all registered
listeners. If base is less than or equal to 1.0, this method throws an IllegalArgumentException.

This axis can only display positive values. The smallest positive value that will be displayed on the
axis is controlled by:

å public double getSmallestValue(); [1.0.7]

Returns the smallest (positive) value that will be displayed on the axis. The default value is
1E-100.

å public void setSmallestValue(double value); [1.0.7]

Sets the smallest value that will be displayed on the axis, and sends an AxisChangeEvent

to all registered listeners. If value is less than or equal to 0.0, this method throws an
IllegalArgumentException.

To control the tick unit for the axis:

å public NumberTickUnit getTickUnit(); [1.0.7]

Returns the current tick unit for the axis.

å public void setTickUnit(NumberTickUnit unit); [1.0.7]

Equivalent to setTickUnit(unit, true, true)—see the next method.

å public void setTickUnit(NumberTickUnit unit, boolean notify, boolean turnOffAutoSelect);

[1.0.7]

Sets the current tick unit and, if requested, sends an AxisChangeEvent to all registered listeners.

å public NumberFormat getNumberFormatOverride(); [1.0.7]

Returns the override formatter for the tick labels on the axis. The default value is null.

å public void setNumberFormatOverride(NumberFormat formatter); [1.0.7]

Sets the override formatter (null is permitetd) for the tick labels on the axis, and sends an
AxisChangeEvent to all registered listeners.

To control the number of minor tick marks shown between each major tick mark:

å public int getMinorTickCount(); [1.0.7]

Returns the minor tick count. The default value is 10.

å public void setMinorTickCount(int count); [1.0.7]

Sets the minor tick count and sends an AxisChangeEvent to all registered listeners.

24.22.4 Other Methods

This class provides a number of methods that are typically called by JFreeChart rather than by
user code.

å public double calculateLog(double value); [1.0.7]

Returns x, where value = Math.pow(base, x).

å public double calculateValue(double log); [1.0.7]

Returns y, where y = Math.pow(base, log).

To convert from data-space to Java2D-space and back again:

å public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge); [1.0.7]

Converts a Java2D coordinate into data-space, assuming the axis lies along the specified edge

of the given area.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 202

å public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge); [1.0.7]

Converts a data value into Java2D space, assuming the axis lies along the specified edge of the
given area.

There are a couple of methods related to the auto-range calculation:

å public void configure(); [1.0.7]

Updates the axis bounds if the autoRange flag is set. This method is usually called when an
axis is first assigned to a plot.

å protected void autoAdjustRange(); [1.0.7]

Updates the axis bounds to match the available data.

To draw the axis:

å public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState); [1.0.7]

Draws ths axis along one edge of the specified dataArea.

Some methods relating to the tick units on the axis:

å public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D dataArea,

RectangleEdge edge); [1.0.7]

Returns a list of tick marks and labels for the axis.

å protected void selectAutoTickUnit(Graphics2D g2, Rectangle2D dataArea, RectangleEdge edge);

[1.0.7]

Selects a tick unit from the current TickUnitSource in such a way that the tick labels will not
overlap.

å public double exponentLengthToJava2D(double length, Rectangle2D area, RectangleEdge edge);

[1.0.7]

Returns the length, in Java2D units, of a value given in the linear scale for the axis.

å public static TickUnitSource createLogTickUnits(Locale locale); [1.0.7]

Creates a default set of tick units for the axis.

The following method is overridden to support zooming:

å public void zoomRange(double lowerPercent, double upperPercent); [1.0.7]

Adjusts the axis range to show the interval specified.

24.22.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.7]

Tests this axis for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

24.22.6 Notes

A demo (LogAxisDemo1.java) is included in the JFreeChart demo collection.

See Also:
LogarithmicAxis.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 203

24.23 LogarithmicAxis

24.23.1 Overview

A numerical axis that displays values using a logarithmic scale (with base 10). This class extends
NumberAxis and can be used anywhere that a NumberAxis can be used, including:

• as the range axis on a CategoryPlot;

• as the domain and/or range axis on an XYPlot;

• as the range axis on a ThermometerPlot.

Note: This class has some quirks and isn’t quite as flexible as it could be. There’s now an alternative
axis that you might want to try—LogAxis.

24.23.2 Constructors

This class has a single constructor:

å public LogarithmicAxis(String label);

Creates a new axis with the specified label. If the label is null, the axis is displayed without a
label. The default tick label format for the axis will be regular numeric labels, rather than the
scientific or power notations.

24.23.3 The Axis Range

By default, the axis range is automatically calculated to match the range of values plotted against
the axis. If you prefer to set the axis range manually, the following method will do this:

å public void setRange(Range range);

Sets the bounds of the axis to the given range.

Once a range has been manually set, changes to the dataset do not alter the axis range. You can
restore the automatic range calculation using:

axis.setAutoRange(true);

A flag is used to control whether the automatically calculated range is expanded to include the next
“power of ten” value:

å public boolean getAutoRangeNextLogFlag();

Returns true if the next power of ten is included in the automatic range, and false otherwise.

å public void setAutoRangeNextLogFlag(boolean flag);

Sets the flag that controls whether the next “power of ten” is included in the automatic range
calculation. The default value is false.

The following method updates the axis bounds according to the values in the dataset (it is usually
called by JFreeChart, you shouldn’t need to call this method directly):

å public void autoAdjustRange();

Updates the axis bounds to reflect the range of values in the dataset.

24.23.4 Negative Values

A logarithmic axis can only display positive values. However, the JFreeChart implementation
provides an option to allow negative values to be plotted on a logarithmic scale.

å public boolean getAllowNegativesFlag();

Returns true if the axis is configured to display negative values, and false otherwise.

å public void setAllowNegativesFlag(boolean flgVal);

Sets the flag that controls whether or not the axis will display negative values.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 204

The strictValues flag controls whether or not a RuntimeException is thrown when a negative value
is encountered and the allowNegativeValues flag is false. Note: setting this flag to false appears to
be equivalent to setting the allowNegativesFlag to true.

å public boolean getStrictValuesFlag();

Returns the value of the strictValuesFlag.

å public void setStrictValuesFlag(boolean flgVal);

Sets the flag that controls whether or not a RuntimeException is thrown when the allowNegativesFlag

is false and a negative value is encountered.

24.23.5 Tick Label Formatting

The axis can display tick labels in several formats:

• as a regular number (the default);

• in the form 10^x;

• using scientific notation (for example, 1E8 which is 1 x 10^8).

The log10TickLabelsFlag flag controls the selection of the “10^x” format:

å public boolean getLog10TickLabelsFlag();

Returns true if the tick labels are displayed in the form “10^x”, and false otherwise.

å public void setLog10TickLabelsFlag(boolean flag);

Sets the flag that controls whether the tick labels are displayed in the form “10^x”. This flag
takes precedence over the expTickLabelsFlag flag.

The expTickLabelsFlag flag controls the selection of the scientific format:
å public boolean getExpTickLabelsFlag();

Returns true if the tick labels are displayed using scientific notation (for example, 1E2, which
is equivalent to 1 x 10^2), and false otherwise.

å public void setExpTickLabelsFlag(boolean flgVal);

Sets a flag that controls whether the tick labels are displayed in scientific notation. This flag
is ignored if the log10TickLabelsFlag is true.

24.23.6 Other Methods

The remaining methods in this class are used to convert data values to Java2D coordinates and
vice-versa:

å public double valueToJava2D(double value, Rectangle2D plotArea, RectangleEdge edge);

Converts value to a Java2D coordinate along the edge of the given PlotArea.

å public double java2DToValue(double java2DValue, Rectangle2D plotArea, RectangleEdge edge);

Converts java2DValue to an axis value.

å public double adjustedLog10(double val);

To be documented.

24.23.7 Notes

An alternative to this class is the LogAxis class.

24.24 MarkerAxisBand

24.24.1 Overview

A band that can be added to a NumberAxis to highlight certain value ranges. NOTE: this facility is
broken at present, so this class should not be used.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 205

24.25 ModuloAxis

24.25.1 Overview

This axis is a special extension of NumberAxis that presents a fixed range of values in a “circular”
or “cyclic” fashion. It was originally developed to display directional measurements (that is, values
in the range 0 to 360 degrees), but should be general enough to be applied for other uses. The
CompassFormatDemo2 application (included in the JFreeChart demo collection) provides one example
of this axis in use—see figure 24.6.

Figure 24.6: A chart that uses a ModuloAxis

24.25.2 Constructor

There is a single constructor:

å public ModuloAxis(String label, Range fixedRange);

Creates a new axis with the specified label and fixedRange.

24.25.3 The Display Range

The display range is the subset (of the fixed range) that is currently displayed by the axis. It is
defined by a start value and an end value. It is possible for the start value to be greater than the
end value—in this case, the displayed range is formed from two parts: (1) the start value to the
upper bound of the fixed range, and (2) the lower bound of the fixed range to the end value.

To find the current display range:

å public double getDisplayStart();

Returns the start value of the range being displayed by the axis. This value will always fall
within the fixed range specified in the constructor.

å public double getDisplayEnd();

Returns the end value of the range being displayed by the axis. This value will always fall
within the fixed range specified in the constructor.

To set the display range:

å public void setDisplayRange(double start, double end);

Sets the display range for the axis. If either start or end fall outside the fixed range specified in
the constructor, they will first be mapped to the fixed range (using a modulo-like calculation).
It is possible for start to be greater than end—in this case, the displayed range is formed from
two parts: (1) the start value to the upper bound of the fixed range, and (2) the lower bound
of the fixed range to the end value.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 206

24.25.4 Other Methods

Other methods defined for this class are mainly for internal use:

å public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge);

Converts a data value to a Java2D coordinate, assuming that the axis lies along the specified
edge of the given area. This method overrides the method provided by NumberAxis to account
for the fact that the display range may be in two pieces.

å public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge);

Converts a Java2D coordinate into a data value, assuming that the axis lies along the specified
edge of the given area. This method overrides the method provided by NumberAxis to account
for the fact that the display range may be in two pieces.

å public void resizeRange(double percent);

Resizes the display range, about its central value, by the specified percentage (values less that
1.0 or 100% will shrink the range, while values greater than 1.0 will expand the range).

å public void resizeRange(double percent, double anchorValue);

Resizes the display range by the specified percentage about the anchorValue. Percentage values
less that 1.0 or 100% will shrink the range, while values greater than 1.0 will expand the range).

å public double lengthToJava2D(double length, Rectangle2D area, RectangleEdge edge);

Converts a length (specified in data space) into Java2D units. This method overrides the
method specified in NumberAxis to account for the fact that the displayed range on the axis may
be in two pieces.

24.26 MonthDateFormat

24.26.1 Overview

A custom date formatter that displays the month and, optionally, the year. This formatter is
typically used with the PeriodAxis class. An example of the sequence of date strings that can be
generated with this formatter is:

Jan06 Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Notice how the first month has the year appended to it (this is configurable for every month).

24.26.2 Constructors

There are a range of constructors that allow you to configure the formatter as appropriate:

å public MonthDateFormat();

Creates a new formatter for the default time zone. This is equivalent to:

new MonthDateFormat(TimeZone.getDefault());

å public MonthDateFormat(TimeZone zone);

Creates a new formatter for the given time zone. This is equivalent to:

new MonthDateFormat(zone, Locale.getDefault(), 1, true, false);

This means that months are labelled with a single letter, and a two-digit year indicator is added
to January only.

å public MonthDateFormat(TimeZone zone, int chars);

Creates a new formatter for the given time zone, with the specified number of characters for
each month. This is equivalent to:

new MonthDateFormat(zone, Locale.getDefault(), chars, true, false);

A two-digit year indicator is added to January only.

å public MonthDateFormat(Locale locale);

Creates a new formatter for the given locale. This is equivalent to:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 207

new MonthDateFormat(TimeZone.getDefault(), locale, 1, true, false);

This means that months are labelled with a single letter, and a two-digit year indicator is added
to January only.

å public MonthDateFormat(Locale locale, int chars);

Creates a new formatter for the given locale, with the specified number of characters for each
month. This is equivalent to:

new MonthDateFormat(TimeZone.getDefault(), locale, chars, true, false);

A two-digit year indicator is added to January only.

å public MonthDateFormat(TimeZone zone, Locale locale, int chars, boolean showYearForJan,

boolean showYearForDec);

Creates a new formatter for the given time zone and locale. The chars argument specifies the
number of characters to display for each month name. The remaining flags control whether or
not the year is displayed for the months January and December (the year is NOT displayed for
the other months). The year is formatted using new SimpleDateFormat("yy").

The remaining constructor allows every attribute to be customised:

å public MonthDateFormat(TimeZone zone, Locale locale, int chars, boolean[] showYear,

DateFormat yearFormatter);

Creates a new formatter for the given time zone and locale. The time zone determines which
month a given date falls into, while the locale determines the labels used for the months.
The chars argument specifies the number of characters to display for each month name. The
showYear array should contain 12 flags that determine whether the year is appended to each
month label (sometimes you will want the year appended to every month, sometimes you may
just want the first month (January) of each year to have the year displayed. The final argument
controls the formatting of the year.

24.26.3 Methods

The following methods from DateFormat are required to be overridden—you won’t normally call
these methods directly:

å public StringBuffer format(Date date, StringBuffer toAppendTo, FieldPosition fieldPosition);

Formats the given date.

å public Date parse(String source, ParsePosition pos);

This method returns null always, which means this formatter cannot be used to parse text into
dates.

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this formatter for equality with an arbitrary object.

24.27 NumberAxis

24.27.1 Overview

An axis that displays numerical data along a linear scale. This class extends ValueAxis. You can
create your own subclasses if you have special requirements.

24.27.2 Usage

A NumberAxis can be used for:

• the range axis in a CategoryPlot.

• the domain and/or range axes in an XYPlot;

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 208

The methods for obtaining a reference to the axis typically return a ValueAxis, so you will need
to “cast” the reference to a NumberAxis before using any of the methods specific to this class. For
example:

ValueAxis rangeAxis = plot.getRangeAxis();

if (rangeAxis instanceof NumberAxis) {
NumberAxis axis = (NumberAxis) rangeAxis;

axis.setAutoRangeIncludesZero(true);

}

This casting technique is used often in JFreeChart.3

24.27.3 Constructors

To create a new axis:

å public NumberAxis();

Creates a new axis with no label.

å public NumberAxis(String label);

Creates a new axis with the specified label. If label is null, the axis will be displayed without
a label.

24.27.4 Attributes

The following table lists the properties maintained by NumberAxis, in addition to those inherited
from ValueAxis.

Attribute: Description:

rangeType Defines the permitted range for the axis: RangeType.FULL,
RangeType.POSITIVE and RangeType.NEGATIVE.

autoRangeIncludesZero A flag that indicates whether or not zero is always included when the
axis range is determined automatically.

autoRangeStickyZero A flag that controls the behaviour of the auto-range calculation when
zero falls within the lower or upper margin for the axis. If true, the
margin will be truncated at zero.

numberFormatOverride A NumberFormat that, if set, overrides the formatting of the tick labels
for the axis.

verticalTickLabels A flag that indicates whether or not the tick labels are rotated to
vertical.

markerBand An optional band that highlights ranges along the axis (see
MarkerAxisBand).

The following default values are used for attributes wherever necessary:

Name: Value:

DEFAULT MINIMUM AXIS VALUE 0.0

DEFAULT MAXIMUM AXIS VALUE 1.0

DEFAULT MINIMUM AUTO RANGE new Double(0.0000001);

DEFAULT TICK UNIT new NumberTickUnit(new Double(1.0), new

DecimalFormat("0"));

24.27.5 The Axis Range

You can control most aspects of the axis range using methods inherited from the ValueAxis class—
see section 24.44.5 for details. Some additional controls are added by this class.

To restrict the axis to display only positive values, or only negative values, you can set the rangeType

attribute:

å public RangeType getRangeType();

Returns the range type (never null).

3If you are sure of what you are doing, you can drop the instanceof check.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 209

å public void setRangeType(RangeType rangeType);

Sets the range type and sends an AxisChangeEvent to all registered listeners.

If you have set the autoRange flag to true (so that the axis range automatically adjusts to fit the
current data), you may also want to set the autoRangeIncludesZero flag to ensure that the axis
range always includes zero:

å public boolean getAutoRangeIncludesZero();

Returns true if the auto-range calculation ensures that zero is included in the range, and false

otherwise.

å public void setAutoRangeIncludesZero(boolean flag);

Sets the autoRangeIncludesZero flag and sends an AxisChangeEvent to all registered listeners.
Note that some renderers (for example, BarRenderer) have a flag to control the inclusion of
some “base” value in the axis range—since the base value often defaults to zero, you may need
to set the flag in the renderer also, to get the required range for the axis.

If the autoRangeIncludesZero flag is set to true, then you can further control how the axis margin
is calculated when zero falls within the axis margin. By setting the autoRangeStickyZero flag to
true you can truncate the margin at zero:

å public boolean getAutoRangeStickyZero();

Returns true if the axis margin should be truncated at zero if the zero value falls within the
margin.

å public void setAutoRangeStickyZero(boolean flag);

Sets the flag that controls whether or not the axis margin is truncated if the zero value falls
within the margin. An AxisChangeEvent is sent to all registered listeners.

24.27.6 Auto Tick Unit Selection

The NumberAxis class contains a mechanism for automatically selecting a tick unit from a collection
of “standard” tick units. The aim is to display as many ticks as possible, without the tick labels
overlapping. The appropriate tick unit will depend on the axis range (which is often a function of
the available data) and the amount of space available for displaying the chart.

The default standard tick unit collection contains about 50 tick units ranging in size from 0.0000001
to 1,000,000,000. The collection is created and returned by the createStandardTickUnits() method.

You can replace the default collection with any other collection of tick units you care to create.
One common situation where this is necessary is the case where your data consists of integer values
only. In this case, you only want the axis to display integer tick values, but sometimes the axis
will show values like 0.00, 2.50, 5.00. 7.50, 10.00, when you might prefer 0, 2, 4, 6, 8, 10. For this
situation, a set of standard integer tick units has been created. Use the following code:

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
TickUnits units = NumberAxis.createIntegerTickUnits();
rangeAxis.setStandardTickUnits(units);

For greater control over the tick sizes or formatting, create your own TickUnits object.

24.27.7 Specifying a Formatting Override

For convenience, you can supply a NumberFormat instance as an override for the tick label formatting.
å public NumberFormat getNumberFormatOverride();

Returns the override formatter for the tick labels on the axis. The default value is null (no
override).

å public void setNumberFormatOverride(NumberFormat formatter);

Sets the override formatter for the tick labels on the axis and sends an AxisChangeEvent to all
registered listeners. You can set this to null to revert to using the standard formatters.

For example, to format the tick labels along the axis as percentages, you could use the following:
NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
rangeAxis.setNumberFormatOverride(new DecimalFormat(0̈.00%)̈);

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 210

24.27.8 Methods

When the auto-tick-unit-selection flag is set to true, the axis will select a tick unit from a set of
standard tick units. You can define your own standard tick units for an axis with the following
method:

å public void setStandardTickUnits(TickUnits units);

Sets the standard tick units for the axis.

You don’t have to use the auto tick units mechanism. To specify a fixed tick size (and format):

å public void setTickUnit(NumberTickUnit unit);

Sets a fixed tick unit for the axis. This allows you to control the size and format of the ticks,
but you need to be sure to choose a tick size that doesn’t cause the tick labels to overlap.

å public void setTickUnit(NumberTickUnit unit, boolean notify, boolean turnOffAutoSelect);

Sets the current tick unit for the axis and, if notify is true, sends an AxisChangeEvent to all
registered listeners. If turnOffAutoSelect is true, this method sets autoTickUnitSelection to
false.

å public NumberTickUnit getTickUnit();

Returns the current tick unit for the axis. This controls the spacing between tick marks along
the axis, and also the format of the tick labels.

The following methods provide access to marker bands for the axis (these are currently broken, so
you should not use these methods):

å public MarkerAxisBand getMarkerBand();

Returns the marker band for the axis, or null if no band is installed.

å public void setMarkerBand(MarkerAxisBand band);

Sets the marker band for the axis and sends an AxisChangeEvent to all registered listeners.

24.27.9 Coordinate Translation

A core function of the axis is to translate values between data space (axis coordinates) and Java2D
space (for rendering on the screen or some other output target). This is handled via the following
methods:

å public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge);

Translates a value along the axis scale to a value in Java2D space, assuming that the axis runs
along the specified edge of the given area.

å public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge);

Tranlates a Java2D coordinate to a value on the axis scale, assuming that the axis runs along
the specified edge of the given area.

24.27.10 Other Methods

The remaining methods are typically used by other JFreeChart components—you won’t normally
call these methods yourself:

å public void configure();

Reconfigures the axis—this updates the axis range if the auto-range calculation flag is set.

å public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D dataArea,

RectangleEdge edge);

Creates and returns a list of ticks for display along the axis. This list is refreshed every time
the axis is drawn. You can override this method to take full control of the values along the
axis that will display tick labels.

å public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);

Draws the axis alogn the given edge of the specified dataArea.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 211

24.27.11 Standard Tick Units

å public static TickUnitSource createStandardTickUnits();

Returns a collection of standard sizes (and label formats) for the ticks along the axis.

å public static TickUnitSource createStandardTickUnits(Locale locale);

As for the previous method, except the standard number format for the given locale is used to
format the tick labels.

å public static TickUnitSource createIntegerTickUnits();

Returns a collection of (integer-only) standard sizes (and associated label formats) for the ticks
along the axis.

å public static TickUnitSource createIntegerTickUnits(Locale locale);

As for the previous method, except the standard integer format for the given locale is used to
format the tick labels.

24.27.12 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this axis for equality with an arbitrary object.

å public int hashCode();

Returns a hash code for the axis.

24.27.13 Notes

Some points to note:

• you can reverse the direction of the values on the axis by calling setInverted(true)—this
method is inherited from the ValueAxis class;

• this class defines a default set of standard tick units. You can override the default settings by
calling the setStandardTickUnits() method.

See Also
ValueAxis, TickUnits.

24.28 NumberAxis3D

24.28.1 Overview

An extension of the NumberAxis class that adds a 3D effect. The offset for the 3D effect is obtained
from the plot’s main renderer, assuming that it implements the Effect3D interface.

24.28.2 Constructors

There are two constructors:

å public NumberAxis3D();

Creates a new axis with no label.

å public NumberAxis3D(String label);

Creates a new axis with the specified label (null is permitted).

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 212

24.28.3 Methods

The 3D effect is implemented by overriding the drawing method:

å public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);

Draws the axis with a 3D effect (the offsets for the 3D effect are obtained from the plot’s main
renderer).

24.28.4 Notes

Ideally, this class will be combined with the NumberAxis class.

See Also
CategoryAxis3D.

24.29 NumberTick

24.29.1 Overview

A class used to represent a single tick on a NumberAxis.

24.29.2 Usage

This class is used internally and it is unlikely that you should ever need to use it directly.

24.29.3 Constructors

To create a new instance:

å public NumberTick(Number number, String label, TextAnchor textAnchor,

TextAnchor rotationAnchor, double angle);

Creates a new instance.

å public NumberTick(TickType tickType, double value, String label, TextAnchor textAnchor,

TextAnchor rotationAnchor, double angle); [1.0.7]

Creates a new instance with the specified type.4

24.29.4 Methods

In addition to the methods inherited from ValueTick, this class defines the following method:

å public Number getNumber();

Returns the numerical value associated with this tick.

24.29.5 Notes

Instances of this class are created on-the-fly during the chart rendering process—they’re never used
to represent a chart structure, so there’s no need to support cloning and serialization (although it
probably wouldn’t hurt to add this).

See Also:
ValueTick

4For now, the tick type is used to support major and minor tick marks in the LogAxis class.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 213

24.30 NumberTickUnit

24.30.1 Overview

A number tick unit for use by subclasses of NumberAxis (extends the TickUnit class).

24.30.2 Usage

There are two ways that this class is typically used.

The first is where you know the exact tick size that you want for an axis. In this case, you create
a new tick unit then call the setTickUnit() method in the ValueAxis class. For example:

XYPlot plot = (XYPlot) chart.getPlot();

ValueAxis axis = plot.getRangeAxis();

axis.setTickUnit(new NumberTickUnit(25.0));

The second is where you prefer to leave the axis to automatically select a tick unit. In this case,
you should create a collection of tick units (see the TickUnits class for details).

24.30.3 Constructors

To create a new number tick unit:

å public NumberTickUnit(double size);

Creates a new number tick unit with a default number formatter for the current locale.

Alternatively, you can supply your own number formatter:

å public NumberTickUnit(double size, NumberFormat formatter);

Creates a new number tick unit with the specified number formatter.

å public NumberTickUnit(double size, NumberFormat formatter, int minorTickCount);

Creates a new number tick unit with the specified number formatter and minor tick count.

24.30.4 Methods

To format a value using the tick unit’s internal formatter:

å public String valueToString(double value);

Formats the value as a String using the internal number formatter. This method is usually
called by code in one of the axis classes (for example, NumberAxis).

24.30.5 Equals, Cloning and Serialization

To test this object for equality:

å public boolean equals(Object obj);

Tests this object for equality with an arbitrary object. If obj is null, this method returns false.

Instances of this class are immutable, so the class does not implement Cloneable. The class is
Serializable.

24.30.6 Notes

This class is immutable, a requirement for all subclasses of TickUnit.

See Also
DateTickUnit.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 214

24.31 PeriodAxis

24.31.1 Overview

A date/time axis with the following features:

• supports multiple label bands, where each band is divided up into time periods;

• automatic range calculation based on (whole unit) time periods;

• a user specified time zone;

See figure 24.7 for an example. You can use this axis in place of a DateAxis, it does a similar job
but with a slightly different set of features.

Legal & General Unit Trust Prices

L&G European Index Trust L&G UK Index Trust

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

2001 2002

Date

100

110

120

130

140

150

160

170

180

P
ri

ce
 P

er
 U

ni
t

Figure 24.7: A chart that uses a PeriodAxis (see PeriodAxisDemo1.java)

24.31.2 Constructors

To create a new axis:

å public PeriodAxis(String label,

RegularTimePeriod first, RegularTimePeriod last);

Creates a new axis—calls the next constructor, passing it the default time zone.

å public PeriodAxis(String label,

RegularTimePeriod first, RegularTimePeriod last, TimeZone timeZone);

Creates a new axis that displays data from the first to the last time periods. All time periods
are evaluated within the specified timeZone.

24.31.3 The Axis Range

The axis range is defined by two time periods:

å public RegularTimePeriod getFirst();

Returns the time period that defines the start of the range of values displayed by the axis.

å public RegularTimePeriod getLast();

Returns the time period that defines the end of the range of values displayed by the axis.

Alternatively, you can get the range (bounds specified in milliseconds):

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 215

å public Range getRange();

Returns the current axis range. The lower bound of the range is set to the first millisecond of
the first time period, and the upper bound of the range is set to the last millisecond of the last
time period. The time zone is taken into account when pegging the first and last time periods
to the millisecond time line.

The axis range can be specified manually or automatically calculated by JFreeChart to “fit” the
available data values. To specify a manual range, use the following methods:

å public void setFirst(RegularTimePeriod first);

Sets the time period that defines the start of the range of values displayed by the axis, and
sends an AxisChangeEvent to all registered listeners.

å public void setLast(RegularTimePeriod last);

Sets the time period that defines the end of the range of values displayed by the axis, and sends
an AxisChangeEvent to all registered listeners.

To have the axis range calculated automatically, use the setAutoRange() method inherited from the
ValueAxis class. In addition, you may want to specify the time period class used by the auto-range
calculation—the axis range will always include a whole number of time periods of the class specified:

å public Class getAutoRangeTimePeriodClass();

Returns the time period class used when the axis range is calculated automatically.

å public void setAutoRangeTimePeriodClass(Class c);

Sets the time period class used when the axis range is calculated automatically. The axis range
will always be a whole number of periods. Valid classes include: Year.class, Quarter.class,
Month.class, Week.class, Day.class, Hour.class. Minute.class, Second.class and Millisecond.class.

24.31.4 Axis Labelling

The axis supports one or more “bands” of labels, where each band is represented by an instance of
PeriodAxisLabelInfo. Use the following methods to get/set the band definitions:

å public PeriodAxisLabelInfo[] getLabelInfo();

Returns an array of objects where each object defines the format for one band of labels along
the axis.

å public void setLabelInfo(PeriodAxisLabelInfo[] info);

Sets an array of objects where each object defines the format for one band of labels along the
axis.

Examples of specifying label bounds can be found in the PeriodAxisDemo1 and PeriodAxisDemo2

classes, included in the JFreeChart Demo distribution.

24.31.5 Time Zones

In order to “peg” time periods to the absolute time line (in Java, measured in milliseconds since
1-Jan-1970 GMT), you need to specify a time zone. Use the following methods:

å public TimeZone getTimeZone();

Returns the TimeZone used to “peg” time periods to the absolute time line.

å public void setTimeZone(TimeZone zone);

Sets the TimeZone that is used to “peg” time periods to the absolute time line.

24.31.6 Other Methods

The remaining methods defined by this class are mostly for internal use:

å public double valueToJava2D(double value, Rectangle2D area, RectangleEdge edge);

Converts a data value to a Java2D coordinate, assuming that the axis lies along the specified
edge of the given area.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 216

å public double java2DToValue(double java2DValue, Rectangle2D area, RectangleEdge edge);

Converts a Java2D coordinate back into a data value, assuming that the axis lies along the
specified edge of the given area.

å public void configure();

Configures the axis for use. This method is usually called by the plot when the axis is first
assigned to the plot, because a new plot means a new set of data and therefore the axis range
may need to be updated. You won’t normally need to call this method yourself.

å public AxisSpace reserveSpace(Graphics2D g2, Plot plot, Rectangle2D plotArea,

RectangleEdge edge, AxisSpace space);

Reserves additional space in space to allow room for this axis to be displayed. This method is
called by the plot during the process of laying out and drawing the chart, you won’t normally
need to call this method yourself.

å public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);

Draws the axis. This method is called by the plot, you won’t normally need to call it yourself.

å public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge);

For this axis, this method returns an empty list.

24.31.7 Equals, Cloning and Serialization

This class overrides the equals() method from the Object class:

å public boolean equals(Object obj);

Tests this axis for equality with an arbitrary object. Another object is considered equal if it is
a PeriodAxis with the same attributes as this axis.

The axis is Cloneable and PublicCloneable:

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the axis.

The axis is Serializable.

24.31.8 Notes

Some points to note:

• two demos (PeriodAxisDemo1.java and PeriodAxisDemo2.java) are included in the JFreeChart
demo collection.

See Also
DateAxis, PeriodAxisLabelInfo.

24.32 PeriodAxisLabelInfo

24.32.1 Overview

A helper class that records the information for one “band” of labels on a PeriodAxis. When you
are specifying the label bands for the axis, you create an array of PeriodAxisLabelInfo objects—for
example:

PeriodAxisLabelInfo[] info = new PeriodAxisLabelInfo[2];
info[0] = new PeriodAxisLabelInfo(Month.class, new SimpleDateFormat("MMM"));
info[1] = new PeriodAxisLabelInfo(Year.class, new SimpleDateFormat("yyyy"));
domainAxis.setLabelInfo(info);

In the above example, there are two bands. The first band is split into 1 month time periods and the
second band is split into 1 year time periods. The sample code comes from the PeriodAxisDemo1.java

file that is included in the JFreeChart Demo distribution.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 217

24.32.2 Constructors

To create a new instance:

å public PeriodAxisLabelInfo(Class periodClass, DateFormat dateFormat);

Creates a new instance based on the specified periodClass (see below). The dateFormat used to
format the labels for each time period.

å public PeriodAxisLabelInfo(Class periodClass, DateFormat dateFormat,

RectangleInsets padding, Font labelFont, Paint labelPaint,

boolean drawDividers, Stroke dividerStroke, Paint dividerPaint);

Creates a new instance based on the specified periodClass (see below). The dateFormat is used
to format the labels for each time period. The padding controls the minimum gap between time
period labels. The remaining arguments control the appearance of the labels and the (optional)
dividing lines between labels.

When constructing an instance of this class, you need to specify the class of time period that you
want to use for labelling purposes. This is usually one of the following: Year.class, Quarter.class,
Month.class, Week.class, Day.class, Hour.class, Minute.class, Second.class or Millisecond.class.

24.32.3 Methods

The following methods are defined:

å public Class getPeriodClass();

Returns the specific class used to represent time periods—it should be some subclass of RegularTimePeriod.

å public DateFormat getDateFormat();

Returns the formatter for the date labels.

å public RectangleInsets getPadding();

Returns the padding that controls the minimum space between labels.

å public Font getLabelFont();

Returns the Font used to display labels for each time period.

å public Paint getLabelPaint();

Returns the Paint that is used as the foreground color when displaying labels for each time
period.

å public boolean getDrawDividers();

Returns a flag that determines whether or not dividers are drawn between time periods.

å public Stroke getDividerStroke();

Returns the Stroke used to draw dividers between time periods.

å public Paint getDividerPaint();

Returns the Paint used to draw dividers between time periods.

å public RegularTimePeriod createInstance(Date millisecond, TimeZone zone);

Creates a time period that includes the specified millisecond, taking into account the time zone.
The time period will be an instance of the class returned by the getPeriodClass() method.

24.32.4 Equals, Cloning and Serialization

To test this instance for equality with another object:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object. This method will return true if obj is
an instance of PeriodAxisLabelInfo with equivalent settings to this instance.

To make a clone of this instance:

å public Object clone() throws CloneNotSupportedException;

Creates a clone of this object.

This class is Serializable.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 218

24.33 QuarterDateFormat

24.33.1 Overview

A subclass of DateFormat that is used to convert a Date to a String. The default format is “YYYY
Q” where “YYYY” is replaced by the year and “Q” is replaced by a symbol representing the quarter
(symbols can be defined via the constructor).

Any symbols can be used to represent the four quarters in a year, but the following default symbol
sets are provided:

• REGULAR QUARTERS – the symbols “1”, “2”, “3” and “4”;

• ROMAN QUARTERS – the symbols “I”, “II”, “III”, and “IV”;

• GREEK QUARTERS – greek symbols (since 1.0.6).

24.33.2 Constructors

The following constructors are available:

å public QuarterDateFormat();

Equivalent to QuarterDateFormat(TimeZone.getDefault())—see the next constructor.

å public QuarterDateFormat(TimeZone zone);

Equivalent to QuarterDateFormat(zone, REGULAR QUARTERS)—see the next constructor.

å public QuarterDateFormat(TimeZone zone, String[] quarterSymbols);

Equivalent to QuarterDateFormat(zone, quarterSymbols, false)—see the next constructor.

å public QuarterDateFormat(TimeZone zone, String[] quarterSymbols, boolean quarterFirst);

[1.0.6]

Creates a new date formatter linked to the specified zone using the supplied symbols for the
four quarters (the array should have four entries). The quarterFirst flag controls whether the
quarter is displayed before or after the year (for example, “2007-IV” or “IV-2007”).

24.33.3 Methods

The format method is overridden to create the formatted version of the given date:

å public StringBuffer format(Date date, StringBuffer toAppendTo, FieldPosition fieldPosition);

Returns a string representing the given date. The string contains the year followed by a space
followed by the symbol corresponding to the quarter in which the date falls (the symbols are
supplied in the constructor).

The parse method is overridden but not implemented:

å public Date parse(String source, ParsePosition pos);

This method has not been implemented, it simply returns null.

24.33.4 Notes

Some points to note:

• a demo (QuarterDateFormatDemo.java) showing this class being used with a PeriodAxis is
included in the JFreeChart demo collection.

24.34 SegmentedTimeline

24.34.1 Overview

A segmented timeline for use with a DateAxis.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 219

24.34.2 Usage

Please refer to the Javadocs.

24.35 StandardTickUnitSource

24.35.1 Overview

A TickUnitSource that dynamically creates tick units where the tick size is an integer power of 10,
and the number format is DecimalFormat("0.0E0"). The primary advantage of this source is that the
tick size is calculated dynamically, so it can handle very large and very small axis ranges (unlike
the TickUnits class which contains a finite collection of tick sizes).

24.35.2 Usage

To use this TickUnitSource with a NumberAxis, create a new instance and install it as follows:

NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
TickUnitSource units = new StandardTickUnitSource();
rangeAxis.setStandardTickUnits(units);

24.35.3 Constructor

This class has a single constructor:

å public StandardTickUnitSource();

Creates a new instance. There are no customisable attributes for this class.

24.35.4 Methods

This class implements the three methods defined in the TickUnitSource method. These methods
are called by the axis, you won’t normally need to call these methods directly:

å public TickUnit getLargerTickUnit(TickUnit unit);

Returns the next larger tick unit relative to unit.

å public TickUnit getCeilingTickUnit(TickUnit unit);

Returns a tick unit that is either equal to unit or the next larger tick unit.

å public TickUnit getCeilingTickUnit(double size);

Returns a tick unit that is equal in size to size, or the next larger tick unit.

24.35.5 Equals, Cloning and Serialization

This class overrides the equals() method:5

å public boolean equals(Object obj);

Tests this tick unit source for equality with an arbitrary object.

Instances of this class are Serializable but not Cloneable (cloning is unnecessary, since instances
of this class are immutable).

24.35.6 Notes

Some points to note:

• this class is not used by default, but can be installed in an axis if necessary—see SmallNumberDemo.java

in the JFreeChart demo collection for an example.
5Since version 1.0.7.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 220

24.36 SubCategoryAxis

24.36.1 Overview

An extension of the CategoryAxis class that allows subcategories to be displayed along the domain
axis for a CategoryPlot. This type of axis can be usefully employed along with the GroupedStackedBarRenderer
class.

24.36.2 Constructors

To create a new instance:

å public SubCategoryAxis(String label);

Creates a new axis with the specified label (which may be null).

24.36.3 General Attributes

To control the font used to display the sub-labels:
å public Font getSubLabelFont();

Returns the sub-label font (never null). The default value is Font("SansSerif", Font.PLAIN,

10).

å public void setSubLabelFont(Font font);

Sets the sub-label font and sends an AxisChangeEvent to all registered listeners. If font is null,
this method throws an IllegalArgumentException.

å public Paint getSubLabelPaint();

Returns the paint used to draw the sub-labels (never null). The default value is Color.black.

å public void setSubLabelPaint(Paint paint);

Sets the sub-label paint and sends an AxisChangeEvent to all registered listeners. If paint is
null, this method throws an IllegalArgumentException.

24.36.4 Subcategories

The subcategories for the axis need to be specified manually. All the subcategories are displayed
within each category along the axis. The categories are driven by the content of the dataset, while
the subcategories are just arbitrary labels with no formal connection to the dataset.

å public void addSubCategory(Comparable subCategory);

Adds a subcategory to the axis.

24.36.5 Other Methods

The remaining methods are used internally:

å public AxisSpace reserveSpace(...);

Calculates the amount of space required to draw the axis. This overrides the method defined
in the CategoryAxis class, because additional space is required to draw the subcategory labels.

å public AxisState draw(...);

Overrides the draw() method in the CategoryAxis class to include the sublabels in the axis.

å protected AxisState drawSubCategoryLabels(...);

Draws the subcategory labels.

24.36.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this axis for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 221

24.36.7 Notes

A couple of demos (SubCategoryAxisDemo1.java and StackedBarChartDemo4.java) are included in the
JFreeChart demo collection.

See Also
GroupedStackedBarRenderer.

24.37 SymbolAxis

24.37.1 Overview

A ValueAxis that maps integer values (starting at zero) to symbols (strings). This can be used to
present:

• a CategoryPlot with pseudo-categories displayed along the range axis (y-axis);

• an XYPlot with pseudo-categories displayed along the domain axis (x-axis) and/or range axis
(y-axis).

24.37.2 Constructors

To create a new axis:
å public SymbolAxis(String label, String[] sv);

Creates a new axis with the specified label. The sv array contains the strings that are displayed
along the axis for the integer values.

24.37.3 Attributes

To access the symbols used for the integer values along the axis:
å public String[] getSymbols();

Returns the symbols used by the axis. These are the symbols that were specified in the
constructor. The returned array is a copy, so modifying it will not change the axis.

To access the flag that controls whether or not grid bands are painted for alternate tick values:
å public boolean isGridBandsVisible();

Returns the flag that controls whether or not the alternating grid bands are drawn for the axis.
The default value is true.

å public void setGridBandsVisible(boolean flag);

Sets the flag that controls whether or not the alternating grid bands are drawn for the axis,
and sends an AxisChangeEvent to all registered listeners.

To access the grid band paint:
å public Paint getGridBandPaint();

Returns the paint used to color alternate bands within the plot area. The default value is
Color(232, 234, 232, 128) (a light gray with partial transparency).

å public void setGridBandPaint(Paint paint);

Sets the paint used to color alternate bands within the plot area, and sends a AxisChangeEvent

to all registered listeners. An IllegalArgumentException will be thrown if paint is null.

From version 1.0.7 onwards, you can specify the alternate grid band colour as well:
å public Paint getGridBandAlternatePaint(); [1.0.7]

Returns the paint (never null) used fill alternate bands within the plot area. The default value
is Color(0, 0, 0, 0) (that is, completely transparent). See also getGridBandPaint().

å public void setGridBandAlternatePaint(Paint paint); [1.0.7]

Sets the paint used to fill alternate bands within the plot area, and sends an AxisChangeEvent

to all registered listeners. If paint is null, this method throws an IllegalArgumentException.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 222

24.37.4 Other Methods

Most of the other methods in this class are used internally:

å public String valueToString(double value);

Returns the symbol for the given value. The value is rounded to an integer, then the symbol
is obtained from the array of symbols defined for the axis. If value is out of range, an empty
string is returned. This method is called by the refreshTicks() code.

å public AxisState draw(Graphics2D g2, double cursor, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, PlotRenderingInfo plotState);

Called by the plot to draw the axis. You won’t normally call this method yourself.

å protected void autoAdjustRange();

Adjusts the axis range to fit the data. In this case, the axis range is fixed, so this method
should not do anything.

å public List refreshTicks(Graphics2D g2, AxisState state, Rectangle2D dataArea,

RectangleEdge edge);

Returns a list of ticks for display on the axis. This method is called by internal code, you won’t
normally call it yourself.

å protected List refreshTicksHorizontal(Graphics2D g2, Rectangle2D dataArea,

RectangleEdge edge);

Creates a list of ticks for the axis when it is displayed “horizontally”. That is, at the top or
bottom of the plot.

å protected List refreshTicksVertical(Graphics2D g2, Rectangle2D dataArea,

RectangleEdge edge);

Creates a list of ticks for the axis when it is displayed “vertically”. That is, at the left or right
of the plot.

å protected void drawGridBands(Graphics2D g2, Rectangle2D plotArea,

Rectangle2D dataArea, RectangleEdge edge, List ticks);

Draws the grid bands.

å protected void drawGridBandsHorizontal(Graphics2D g2, Rectangle2D plotArea,

Rectangle2D dataArea, boolean firstGridLineIsDark, List ticks);

Draws the grid bands for a horizontal axis.

å protected void drawGridBandsVertical(Graphics2D g2, Rectangle2D drawArea,

Rectangle2D plotArea, boolean firstGridLineIsDark, List ticks);

Draws the grid bands for a vertical axis.

å protected void selectAutoTickUnit(Graphics2D g2, Rectangle2D dataArea,

RectangleEdge edge);

Throws an UnsupportedOperationException.

24.37.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this axis for equality with an arbitrary object. To be considered equal, obj must be non-
null, an instance of SymbolAxis, have the same list of symbols as this axis, and super.equals(obj)

must return true.

Instances of this class are Cloneable and Serializable.

24.37.6 Notes

Some points to note:

• a demo for a CategoryPlot (LineChartDemo8.java) is included in the JFreeChart demo distri-
bution;

• a demo for an XYPlot (SymbolAxisDemo1.java) is included in the JFreeChart demo distribution.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 223

24.38 Tick

24.38.1 Overview

A utility class representing a tick on an axis. Used temporarily during the drawing process only—
you won’t normally use this class yourself.

See Also
TickUnit.

24.39 TickType

24.39.1 Overview

This class defines tokens representing the tick type for an axis (see the NumberTick class). This class
was introduced in JFreeChart version 1.0.7.

• TickType.MAJOR;

• TickType.MINOR;

24.39.2 Notes

The TickType tokens are used by the NumberTick class to support major and minor tick marks on
the LogAxis class. Eventually, this support will be rolled out to the NumberAxis class also.

24.40 TickUnit

24.40.1 Overview

An abstract class representing a tick unit, with subclasses including:

• DateTickUnit – for use with a DateAxis;

• NumberTickUnit – for use with a NumberAxis.

24.40.2 Constructors

The standard constructor:

å public TickUnit(double size);

Equivalent to TickUnit(size, 0)—see the next constructor.

å public TickUnit(double size, int minorTickCount); [1.0.7]

Creates a new tick unit with the specified size and minor tick count.

24.40.3 General Methods

To get the tick size:

å public double getSize();

Returns the size of the tick unit—that is, the gap (in data units) between consecutive tick
marks along the axis. The value is specified in the constructor.

To get the minor tick count:

å public int getMinorTickCount();

Returns the number of minor tick units between consecutive major tick units.

To convert a data value to a string:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 224

å public String valueToString(double value);

Returns a string representing the specified data value. Subclasses may override this method to
provide custom formatting.

å public int compareTo(Object object);

Compares this instance to an arbitrary object. This method is defined by the Comparable

interface, and is used to order tick units by size.

24.40.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this unit for equality with an arbitrary object.

Instances of this class are immutable and Serializable.

24.40.5 Notes

Implements the Comparable interface, so that a collection of tick units can be sorted easily using
standard Java methods. In particular, the StandardTickUnitSource class makes use of this feature.

See Also
TickUnits.

24.41 TickUnits

24.41.1 Overview

A collection of tick units. This class is used by the DateAxis and NumberAxis classes to store a list
of “standard” tick units. The auto-tick-unit-selection mechanism chooses one of the standard tick
units in order to maximise the number of ticks displayed without having the tick labels overlap.

24.41.2 Constructors

The default constructor:

å public TickUnits();

Creates a new collection of tick units, initially empty.

24.41.3 Methods

To add a new tick unit to the collection:

å public void add(TickUnit unit);

Adds the tick unit to the collection.

To find the tick unit in the collection that is the next largest in size compared to the specified tick
unit:

å public TickUnit getLargerTickUnit(TickUnit unit);

Returns the tick unit that is one size larger than the specified unit.

24.41.4 Notes

The NumberAxis class has a static method createStandardTickUnits() that generates a tick unit
collection (of standard tick sizes) for use by numerical axes.

See Also
TickUnit.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 225

24.42 TickUnitSource

24.42.1 Overview

The interface through which a ValueAxis finds a suitable tick unit. Classes that implement this
interface include:

• TickUnits;

• StandardTickUnitSource;

24.42.2 Methods

The following methods allow a TickUnit to be obtained from the source:

å public TickUnit getLargerTickUnit(TickUnit unit);

Returns a tick unit that is larger than the supplied unit.

å public TickUnit getCeilingTickUnit(TickUnit unit);

Returns a tick unit that is equal to or larger in size than the specified unit.

å public TickUnit getCeilingTickUnit(double size);

Returns a tick unit with size equal to or larger than the specified size.

24.43 Timeline

24.43.1 Overview

The interface that defines the methods for a timeline that can be used with a DateAxis.

24.43.2 Methods

The interface declares the following methods:

å public long toTimelineValue(long millisecond);

Translates a millisecond (as defined by java.util.Date) into an index along this timeline.

å public long toTimelineValue(Date date);

Translates a Date into an index along the timeline.

å public long toMillisecond(long timelineValue);

Converts a timeline index back into a millisecond. Note that many timeline index values can
map to a single millisecond.

å public boolean containsDomainValue(long millisecond);

Returns true if the millisecond is contained within the timeline, and false otherwise.

å public boolean containsDomainValue(Date date);

Returns true if the date is contained within the timeline, and false otherwise.

å public boolean containsDomainRange(long fromMillisecond,

long toMillisecond);

Returns true if the range of millisecond values is contained within the timeline, and false

otherwise.

å public boolean containsDomainRange(Date fromDate, Date toDate);

Returns true if the range of dates is contained within the timeline, and false otherwise.

24.43.3 Notes

The SegmentedTimeline class implements this interface.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 226

24.44 ValueAxis

24.44.1 Overview

The base class for all axes that display “values”, with the two key subclasses being NumberAxis and
DateAxis.

At the lowest level, the axis values are manipulated as double primitives, obtained from the Number

objects supplied by the plot’s dataset.

24.44.2 Constructors

The constructors for this class are protected, you cannot create a ValueAxis directly—you must use
a subclass.

24.44.3 Attributes

The attributes maintained by this class, in addition to those that it inherits from the Axis class, are
listed in Table 24.6. There are methods to read and update most of these attributes. In general,
updating an axis attribute will result in an AxisChangeEvent being sent to all (or any) registered
listeners. The default values used to initialise the axis attributes (when necessary) are listed in
Table 24.7.

Attribute: Description:

inverted A flag that is used to “invert” the axis scale.
autoRange A flag controlling whether or not the axis range is automatically

adjusted to fit the range of data values.
defaultAutoRange The default range when there is no data (since 1.0.5).
fixedAutoRange If specified, the auto-range is calculated by subtracting this value

from the maximum domain value in the dataset.
autoRangeMinimumSize The smallest axis range allowed when it is automatically calcu-

lated.
lowerMargin The margin to allow at the lower end of the axis scale (expressed

as a percentage of the total axis range).
upperMargin The margin to allow at the upper end of the axis scale (expressed

as a percentage of the total axis range).
autoTickUnitSelection A flag controlling whether or not the tick units are selected auto-

matically.
standardTickUnits A collection of the “standard” tick units that can be used by this

axis.
verticalTickLabels A flag that controls whether or not the tick labels are rotated 90

degrees.
positiveArrowVisible A flag that controls whether or not an arrow is drawn at the

positive end of the scale.
negativeArrowVisible A flag that controls whether or not an arrow is drawn at the

negative end of the scale.
upArrow The shape used to draw an arrow at the end of an axis pointing

upwards.
downArrow The shape used to draw an arrow at the end of an axis pointing

downwards.
leftArrow The shape used to draw an arrow at the end of an axis pointing

leftwards.
rightArrow The shape used to draw an arrow at the end of an axis pointing

rightwards.

Table 24.6: Attributes for the ValueAxis class

24.44.4 Usage

To modify the attributes of a ValueAxis, you first need to obtain a reference to the axis. For a
CategoryPlot, you can use the following code:

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 227

Name: Value:

DEFAULT AUTO RANGE true;

DEFAULT LOWER BOUND 0.0; [Deprecated, 1.0.5]

DEFAULT UPPER BOUND 1.0; [Deprecated, 1.0.5]

DEFAULT UPPER MARGIN 0.05 (5 percent)
DEFAULT LOWER MARGIN 0.05 (5 percent)

Table 24.7: ValueAxis class default attribute values

CategoryPlot plot = (CategoryPlot) chart.getPlot();

ValueAxis rangeAxis = plot.getRangeAxis();

// modify the axis here...

The code for an XYPlot is very similar, except that the domain axis is also a ValueAxis in this case:

XYPlot plot = (XYPlot) chart.getPlot();

ValueAxis domainAxis = plot.getDomainAxis();

ValueAxis rangeAxis = plot.getRangeAxis();

// modify the axes here...

Having obtained an axis reference, you can:

• control the axis range, see section 24.44.5;

• invert the axis scale, see section 24.44.6;

24.44.5 The Axis Range

The axis range defines the highest and lowest values that will be displayed on axis. On a chart, it
is typically the case that data values outside the axis range are clipped, and therefore not visible
on the chart.

Automatic Bounds Calculation

By default, JFreeChart is configured to automatically calculate axis ranges so that all of the data
in your dataset is visible. It does this by determining the highest and lowest values in your dataset,
adding a small margin (to prevent the data being plotted right up to the edge of a chart), and
setting the axis range. To control whether or not the axis range is automatically adjusted to fit the
available data:

å public boolean isAutoRange();

Returns the flag that controls whether the axis range is automatically updated to reflect the
data values.

å public void setAutoRange(boolean auto);

Sets the flag that controls whether or not the axis range is automatically adjusted to fit the
available data values, and sends an AxisChangeEvent to all registered listeners.

å protected void setAutoRange(boolean auto, boolean notify);

An alternative version of the above method that lets you specify whether or not the listeners
are notified.

When the axis range is calculated automatically, a margin is added to the lower and upper bounds
(the default is 0.05 or 5 percent):

å public double getLowerMargin();

Returns the lower margin as a percentage of the overall axis length (the default is 0.05 or 5
percent).

å public void setLowerMargin(double margin);

Sets the lower margin (specified as a percentage of the overall axis length) and sends an
AxisChangeEvent to all registered listeners.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 228

å public double getUpperMargin();

Returns the upper margin as a percentage of the overall axis length (the default is 0.05 or 5
percent).

å public void setUpperMargin(double margin);

Sets the upper margin (specified as a percentage of the overall axis length) and sends an
AxisChangeEvent to all registered listeners.

Note that the margins are only applied when the axis bounds are automatically calculated. If you
set the axis bounds manually (see the next section) then the margins are ignored.

If the plot has no data, then the auto range is set to the default:

å public Range getDefaultAutoRange(); [1.0.5]

Returns the default auto range (never null).

å public void setDefaultAutoRange(Range range); [1.0.5]

Sets the default auto range and sends an AxisChangeEvent to all registered listeners. If range is
null, this method throws an IllegalArgumentException.

Setting the Range Manually

To manually set the axis range (which automatically disables the auto-range flag):

å public void setRange(double lower, double upper);

Equivalent to setRange(new Range(lower, upper))—see below.

å public void setRange(Range range);

Equivalent to setRange(range, true, true)—see below.

å public void setRange(Range range, boolean turnOffAutoRange, boolean notify);

Sets the bounds of the axis so that it will display the range of values specified by range. If
notify is true, an AxisChangeEvent is sent to all registered listeners. If turnOffAutoRange is true,
the autoRange flag is set to false (which is what you want if you intend to control the axis range
manually).

To set the lower bound for the axis:

å public void setLowerBound(double value);

Sets the lower bound for the axis. If the auto-range attribute is true it is automatically switched
to false. Registered listeners are notified of the change.

To set the upper bound for the axis:

å public void setUpperBound(double value);

Sets the upper bound for the axis. If the auto-range attribute is true it is automatically
switched to false. Registered listeners are notified of the change.

24.44.6 Inverting the Axis Scale

There is a flag that can be used to “invert” the axis scale:

å public boolean isInverted();

Returns the flag that controls whether or not the axis scale is inverted.

å public void setInverted(boolean flag);

Sets the flag that controls whether or not the axis scale is inverted and sends an AxisChangeEvent

to all registered listeners.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 229

24.44.7 Tick Labels

Tick labels can be rotated 90 degrees (typically to fit more labels in) by setting the following flag:

å public boolean isVerticalTickLabels();

Returns the flag that controls whether or not the tick labels are rotated by 90 degrees. The
default value is false.

å public void setVerticalTickLabels(boolean flag);

Sets the flag that controls whether or not the tick labels are rotated by 90 degrees, and, if the
flag value changes, sends a RendererChangeEvent to all registered listeners.

For other tick label settings, see section 24.2.7.

24.44.8 Other Methods

A key function for a ValueAxis is to convert a data value to an output (Java2D) coordinate for
plotting purposes. The output coordinate will be dependent on the area into which the data is
being drawn:

å public double valueToJava2D(double dataValue, Rectangle2D dataArea, RectangleEdge edge);

Converts a data value into a co-ordinate along one edge of the dataArea rectangle. The caller
can pass in an arbitrary rectangle, but typically it should match the rectangle defined by the
interior of the chart’s axes.

The inverse function converts a Java2D coordinate back to a data value:

å public double java2DToValue(double java2DValue, Rectangle2D dataArea, RectangleEdge edge);

Converts a Java2D coordinate (defined relative to one edge of the specified dataArea) back to
a data value.

To set a flag that controls whether or not the axis tick units are automatically selected:

å public void setAutoTickUnitSelection(boolean flag);

Sets a flag (commonly referred to as the auto-tick-unit-selection flag) that controls whether or
not the tick unit for the axis is automatically selected from a collection of standard tick units.

24.44.9 Notes

Some points to note:

• in a CategoryPlot, the range axis is required to be a subclass of ValueAxis.

• in an XYPlot, both the domain and range axes are required to be a subclass of ValueAxis.

See Also
Axis, DateAxis, NumberAxis.

24.45 ValueTick

24.45.1 Overview

The base class for the NumberTick and DateTick classes. Instances of these classes are created in the
refreshTicks() method of the various axis classes.

CHAPTER 24. PACKAGE: ORG.JFREE.CHART.AXIS 230

24.45.2 Constructors

To create a new instance:

å public ValueTick(double value, String label, TextAnchor textAnchor,

TextAnchor rotationAnchor, double angle);

Creates a new tick with the specified value.

å public ValueTick(TickType tickType, double value, String label, TextAnchor textAnchor,

TextAnchor rotationAnchor, double angle); [1.0.7]

Creates a new tick with the specified type and value.

24.45.3 General Methods

To get the tick type:

å public TickType getTickType(); [1.0.7]

Returns the tick type (MAJOR or MINOR).

To get the value for the tick:

å public double getValue();

Returns the value for this tick.

24.45.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this tick for equality with an arbitrary object.

24.45.5 Notes

The minor tick type is used only by the LogAxis class at present.

See Also
DateTick, NumberTick.

Chapter 25

Package: org.jfree.chart.block

25.1 Introduction

The org.jfree.chart.block package contains classes that are used for laying out rectangular items
(blocks) within containers. Primarily, the classes in this package are used by the LegendTitle class.

25.2 AbstractBlock

25.2.1 Overview

A base class for implementing a Block, which is used as a layout unit in JFreeChart (particularly
for the LegendTitle class). Subclasses include:

• BlockContainer;

• ColorBlock;

• EmptyBlock;

• LabelBlock;

• LegendGraphic;

• Title.

25.2.2 Constructor

To create a new block:

å protected AbstractBlock();

Creates a new block.

25.2.3 General Attributes

The block has an identifier:

å public String getID();

Returns the block id. The default value is null.

å public void setID(String id);

Sets the block id (null is permitted).

You can specify the preferred height and width for the block:

å public double getHeight();

Returns the block height.

231

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 232

å public void setHeight(double height);

Sets the block height. This is a “preferred” height which may or may not be observed by the
layout manager.

å public double getWidth();

Returns the block width.

å public void setWidth(double width);

Sets the block width. This is a “preferred” width which may or may not be observed by the
layout manager.

The margin is the space around the outside of the block’s border:

å public RectangleInsets getMargin();

Returns the margin around the outside of the block’s border. The default value is
RectangleInsets.ZERO INSETS.

å public void setMargin(RectangleInsets margin);

Sets the margin around the outside of the block’s border.

You can specify a frame (or border) for the block:

å public BlockFrame getFrame(); [1.0.5]

Returns the border that will be drawn around the block. The default value is BlockBorder.NONE.

å public void setFrame(BlockFrame frame); [1.0.5]

Sets the border that will be drawn around the block. If frame is null, this method throws an
IllegalArgumentException.

The padding is an area of whitespace inside the block’s frame:

å public RectangleInsets getPadding();

Returns the padding between the block’s content and its border. The default value is
RectangleInsets.ZERO INSETS.

å public void setPadding(RectangleInsets padding);

Sets the padding between the block’s content and its border. If padding is null, this method
throws an IllegalArgumentException.

25.2.4 Layout

For layout purposes, a block can be asked to arrange itself subject to some constraint, and return
the space required by the block:

å public Size2D arrange(Graphics2D g2);

Arranges the block without constraint, and returns its size. Keep in mind that the block may
be a BlockContainer that contains other blocks.

å public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);

Arranges the block subject to the specified constraint and returns its size. Keep in mind that
the block may be a BlockContainer that contains other blocks.

To control the current bounds for the block:

å public Rectangle2D getBounds();

Returns the bounds for the block.

å public void setBounds(Rectangle2D bounds);

Sets the bounds for the block. This method is often called by a layout manager.

The following utility methods are provided for subclasses to use:

å protected double trimToContentWidth(double fixedWidth);

Reduces the given width to account for the margin, border and padding.

å protected double trimToContentHeight(double fixedHeight);

Reduces the given height to account for the margin, border and padding.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 233

å protected RectangleConstraint toContentConstraint(RectangleConstraint c);

Translates a bounds constraint into a content constraint.

å protected double calculateTotalWidth(double contentWidth);

Calculates the bounds width from the content width.

å protected double calculateTotalHeight(double contentHeight);

Calculates the bounds height from the content height.

å protected Rectangle2D trimMargin(Rectangle2D area);

Trims the block’s margin from area.

å protected Rectangle2D trimBorder(Rectangle2D area);

Trims the block’s border from area.

å protected Rectangle2D trimPadding(Rectangle2D area);

Trims the block’s padding from area.

25.2.5 Drawing

This class is abstract, so it doesn’t have a draw() method implemented. However, it does provide a
method to draw the current border/frame:

å protected void drawBorder(Graphics2D g2, Rectangle2D area);

Draws the border for the block.

25.2.6 Equals, Cloning and Serialization

To test a block for equality with an arbitrary object:

å public boolean equals(Object obj);

Returns true if this block is equal to obj, and false otherwise.

Instances of this class are Cloneable and Serializable.

25.2.7 Notes

Some points to note:

• the get/setBorder() methods have been deprecated in favour of the get/setFrame() methods;

25.3 Arrangement

25.3.1 Overview

A layout manager that can arrange blocks.

25.3.2 Methods

This interface defines the following methods:

å public void add(Block block, Object key);

Adds a block to the layout, with the specified key. The layout manager has an opportunity to
record the key associated with any block (or it can choose to ignore this information).

å public void arrange(BlockContainer container, RectangleConstraint constraint,

Graphics2D g2);

Arranges the blocks within the given container, subject to the specified constraint.

å public void clear();

Clears any cached layout information.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 234

25.3.3 Notes

Some points to note:

• classes that implement this interface include:

– BorderArrangement;

– CenterArrangement;

– ColumnArrangement;

– FlowArrangement; and

– GridArrangement.

25.4 Block

25.4.1 Overview

This interface defines methods that allow a rectangular graphical object (referred to generically as
a “block”) to:

• identify itself;

• provide information about its size, perhaps subject to an external constraint;

• set its bounds.

Some blocks draw their own content, while other blocks act as containers for yet more blocks.

25.4.2 Methods

To access the block’s ID:

å public String getID();

Returns the ID for the block (depending on the application, this might be null).

å public void setID(String id);

Sets the id for the block.

To layout the contents of the block:

å public Size2D arrange(Graphics2D g2);

Arranges the block without any constraints and returns the block size.

å public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);

Arranges the block, subject to the given constraint, and returns the resulting size.

To access the current bounds for the block:

å public Rectangle2D getBounds();

Gets the bounds for the block.

å public void setBounds(Rectangle2D bounds);

Sets the bounds for the block.

25.5 BlockBorder

25.5.1 Overview

A simple border that can be assigned to any subclass of AbstractBlock (via that class’s setFrame()

method). This class implements the BlockFrame interface.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 235

25.5.2 Constructors

There are two constructors:

å public BlockBorder();

Equivalent to BlockBorder(Color.black)—see below.

å public BlockBorder(Paint paint);

Equivalent to BlockBorder(new RectangleInsets(1, 1, 1, 1), paint)—see below.

å public BlockBorder(double top, double left, double bottom, double right);

Equivalent to BlockBorder((new RectangleInsets(top, left, bottom, right), Color.black))—
see below.

å public BlockBorder(double top, double left, double bottom, double right, Paint paint);

Equivalent to BlockBorder((new RectangleInsets(top, left, bottom, right), paint))—see be-
low.

å public BlockBorder(RectangleInsets insets, Paint paint);

Creates a new block border using the specified insets and paint. If insets or paint is null,
this constructor throws an IllegalArgumentException.

25.5.3 General Attributes

The following read-only attributes are defined:

å public RectangleInsets getInsets();

Returns the insets that define the available drawing space for the border (never null).

å public Paint getPaint();

Returns the paint that is used to draw the border. The initial value is specified in the con-
structor for this class. This method never returns null.

25.5.4 Other Methods

JFreeChart calls the following method to draw the border:

å public void draw(Graphics2D g2, Rectangle2D area);

Draws the border around the edges of the specified area, always staying within the area.

25.5.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this border for equality with an arbitrary object.

See Also
BlockFrame.

25.6 BlockContainer

25.6.1 Overview

A container for blocks that uses an Arrangement to organise the layout of the blocks. The container
is itself a Block, which makes it possible to nest block containers to arbitrary levels.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 236

25.6.2 Constructors

To create a new container:

å public BlockContainer();

Creates a new container using a BorderArrangement.

å public BlockContainer(Arrangement arrangement);

Creates a new container using the specified arrangement.

25.6.3 Methods

To get or set the layout manager:

å public Arrangement getArrangement();

Returns the object responsible for the block layout.

å public void setArrangement(Arrangement arrangement);

Sets the object responsible for the block layout.

To check if the container has an content:

å public boolean isEmpty();

Returns true if the container is empty (contains no blocks), and false otherwise.

To get a list of the blocks within the container:

å public List getBlocks();

Returns an unmodifiable list of the blocks in the container.

To add a block:

å public void add(Block block);

Adds a block to the container.

å public void add(Block block, Object key);

Adds a block to the container along with the given key (which is intended for the use of the
layout manager).

To remove all blocks from the container:

å public void clear();

Clears all the blocks in the container.

To arrange the blocks within the container (this will set the bounds for all the blocks):

å public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);

Arranges the blocks in the container, subject to the specified constraint.

To draw the contents of the container:

å public void draw(Graphics2D g2, Rectangle2D area);

Draws the blocks within the specified area.

25.6.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Returns true if this container is equal to obj and false otherwise.

This class is Cloneable and Serializable.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 237

25.7 BlockFrame

25.7.1 Overview

An interface that defines the API for a border that can be assigned to any AbstractBlock (via that
class’s setFrame() method). This interface is implemented by:

• BlockBorder;

• LineBorder.

25.7.2 Interface Methods

This interface defines two methods:

å public RectangleInsets getInsets(); [1.0.5]

Returns the space used to draw the frame.

å public void draw(Graphics2D g2, Rectangle2D area); [1.0.5]

Draws the frame within the specified area.

25.7.3 Notes

This interface was introduced in JFreeChart version 1.0.5.

See Also
AbstractBlock.

25.8 BlockParams

25.8.1 Overview

A carrier for the (optional) parameters passed to a Block in its draw() method.

25.8.2 Methods

To access the flag that controls whether or not entities are being generated:

å public boolean getGenerateEntities();

Returns true if entities should be generated.

å public void setGenerateEntities(boolean generate);

Sets the flag that controls whether or not entities are generated.

The translation from the local coordinates of the block to the container’s coordinates:

å public double getTranslateX();

Returns the x-translation.

å public void setTranslateX(double x);

Sets the x-translation.

å public double getTranslateY();

Returns the y-translation.

å public void setTranslateY(double y);

Sets the y-translation.

25.9 BlockResult

25.9.1 Overview

A carrier for the result from the draw() method in the BlockContainer class.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 238

25.9.2 Methods

å public EntityCollection getEntityCollection();

Returns the entity collection from the block drawing.

å public void setEntityCollection(EntityCollection entities);

Sets the entity collection.

25.10 BorderArrangement

25.10.1 Overview

A layout manager (Arrangement) that is similar to the BorderLayout class in AWT.

25.10.2 Constructor

To create a new instance:

å public BorderArrangement();

Creates a new layout manager.

25.10.3 Methods

The layout manager records the “key” for each block in the following method, which is usually
called by the BlockContainer:

å public void add(Block block, Object key);

Records the block and its key (valid keys are defined by the RectangleEdge class).

å public Size2D arrange(BlockContainer container, RectangleConstraint constraint, Graphics2D

g2);

Arranges the blocks within the container, subject to the given constraint, and returns the
overall size of the container.

å public void clear();

Clears any cached layout information.

25.11 CenterArrangement

25.11.1 Overview

An Arrangement that places a single block at the center of its container.

25.12 ColorBlock

25.12.1 Overview

A simple block that is filled with a color. This is a useful class for visual testing of layout classes.

25.12.2 Constructor

To create a new block:

å public ColorBlock(Paint paint, double width, double height);

Creates a new block with the specified “preferred” dimensions. If paint is null, this method
throws an IllegalArgumentException.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 239

25.12.3 Methods

To get the color for the block:

å public Paint getPaint(); [1.0.5]

Returns the paint specified in the constructor. This is never null.

To draw the block:

å public void draw(Graphics2D g2, Rectangle2D area);

Draws the block inside the given area.

25.12.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this ColorBlock for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

25.13 ColumnArrangement

25.13.1 Overview

An Arrangement that lays out the blocks in a container into columns. This is the “vertical” equivalent
of the FlowArrangement class.

25.13.2 Constructors

å public ColumnArrangement();

Creates a new arrangement.

å public ColumnArrangement(HorizontalAlignment hAlign, VerticalAlignment vAlign, double hGap,

double vGap);

Creates a new arrangement with the specified horizontal and vertical alignments and gaps.

25.13.3 Methods

To arrange the blocks within a container:

å public void arrange(BlockContainer container, RectangleConstraint constraint, Graphics2D

g2);

Arranges the blocks in container, subject to the given constraint.

To add a block to the layout:

å public void add(Block block, Object key);

Adds a block to the layout. The key is ignored.

To clear the blocks:

å public void clear();

Clears any cached information. In this case, the method does nothing.

25.13.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this arrangement for equality with an arbitrary object.

This class is immutable, so it doesn’t need to be Cloneable.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 240

25.14 EmptyBlock

25.14.1 Overview

An empty block, which can be useful for inserting fixed amounts of white space into a layout.
å public EmptyBlock(double width, double height);

Creates a new empty block with the specified “preferred” dimensions.

25.14.2 Methods

To draw the block:
å public void draw(Graphics2D g2, Rectangle2D area);

Draws the block (since the block is empty, this does nothing).

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the block.

25.15 EntityBlockParams

25.15.1 Overview

To be documented.

25.16 EntityBlockResult

25.16.1 Overview

To be documented.

25.17 FlowArrangement

25.17.1 Overview

An Arrangement that lays out blocks horizontally from left to right (with wrapping if necessary).

25.17.2 Constructors

To create a new arrangement:
å public FlowArrangement();

Creates a new arrangement with default settings.

å public FlowArrangement(HorizontalAlignment hAlign, VerticalAlignment vAlign, double hGap,

double vGap);

Creates a new arrangement with the given alignment and gap settings.

25.17.3 Methods

To perform an arrangement on a container:
å public void arrange(BlockContainer container, RectangleConstraint constraint,

Graphics2D g2);

Arranges the blocks in the specified container according to the given constraint.

The following methods are also defined:
å public void add(Block block, Object key);

Adds a block to the arrangement. This method does nothing.

å public void clear();

Clears any cached information held by this instance.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 241

25.17.4 Equals, Cloning and Serialization

å public boolean equals(Object obj);

Tests this arrangement for equality with an arbitrary object.

25.18 GridArrangement

25.18.1 Overview

A layout manager (Arrangement) that places blocks within a fixed size grid.

25.18.2 Constructor

To create a new instance:

å public GridArrangement(int rows, int columns);

Creates a new instance with the specified number of rows and columns.

25.18.3 Methods

å public void add(Block block, Object key);

Adds a block to the layout. This method does nothing, because the grid layout doesn’t require
any information about the blocks.

å public Size2D arrange(BlockContainer container, RectangleConstraint constraint,

Graphics2D g2);

Arranges the blocks in the specified container subject to the given constraint.

See Also
FlowArrangement

25.19 LabelBlock

25.19.1 Overview

A label that can be incorporated into a block layout. For example, the series labels in a LegendTitle

are displayed using instances of this class.

25.19.2 Constructors

To create a new instance:

å public LabelBlock(String text);

Creates a new label block with the given (non-null) text and a default font (Sans Serif, PLAIN,

10) and color (black).

å public LabelBlock(String text, Font font);

Creates a new label block with the specified text, font and a default color (black). Both text

and font should be non-null.

å public LabelBlock(String text, Font font, Paint paint);

Creates a new label block with the specified text, font and paint (all of which must be non-
null).

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 242

25.19.3 Attributes

To get/set the font used for the label:

å public Font getFont();

Returns the font used for the label (never null).

å public void setFont(Font font);

Sets the font for the label (null is not permitted).

To get/set the paint used for the label text:

å public Paint getPaint();

Returns the paint used for the label text (never null). The default value is Color.BLACK.

å public void setPaint(Paint paint);

Sets the paint for the label text (null is not permitted).

To get/set the tooltip text for the label (if any):

å public String getToolTipText();

Returns the tooltip text (possibly null).

å public void setToolTipText(String text);

Sets the tooltip text (null permitted).

To get/set the URL text for the label (if any):

å public String getURLText();

Returns the URL text for the label block. This may be null.

å public void setURLText(String text);

Sets the tooltip text (null permitted).

25.19.4 Other Methods

The following methods are used by the layout and drawing mechanism in JFreeChart. You won’t
normally call them yourself.

å public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);

Fits the label block to the specified constraints, and returns the dimensions.

å public void draw(Graphics2D g2, Rectangle2D area);

Draws the label within the specified area.

å public Object draw(Graphics2D g2, Rectangle2D area, Object params);

Draws the label within the specified area.

25.19.5 Equals, Cloning and Serialization

To test an instance for equality with an arbitrary object:

å public boolean equals(Object obj);

Tests this instance for equality with obj. Returns true if and only if:

• obj is not null;

• obj is an instance of LabelBlock;

• each field in this instance is the same as the corresponding field in obj.

Instances of this class are Cloneable and Serializable.

25.19.6 Notes

Some points to note:

• this class implements the Block interface, and thus supports margins, borders and padding as
do all blocks.

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 243

25.20 LengthConstraintType

25.20.1 Overview

This class defines three constraint types:

• LengthConstraintType.NONE;

• LengthConstraintType.FIXED;

• LengthConstraintType.RANGE;

These types are used when creating RectangleConstraint instances.

25.20.2 Methods

The following methods are implemented:

å public String toString();

Returns a string representation of the instance, primarily used for debugging.

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

å public int hashCode();

Returns a hash code for the instance.

25.21 LineBorder

25.21.1 Overview

A simple border that can be assigned to any subclass of AbstractBlock (via that class’s setFrame()

method). This class implements the BlockFrame interface.

25.21.2 Constructors

There are two constructors:

å public LineBorder();

Equivalent to LineBorder(Color.black, new BasicStroke(1.0f), new RectangleInsets(1.0, 1.0,

1.0, 1.0))—see the next constructor.

å public LineBorder(Paint paint, Stroke stroke, RectangleInsets insets);

Creates a new line border using the specified paint, stroke and insets. The insets deter-
mines how much space is reserved for the border (but note that the border is drawn regard-
less of the size of the insets). If any of the arguments is null, this constructor throws an
IllegalArgumentException.

25.21.3 General Attributes

The following read-only attributes are defined:

å public Paint getPaint(); [1.0.5]

Returns the paint that is used to draw the border. The initial value is specified in the con-
structor for this class. This method never returns null.

å public Stroke getStroke(); [1.0.5]

Returns the stroke that is used to draw the border. The initial value is specified in the con-
structor for this class. This method never returns null.

å public RectangleInsets getInsets(); [1.0.5]

Returns the insets that define the drawing space reserved for the border (never null).

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 244

25.21.4 Other Methods

JFreeChart calls the following method to draw the border:

å public void draw(Graphics2D g2, Rectangle2D area);

Draws the border around the edges of the specified area, always staying within the area.

25.21.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this border for equality with an arbitrary object.

Instances of this class are immutable (so this class doesn’t implement Cloneable) and Serializable.

See Also
BlockFrame.

25.22 RectangleConstraint

25.22.1 Overview

A specification of the constraints that a rectangular shape must meet. For each dimension (width
and height) there are three possible constraints: NONE, FIXED and RANGE—refer to the constant class
LengthConstraintType. These constraints are used by the layout code implemented by JFreeChart.

25.22.2 Constructors

There are several constructors:

å public RectangleConstraint(double w, double h);

Creates a new constraint where both the width and height are fixed at the given dimensions.

å public RectangleConstraint(Range w, Range h);

Creates a new constraint where the width and height must fall within the given ranges.

å public RectangleConstraint(double w, Range widthRange,

LengthConstraintType widthConstraintType, double h, Range heightRange,

LengthConstraintType heightConstraintType);

Creates a new constraint with the specified attributes (this method gives you full control over
all attributes). Note that the width and height ranges may be specified as null.

25.22.3 Accessor Methods

To access the attributes of this class:

å public double getWidth();

Returns the fixed width.

å public Range getWidthRange();

Returns the width range (possibly null).

å public LengthConstraintType getWidthConstraintType();

Returns the width constraint type (never null).

å public double getHeight();

Returns the fixed height.

å public Range getHeightRange();

Returns the height range (possibly null).

å public LengthConstraintType getHeightConstraintType();

Returns the height constraint type (never null).

CHAPTER 25. PACKAGE: ORG.JFREE.CHART.BLOCK 245

25.22.4 Other Methods

Other methods include:

å public RectangleConstraint toUnconstrainedWidth();

Returns a new instance with the same height constraint and NO width constraint.

å public RectangleConstraint toUnconstrainedHeight();

Returns a new instance with the same width constraint and NO height constraint.

å public RectangleConstraint toFixedWidth(double width);

Returns a new instance with the same height constraint and a FIXED width constraint.

å public RectangleConstraint toFixedHeight(double height);

Returns a new instance with the same width constraint and a FIXED height constraint.

å public Size2D calculateConstrainedSize(Size2D base);

Applies the constraint to the supplied dimensions and returns the “constrained” dimensions.

å public String toString();

Returns a string representing this class, primarily for debugging purposes.

Chapter 26

Package: org.jfree.chart.editor

26.1 Introduction

This package contains a framework for editing chart properties. At present, the implementation is
incomplete. The API is minimalistic, in the hope that it will be possible to plug in a more complete
implementation later on without requiring major changes to the API.

26.2 ChartEditor

26.2.1 Overview

An interface that defines the API that needs to be supported by a chart editor. A chart editor
should be a subclass of JComponent.

26.2.2 Methods

This interface defines a single method:

å public void updateChart(JFreeChart chart);

Applies the updates that the user has made via the chart editor to the given chart.

26.2.3 Notes

To obtain a chart editor, use the getChartEditor() method in the ChartEditorManager class.

26.3 ChartEditorFactory

26.3.1 Overview

An interface that defines the API that needs to be supported by a chart editor factory, a class
that creates new instances of ChartEditor. The ChartEditorManager class maintains a factory for
creating new editors—you can replace the default factory with your own custom factory if you want
to install your own chart editor.

26.3.2 Methods

This interface defines a single method:

å public ChartEditor createEditor(JFreeChart chart);

Creates a new editor for the given chart.

246

CHAPTER 26. PACKAGE: ORG.JFREE.CHART.EDITOR 247

26.3.3 Notes

The DefaultChartEditorFactory class provides the default implementation of this interface.

26.4 ChartEditorManager

26.4.1 Overview

This class is the central source for new ChartEditor instances. You can use the default chart editor
(which is incomplete at this time) or install your own ChartEditorFactory class to return your own
custom chart editor.

26.4.2 Methods

This class defines several static methods:

å public static ChartEditorFactory getChartEditorFactory();

Returns the current chart editor factory.

å public static void setChartEditorFactory(ChartEditorFactory f);

Sets the chart editor factory. This allows you to install a custom chart editor implementation,
since the getChartEditor() method will return an editor created by the installed factory.

å public static ChartEditor getChartEditor(JFreeChart chart);

Returns a chart editor for the given chart. The editor is created by the installed chart editor
factory (which you can change via the setChartEditorFactory() method.

26.4.3 Notes

This package contains default implementations of ChartEditorFactory and ChartEditor. These
classes are not publicly visible and are subject to change.

26.5 DefaultAxisEditor

26.5.1 Overview

A panel for editing the properties of an axis.

The code for this panel is out of date. Many features are missing, and some of the existing features
may not work. It is planned to rewrite this class.

26.6 DefaultChartEditor

26.6.1 Overview

A panel that displays all the properties of a chart, and allows the user to edit the properties. The
panel uses a JTabbedPane to display three sub-panels:

• a DefaultTitleEditor;

• a DefaultPlotEditor;

• a panel containing “other” properties (such as the anti-alias setting and the background paint
for the chart).

The constructors for this class require a reference to a Dialog or a Frame. Whichever one is specified
is passed on to the DefaultTitleEditor and is used if and when a sub-dialog is required for editing
titles.

CHAPTER 26. PACKAGE: ORG.JFREE.CHART.EDITOR 248

26.6.2 Notes

This class is not publicly visible and its API is subject to change.

26.7 DefaultChartEditorFactory

26.7.1 Overview

A default factory used by the ChartEditorManager class.

26.7.2 Constructors

To create a new instance:

å public DefaultChartEditorFactory();

Creates a new factory instance.

26.7.3 Methods

To create a new chart editor:

å public ChartEditor createEditor(JFreeChart chart);

Creates a new editor for the given chart.

26.7.4 Notes

The ChartEditorManager class installs an instance of this class as the default chart editor factory.

26.8 DefaultColorBarEditor

26.8.1 Overview

A panel for editing the properties of a ColorBar. This class is deprecated as of version 1.0.4.

CHAPTER 26. PACKAGE: ORG.JFREE.CHART.EDITOR 249

26.9 DefaultNumberAxisEditor

26.9.1 Overview

A panel for displaying and editing the properties of a NumberAxis.

26.10 DefaultPlotEditor

26.10.1 Overview

A panel for displaying and editing the properties of a plot.

Figure 26.1: The plot property editor

The code for this panel is out of date. Many features are missing, and some of the existing features
may not work. It is planned to rewrite this class.

26.11 DefaultTitleEditor

26.11.1 Overview

A panel for displaying and editing the properties of a chart title. The code for this panel is out of
date. Many features are missing, and some of the existing features may not work. It is planned to
rewrite this class.

26.12 PaletteChooserPanel

26.12.1 Overview

A panel for selecting a color palette. This class is deprecated as of version 1.0.4.

CHAPTER 26. PACKAGE: ORG.JFREE.CHART.EDITOR 250

26.13 PaletteSample

26.13.1 Overview

This class is deprecated as of version 1.0.4.

Chapter 27

Package: org.jfree.chart.encoders

27.1 Introduction

The org.jfree.chart.encoders package provides a mechanism to allow encoders from Java’s Image
IO framework to be used where they are available (JDK 1.4 onwards) while ensuring that alternative
encoders are provided as a fallback in other cases (that is, on JDK 1.3).

This mechanism is employed by several methods in the ChartUtilities class, for example write-

ChartAsPNG() and writeChartAsJPEG().

27.2 EncoderUtil

27.2.1 Overview

A utility class containing static methods for encoding images in several formats (PNG and JPEG
are supported in most cases). The methods in this class are called by the ChartUtilities class, and
make use of encoders pre-configured in the ImageEncoderFactory class.

27.2.2 Methods

To encode an image:

å public static byte[] encode(BufferedImage image, String format);

Returns a byte array containing an encoded version of the image in the specified format.

å public static byte[] encode(BufferedImage image, String format,

boolean encodeAlpha) throws IOException;

Returns a byte array containing an encoded version of the image in the specified format. The
encodeAlpha flag determines whether or not an alpha channel is included in the encoded image
(assuming the format supports this).

å public static byte[] encode(BufferedImage image, String format,

float quality) throws IOException;

Returns a byte array containing an encoded version of the image in the specified format. The
quality argument controls the image quality (for encoders that support this).

å public static byte[] encode(BufferedImage image, String format,

float quality, boolean encodeAlpha);

Returns a byte array containing an encoded version of the image in the specified format. The
encodeAlpha flag determines whether or not an alpha channel is included in the encoded image
(assuming the format supports this). The quality argument controls the image quality (for
encoders that support this).

To write an image to an output stream:

251

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.ENCODERS 252

å public static void writeBufferedImage(BufferedImage image, String format,

OutputStream outputStream) throws IOException;

Writes an image to the given output stream in the specified format.

å public static void writeBufferedImage(BufferedImage image, String format,

OutputStream outputStream, float quality) throws IOException;

Writes an image to the given output stream in the specified format.

å public static void writeBufferedImage(BufferedImage image, String format,

OutputStream outputStream, boolean encodeAlpha) throws IOException;

Writes an image to the given output stream in the specified format.

å public static void writeBufferedImage(BufferedImage image, String format,

OutputStream outputStream, float quality, boolean encodeAlpha) throws IOException;

Writes an image to the given output stream in the specified format.

See Also
ChartUtilities.

27.3 ImageEncoderFactory

27.3.1 Overview

A factory class for image encoders. The static initialisation code in this class checks if we are
running on JRE 1.4.2 or later. If yes, then the following encoders are pre-configured:

• “png”: org.jfree.chart.encoders.SunPNGEncoderAdapter;

• “jpeg”: org.jfree.chart.encoders.SunJPEGEncoderAdapter;

Otherwise, JRE 1.3.1 must be the runtime. In that case, Java’s ImageIO library is not available
and we register the KeyPoint PNG encoder:

• “png”: org.jfree.chart.encoders.KeypointPNGEncoderAdapter;

27.3.2 Methods

The following method is used to register an encoder with the factory (note that JFreeChart pre-
installs PNG and JPEG encoders):

å public static void setImageEncoder(String format, String imageEncoderClassName);

Adds a mapping between a format name (for example, “png”) and an encoder class name (for
example, “org.jfree.chart.encoders.SunPNGEncoderAdapter”).

Use the following methods to obtain an encoder:

å public static ImageEncoder newInstance(String format);

Returns a new instance of an encoder for the given format.

å public static ImageEncoder newInstance(String format, float quality);

Returns a new instance of the encoder for the given format and the specified quality setting
(in the range 0.0f (lowest quality) to 1.0f (highest quality).

å public static ImageEncoder newInstance(String format, boolean encodingAlpha);

Returns a new instance of the encoder for the given format and the specified encodeAlpha flag.

å public static ImageEncoder newInstance(String format, float quality, boolean encodingAlpha);

Returns a new instance of the encoder for the given format and the specified quality and
encodeAlpha flag settings.

See Also
EncoderUtil.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.ENCODERS 253

27.4 ImageEncoder

27.4.1 Overview

An interface that provides an abstract view of the image encoders supported by this package.
Classes that implement this interface include:

• KeypointPNGEncoderAdapter;

• SunJPEGEncoderAdapter;

• SunPNGEncoderAdapter.

27.4.2 Methods

To encode an image:
å public byte[] encode(BufferedImage bufferedImage) throws IOException;

Returns a byte array containing an encoded version of the given image.

å public void encode(BufferedImage bufferedImage, OutputStream outputStream) throws IOException;

Writes an encoded version of an image to the given output stream.

To control the quality for the encoding (typically there is a trade-off between image size and quality):
å public float getQuality();

Returns the image quality setting.

å public void setQuality(float quality);

Sets the quality. Note that some encoders ignore the quality setting.

To control whether or not the encoding should support an alpha-transparency channel:
å public boolean isEncodingAlpha();

Returns the flag that controls whether or not the alpha channel is encoded with the image
(note that some encoders ignore this setting).

å public void setEncodingAlpha(boolean encodingAlpha);

Sets the flag that controls whether or not the alpha channel is encoded with the image.

See Also
ImageEncoderFactory.

27.5 ImageFormat

27.5.1 Overview

An interface that defines string constants used to identify several common image formats:

• ImageFormat.PNG for the PNG format,

• ImageFormat.JPEG for the JPEG format,

• ImageFormat.GIF for the GIF format.

You can use these constants in the methods provided by the EncoderUtil class.

27.6 KeyPointPNGEncoderAdapter

27.6.1 Overview

An adapter for the com.keypoint.PNGEncoder included in the JCommon distribution. This adapter
will be used when JFreeChart is compiled or run with JDK/JRE 1.3.1 (in this case, the ImageIO
framework is not available).

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.ENCODERS 254

27.6.2 Methods

To set the image quality:

å public float getQuality();

Returns the quality setting for the encoder. The default value is 9.

å public void setQuality(float quality);

Sets the quality setting for the encoder. Since PNG is a “lossless” format, the image is al-
ways encoded without loss of quality. This setting in fact controls the amount of compression
achieved. The underlying encoder uses integer codes as follows:

• 0 – no compression,

• 1 – best speed,

• 9 – best compression.

Note that any value between 1 and 9 is also permitted.

To set the flag that controls whether or not the alpha channel is encoded:

å public boolean isEncodingAlpha();

Returns the flag that controls whether or not the alpha channel is included in the encoded
image.

å public void setEncodingAlpha(boolean encodingAlpha);

Sets the flag that controls whether or not the alpha channel is included in the encoded image.

To encode an image to a byte array:

å public byte[] encode(BufferedImage bufferedImage) throws IOException;

Returns a byte array containing an encoded version of the given image. The encoding uses the
current quality and encodeAlpha settings.

To write an encoded version of an image to an output stream:

å public void encode(BufferedImage bufferedImage, OutputStream outputStream) throws IOException;

Writes a byte array (containing an encoded version of the given image) to the specified output
stream. The encoding uses the current quality and encodeAlpha settings. Note that the entire
image is encoded to a byte array first, before writing the bytes to the output stream—for large
images this can use a lot of memory.

See Also
SunPNGEncoderAdapter.

27.7 SunJPEGEncoderAdapter

27.7.1 Overview

An encoder for the JPEG image file format that uses Java’s ImageIO framework to perform the
encoding. This encoder is only available when JFreeChart is compiled and run using JDK/JRE
1.4.2 or later. The Ant build script excludes it from the build when using JDK 1.3.1, in which case
the methods that write charts to JPEG format will throw exceptions. Since JPEG is such a rotten
format for charts, this is no great loss.

27.7.2 Methods

The quality setting is ignored by this encoder:

å public float getQuality();

Returns the quality setting.

å public void setQuality(float quality);

Sets the quality setting.

CHAPTER 27. PACKAGE: ORG.JFREE.CHART.ENCODERS 255

The alpha encoding flag is ignored by this encoder:

å public boolean isEncodingAlpha();

Returns false always.

å public void setEncodingAlpha(boolean encodingAlpha);

Any value passed to this method is ignored.

To encode an image:

å public byte[] encode(BufferedImage bufferedImage) throws IOException;

Returns a byte array containing a version of the given image encoded in JPEG format by Java’s
ImageIO framework.

å public void encode(BufferedImage bufferedImage, OutputStream outputStream) throws IOException;

Writes an image to the given output stream (in JPEG format) using Java’s ImageIO framework.

27.8 SunPNGEncoderAdapter

27.8.1 Overview

An encoder for the PNG image file format that uses Java’s ImageIO framework to perform the
encoding. This encoder is only available when JFreeChart is compiled and run using JDK/JRE
1.4.2 or later. The Ant build script excludes it from the build when using JDK 1.3.1, in which case
the KeypointPNGEncoderAdapter is used instead.

27.8.2 Methods

The quality setting is ignored by this encoder:

å public float getQuality();

Returns 0.0f always, the encoder does not support the quality setting.

å public void setQuality(float quality);

Any value passed to this method is ignored, the encoder does not support the quality setting.

The alpha encoding flag is ignored by this encoder:

å public boolean isEncodingAlpha();

Returns false always.

å public void setEncodingAlpha(boolean encodingAlpha);

Any value passed to this method is ignored.

To encode an image:

å public byte[] encode(BufferedImage bufferedImage) throws IOException;

Returns a byte array containing a version of the given image encoded in PNG format by Java’s
ImageIO framework.

å public void encode(BufferedImage bufferedImage, OutputStream outputStream) throws IOException;

Writes an image to the given output stream (in PNG format) using Java’s ImageIO framework.

See Also
KeypointPNGEncoderAdapter.

Chapter 28

Package: org.jfree.chart.entity

28.1 Introduction

The org.jfree.chart.entity package contains classes that represent entities in a chart. Entities
provide information about the physical location of items in a chart that has been drawn, as well as
optional data such as tool tip text and URL strings.

28.2 Background

Recall that when you render a chart to a Graphics2D using the draw() method in the JFreeChart

class, you have the option of supplying a ChartRenderingInfo object to collect information about
the chart’s dimensions. Most of this information is represented in the form of ChartEntity objects,
stored in an EntityCollection.

You can use the entity information in any way you choose. For example, the ChartPanel class makes
use of the information for:

• displaying tool tips;

• handling chart mouse events.

It is more than likely that other applications for this information will be found.

28.3 CategoryItemEntity

28.3.1 Overview

This class is used to convey information about an item within a category plot. The information
captured includes the dataset containing the item, the series and category identifying the item, area
occupied by the item (at the time the chart was rendered), and the tool tip and URL text (if any)
generated for the item.

28.3.2 Constructors

To construct a new instance:

å public CategoryItemEntity(Shape area, String toolTipText, String urlText,

CategoryDataset dataset, Comparable rowKey, Comparable columnKey); [1.0.6]

Creates a new entity instance.

The original constructor has been deprecated as of JFreeChart 1.0.6, and will be removed in a
future release.

256

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 257

28.3.3 Methods

In addition to the methods inherited from the ChartEntity class:

å public CategoryDataset getDataset();

Returns a reference to the dataset (never null).

å public void setDataset(CategoryDataset dataset);

Sets the dataset reference for this entity (null is not permitted).

To identify the data item:

å public Comparable getRowKey(); [1.0.6]

Returns the row key for the data item.

å public void setRowKey(Comparable rowKey); [1.0.6]

Sets the row key for the data item.

å public Comparable getColumnKey(); [1.0.6]

Returns the column key for the data item.

å public void setColumnKey(Comparable columnKey); [1.0.6]

Sets the column key for the data item.

The original index-based methods for identifying the data item have been deprecated:

å public int getSeries(); [Deprecated, 1.0.6]

Returns the index of the series containing the item that this entity represents.

å public void setSeries(int series); [Deprecated, 1.0.6]

Sets the index of the series containing the item that this entity represents.

å public Object getCategory(); [Deprecated, 1.0.6]

Returns the category containing the item that this entity represents. This may be null.

å public void setCategory(Object category); [Deprecated, 1.0.6]

Sets the category containing the item that this entity represents.

å public int getCategoryIndex(); [Deprecated, 1.0.6]

Returns the index of the category containing the item that this entity represents.

å public void setCategoryIndex(int index); [Deprecated, 1.0.6]

Sets the index of the category containing the item that this entity represents.

For debugging purposes, this class overrides the toString() method:

å public String toString();

Returns a string representation of this CategoryItemEntity, typically used when debugging.

28.3.4 Equals, Cloning and Serialization

This class overrides the equals(Object) method:

å public boolean equals(Object obj);

Tests this entity for equality with an arbitrary object.

Instances of this class are cloneable (PublicCloneable is implemented) and serializable.

28.3.5 Notes

Most CategoryItemRenderer implementations will generate entities using this class, as required.

See Also
ChartEntity, CategoryPlot.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 258

28.4 ChartEntity

28.4.1 Overview

This class is used to convey information about an entity within a chart. The information captured
includes the area occupied by the item and the tool tip text generated for the item.

There are a number of subclasses that can be used to provide additional information about a chart
entity.

ChartEntity
#area: Shape
#toolTipText: String

PieSectionEntity
#category: Object

CategoryItemEntity
#series: int
#category: Object

XYItemEntity
#series: int
#item: int

Figure 28.1: Chart entity classes

28.4.2 Constructors

To construct a new instance:

å public ChartEntity(Shape area, String toolTipText);

Creates a new chart entity object. The area is specified in Java 2D space.

Chart entities are created by other classes in the JFreeChart library, you don’t usually need to
create them yourself.

28.4.3 Methods

Accessor methods are implemented for the area and toolTipText attributes.

To support the generation of HTML image maps, the getShapeType() method returns a String

containing either RECT or POLY, and the getShapeCoords() method returns a String containing the
coordinates of the shape’s outline. See the ChartUtilities class for more information about HTML
image maps.

28.4.4 Notes

The ChartEntity class records where an entity has been drawn using a Graphics2D instance. Chang-
ing the attributes of an entity won’t change what has already been drawn.

See Also
CategoryItemEntity, PieSectionEntity, XYItemEntity.

28.5 ContourEntity

28.5.1 Overview

This class is deprecated as of JFreeChart version 1.0.4.

See Also
ContourPlot.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 259

28.6 EntityCollection

28.6.1 Overview

An interface that defines the API for a collection of chart entities. This is used by the Chart-

RenderingInfo class to record where items have been drawn when a chart is rendered using a
Graphics2D instance.

Each ChartEntity can also record tool tip information (for displaying tool tips in a Swing user
interface) and/or URL information (for generating HTML image maps).

28.6.2 Methods

The interface defines three methods. To clear a collection:

å public void clear();

Clears the collection. All entities in the collection are discarded.

To add an entity to a collection:

å public void addEntity(ChartEntity entity);

Adds an entity to the collection.

To retrieve an entity based on Java 2D coordinates:

å public ChartEntity getEntity(double x, double y);

Returns an entity whose area contains the specified coordinates. If the coordinates fall within
the area of multiple entities (the entities overlap) then only one entity is returned.

28.6.3 Notes

The StandardEntityCollection class provides a basic implementation of this interface (but one that
won’t scale to large numbers of entities).

See Also
ChartEntity, StandardEntityCollection.

28.7 LegendItemEntity

28.7.1 Overview

An entity that records information about a legend item.

28.7.2 Constructor

To create a new LegendItemEntity:

å public LegendItemEntity(Shape area);

Creates a new legend item with the specified hotspot.

28.7.3 Methods

The legend item is associated with a dataset and a series key:

å public Dataset getDataset(); [1.0.6]

Returns the dataset for the legend item.

å public void setDataset(Dataset dataset); [1.0.6]

Sets the dataset for the legend item.

å public Comparable getSeriesKey(); [1.0.6]

Returns the series key for the legend item.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 260

å public void setSeriesKey(Comparable key); [1.0.6]

Sets the series key for the legend item.

To access the index of the series that the legend item relates to:

å public int getSeriesIndex(); [Deprecated, 1.0.6]

Returns the index of the series that the legend item entity relates to.

å public void setSeriesIndex(int index); [Deprecated, 1.0.6]

Sets the index of the series that the legend item entity relates to.

28.7.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this entity for equality with an arbitrary object.

To obtain a clone of the entity:

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the entity.

28.8 PieSectionEntity

28.8.1 Overview

This class is used to convey information about an item within a pie plot. The information captured
includes the area occupied by the item, the dataset, pie and section indices, and the tool tip and
URL text (if any) generated for the item.

28.8.2 Constructors

To construct a new instance:

å public PieSectionEntity(Shape area, PieDataset dataset, int pieIndex, int sectionIndex,

Comparable sectionKey, String toolTipText, String urlText);

Creates a new entity object.

28.8.3 Methods

Accessor methods are implemented for the dataset, pieIndex, sectionIndex and sectionKey at-
tributes. Other methods are inherited from the ChartEntity class.

28.8.4 Notes

The PiePlot class generates pie section entities as required.

See Also
ChartEntity, PiePlot.

28.9 StandardEntityCollection

28.9.1 Overview

A basic implementation of the EntityCollection interface. This class can be used (optionally, by
the ChartRenderingInfo class) to store a collection of chart entity objects from one rendering of a
chart. The entities can be used to support tool-tips, drill-down charts and HTML image maps.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 261

28.9.2 Constructor

To create a new collection:

å public StandardEntityCollection();

Creates a new (empty) collection.

28.9.3 Methods

The following methods are supported by this class:

å public void add(ChartEntity entity);

Adds a chart entity to the collection. This method throws an IllegalArgumentException if
entity is null.

å public void addAll(EntityCollection collection);

Adds all the entities from the specified collection to this collection. This method throws a
NullPointerException if collection is null.

å public int getEntityCount();

Returns the number of entities stored in the collection.

å public ChartEntity getEntity(int index);

Returns a chart entity from the specified position in the collection.

å public void clear();

Clears all the entities from the collection.

å public ChartEntity getEntity(double x, double y);

Returns an entity from the collection that has a “hot-spot” that contains the specified (x, y)
location (in Java2D space).

å public Collection getEntities();

Returns an unmodifiable collection containing the entities.

å public Iterator iterator();

Returns an iterator for the entities in the collection.

28.9.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this entity collection for equality with an arbitrary object.

å public Object clone() throws CloneNotSupportedException

Returns a deep clone of this collection (each entity in the collection is cloned).

28.9.5 Notes

The getEntity() method iterates through the entities searching for one that contains the specified
coordinates. For charts with a large number of entities, a more efficient approach will be required.1

See Also
ChartEntity, EntityCollection.

28.10 TickLabelEntity

28.10.1 Overview

An entity that records information about a tick label.
1This is on the to-do list but, given the size of the to-do list, I’m hopeful that someone will contribute code to

address this.

CHAPTER 28. PACKAGE: ORG.JFREE.CHART.ENTITY 262

28.11 XYAnnotationEntity

28.11.1 Overview

An entity that represents an XYAnnotation.

28.11.2 Constructor

To create a new instance:

å public XYAnnotationEntity(Shape hotspot, int rendererIndex, String toolTipText,

String urlText);

Creates a new entity with the specified hotspot. The renderer index denotes the renderer to
which the annotation belongs.

28.11.3 Methods

In addition to the methods inherited from ChartEntity, this class defines the following:

å public int getRendererIndex();

Returns the index of the renderer to which the annotation is assigned.

å public void setRendererIndex(int index);

Sets the index of the renderer to which the annotation is assigned.

28.11.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this entity for equality with an arbitrary object.

28.12 XYItemEntity

28.12.1 Overview

This class is used to convey information about an item within an XY plot. The information captured
includes the area occupied by the item, the tool tip text generated for the item, and the series and
item index.

28.12.2 Constructors

To construct a new instance:

å public XYItemEntity(Shape area, XYDataset dataset, int series, int item, String toolTipText,

String urlText);

Creates a new entity object.

28.12.3 Methods

Accessor methods are implemented for the dataset, series and item attributes. Other methods are
inherited from the ChartEntity class.

28.12.4 Notes

Most XYItemRenderer implementations will generate entities using this class, as required.

See Also
ChartEntity, XYPlot.

Chapter 29

Package: org.jfree.chart.event

29.1 Introduction

This package contains classes and interfaces that are used to broadcast and receive events relating
to changes in chart properties. By default, some of the classes in the library will automatically
register themselves with other classes, so that they receive notification of any changes and can react
accordingly. For the most part, you can simply rely on this default behaviour.

29.2 AxisChangeEvent

29.2.1 Overview

An event that can be sent to an AxisChangeListener to provide information about a change to an
axis. Almost every axis update will trigger an AxisChangeEvent.

29.2.2 Notes

Some points to note:

• often, the only information provided by the event is that some change has been made to the
axis (that is, the specific change is not identified);

• when a chart is displayed in a ChartPanel, any AxisChangeEvent will trigger a chain of events
that results in the chart on the panel being repainted.

29.3 AxisChangeListener

29.3.1 Overview

An interface through which axis change event notifications are posted.

29.3.2 Methods

The interface defines a single method:

å public void axisChanged(AxisChangeEvent event);

Receives notification of a change to an axis.

263

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 264

29.3.3 Notes

Some points to note:

• if a class needs to receive notification of changes to an axis, then it needs to implement this
interface and register itself with the axis;

• the plot classes that manage axes (for example, CategoryPlot and XYPlot) implement this inter-
face to listen for changes to the axes, and typically respond by generating a PlotChangeEvent.

29.4 ChartChangeEvent

29.4.1 Overview

An event that is used to provide information about changes to a chart. You can register an object
with a JFreeChart instance, provided that the object implements the ChartChangeListener interface,
and it will receive a notification whenever the chart changes.

29.4.2 Constructors

The following constructors are defined:
å public ChartChangeEvent(Object source);

Creates a new event generated by the given source.

å public ChartChangeEvent(Object source, JFreeChart chart);

Creates a new event generated by the given source for the given chart (the source and chart

may be the same).

å public ChartChangeEvent(Object source, JFreeChart chart, ChartChangeEventType type);

Creates a new event with the specified type.

29.4.3 Methods

The following methods are defined:
å public JFreeChart getChart();

Returns the chart that the event relates to.

å public void setChart(JFreeChart chart);

Sets the chart for the event.

å public ChartChangeEventType getType();

Returns the event type.

å public void setType(ChartChangeEventType type);

Sets the event type.

29.4.4 Notes

The ChartPanel class automatically registers itself with the chart it is displaying. When it receives
a ChartChangeEvent, it repaints the chart.

29.5 ChartChangeEventType

29.5.1 Overview

This class defines the tokens that can be used to specify the “type” for a ChartChangeEvent.

The intent behind specifying event types is to allow JFreeChart to react in special ways to particular
events. For example, an updated dataset may not require a chart redraw if the data that changed
is outside the visible data range. However, there is currently no code in JFreeChart that takes
advantage of the event type.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 265

Token: Description:

ChartChangeEventType.GENERAL A general event.
ChartChangeEventType.NEW DATASET An event that signals that a new dataset has

been added to the chart.
ChartChangeEventType.DATASET UPDATED An event that signals that a dataset has been

updated.

Table 29.1: ChartChangeEventType tokens

29.6 ChartChangeListener

29.6.1 Overview

An interface through which chart change event notifications are posted.

29.6.2 Methods

The interface defines a single method:

å public void chartChanged(ChartChangeEvent event);

Receives notification of a change to a chart.

29.6.3 Notes

Some points to note:

• if a class needs to receive notification of changes to a chart, then it needs to implement this
interface and register itself with the chart;

• the ChartPanel class implements this interface, and repaints the chart whenever a change
event is received.

29.7 ChartProgressEvent

29.7.1 Overview

An event that contains information about the progress made during the rendering of a chart. Any
class that implements the ChartProgressListener interface can register with the JFreeChart class
and receive these events during chart rendering.

29.7.2 Constructor

To create a new event:

å public ChartProgressEvent(Object source, JFreeChart chart, int type, int percent);

Creates a new event with the given attributes. The source may be the chart, or some subcom-
ponent of the chart. The type identifies the event type, defined values include DRAWING STARTED

and DRAWING FINISHED (others may be added in the future). The percent is an estimate of the
amount of progress, in the range 0 to 100.

Typically, user code will receive events that have been constructed by JFreeChart, and won’t need
to create new event instances.

29.7.3 Methods

Accessor methods are provided for the event’s attributes:

å public JFreeChart getChart();

Returns the chart that the event relates to.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 266

å public void setChart(JFreeChart chart);

Sets the chart that the event belongs to (this should not be null).

å public int getType();

Returns the event type, one of DRAWING STARTED and DRAWING FINISHED. Additional types may be
defined in the future.

å public void setType(int type);

Sets the drawing type, which should be one of DRAWING STARTED and DRAWING FINISHED. Additional
types may be defined in the future.

This event provides a mechanism for finding out what percentage of the chart rendering has been
completed. Unfortunately, this isn’t fully implemented, so you cannot rely on it:

å public int getPercent();

Returns the percentage complete for the chart’s rendering. This should be a value in the range
0 to 100.

å public void setPercent(int percent);

Sets the percentage complete for the chart’s rendering. This should be a value in the range 0

to 100.

29.7.4 Notes

This mechanism is intended to provide the ability to report progress on the rendering of slow
drawing charts, but is not yet complete. It still serves a purpose in that it allows code to determine
the point at which chart rendering is complete.

29.8 ChartProgressListener

29.8.1 Overview

A listener that can receive progress updates from a chart. The listener will receive an event
(DRAWING STARTED) when the chart drawing commences, and another event (DRAWING FINISHED) when
the chart drawing is finished.1

29.8.2 Method

This interface defines a single method that receives notification (from a JFreeChart instance) of the
chart drawing progress:

å public void chartProgress(ChartProgressEvent event);

Receives notification of the progress of chart rendering.

29.9 MarkerChangeEvent

29.9.1 Overview

An event that is used to signal that some change has been made to a Marker. In JFreeChart, the
plot classes listen for changes to any markers they manage, and notify the chart when such changes
occur.

29.9.2 Constructors

There is a single constructor:
å public MarkerChangeEvent(Marker marker); [1.0.3]

Creates a new event with marker as the source. If marker is null, this constructor throws an
IllegalArgumentException.

1Originally it was planned that the listener should receive interim events during chart drawing, but this hasn’t
been implemented yet.

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 267

29.9.3 Methods

The following method is defined:

å public Marker getMarker(); [1.0.3]

Returns the marker that triggered the event. This will never be null.

29.9.4 Notes

This class was introduced in version 1.0.3.

See Also
MarkerChangeListener.

29.10 MarkerChangeListener

29.10.1 Overview

The interface through which MarkerChangeEvent notifications are posted. This interface is imple-
mented by CategoryPlot and XYPlot.

29.10.2 Methods

The interface defines a single method:

å public void markerChanged(MarkerChangeEvent event); [1.0.3]

Receives notification of a change to a marker.

29.10.3 Notes

Some points to note:

• this interface was introduced in JFreeChart version 1.0.3 (prior to this version, markers did
not generate change events);

• if a class needs to receive notification of changes to a marker, then it needs to implement this
interface and register itself with the legend.

See Also
MarkerChangeEvent.

29.11 PlotChangeEvent

29.11.1 Overview

An event that is used to provide information about changes to a plot. You can register an object
with a Plot instance, provided that the object implements the PlotChangeListener interface, and it
will receive a notification whenever the plot changes.

29.11.2 Notes

A JFreeChart object will automatically register itself with the Plot that it manages, and receive
notification whenever the plot changes. The chart usually responds by raising a ChartChangeEvent,
which other listeners may respond to (for example, the ChartPanel if the chart is displayed in a
GUI).

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 268

29.12 PlotChangeListener

29.12.1 Overview

An interface through which plot change event notifications are posted.

29.12.2 Methods

The interface defines a single method:

å public void plotChanged(PlotChangeEvent event);

Receives notification of a change to a plot.

29.12.3 Notes

Some points to note:

• if a class needs to receive notification of changes to a plot, then it needs to implement this
interface and register itself with the plot.

• the JFreeChart class implements this interface and automatically registers itself with the plot
it manages.

29.13 RendererChangeEvent

29.13.1 Overview

An event that is used to provide information about changes to a renderer. If an object needs to
receive notification of these events, its class should implement the RendererChangeListener interface
so the object can register itself with the renderer via the addChangeListener() method.

29.13.2 Usage

Typically, you won’t need to use this class directly. By default, JFreeChart’s plot classes will
automatically register (as a RendererChangeListener) with each renderer that is assigned to the
plot. As a result, (most) changes to a renderer will cause the plot to receive notification of the
change. The plot will usually respond by firing a PlotChangeEvent which, in turn, gets passed on to
the chart and results in a ChartChangeEvent being fired. This chain of events is used to ensure that
charts are automatically updated whenever a change is made to any component of the chart.

29.13.3 Notes

In the current implementation, the event just signals a change without specifying exactly what
changed. A possible future enhancement would be to include information about the nature of the
change, so that the listener(s) can decide what action to take in response to the event.

29.14 RendererChangeListener

29.14.1 Overview

An interface through which renderer change event notifications are posted. The CategoryPlot

and XYPlot classes implement this interface so they can receive notification of changes to their
renderer(s).

CHAPTER 29. PACKAGE: ORG.JFREE.CHART.EVENT 269

29.14.2 Methods

The interface defines a single method:

å public void rendererChanged(RendererChangeEvent event);

Receives notification of a change to a renderer.

29.14.3 Notes

If an Object needs to receive notification of changes to a renderer, then its class needs to implement
this interface so the object can register itself with the renderer.

29.15 TitleChangeEvent

29.15.1 Overview

An event that is used to provide information about changes to a chart title (any subclass of Title).

29.15.2 Notes

This event is part of the overall mechanism that JFreeChart uses to automatically update charts
whenever changes are made to components of the chart.

See Also
Title, TitleChangeListener.

29.16 TitleChangeListener

29.16.1 Overview

An interface through which title change event notifications are posted.

29.16.2 Methods

The interface defines a single method:

å public void titleChanged(TitleChangeEvent event);

Receives notification of a change to a title.

29.16.3 Notes

If a class needs to receive notification of changes to a title, then it needs to implement this interface
and register itself with the title.

See Also
TitleChangeEvent.

Chapter 30

Package: org.jfree.chart.imagemap

30.1 Overview

This package contains classes and interfaces that support the creation of HTML image maps. These
image maps can be created using the ImageMapUtilities class, typically from a servlet.

30.2 DynamicDriveToolTipTagFragmentGenerator

30.2.1 Overview

A tool-tip fragment generator that generates tool-tips that are designed to work with the Dynamic
Drive DHTML Tip Message library:

http://www.dynamicdrive.com

This class implements the ToolTipTagFragmentGenerator interface.

30.3 ImageMapUtilities

30.3.1 Overview

This class contains some utility methods that are useful for creating HTML image maps. A range
of demos (ImageMapDemo1-6.java) are included in the JFreeChart demo collection.

30.3.2 Methods

Several methods provide the ability to write an image map directly to a stream:1

å public static void writeImageMap(PrintWriter writer, String name,

ChartRenderingInfo info);

Writes an image map using info as the source of chart entity information. This is equivalent
to writeImageMap(writer, name, info, new StandardToolTipTagFragmentGenerator(),
new StandardURLTagFragmentGenerator());

å public static void writeImageMap(PrintWriter writer, String name,

ChartRenderingInfo info, boolean useOverLibForToolTips);

Writes an image map using info as the source of chart entity information. This will use an
instance of OverLIBToolTipTagFragmentGenerator to format the tooltip output, if requested.

1Note that in the current implementation, the image map is created entirely in memory and then written to the
stream, which is not as efficient as it could be.

270

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.IMAGEMAP 271

å public static void writeImageMap(PrintWriter writer, String name,

ChartRenderingInfo info, ToolTipTagFragmentGenerator toolTipTagFragmentGenerator,

URLTagFragmentGenerator urlTagFragmentGenerator) throws IOException;

Writes an image map using info as the source of chart entity information. This method first
calls getImageMap() to create the image map text, then writes it to write. The tooltip and URL
fragment generators provide the option to customize the imagemap output.

To create an HTML image map string:

å public static String getImageMap(String name, ChartRenderingInfo info);

Returns an image map based on the chart entity information in info. This is equivalent to
getImageMap(name, info, new StandardToolTipTagFragmentGenerator(), new StandardURL-
TagFragmentGenerator());

å public static String getImageMap(String name, ChartRenderingInfo info,

ToolTipTagFragmentGenerator toolTipTagFragmentGenerator,

URLTagFragmentGenerator urlTagFragmentGenerator);

Returns an HTML image map based on the chart entity information in info.

The following method creates standard escape sequences for “unsafe” characters in a string that
will be embedded in HTML output:

å public static String htmlEscape(String input); [1.0.9]

Returns a string that corresponds to the input string after replacing certain characters with
standard HTML escape sequences. If input is null, this method throws an IllegalArgumentException.

30.3.3 Notes

Some points to note:

• tooltip and URL content is controlled by generators defined in the packages:

– org.jfree.chart.labels.* for tooltips;

– org.jfree.chart.urls.* for URLs.

...whereas the tooltip and URL fragment generators defined in this package are concerned
with variation in the HTML tags that get incorporated into the HTML image map.

30.4 OverLIBToolTipTagFragmentGenerator

30.4.1 Overview

A tool-tip generator that generates tool-tips for use with the OverLIB library. See this URL for
details:

http://www.bosrup.com/web/overlib/

This class implements the ToolTipTagFragmentGenerator interface.

30.5 StandardToolTipTagFragmentGenerator

30.5.1 Overview

A tool-tip generator that generates tool-tips using the HTML title attribute. This class implements
the ToolTipTagFragmentGenerator interface.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.IMAGEMAP 272

30.6 StandardURLTagFragmentGenerator

30.6.1 Overview

A default implementation of the URLTagFragmentGenerator interface. Instances of this class are
created by some methods in the ImageMapUtilities class, to create the href elements in the HTML
image map. You can supply an alternative implementation if you want greater control over the
hyperlinks in the image map.

30.6.2 Constructor

This class has only the default constructor. Instances are stateless, so there are no attributes to
define.

30.6.3 Methods

This class implements a single method:

å public String generateURLFragment(String urlText);

Returns a URL fragment containing the specified URL text. The implementation is very simple:

return " href=\"" + urlText + "\"";

30.6.4 Equals, Cloning and Serialization

This class has no state, and is typically used for a single call to the getImageMap() or writeImageMap()
methods in the ImageMapUtilities class. Therefore, it does not override the equals() method, and
is neither cloneable nor serializable.

See Also
URLTagFragmentGenerator.

30.7 ToolTipTagFragmentGenerator

30.7.1 Overview

The interface that must be implemented by a class that generates tooltip tag fragments for an
HTML image map.

Classes that implement this interface include:

• StandardToolTipTagFragmentGenerator;

• DynamicDriveToolTipTagFragmentGenerator;

• OverLIBToolTipTagFragmentGenerator;

30.7.2 Methods

This interface defines a single method:

å public String generateToolTipFragment(String toolTipText);

Returns a tooltip fragment based on the supplied tool-tip text.

CHAPTER 30. PACKAGE: ORG.JFREE.CHART.IMAGEMAP 273

30.8 URLTagFragmentGenerator

30.8.1 Overview

The interface that must be implemented by a class that generates the URL tag fragment for an
HTML image map. For example, in the following area element, the URL fragment is shown under-
lined:

<area shape="rect" coords="553,259,564,288" title="(Series 3, Type 8) = 12"

alt="" href="bar chart detail.jsp?series=Series+3&category=Type+8"/>

The URL content is created elsewhere, but this generator is responsible for generating the sur-
rounding text (the href tag in this case). The StandardURLTagFragmentGenerator class is the only
implementation of this interface provided by JFreeChart.

30.8.2 Methods

This interface defines a single method:

å public String generateURLFragment(String urlText);

Returns a URL fragment based on the supplied URL text.

30.8.3 Notes

You can pass an instance of a class that implements this interface to the getImageMap() and
writeImageMap() methods in the ImageMapUtilities class.

Chapter 31

Package: org.jfree.chart.labels

31.1 Introduction

This package contains interfaces and classes for generating labels for the individual data items in a
chart. There are two label types:

• item labels – text displayed in, on or near to each data item in a chart;

• tooltips – text that is displayed when the mouse pointer “hovers” over a data item in a chart.

Section 11 contains information about using tool tips and section 12 contains information about
using item labels.

31.2 AbstractCategoryItemLabelGenerator

31.2.1 Overview

An abstract base class for creating item labels for a CategoryItemRenderer. Known subclasses
include:

• StandardCategoryToolTipGenerator;

• StandardCategoryItemLabelGenerator.

The generator uses Java’s MessageFormat class to construct labels by substituting any or all of the
objects listed in table 31.1.

The data value is formatted before it is passed to the MessageFormat—you can specify the NumberFormat
or DateFormat that is used to preformat the value via the constructor.

31.2.2 Constructors

Two (protected) constructors are provided, the difference between them is the type of formatter
(number or date) for the data values. In both cases, the labelFormat parameter determines the
overall structure of the generated label—you can use the substitutions listed in table 31.1.

Code: Description:

{0} The series name.
{1} The category label.
{2} The (preformatted) data value.

Table 31.1: MessageFormat substitutions

274

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 275

å protected AbstractCategoryItemLabelGenerator(String labelFormat,

NumberFormat formatter);

Creates a new generator that formats the data values using the supplied NumberFormat instance.

å protected AbstractCategoryItemLabelGenerator(String labelFormat,

DateFormat formatter);

Creates a new generator that formats the data values using the supplied DateFormat instance.

Methods

To generate a label string:

å protected String generateLabelString(CategoryDataset dataset, int row, int column);

Generates a label string. This method first calls the createItemArray() function, then passes
the result to Java’s MessageFormat to build the required label.

The following function builds the array (Object[]) that contains the items that can be substituted
by the MessageFormat code:

å protected Object[] createItemArray(CategoryDataset dataset, int row, int column);

Returns an array containing three items, the series name, the category label and the formatted
data value.

31.2.3 Notes

Some points to note:

• the StandardCategoryToolTipGenerator and StandardCategoryItemLabelGenerator classes are
extensions of this class;

• instances of this class are Cloneable and Serializable.

31.3 AbstractPieItemLabelGenerator

31.3.1 Overview

A base class used to create label generators for pie charts. Subclasses include:

• StandardPieSectionLabelGenerator;

• StandardPieToolTipGenerator.

31.3.2 Constructor

The following constructor is provided for use by subclasses:

å protected AbstractPieItemLabelGenerator(String labelFormat,

NumberFormat numberFormat, NumberFormat percentFormat);

Creates a new instance with the specified formatting attributes. The labelFormat is a string
that is used by an internal MessageFormat instance to compose a section label for an item in
the dataset—see the generateSectionLabel() method. If any of the arguments is null, this
constructor will throw an IllegalArgumentException.

31.3.3 Methods

The following methods are defined:

å public String getLabelFormat();

Returns the formatting string that is used by the internal MessageFormat instance.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 276

Token: Description:

{0} The series name.
{1} The (preformatted) x-value.
{2} The (preformatted) y-value.

Table 31.2: MessageFormat substitutions

å public NumberFormat getNumberFormat();

Returns the number formatter used to preformat each dataset value before incorporating it
into a section label. Note that the label format string (see getLabelFormat()) may or may not
include the dataset value.

å public NumberFormat getPercentFormat();

Returns the number formatter used to preformat each percentage value1 before incorporating
it into a section label. Note that the label format string (see getLabelFormat()) may or may
not include the percentage value.

å protected Object[] createItemArray(PieDataset dataset, Comparable key);

Creates an array of objects to pass to the internal MessageFormat instance used to create the
section label. The array contains four String objects:

• item 0: key.toString();

• item 1: the dataset value formatted using getNumberFormat(), or null;

• item 2: the dataset value as a percentage formatted using getPercentFormat();

• item 3: the total of all the dataset values, formatted using getNumberFormat().

å protected String generateSectionLabel(PieDataset dataset, Comparable key);

Returns a section label for the specified item in the given dataset. This method is called by
JFreeChart, it typically won’t be called by external code.

31.3.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this generator for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

31.4 AbstractXYItemLabelGenerator

31.4.1 Overview

An abstract base class that creates item labels (on demand) for an XYItemRenderer. Subclasses
include:

• StandardXYToolTipGenerator; and

• StandardXYItemLabelGenerator.

Internally, the generator uses Java’s MessageFormat class to construct labels by substituting any or
all of the tokens listed in table 31.2. The x and y values are formatted before they are passed to
MessageFormat—you can specify the NumberFormat or DateFormat that is used to preformat the values
via the constructor.

1The percentage value is the dataset value expressed as a percentage of the sum of all dataset values.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 277

31.4.2 Constructors

All the constructors for this class are protected and provided for use by subclasses only. The
provided constructors give you control over the formatters (number or date) used for the x and
y data values. In all cases, the labelFormat parameter determines the overall structure of the
generated label—you can use the substitutions listed in table 31.2.

å protected AbstractXYItemLabelGenerator();

Creates a new generator that formats the data values using the default number formatter for
the current locale.

å protected AbstractXYItemLabelGenerator(String formatString, NumberFormat xFormat,

NumberFormat yFormat);

Creates a new generator that formats the data values using the supplied NumberFormat instances.

å protected AbstractXYItemLabelGenerator(String formatString, DateFormat xFormat,

NumberFormat yFormat);

Creates a new generator that formats the x-values as dates and the y-values as numbers.

å protected AbstractXYItemLabelGenerator(String formatString, DateFormat xFormat,

NumberFormat yFormat); [1.0.4]

Creates a new generator that formats the x-values as numbers and the y-values as dates.

å protected AbstractXYItemLabelGenerator(String formatString, DateFormat xFormat,

DateFormat yFormat);

Creates a new generator that formats both the x and y values as dates.

Attributes

To obtain the format string that was specified in the constructor:
å public String getFormatString();

Returns the format string that will be passed to a MessageFormat instance when creating the
item label.

In the typical case, the x and y values are formatted as numbers:
å public NumberFormat getXFormat();

Returns the formatter for the x-values (never null). Note that if the getXDateFormat() method
returns a non-null formatter, it will be used instead.

å public NumberFormat getYFormat();

Returns the formatter for the y-values (never null). Note that if the getYDateFormat() method
returns a non-null formatter, it will be used instead.

These formatters can be (optionally) overridden by date formatters:
å public DateFormat getXDateFormat();

Returns the (date) formatter for the x-values. If this is null, the x-values will be formatted as
numbers—see getXFormat().

å public DateFormat getYDateFormat();

Returns the (date) formatter for the y-values. If this is null, the y-values will be formatted as
numbers—see getYFormat().

Other Methods

The following methods are called by JFreeChart—you won’t normally call them directly from your
own code:

å protected String generateLabelString(XYDataset dataset, int series, int item);

Generates a label string. This method first calls the createItemArray() method, then passes
the result to Java’s MessageFormat to build the required label.

The following function builds the array (Object[]) that contains the items that can be substituted
by the MessageFormat code:

å protected Object[] createItemArray(XYDataset dataset, int series, int item);

Returns an array containing three items, the series name, the formatted x and y data values.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 278

31.4.3 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this generator for equality with an arbitrary object. This method returns true if and
only if:

• obj is not null;

• obj is an instance of AbstractXYItemLabelGenerator;

• obj has the same attributes as this generator.

Instances of this class are Cloneable and Serializable.

31.4.4 Notes

Some points to note:

• the StandardXYToolTipGenerator and StandardXYItemLabelGenerator classes are extensions of
this class.

31.5 BoxAndWhiskerToolTipGenerator

31.5.1 Overview

A tool tip generator for a box-and-whisker chart. This is the default generator used by the
BoxAndWhiskerRenderer class.

31.6 BoxAndWhiskerXYToolTipGenerator

31.6.1 Overview

A tool tip generator for a box-and-whisker chart. This is the default generator used by the
XYBoxAndWhiskerRenderer class.

31.7 CategoryItemLabelGenerator

31.7.1 Overview

A category item label generator is an object that assumes responsibility for creating the text strings
that will be used for item labels in a chart. A generator is assigned to a renderer using the
setItemLabelGenerator() method in the CategoryItemRenderer interface. This interface defines the
API through which the renderer will communicate with the generator.

31.7.2 Usage

Chapter 12 contains information about using item labels.

31.7.3 Methods

The renderer will call this method to obtain an item label:

å public String generateLabel(CategoryDataset data, int series, int category);

Returns a string that will be used to label the specified item. Classes that implement this
method are permitted to return null for the result, in which case no label will be displayed for
that item.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 279

Additional methods:

å public String generateRowLabel(CategoryDataset dataset, int row);

Returns a label for the given row in the dataset.

å public String generateColumnLabel(CategoryDataset dataset, int column);

Returns a label for the given column in the dataset.

31.7.4 Notes

Some points to note:

• the StandardCategoryItemLabelGenerator class provides one implementation of this interface,
but you can also write your own class that implements this interface, and take complete
control over the generation of item labels.

31.8 CategorySeriesLabelGenerator

31.8.1 Overview

An interface defining the API that a caller (typically a CategoryItemRenderer) can use to obtain a la-
bel for a series in a dataset. This interface is implemented by the StandardCategorySeriesLabelGenerator
class.

31.8.2 Methods

The renderer will call this method to obtain an item label:

å public String generateLabel(CategoryDataset dataset, int series);

Returns a string that will be used to label the specified series.

31.8.3 Notes

Some points to note:

• by convention, all classes that implement this interface should be either:

– immutable; or

– implement the PublicCloneable interface.

This provides a mechanism for a referring class to determine whether or not it needs to clone
the generator, and access to the clone() method in the case that the generator is cloneable.

31.9 CategoryToolTipGenerator

31.9.1 Overview

A category tool tip generator is an object that assumes responsibility for creating the text strings that
will be used for tooltips in a chart. A generator is assigned to a renderer using the setToolTipGenerator()
method in the CategoryItemRenderer interface. This interface defines the API through which the
renderer will communicate with the generator.

31.9.2 Methods

The renderer will call this method to obtain the tooltip text for an item:

å public String generateToolTip(CategoryDataset data, int series, int category);

Returns a string that will be used as the tooltip text for the specified item. If null is returned,
no tool tip will be displayed.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 280

31.9.3 Notes

Some points to note:

• the StandardCategoryToolTipGenerator provides one implementation of this interface, but you
can also write your own class that implements this interface, and take complete control over
the generation of item labels and tooltips;

• refer to chapter 11 for information about using tool tips.

31.10 ContourToolTipGenerator

31.10.1 Overview

The interface that must be implemented by all contour tool tip generators. When a ContourPlot

requires tooltip text for a data item, it will obtain it via this interface.

This interface is deprecated as of JFreeChart version 1.0.4.

31.10.2 Methods

The interface defines a single method for obtaining the tooltip text for a data item:

å public String generateToolTip(ContourDataset data, int item);

Returns a string that can be used as the tooltip text for a data item.

See Also
ContourPlot.

31.11 CustomXYToolTipGenerator

31.11.1 Overview

A tool tip generator (for use with an XYItemRenderer) that returns a predefined tool tip for each
data item.

31.11.2 Methods

To specify the text to use for the tool tips:

å public void addToolTipSeries(List toolTips);

Adds the list of tool tips (for one series) to internal storage. These tool tips will be returned
(without modification) by the generator for each data item.

31.11.3 Notes

See section 11 for information about using tool tips with JFreeChart.

31.12 HighLowItemLabelGenerator

31.12.1 Overview

A label generator that is intended for use with the HighLowRenderer class. The generator will only
return tooltips for a dataset that is an implementation of the OHLCDataset interface.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 281

31.12.2 Constructors

To create a new label generator:

å public HighLowItemLabelGenerator(DateFormat dateFormatter, NumberFormat numberFormatter);

Creates a new label generator that uses the specified date and number formatters.

31.12.3 Methods

The key method constructs a String to be used as the tooltip text for a particular data item:

å public String generateToolTip(XYDataset dataset, int series, int item);

Returns a string containing the date, value, high value, low value, open value and close value for
the data item. This method will return null if the dataset does not implement the OHLCDataset

interface.

The following method is intended to generate an item label for display in a chart, but since the
renderer does not yet support this the method simply returns null:

å public String generateItemLabel(XYDataset dataset, int series, int category);

Returns null. To be implemented.

31.12.4 Notes

See section 11 for an overview of tool tips with JFreeChart.

31.13 IntervalCategoryItemLabelGenerator

31.13.1 Overview

An label generator that can be used with any CategoryItemRenderer. This generator will detect if
the dataset supplied to the renderer is an implementation of the IntervalCategoryDataset interface,
and will generate labels that display both the start value and the end value for each item.

31.13.2 Constructors

The default constructor will create a label generator that formats the data values as numbers, using
the platform default number format:

å public IntervalCategoryItemLabelGenerator();

Creates a new label generator with a default number formatter.

If you prefer to set the number format yourself, use the following constructor:

å public IntervalCategoryItemLabelGenerator(NumberFormat formatter);

Creates a new label generator with a specific number formatter.

In some cases, the data values in the dataset will represent dates (encoded as milliseconds since
midnight, 1-Jan-1970 GMT, as for java.util.Date). In this case, you can create a label generator
using the following constructor:

å public IntervalCategoryItemLabelGenerator(DateFormat formatter);

Creates a new label generator that formats the start and end data values as dates.

31.13.3 Notes

The createGanttChart() in the ChartFactory class uses this type of label generator (with date
formatting).

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 282

31.14 IntervalCategoryToolTipGenerator

31.14.1 Overview

An tool tip generator that can be used with any CategoryItemRenderer. This generator will detect if
the dataset supplied to the renderer is an implementation of the IntervalCategoryDataset interface,
and will generate labels that display both the start value and the end value for each item.

31.14.2 Constructors

The default constructor will create a label generator that formats the data values as numbers, using
the platform default number format:

å public IntervalCategoryToolTipGenerator();

Creates a new tool tip generator with a default number formatter.

If you prefer to set the number format yourself, use the following constructor:

å public IntervalCategoryToolTipGenerator(NumberFormat formatter);

Creates a new tool tip generator with a specific number formatter.

In some cases, the data values in the dataset will represent dates (encoded as milliseconds since
midnight, 1-Jan-1970 GMT, as for java.util.Date). In this case, you can create a label generator
using the following constructor:

å public IntervalCategoryToolTipGenerator(DateFormat formatter);

Creates a new tool tip generator that formats the start and end data values as dates.

31.14.3 Notes

The createGanttChart() in the ChartFactory class uses this type of label generator (with date
formatting).

31.15 ItemLabelAnchor

31.15.1 Overview

An item label anchor is used by a renderer to calculate a fixed point (the item label anchor point)
relative to a data item on a chart. This point becomes a reference point that an item label can be
aligned to.

This class defines 25 anchors. The numbers 1 to 12 are used and roughly correspond to the positions
of the hours on a clock face. In addition, positions are defined relative to an “inside” ring and an
“outside” ring - see figure 31.1 for an illustration.
With 12 points on the inside circle, 12 points on the outside circle, plus a “center” anchor point, in
all there are 25 possible anchor points.

For some renderers, the circular arrangement of anchor points doesn’t make sense, so the renderer
is free to modify the anchor positions (see the BarRenderer class for an example).

31.15.2 Usage

The ItemLabelPosition class includes an item label anchor as one of the attributes that define the
location of item labels drawn by a renderer.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 283

OUTSIDE_1

OUTSIDE_2

OUTSIDE_3

OUTSIDE_4

OUTSIDE_5

OUTSIDE_6

OUTSIDE_7

OUTSIDE_8

OUTSIDE_9

OUTSIDE_10

OUTSIDE_11

OUTSIDE_12

CENTER

INSIDE_12

INSIDE_6

Figure 31.1: The Item Label Anchors

31.16 ItemLabelPosition

31.16.1 Overview

This class is used to specify the position of item labels on a chart. Four attributes are used to
specify the position:

• the item label anchor - the renderer will use this to calculate an (x, y) anchor point on the
chart near to the data item that the item label corresponds to (see ItemLabelAnchor);

• the text anchor - this is a point relative to the item label text which will be aligned with the
item label anchor point above;

• the rotation anchor - this is another point somewhere on the item label about which the text
will be rotated (if there is a rotation);

• the rotation angle - this specifies the amount of rotation about the rotation point.

These four attributes provide a lot of scope for placing item labels in interesting ways.

31.16.2 Usage

The AbstractRenderer class provides methods for specifying the item label position for positive and
negative data values separately:

å public void setPositiveItemLabelPosition(ItemLabelPosition position);

Sets the item label position for positive data values.

å public void setNegativeItemLabelPosition(ItemLabelPosition position);

Sets the item label position for negative data values.

31.16.3 Constructors

This class defines three constructors:

å public ItemLabelPosition();

Creates a default instance. Equivalent to this(ItemLabelAnchor.OUTSIDE12, TextAnchor.BOTTOM CENTER)—
see below.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 284

å public ItemLabelPosition(ItemLabelAnchor itemLabelAnchor, TextAnchor textAnchor);

Creates a position with no text rotation. Equivalent to this(itemLabelAnchor, textAnchor,

TextAnchor.CENTER, 0.0).

å public ItemLabelPosition(ItemLabelAnchor itemLabelAnchor, TextAnchor textAnchor, TextAnchor

rotationAnchor, double angle);

Creates a new ItemLabelPosition instance. None of the arguments can be null.

31.16.4 Methods

Accessor methods are defined for the attributes specified via the constructor.

å public ItemLabelAnchor getItemLabelAnchor();

Returns the anchor point for the item label (never null). This defines a location relative to the
data value on the chart to which the item label will be aligned.

å public TextAnchor getTextAnchor();

Returns the reference point on the label text that will be aligned to the anchor point on the
chart. This method never returns null.

å public TextAnchor getRotationAnchor();

Returns the reference point on the label text about which any rotation will be performed. This
method never returns null.

å public double getAngle();

Returns the angle of rotation for the text (in radians).

None of the above attributes can be modified post-construction, because instances of this class are
immutable.

31.16.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this ItemLabelPosition for equality with an arbitrary object. Returns true if and only if:

• obj is not null;

• obj is an instance of ItemLabelPosition;

• obj has the same attributes as this instance.

Instances of this class are immutable, so they don’t need to be Cloneable. Instances of this class
are Serializable.

31.17 MultipleXYSeriesLabelGenerator

31.17.1 Overview

A series label generator that can return multiple labels (separated by a newline character) for a
single series. You might use this generator to show legend items in two or more languages, for
example.

31.17.2 Constructors

This class defines two constructors:

å public MultipleXYSeriesLabelGenerator();

Equivalent to MultipleXYSeriesLabelGenerator("{0}")—see the next constructor.

å public MultipleXYSeriesLabelGenerator(String format);

Creates a new generator where the main label is generated with the specified format string. At
label generation time, any occurrence of {0} in the format string will be replaced by the series
name.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 285

31.17.3 Methods

The following methods are defined:

å public void addSeriesLabel(int series, String label);

Adds an additional label for a series. This method does NOT fire a change event.

å public void clearSeriesLabels(int series);

Clears the additional labels for the specified series. This method does NOT fire a change event.

å public String generateLabel(XYDataset dataset, int series);

Generates the label string for a series in the specified dataset.

å protected Object[] createItemArray(XYDataset dataset, int series);

Creates and returns an array (of length 1) containing the string representation of the key for
the specified series. This method is used internally.

31.17.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this generator for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

See Also
XYSeriesLabelGenerator.

31.18 PieSectionLabelGenerator

31.18.1 Overview

An interface that defines the methods used by a PiePlot to request section labels. Two generators
can be specified for a PiePlot:

• setLabelGenerator() – generates the labels displayed directly on the plot;

• setLegendLabelGenerator() – generates the labels displayed in the plot’s legend (if it has one).

The StandardPieSectionLabelGenerator class provides a standard implementation of this interface.

31.18.2 Usage

The PieChartDemo2.java demo application includes code to customise the section labels, so you can
refer to that demo for sample usage.

31.18.3 Methods

The PiePlot class will call the following method to obtain a section label for each section in a pie
chart as it is being drawn:

å public String generateSectionLabel(PieDataset dataset, Comparable key);

Returns a section label for the specified item in the dataset. A class implementing this method
can return null, in which case no label will be displayed for the pie section.

An alternative method that returns an AttributedString is defined, but is currently not used:

å public AttributedString generateAttributedSectionLabel(PieDataset dataset, Comparable key);

Returns an AttributedString for the section label for the specified item in the dataset. This
method is not used at present—classes implementing this interface can safely return null for
this method.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 286

31.18.4 Notes

Some points to note:

• you can develop your own label generator, register it with a PiePlot, and take full control
over the labels that are generated.

See Also
PieToolTipGenerator.

31.19 PieToolTipGenerator

31.19.1 Overview

The interface that must be implemented by a pie tool tip generator, a class used to generate tool
tips for a pie chart.

31.19.2 Methods

The PiePlot class will call the following method to obtain a tooltip for each section in a pie chart:

å public String generateToolTip(PieDataset data, Comparable key);

Returns a String that will be used as the tool tip text. This method can return null in which
case no tool tip will be displayed.

31.19.3 Notes

Some points to note:

• the StandardPieToolTipGenerator class provides an implementation of this interface;

• you can develop your own tool tip generator, register it with a PiePlot, and take full control
over the labels that are generated;

• section 11 contains information about using tool tips with JFreeChart.

31.20 StandardCategoryItemLabelGenerator

31.20.1 Overview

A generator that can be assigned to a CategoryItemRenderer for the purpose of generating item
labels (this class implements the CategoryItemLabelGenerator interface). This class is very flexible
in the format of the labels it can generate. It uses Java’s MessageFormat class to create a label
which can contain any of the items listed in table 31.1. The data value can be formatted using any
NumberFormat instance.

31.20.2 Usage

Most often you will assign a generator to a renderer and then never need to refer to it again:

CategoryPlot plot = (CategoryPlot) chart.getPlot();
CategoryItemRenderer renderer = plot.getRenderer();
CategoryItemLabelGenerator generator = new StandardCategoryItemLabelGenerator(

"{2}", new DecimalFormat("0.00"));
renderer.setItemLabelGenerator(generator);
renderer.setItemLabelsVisible(true);

The renderer will call the generator’s methods when necessary. See section 12 for more information.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 287

31.20.3 Constructors

To create a default generator:

å public StandardCategoryItemLabelGenerator();

Creates a new generator that formats values using the default number format for the user’s
locale. "{2}" is used as the label format string (that is, just the data value).

To create a generator that formats values as numbers:

å public StandardCategoryItemLabelGenerator(String labelFormat,

NumberFormat formatter);

Creates a generator that formats values as numbers using the supplied formatter. The labelFormat

is passed to a MessageFormat to control the structure of the generated label, and can use any of
the substitutions listed in table 31.1.

To create a generator that formats values as dates (interpreting the numerical value as milliseconds
since 1-Jan-1970, in the same way as java.util.Date):

å public StandardCategoryItemLabelGenerator(String labelFormat,

DateFormat formatter);

Creates a generator that formats values as dates using the supplied formatter. The labelFormat

is passed to a MessageFormat to control the structure of the generated label, and can use any of
the substitutions listed in table 31.1.

31.20.4 Methods

The renderer will call the following method whenever it requires an item label:

å public String generateLabel(CategoryDataset dataset,

int series, int category);

Generates an item label for the specified data item.

31.20.5 Notes

Some points to note:

• instances of this class are cloneable and serializable, and the PublicCloneable interface is
implemented;

• for a demo, see ItemLabelDemo3.java in the JFreeChart demo collection.

31.21 StandardCategorySeriesLabelGenerator

31.21.1 Overview

A generator that can be assigned to a CategoryItemRenderer for the purpose of generating series
labels (this class implements the CategorySeriesLabelGenerator interface) for the legend. This class
uses Java’s MessageFormat class to substitute the series name into an arbitrary string containing the
token {0}.

31.21.2 Usage

Most often you will assign a generator to a renderer and then never need to refer to it again:

CategoryPlot plot = (CategoryPlot) chart.getPlot();
AbstractCategoryItemRenderer renderer = (AbstractCategoryItemRenderer) plot.getRenderer();
CategorySeriesLabelGenerator generator = new StandardCategorySeriesLabelGenerator("{0}");
renderer.setLegendItemLabelGenerator(generator);
renderer.setItemLabelsVisible(true);

The renderer will call the generator’s methods when necessary.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 288

Code: Description:

{0} The series key (or name).
{1} The category.
{2} The item value.

Table 31.3: MessageFormat substitutions for StandardCategoryToolTipGenerator

31.21.3 Constructors

To create a default generator:

å public StandardCategorySeriesLabelGenerator();

Creates a new generator that uses just the series name as the label.

To create a generator that formats with a custom format string:

å public StandardCategorySeriesLabelGenerator(String labelFormat);

Creates a generator with the given format string. The labelFormat is passed to a MessageFormat

to control the structure of the generated label, with {0} being substituted by the series name.

31.21.4 Methods

The renderer will call the following method whenever it requires a series label:

å public String generateLabel(CategoryDataset dataset, int series);

Generates a series label for the specified series. This method is typically called by JFreeChart,
not by external code.

31.21.5 Equals, Cloning and Serialization

This class override the equals method:

å public boolean equals(Object obj);

Tests this generator for equality with an arbitrary object, returning true if and only if:

• obj is an instance of StandardCategorySeriesLabelGenerator;

• obj has the same formatPattern string as this generator.

Instances of this class are Cloneable and Serializable.

31.22 StandardCategoryToolTipGenerator

31.22.1 Overview

A generator that can be assigned to a CategoryItemRenderer for the purpose of generating tooltips.
A format string provides the general template for each tool tip item, and Java’s MessageFormat class
is used to substitute actual values from the dataset (the series key/name, the category, and the
data value). Table 31.3 lists the items that can be included for substitution.

31.22.2 Usage

This class provides an easy way to customise the tool tip text generated by a CategoryItemRenderer.
This example shows how to create a new tool tip generator, and assign it to the plot’s renderer:

CategoryPlot plot = (CategoryPlot) chart.getPlot();
CategoryItemRenderer renderer = plot.getRenderer();
renderer.setToolTipGenerator(new StandardCategoryToolTipGenerator(

"The value is {2}, the series is {0} and the category is {1}.",
NumberFormat.getInstance()));

Once the generator is set, nothing more needs to be done—the renderer will call the generator’s
methods when necessary.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 289

31.22.3 Constructors

This class has a default constructor:

å public StandardCategoryToolTipGenerator();

Creates a new generator that creates tooltips using the format string “{0}, {1} = {2}”. The
data value is formatted using the default number format for the user’s locale.

To create a generator that formats values as numbers:

å public StandardCategoryToolTipGenerator(String labelFormat, NumberFormat formatter);

Creates a generator that creates tooltips using the specified format string and number formatter.
An IllegalArgumentException is thrown if either argument is null.

To create a generator that formats values as dates (interpreting the numerical value as milliseconds
since 1-Jan-1970, in the same way as java.util.Date):

å public StandardCategoryToolTipGenerator(String labelFormat, DateFormat formatter);

Creates a generator that creates tooltips using the specified format string and date formatter.
In this case, the data value is interpreted as the number of milliseconds since 1-Jan-1970 (as
for java.util.Date). An IllegalArgumentException is thrown if either argument is null.

31.22.4 Methods

When the renderer requires a tool tip, it will call the following method:

å public String generateToolTip(CategoryDataset dataset,

int series, int category);

Generates a tooltip for the specified data item using the format string and number (or date)
formatter supplied to the constructor.

31.22.5 Notes

Some points to note:

• this class implements the CategoryToolTipGenerator and PublicCloneable interfaces;

• section 11 contains information about using tool tips with JFreeChart.

31.23 StandardContourToolTipGenerator

31.23.1 Overview

A default implementation of the ContourToolTipGenerator interface.

This class is deprecated as of JFreeChart version 1.0.4.

31.24 StandardPieSectionLabelGenerator

31.24.1 Overview

A generator that is used to create section labels for a PiePlot. The generator uses Java’s MessageFormat
class to construct labels by substituting any or all of the objects listed in table 31.4. The default
section label format is "{0}",2 which displays the item key as a string.

This class implements the PieSectionLabelGenerator interface.
2This is defined in the DEFAULT SECTION LABEL FORMAT constant field.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 290

Code: Description:

{0} The item key.
{1} The item value.
{2} The item value as a percentage of the total.
{3} The total of all values in the dataset.

Table 31.4: MessageFormat substitutions for the StandardPieSectionLabelGenerator.

31.24.2 Usage

You can use this class when you want to change the format of the the section labels on a pie chart.
For example, to show percentages in the pie section labels:

PiePlot plot = (PiePlot) chart.getPlot();
PieSectionLabelGenerator generator = new StandardPieSectionLabelGenerator(

"{0} = {2}", new DecimalFormat("0"), new DecimalFormat("0.00%"));
plot.setLabelGenerator(generator);

31.24.3 Constructors

The default constructor uses number and percentage formatters appropriate for the default locale:

å public StandardPieSectionLabelGenerator();

Creates a default section label generator.

You can create a generator with a specific format string:

å public StandardPieSectionLabelGenerator(String labelFormat);

Equivalent to StandardPieSectionLabelGenerator(labelFormat, Locale.getInstance())—see be-
low.

å public StandardPieSectionLabelGenerator(Locale locale); [1.0.7]

Equivalent to StandardPieSectionLabelGenerator(DEFAULT SECTION LABEL FORMAT, locale)—see be-
low.

å public StandardPieSectionLabelGenerator(String labelFormat, Locale locale); [1.0.7]

Creates a generator using the specified format string. The item value and percentage (if included
in the format string) will be formatted using default formatters for the specified locale. If
labelFormat is null, this constructor throws an IllegalArgumentException.

The final constructor allows you to specify the item value and percentage formatters:

å public StandardPieSectionLabelGenerator(String labelFormat,

NumberFormat numberFormat, NumberFormat percentFormat)

Creates a generator using the specifed format string, with custom formatters for the item
value and item percentage. This constructor throws an IllegalArgumentException if any of the
arguments is null.

31.24.4 Methods

To get the label for a section:

å public String generateSectionLabel(PieDataset dataset, Comparable key);

Returns the section label for the data item with the given key. The actual string returned
depends on the format string and locale specified in the constructor for this class.

31.24.5 Attributed Labels

An option is provided to use AttributedString instances as the section labels, however there is
currently no mechanism in the PiePlot class to display these (so, for now, you can just ignored these
methods).

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 291

Code: Description:

{0} The item key.
{1} The item value.
{2} The item value as a percentage of the total.

Table 31.5: MessageFormat substitutions

å public AttributedString generateAttributedSectionLabel(PieDataset dataset, Comparable key);

Returns the attributed label for the section with the given key. This method can return null.

The default implementation of the above method just returns fixed strings that are controlled via
the following methods:

å public AttributedString getAttributedLabel(int series);

Returns the attributed label (possibly null).

å public void setAttributedLabel(int series, AttributedString label);

Sets the attributed label (null is permitted) for the given section.

31.24.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this label generator for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

31.24.7 Notes

In version 1.0.2, the default section label format changed to show only the section name (this change
affects default pie plots, among other things).

31.25 StandardPieToolTipGenerator

31.25.1 Overview

A label generator that can be used to generate tool tips for a PiePlot (this class implements the
PieToolTipGenerator interface). The generator uses Java’s MessageFormat class to construct labels
by substituting any or all of the objects listed in table 31.5.

The default tool tip format string is "{0}: ({1}, {2})", which displays the item key, followed by
the item value and percentage.

31.25.2 Usage

You can use this class when you want to change the format of the the tool tips on a pie chart. For
example:

PiePlot plot = (PiePlot) chart.getPlot();
PieToolTipGenerator generator = new StandardPieToolTipGenerator(

"{0} = {2}", new DecimalFormat("0"), new DecimalFormat("0.00%"));
plot.setToolTipGenerator(generator);

31.25.3 Constructors

The default constructor uses number and percentage formatters appropriate for the default locale:

å public StandardPieToolTipGenerator();

Equivalent to StandardPieToolTipGenerator(DEFAULT TOOLTIP FORMAT, Locale.getDefault())—see
below.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 292

You can create a generator with a specific format string:

å public StandardPieToolTipGenerator(String labelFormat);

Equivalent to StandardPieToolTipGenerator(labelFormat, Locale.getDefault())—see below.

å public StandardPieToolTipGenerator(Locale locale); [1.0.7]

Equivalent to StandardPieToolTipGenerator(DEFAULT TOOLTIP FORMAT, locale)—see below.

å public StandardPieToolTipGenerator(String labelFormat, Locale locale); [1.0.7]

Creates a generator using the specified format string. The item value and percentage (if included
in the format string) will be formatted using default formatters for the specified locale.

The final constructor allows you to specify the item value and percentage formatters:

å public StandardPieToolTipGenerator(String labelFormat,

NumberFormat numberFormat, NumberFormat percentFormat)

Creates a generator using the specifed format string, with custom formatters for the item value
and item percentage.

31.25.4 Methods

See AbstractPieItemLabelGenerator.

31.25.5 Notes

Some points to note:

• instances of this class are cloneable and serializable;

• section 11 contains information about using tool tips with JFreeChart.

See Also
PieToolTipGenerator.

31.26 StandardXYItemLabelGenerator

31.26.1 Overview

A generator that can be assigned to an XYItemRenderer for the purpose of generating item labels
(this class implements the XYItemLabelGenerator interface). This class is very flexible in the format
of the labels it can generate. It uses Java’s MessageFormat class to create a label that can contain
any of the items listed in table 31.2. The x and y values can be formatted using any instance of
NumberFormat or DateFormat.

31.26.2 Usage

Most often you will assign a generator to a renderer and then never need to refer to it again:

XYPlot plot = (XYPlot) chart.getPlot();
XYItemRenderer renderer = plot.getRenderer();
XYItemLabelGenerator generator = new StandardXYItemLabelGenerator(

"{2}", new DecimalFormat("0.00"), new DecimalFormat("0.00")
);
renderer.setItemLabelGenerator(generator);
renderer.setItemLabelsVisible(true);

The renderer will call the generator’s methods when necessary. See section 12 for more information.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 293

31.26.3 Constructors

To create a default generator:

å public StandardXYItemLabelGenerator();

Creates a new generator that formats values using the default number format for the user’s
locale. "{2}" is used as the label format string (that is, just the data value).

To create a generator that formats the x and y values as numbers:

å public StandardXYItemLabelGenerator(String labelFormat, NumberFormat xFormat,

NumberFormat yFormat);

Creates a generator that formats values as numbers using the supplied formatters. The
labelFormat is passed to a MessageFormat to control the structure of the generated label, and
can use any of the substitutions listed in table 31.2.

To create a generator that formats the x-values as dates (interpreting the numerical value as mil-
liseconds since 1-Jan-1970, in the same way as java.util.Date):

å public StandardXYItemLabelGenerator(String labelFormat, DateFormat xFormat,

NumberFormat yFormat);

Creates a generator that formats values as dates using the supplied formatter. The labelFormat

is passed to a MessageFormat to control the structure of the generated label, and can use any of
the substitutions listed in table 31.2.

å public StandardXYItemLabelGenerator(String formatString, NumberFormat xFormat,

DateFormat yFormat); [1.0.4]

Creates a generator that formats the x-values as numbers and the y-values as dates.

å public StandardXYItemLabelGenerator(String formatString, DateFormat xFormat,

DateFormat yFormat);

Creates a generator that formats both the x and y-values as dates.

31.26.4 Methods

The renderer will call the following method whenever it requires an item label:

å public String generateLabel(XYDataset dataset, int series, int item);

Generates an item label for the specified data item.

31.26.5 Notes

Some points to note:

• instances of this class are cloneable and serializable, and the PublicCloneable interface is
implemented;

See Also
AbstractXYItemLabelGenerator, StandardXYToolTipGenerator.

31.27 StandardXYSeriesLabelGenerator

31.27.1 Overview

A generator that can be assigned to an XYItemRenderer for the purpose of generating series labels for
the legend (this class implements the XYSeriesLabelGenerator interface). This class is very flexible
in the format of the labels it can generate. It uses Java’s MessageFormat class to create a label, with
{0} being substituted with the series name.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 294

31.27.2 Constructors

To create a default generator:

å public StandardXYSeriesLabelGenerator();

Creates a new generator that formats values with "{0}" used as the label format string (that
is, just the series name).

To create a generator with a custom format string:

å public StandardXYLabelGenerator(String labelFormat);

Creates a generator that formats the series label with the given format string. The labelFormat

is passed to a MessageFormat to control the structure of the generated label, with {0} being
substituted with the series name.

31.27.3 Methods

The renderer will call the following method whenever it requires an item label:

å public String generateLabel(XYDataset dataset, int series);

Generates a label for the specified series.

31.27.4 Notes

Some points to note:

• instances of this class are cloneable and serializable, and the PublicCloneable interface is
implemented;

31.28 StandardXYToolTipGenerator

31.28.1 Overview

A generator that can be assigned to an XYItemRenderer for the purpose of generating tooltips (this
class implements the XYToolTipGenerator interface). This class is very flexible in the format of the
labels it can generate. It uses Java’s MessageFormat class to create a label that can contain any of the
items listed in table 31.2. The x and y values can be formatted using any instance of NumberFormat

or DateFormat.

31.28.2 Usage

You can create a tool tip generator and assign it to a renderer when you wish to control the
formatting of the tool tip text. For example:

XYPlot plot = (XYPlot) chart.getPlot();
XYItemRenderer renderer = plot.getRenderer();
XYToolTipGenerator generator = new StandardXYToolTipGenerator(

"{2}", new DecimalFormat("0.00"), new DecimalFormat("0.00")
);
renderer.setToolTipGenerator(generator);

The renderer will call the generator’s methods when necessary. See section 11 for more information.

For the display of time series data, you will want the x-values to be formatted as dates in the tool
tips. You can achieve this by specifying a DateFormat instance as the formatter for the x-values, as
follows:

XYPlot plot = (XYPlot) chart.getPlot();
XYItemRenderer renderer = plot.getRenderer();
XYToolTipGenerator generator = new StandardXYToolTipGenerator(

"{1}, {2}", new SimpleDateFormat("d-MMM-yyyy"), new DecimalFormat("0.00")
);
renderer.setToolTipGenerator(generator);

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 295

31.28.3 Constructors

To create a default generator:

å public StandardXYToolTipGenerator();

Creates a new generator that formats values using the default number format for the user’s
locale. "{0}: ({1}, {2})" is used as the label format string (that is, the series name followed
by the x and y values).

To create a generator that formats the x and y values as numbers:

å public StandardXYToolTipGenerator(String labelFormat, NumberFormat xFormat,

NumberFormat yFormat);

Creates a generator that formats values as numbers using the supplied formatters. The
labelFormat is passed to a MessageFormat to control the structure of the generated label, and
can use any of the substitutions listed in table 31.2.

To create a generator that formats the x-values as dates (interpreting the numerical value as mil-
liseconds since 1-Jan-1970, in the same way as java.util.Date):

å public StandardXYToolTipGenerator(String labelFormat, DateFormat xFormat,

NumberFormat yFormat);

Creates a generator that formats values as dates using the supplied formatter. The labelFormat

is passed to a MessageFormat to control the structure of the generated label, and can use any of
the substitutions listed in table 31.2.

å public StandardXYToolTipGenerator(String formatString, NumberFormat xFormat,

DateFormat yFormat); [1.0.4]

Creates a generator that formats the x-values as numbers and the y-values as dates.

å public StandardXYToolTipGenerator(String formatString, DateFormat xFormat,

DateFormat yFormat);

Creates a generator that formats both the x and y-values as dates.

31.28.4 Methods

The renderer will call the following method whenever it requires an item label:

å public String generateToolTip(XYDataset dataset, int series, int item);

Generates a tool tip for the specified data item.

31.28.5 Notes

Some points to note:

• instances of this class are cloneable and serializable, and the PublicCloneable interface is
implemented;

See Also
AbstractXYItemLabelGenerator, StandardXYItemLabelGenerator.

31.29 StandardXYZToolTipGenerator

31.29.1 Overview

A default implementation of the XYZToolTipGenerator interface. This generator is used with the
XYBubbleRenderer class.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 296

31.30 SymbolicXYItemLabelGenerator

31.30.1 Overview

An item label generator for use with symbolic plots.

31.31 XYItemLabelGenerator

31.31.1 Overview

This interface defines the API for an item label generator, which is used by a renderer to obtain labels
for the items in a dataset. A generator is assigned to a renderer using the setItemLabelGenerator()

method in the XYItemRenderer interface.

Classes that implement this interface include:

• StandardXYItemLabelGenerator;

• SymbolicXYItemLabelGenerator;

• BubbleXYItemLabelGenerator;

• HighLowItemLabelGenerator.

31.31.2 Usage

Chapter 12 contains information about using item labels.

31.31.3 Methods

The renderer will call the following method whenever it requires an item label:

å public String generateLabel(XYDataset dataset, int series, int item);

Returns a string that will be used to label the specified data item. Classes that implement this
method are permitted to return null for the result, in which case no label will be displayed for
that item.

31.31.4 Notes

Some points to note:

• the StandardXYItemLabelGenerator class provides a very flexible implementation of this inter-
face, which should meet most requirements. However, you can also write your own class that
implements this interface, and take complete control over the generation of item labels;

31.32 XYSeriesLabelGenerator

31.32.1 Overview

An xy series label generator is an object that assumes responsibility for generating the text strings
that will be used for the series labels in a chart’s legend. A generator is assigned to a renderer using
the setLegendItemLabelGenerator() method in the XYItemRenderer interface.

Classes that implement this interface include:

• StandardXYSeriesLabelGenerator;

• MultipleXYSeriesLabelGenerator.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 297

31.32.2 Methods

The renderer will call the following method whenever it requires a series label for the legend:

å public String generateLabel(XYDataset dataset, int series);

Returns a string that will be used to label the specified data series.

See Also
StandardXYSeriesLabelGenerator.

31.33 XYToolTipGenerator

31.33.1 Overview

The interface that must be implemented by an XY tool tip generator, a class used to generate tool
tips for an XYPlot.

31.33.2 Methods

The plot will call the following method whenever it requires a tool tip for an item:

å public String generateToolTip(XYDataset dataset, int series, int item);

This method is called whenever the plot needs to generate a tooltip for a data item. It can
return an arbitrary string, generally derived from the specified item in the supplied dataset.3

31.33.3 Notes

Some points to note:

• to “install” a tool tip generator, use the setToolTipGenerator() method in the XYItemRenderer

interface.

• StandardXYToolTipGenerator implements this interface, but you are free to write your own
implementation to suit your requirements.

Section 11 contains information about using tool tips with JFreeChart.

31.34 XYZToolTipGenerator

31.34.1 Overview

A tool tip generator that creates labels for items in an XYZDataset.

31.34.2 Methods

This interface adds a single method to the one it inherits from XYToolTipGenerator:

å public String generateToolTip(XYZDataset dataset, int series, int item);

Returns a (possibly null) string as the tool tip text for the specified item within a given series.

3If you are implementing this function with a look up table for tool tips, be aware that some XYDataset imple-
mentations can reorder the data items, so you will need to ensure that your lookup table is kept in sync with the
dataset.

CHAPTER 31. PACKAGE: ORG.JFREE.CHART.LABELS 298

31.34.3 Notes

Some points to note:

• this interface extends XYToolTipGenerator;

• the StandardXYZToolTipGenerator class is the only implementation of this interface provided
by JFreeChart.

Chapter 32

Package: org.jfree.chart.needle

32.1 Overview

This package contains classes for drawing needles in a CompassPlot:

• ArrowNeedle – an arrow needle;

• LineNeedle – a line needle;

• LongNeedle – a long needle;

• PinNeedle – a pin needle;

• PlumNeedle – a plum needle;

• PointerNeedle – a pointer needle;

• ShipNeedle – a ship needle;

• WindNeedle – a wind needle;

32.2 ArrowNeedle

32.2.1 Overview

A class that draws an arrow needle for the CompassPlot class (see figure 32.1).

Figure 32.1: An arrow needle

299

CHAPTER 32. PACKAGE: ORG.JFREE.CHART.NEEDLE 300

32.3 LineNeedle

32.3.1 Overview

A class that draws a line needle for the CompassPlot class (see figure 32.2).

Figure 32.2: A line needle

32.4 LongNeedle

32.4.1 Overview

A class that draws a long needle for the CompassPlot class (see figure 32.3).

Figure 32.3: A long needle

32.5 MeterNeedle

32.5.1 Overview

A base class that draws a needle for the CompassPlot class. A range of different subclasses implement
different types of needles:

• ArrowNeedle – an arrow needle;

• LineNeedle – a line needle;

• LongNeedle – a long needle;

• PinNeedle – a pin needle;

• PlumNeedle – a plum needle;

• PointerNeedle – a pointer needle;

CHAPTER 32. PACKAGE: ORG.JFREE.CHART.NEEDLE 301

• ShipNeedle – a ship needle;

• WindNeedle – a wind needle;

32.6 PinNeedle

32.6.1 Overview

A class that draws a pin needle for the CompassPlot class (see figure 32.4).

Figure 32.4: A pin needle

32.7 PlumNeedle

32.7.1 Overview

A class that draws a plum needle for the CompassPlot class (see figure 32.5).

Figure 32.5: A plum needle

CHAPTER 32. PACKAGE: ORG.JFREE.CHART.NEEDLE 302

32.8 PointerNeedle

32.8.1 Overview

A class that draws a pointer needle for the CompassPlot class (see figure 32.6).

Figure 32.6: A pointer needle

32.9 ShipNeedle

32.9.1 Overview

A class that draws a ship needle for the CompassPlot class (see figure 32.7).

Figure 32.7: A ship needle

32.10 WindNeedle

32.10.1 Overview

A class that draws a wind needle for the CompassPlot class (see figure 32.8).

CHAPTER 32. PACKAGE: ORG.JFREE.CHART.NEEDLE 303

Figure 32.8: A wind needle

Chapter 33

Package: org.jfree.chart.plot

33.1 Overview

The org.jfree.chart.plot package contains:

• the Plot base class;

• a range of plot subclasses, including PiePlot, CategoryPlot and XYPlot;

• various support classes and interfaces.

This is an important package, because the Plot classes play a key role in controlling the presentation
of data with JFreeChart.

33.2 CategoryMarker

33.2.1 Overview

A marker that can be used to highlight a category in a CategoryPlot. The marker can be drawn as
a line (see figure 33.1) or as a rectangle (see figure 33.2). Markers are added to the plot using the
addDomainMarker() methods in the CategoryPlot class.

Figure 33.1: A CategoryMarker drawn as a line

304

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 305

Figure 33.2: A CategoryMarker drawn as a rectangle

33.2.2 Constructors

To create a new marker, use one of the following constructors:

å public CategoryMarker(Comparable key);

Creates a marker for the category with the specified key, using Color.gray for the paint and
new BasicStroke(1.0f) for the stroke.

å public CategoryMarker(Comparable key, Paint paint, Stroke stroke);

Creates a marker for the category with the specified key, using the specified paint and stroke.

å public CategoryMarker(Comparable key, Paint paint, Stroke stroke, Paint outlinePaint, Stroke

outlineStroke, float alpha);

Creates a marker for the category with the specified key, using the specified paint and stroke.
The alpha value controls the transparency (0.0 is transparent, 1.0 is opaque).

33.2.3 Methods

To get the key that links the marker to a category:

å public Comparable getKey();

Returns the key for the marker.

å public void setKey(Comparable key); [1.0.3]

Sets the key for the marker and sends a MarkerChangeEvent to all registered listeners.

A flag controls whether the marker is drawn as a thin line in the center of the category or a rectangle
covering the whole width of the category:

å public boolean getDrawAsLine();

Returns true if the marker should be drawn as a thin line in the middle of the category, and
false if the marker should be drawn as a rectangle covering the full width of the category.

å public void setDrawAsLine(boolean drawAsLine);

Sets the flag that controls whether the marker is drawn as a line or a rectangle, and sends a
MarkerChangeEvent to all registered listeners.

Other methods are inherited from the Marker class.

33.2.4 Equals, Cloning and Serialization

This class overrides the equals() method:
å public boolean equals(Object obj);

Tests the marker for equality with an arbitrary object. This method returns true if and only
if:

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 306

• obj is not null;

• obj is an instanceof CategoryMarker;

• obj has the same field values as this marker.

Instances of this class are Cloneable and Serializable.

33.2.5 Notes

Some points to note:

• markers are drawn by the drawDomainMarker() method in the
AbstractCategoryItemRenderer class;

• CategoryMarker is a subclass of Marker;

• demos (CategoryMarkerDemo1 and CategoryMarkerDemo2) illustrating the use of this class are
included in the JFreeChart demo collection.

33.3 CategoryPlot

33.3.1 Overview

A general plotting class that is most commonly used to display bar charts, but also supports line
charts, area charts, stacked area charts and more. A category plot has:

• one or more domain axes (instances of CategoryAxis);

• one or more range axes (instances of ValueAxis);

• one or more datasets (these can be instances of any class that implements the CategoryDataset

interface);

• one or more renderers (these can be instances of any class that implements the CategoryItemRenderer
interface);

The plot can be displayed with a horizontal or vertical orientation (see the PlotOrientation class).

33.3.2 Attributes

The attributes maintained by the CategoryPlot class, which are in addition to those inherited from
the Plot class, are listed in Table 33.1.

33.3.3 Plot Orientation

A CategoryPlot can be drawn with one of two orientations:

• horizontal orientation – the domain (category) axis will appear at the left or right of the
chart, and the range (value) axis will appear at the top or bottom of the chart;

• vertical orientation – the domain (category) axis will appear at the top or bottom of the chart
and the range (value) axis will appear at the left or right of the chart.

The default orientation is PlotOrientation.VERTICAL. To change the plot’s orientation, use the
following code:

plot.setOrientation(PlotOrientation.HORIZONTAL);

Note that calling this method will trigger a PlotChangeEvent that will result in the chart being
redrawn if it is being displayed in a ChartPanel.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 307

Attribute: Description:

orientation The plot orientation (horizontal or vertical).
axisOffset The offset between the data area and the axes.
domainAxes The domain axes (used to display categories).
domainAxisLocations The locations of the domain axes.
rangeAxes The range axes (used to display values).
rangeAxisLocations The locations of the range axes.
datasets The dataset(s).
renderers The plot’s renderers (“pluggable” objects responsible for drawing in-

dividual data items within the plot).
renderingOrder The order for rendering data items (see DatasetRenderingOrder).
columnRenderingOrder Controls the column order in which the data items are rendered.
rowRenderingOrder Controls the row order in which the data items are rendered.
domainGridlinesVisible A flag that controls whether gridlines are drawn against the domain

axis.
domainGridlinePosition The position of the gridlines against the domain axis.
domainGridlinePaint The paint used to draw the domain gridlines.
domainGridlineStroke The stroke used to draw the domain gridlines.
rangeGridlinesVisible A flag that controls whether gridlines are drawn against the range

axis.
rangeGridlinePaint The paint used to draw the range gridlines.
rangeGridlineStroke The stroke used to draw the range gridlines.
foregroundRangeMarkers A list of markers (constants) to be highlighted on the plot.
backgroundRangeMarkers A list of markers (constants) to be highlighted on the plot.
weight The weight for the plot (only used when the plot is a subplot).
fixedDomainAxisSpace Specifies a fixed amount of space to allocate to the domain axis (null

permitted).
fixedRangeAxisSpace Specifies a fixed amount of space to allocate to the range axis (null

permitted).

Table 33.1: Attributes for the CategoryPlot class

33.3.4 Axes

A CategoryPlot usually has a single domain axis (an instance of the CategoryAxis class) and a single
range axis (an instance of the ValueAxis class). You can obtain a reference to the primary domain
axis with:

CategoryAxis domainAxis = plot.getDomainAxis();

Similarly, you can obtain a reference to the primary range axis with:
ValueAxis rangeAxis = plot.getRangeAxis();

The CategoryPlot class also has support for multiple axes. You can obtain a reference to any
secondary domain axis by specifying the axis index:

CategoryAxis domainAxis2 = plot.getDomainAxis(1);

Similarly, you can obtain a reference to any secondary range axis by specifying the axis index:
ValueAxis rangeAxis2 = plot.getRangeAxis(1);

To find the index for an axis:

å public int getDomainAxisIndex(CategoryAxis axis); [1.0.3]

Returns the index for the specified axis, or -1 if the axis does not belong to the plot. If axis is
null, this method throws an IllegalArgumentException.

å public int getRangeAxisIndex(ValueAxis axis); [1.0.7]

Returns the index for the specified axis, or -1 if the axis does not belong to the plot. If axis is
null, this method throws an IllegalArgumentException.

The axis classes have many attributes that can be customised to control the appearance of your
charts.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 308

33.3.5 Axis Offsets

The axes can be offset slightly from the edges of the plot area, if required:

å public RectangleInsets getAxisOffset();

Returns the object that controls the offset between the plot area and the axes. The default
value is RectangleInsetsZERO INSETS.

å public void setAxisOffset(RectangleInsets offset);

Sets the object that controls the offset between the plot area and the axes, and sends a
PlotChangeEvent to all registered listeners. If offset is null, this method throws an IllegalArgumentException.

33.3.6 Datasets and Renderers

A CategoryPlot can have zero, one or many datasets and each dataset is usually associated with
a renderer (the object that is responsible for drawing the visual representation of each item in a
dataset). A dataset is an instance of any class that implements the CategoryDataset interface and
a renderer is an instance of any class that implements the CategoryItemRenderer interface.

To get/set a dataset:

å public CategoryDataset getDataset(int index);

Returns the dataset at the specified index (possibly null).

å public void setDataset(int index, CategoryDataset dataset);

Assigns a dataset to the plot. The new dataset replaces any existing dataset at the specified
index. It is permitted to set a dataset to null (in that case, no data will be displayed on the
chart).

To get/set a renderer:

å public CategoryItemRenderer getRenderer(int index);

Returns the renderer at the specified index (possibly null).

å public void setRenderer(int index, CategoryItemRenderer renderer);

Sets the renderer at the specified index and sends a PlotChangeEvent to all registered listeners.
It is permitted to set any renderer to null.

33.3.7 Dataset Rendering Order

When a plot has more than one dataset, the order in which the datasets are rendered can have an
impact on the final appearance of the chart. For example, if one dataset is represented using bars,
and the other is represented using lines, you’ll normally want the lines to be drawn in front of the
bars. By default, the datasets are drawn in reverse order, so that the first dataset you add appears
at the front of the chart.

You can control the rendering order using the following methods:

å public DatasetRenderingOrder getDatasetRenderingOrder();

Returns the current dataset rendering order (never null). The default is DatasetRenderingOrder.REVERSE.

å public void setDatasetRenderingOrder(DatasetRenderingOrder order);

Sets the dataset rendering order and sends a PlotChangeEvent to all registered listeners. It is
not permitted to set the rendering order to null.

By default, datasets will be rendered in reverse order so that the first dataset added to the plot
appears to be in front of the other datasets.

33.3.8 Item Rendering Order

Within each dataset, the data items are rendered by column then by row, in ascending order (by
default). In some cases, you might need to change the order in which the items are rendered (it
only matters when the renderer draws items in such a way that they can overlap with other items,
for example the bars drawn by a BarRenderer3D):

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 309

å public SortOrder getColumnRenderingOrder();

Returns the column rendering order (the default is SortOrder.ASCENDING). This method never
returns null.

å public void setColumnRenderingOrder(SortOrder order);

Sets the column rendering order and sends a PlotChangeEvent to all registered listeners. This
method throws an IllegalArgumentException if order is null.

å public SortOrder getRowRenderingOrder();

Returns the row rendering order (the default is SortOrder.ASCENDING). This method never returns
null.

å public void setRowRenderingOrder(SortOrder order);

Sets the row rendering order and sends a PlotChangeEvent to all registered listeners. This
method throws an IllegalArgumentException if order is null.

Note that the above methods do not change the position of the items, only the order in which they
get drawn.

33.3.9 Series Colors

The colors used for the series within the chart are controlled by the plot’s renderer(s). You can
obtain a reference to the primary renderer and set the series colors using code similar to the
following:

CategoryPlot plot = (CategoryPlot) chart.getPlot();

CategoryItemRenderer renderer = plot.getRenderer();

renderer.setSeriesPaint(0, new Color(0, 0, 255));

renderer.setSeriesPaint(1, new Color(75, 75, 255));

renderer.setSeriesPaint(2, new Color(150, 150, 255));

33.3.10 Gridlines

By default, the CategoryPlot class will display gridlines against the (primary) range axis, but not
the domain axis. However, it is simple to override the default behaviour:

CategoryPlot plot = (CategoryPlot) chart.getPlot();

plot.setDomainGridlinesVisible(true);

plot.setRangeGridlinesVisible(true);

Note that the domain and range gridlines are controlled independently.

33.3.11 Legend Items

The items that appear in the legend for a chart are obtained by a call to the following method at
the time the chart is being drawn:

å public LegendItemCollection getLegendItems();

Returns the collection of legend items that should be displayed in the legend for this plot.
Note that a new collection is returned each time this method is called—modifying the returned
collection has no effect on the legend displayed by the chart.

By default, this method will return a collection that contains one item for each series in the
dataset(s) belonging to the plot. If this is not the behaviour you require, there are a couple of
options for altering the items that will appear in the chart’s legend.

First, you can specify a “fixed” set of legend items that will always be displayed, regardless of the
contents of the dataset(s):

å public void setFixedLegendItems(LegendItemCollection items);

Sets a “fixed” collection of legend items that will always be used for this plot regardless of the
contents of the dataset(s) belonging to the plot. Set this to null if you wish to revert to the
default behaviour.

A second, but more complex, approach involves subclassing CategoryPlot and overriding the getLegendItems()

method. This gives you complete control over the legend items included for your plot.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 310

33.3.12 Fixed Axis Dimensions

The width and height of the axes are normally determined by JFreeChart to allow just the required
amount of space, no more and no less. Occasionally, you may want to override this behaviour and
specify a fixed amount of space to allocate to each axis. As an example, this can make it easier to
align the contents of multiple charts.

å public AxisSpace getFixedDomainAxisSpace();

Returns the fixed dimensions for the domain axis (possibly null).

å public void setFixedDomainAxisSpace(AxisSpace space);

Sets the fixed dimensions for the domain axis. Set this to null if you prefer JFreeChart to
determine this dynamically (the default behaviour).

å public AxisSpace getFixedRangeAxisSpace();

Returns the fixed dimensions for the range axis (possibly null).

å public void setFixedRangeAxisSpace(AxisSpace space);

Sets the fixed dimensions for the range axis. Set this to null if you prefer JFreeChart to
determine this dynamically (the default behaviour).

33.3.13 Crosshair

This plot has support for a crosshair against the primary range axis. The following flag controls
whether or not the plot displays the crosshair:

å public boolean isRangeCrosshairVisible();

Returns the flag that controls whether or not the plot displays a crosshair against the range
axis. The default value is false.

å public void setRangeCrosshairVisible(boolean flag);

Sets the flag that controls whether or not the plot displays a crosshair against the range axis,
and sends a PlotChangeEvent to all registered listeners.

The crosshair value is updated when the user clicks on a ChartPanel that displays this plot. A flag
controls whether the crosshair is set to the value corresponding to the mouse click, or the nearest
actual data value:

å public boolean isRangeCrosshairLockedOnData();

Returns the flag that controls whether or not the crosshair point locks onto the nearest data
value. The default value is true.

å public void setRangeCrosshairLockedOnData(boolean flag);

Sets the flag that controls whether or not the crosshair point locks onto the nearest data value,
and sends a PlotChangeEvent to all registered listeners.

To control the current crosshair value:

å public double getRangeCrosshairValue();

Returns the current crosshair value. Note that after a mouse click, this value will change
during the chart repaint—to read the latest value, you need to wait until the chart has finished
repainting.

å public void setRangeCrosshairValue(double value);

Equivalent to setRangeCrosshairValue(value, true)—see the next method.

å public void setRangeCrosshairValue(double value, boolean notify);

Sets the crosshair value and, if requested, sends a PlotChangeEvent to all registered listeners.

To control the paint and stroke used to draw the crosshair line:

å public Stroke getRangeCrosshairStroke();

Returns the stroke used to draw the crosshair. The default stroke is a thin dashed line. This
method never returns null.

å public void setRangeCrosshairStroke(Stroke stroke);

Sets the stroke used to draw the crosshair and sends a PlotChangeEvent to all registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 311

å public Paint getRangeCrosshairPaint();

Returns the paint used to draw the crosshair. The default value is Color.blue. This method
never returns null.

å public void setRangeCrosshairPaint(Paint paint);

Sets the paint used to draw the crosshair and sends a PlotChangeEvent to all registered listeners.
If paint is null, this method throws an IllegalArgumentException.

33.3.14 Methods

A zoom method is provided to support the zooming function provided by the ChartPanel class:

å public void zoom(double percent);

Increases or decreases the axis range (about the anchor value) by the specified percentage. If
the percentage is zero, then the auto-range calculation is restored for the value axis.

The category axis remains fixed during zooming, only the value axis changes.

To add a range marker to a plot:

å public void addRangeMarker(Marker marker);

Adds a marker which will be drawn against the range axis.

To add an annotation to a plot:

å public void addAnnotation(CategoryAnnotation annotation);

Adds an annotation to the plot.

To set the weight for a plot:

å public void setWeight(int weight);

Sets the weight for a plot. This is used to determine how much space is allocated to the plot
when it is used as a subplot within a combined plot.

33.3.15 Draw Method

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly.

33.3.16 Notes

A number of CategoryItemRenderer implementations are included in the JFreeChart distribution.

See Also
CombinedDomainCategoryPlot, CombinedRangeCategoryPlot.

33.4 ColorPalette

33.4.1 Overview

The abstract base class for the color palettes used by the ContourPlot class. This class is deprecated
as of version 1.0.4.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 312

Figure 33.3: A CombinedDomainCategoryPlot

33.5 CombinedDomainCategoryPlot

33.5.1 Overview

A category plot that allows multiple subplots to be displayed together using a shared domain axis—
see figure 33.3 for an example.

33.5.2 Constructors

To create a new parent plot:
å public CombinedDomainCategoryPlot();

Creates a new parent plot that uses a default CategoryAxis for the shared domain axis.

å public CombinedDomainCategoryPlot(CategoryAxis domainAxis);

Creates a new parent plot with the specified domain axis (null not permitted).

After creating a new parent plot, you need to add some subplots.

33.5.3 Adding and Removing Subplots

To add a subplot to a combined plot:
å public void add(CategoryPlot subplot);

Adds a subplot to the combined plot, with a weight of 1, and sends a PlotChangeEvent to all
registered listeners. Adding a null subplot is not permitted. The subplot’s domain axis will
be set to null. You must ensure that the subplot has a non-null range axis. See the following
method for a description of the weight.

å public void add(CategoryPlot subplot, int weight);

Adds a subplot to the combined plot, with the specified weight, and sends a PlotChangeEvent

to all registered listeners. Adding a null subplot is not permitted. The subplot’s domain axis
will be set to null. You must ensure that the subplot has a non-null range axis.

The weight determines how much of the plot area is assigned to the subplot. For example, if
you add three subplots with weights of 1, 2 and 4, the relative amount of space assigned to
each plot is 1/7, 2/7 and 4/7 (where the 7 is the sum of the individual weights).

To remove a subplot:
å public void remove(CategoryPlot subplot);

Removes the specified subplot and sends a PlotChangeEvent to all registered listeners.

To get a list of the subplots:
å public List getSubplots();

Returns an unmodifiable list of the subplots.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 313

33.5.4 Draw Method

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly.

33.5.5 Notes

The CombinedCategoryPlotDemo1.java file (included in the JFreeChart demo collection) provides an
example of this type of plot.

See Also
CombinedRangeCategoryPlot.

33.6 CombinedDomainXYPlot

33.6.1 Overview

A subclass of XYPlot that allows you to combined multiple plots on one chart, where the subplots
share the domain axis, and maintain their own range axes.

Figure 33.4 illustrates the relationship between the CombinedDomainXYPlot and its subplots).

independent range axes

Subplot 1

Subplot 2

Subplot 3

CombinedDomainXYPlot

domain axes = null

shared domain axis

shared range axis = null

Figure 33.4: CombinedDomainXYPlot axes

The CombinedXYPlotDemo1 class (included in the JFreeChart demo collection) provides an example
of this type of plot.

33.6.2 Constructors

The default constructor creates a plot with no subplots (initially) and a NumberAxis for the shared
domain axis:

å public CombinedDomainXYPlot();

Creates a new parent plot.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 314

More commonly, you will supply the shared domain axis:

å public CombinedDomainXYPlot(ValueAxis domainAxis);

Creates a new parent plot using the specified domainAxis (null permitted).

After creating the parent plot, you need to add subplots.

33.6.3 Methods

To add a subplot to a combined plot:

å public void add(XYPlot subplot);

Adds a subplot to the combined plot, with a weight of 1, and sends a PlotChangeEvent to all
registered listeners. Adding a null subplot is not permitted. The subplot’s domain axis will be
set to null. You must ensure that the subplot has a non-null range axis. See the next method
for a description of the weight.

å public void add(XYPlot subplot, int weight);

Adds a subplot to the combined plot, with the specified weight, and sends a PlotChangeEvent

to all registered listeners. Adding a null subplot is not permitted. The subplot’s domain axis
will be set to null. You must ensure that the subplot has a non-null range axis.

The weight determines how much of the plot area is assigned to the subplot. For example, if
you add three subplots with weights of 1, 2 and 4, the relative amount of space assigned to
each plot is 1/7, 2/7 and 4/7 (where the 7 is the sum of the individual weights).

To remove a subplot:

å public void remove(XYPlot subplot);

Removes the specified subplot and sends a PlotChangeEvent to all registered listeners.

33.6.4 The Plot Orientation

To set the plot orientation:

å public void setOrientation(PlotOrientation orientation);

Sets the orientation of this plot and all its subplots.

33.6.5 The Gap Between Subplots

To control the amount of space between the subplots:

å public double getGap();

Returns the gap between subplots, in Java2D units.

å public void setGap(double gap);

Sets the gap (in points) between the subplots and sends a PlotChangeEvent to all registered
listeners.

33.6.6 Notes

Some points to note:

• the dataset for this class should be set to null (only the subplots display data);

• the subplots managed by this class should have one axis set to null (the shared axis is
maintained by this class);

• you do not need to set a renderer for the plot, since each subplot maintains its own renderer;

• a demonstration of this type of plot is described in section ??.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 315

See Also
XYPlot.

33.7 CombinedRangeCategoryPlot

33.7.1 Overview

A category plot that allows multiple subplots to be displayed together using a shared range axis—
—see figure 33.5 for an example.

Figure 33.5: A CombinedRangeCategoryPlot

33.7.2 Constructors

To create a new parent plot:

å public CombinedRangeCategoryPlot();

Creates a new parent plot that uses a default NumberAxis for the shared range axis.

å public CombinedRangeCategoryPlot(ValueAxis rangeAxis);

Creates a new parent plot with the specified range axis (null not permitted).

After creating a new parent plot, you need to add some subplots.

33.7.3 Adding and Removing Subplots

To add a subplot to a combined plot:

å public void add(CategoryPlot subplot);

Adds a subplot to the combined plot, with a weight of 1, and sends a PlotChangeEvent to all
registered listeners. Adding a null subplot is not permitted. You must ensure that the subplot’s
domain axis is not null. The subplot’s range axis will be set to null.

å public void add(CategoryPlot subplot, int weight);

Adds a subplot to the combined plot, with the specified weight, and sends a PlotChangeEvent

to all registered listeners. Adding a null subplot is not permitted. You must ensure that the
subplot’s domain axis is not null. The subplot’s range axis will be set to null.

The weight determines how much of the plot area is assigned to the subplot. For example, if
you add three subplots with weights of 1, 2 and 4, the relative amount of space assigned to
each plot is 1/7, 2/7 and 4/7 (where the 7 is the sum of the individual weights).

To remove a subplot:

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 316

å public void remove(CategoryPlot subplot);

Removes the specified subplot and sends a PlotChangeEvent to all registered listeners.

To get a list of the subplots:

å public List getSubplots();

Returns an unmodifiable list of the subplots.

33.7.4 Draw Method

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly.

33.7.5 Notes

The CombinedCategoryPlotDemo2.java file (included in the JFreeChart demo collection) provides an
example of this type of plot.

33.8 CombinedRangeXYPlot

33.8.1 Overview

A subclass of XYPlot that allows you to combined multiple plots on one chart, where the subplots
share a single range axis, and maintain their own domain axes.

Figure 33.6 illustrates the relationship between the CombinedRangeXYPlot and its subplots).

independent range axes

Subplot 1

Subplot 2

Subplot 3

CombinedXYPlot (VERTICAL)

domain axes = null

shared domain axis

shared range axis = null

Figure 33.6: CombinedRangeXYPlot axes

The CombinedRangeXYPlotDemo class provides an example of this type of plot.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 317

33.8.2 Methods

There are two methods for adding a subplot to a combined plot:

å public void add(XYPlot subplot);

Adds a subplot to the combined plot, with a weight of 1. Adding a null subplot is not permitted.
You must ensure that the subplot has a non-null domain axis. The subplot’s range axis will
be set to null.

å public void add(XYPlot subplot, int weight);

Adds a subplot to the combined plot, with the specified weight. Adding a null subplot is not
permitted. You must ensure that the subplot has a non-null domain axis. The subplot’s range
axis will be set to null.

The weight determines how much of the plot area is assigned to the subplot. For example, if
you add three subplots with weights of 1, 2 and 4, the relative amount of space assigned to
each plot is 1/7, 2/7 and 4/7 (where the 7 is the sum of the individual weights).

To remove a subplot:

å public void remove(XYPlot subplot);

Removes the specified subplot and sends a PlotChangeEvent to all registered listeners. If subplot
is null, this method throws an IllegalArgumentException.

To control the amount of space between the subplots:

å public void setGap(double gap);

Sets the gap (in points) between the subplots.

33.8.3 Notes

Some points to note:

• the dataset for this class should be set to null (only the subplots display data);

• the subplots managed by this class should have one axis set to null (the shared axis is
maintained by this class);.

• you do not need to set a renderer for the plot, since each subplot maintains its own renderer;

• each subplot uses its own series colors. You should modify the default colors to ensure that
the items for each subplot are uniquely colored;

• a demonstration of this type of plot is described in section 14.5.

33.9 CompassPlot

33.9.1 Overview

A compass plot presents directional data in the form of a compass dial—an example is shown in
figure 33.7.

33.9.2 Constructors

To create a new instance:

å public CompassPlot();

Creates a new CompassPlot instance using an instance of DefaultValueDataset for the current
value.

å public CompassPlot(ValueDataset dataset);

Creates a new CompassPlot instance using the specified dataset (which may be null).

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 318

Figure 33.7: A chart that uses CompassPlot

33.9.3 General Attributes

To control the background color of the interior of the compass:

å public Paint getRoseCenterPaint();

Returns the paint (never null) used to fill the interior of the compass dial. The default is
Color.white.

å public void setRoseCenterPaint(Paint paint);

Sets the paint used to fill the interior of the compass dial and sends a PlotChangeEvent to all
registered listeners. If paint is null, this method throws an IllegalArgumentException.

To control the color of the compass border:

å public Paint getRosePaint();

Returns the paint (never null) used to fill the outer border of the compass dial. The default is
Color.yellow.

å public void setRosePaint(Paint paint);

Sets the paint used to fill the outer border of the compass dial and sends a PlotChangeEvent to
all registered listeners. If paint is null, this method throws an IllegalArgumentException.

The compass border is outlined with a highlight color:

å public Paint getRoseHighlightPaint();

Returns the paint (never null) used to draw the edges of the outer border of the compass dial.
The default is Color.black.

å public void setRoseHighlightPaint(Paint paint);

Sets the paint used to draw the edges of the outer border of the compass dial and sends a
PlotChangeEvent to all registered listeners. If paint is null, this method throws an Illegal-

ArgumentException.

33.9.4 The Plot Border

To control whether or not the plot’s border/background is drawn:

å public boolean getDrawBorder();

Returns the flag that controls whether or not the plot’s border is drawn. The default value is
false.

å public void setDrawBorder(boolean status);

Sets the flag that controls whether or not the plot’s border is drawn. No change event is
generated (this may change in the future).

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 319

33.9.5 Datasets

A typical plot will use a single dataset (an instance of ValueDataset), but it is also possible to
display the values from multiple datasets.

å public ValueDataset[] getDatasets();

Returns an array containing references to this plot’s dataset(s).

å public void addDataset(ValueDataset dataset);

Equivalent to addDataset(dataset, null)—see the next method description.

å public void addDataset(ValueDataset dataset, MeterNeedle needle);

Adds a dataset (and corresponding needle) to the plot.

33.9.6 Needles

The value from each dataset is displayed using a needle. To customise the appearance of the
needle(s), use the following methods:

å public void setSeriesNeedle(int type);

Equivalent to setSeriesNeedle(0, type);—see the next method.

å public void setSeriesNeedle(int index, int type);

Sets the type of needle for the dataset specified by index. Recognised types are:

• 0 – an instance of ArrowNeedle;

• 1 – an instance of LineNeedle;

• 2 – an instance of LongNeedle;

• 3 – an instance of PinNeedle;

• 4 – an instance of PlumNeedle;

• 5 – an instance of PointerNeedle;

• 6 – an instance of ShipNeedle;

• 7 – an instance of WindNeedle;

• 8 – an instance of ArrowNeedle;

• 9 – an instance of MiddlePinNeedle;

Note the duplication in items 0 and 8.

To customise the needle used to display the value from a dataset:

å public void setSeriesNeedle(int index, MeterNeedle needle);

Sets the needle for the dataset specified by index and sends a PlotChangeEvent to all registered
listeners.

å public void setSeriesPaint(int series, Paint paint);

Sets the fill paint for the needle associated with the dataset specified by the series index.

å public void setSeriesOutlinePaint(int series, Paint p);

Sets the outline paint for the needle associated with the dataset specified by the series index.

å public void setSeriesOutlineStroke(int series, Stroke stroke);

Sets the outline stroke for the needle associated with the dataset specified by the series index.

33.9.7 General Methods

The compass plot does not display a legend, so the getLegendItems() method is overridden to return
null:

å public LegendItemCollection getLegendItems();

Returns null, so no legend items are displayed.

The scale for a full revolution of the compass is controlled by the following methods:

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 320

å public double getRevolutionDistance();

Returns the length of a full revolution for the compass. The default value is 360.0, because the
compass displays degree values.

å public void setRevolutionDistance(double size);

Sets the length of a full revolution for the compass.

33.9.8 Labels

Several label attributes are provided by this class, but never used (deprecate?). The label type is
controlled via the following methods:

å public int getLabelType();

Returns the label type, which is one of:

• CompassPlot.NO LABELS;

• CompassPlot.VALUE LABELS;

The default value is CompassPlot.NO LABELS. This attribute is not currently used.

å public void setLabelType(int type);

Sets the label type and sends a PlotChangeEvent to all registered listeners.

The label font:

å public Font getLabelFont();

Returns the label font. The default value is null. This attribute is not currently used.

å public void setLabelFont(Font font);

Sets the label font and sends a PlotChangeEvent to all registered listeners.

33.9.9 Draw Method

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D area,

Point2D anchor, PlotState parentState, PlotRenderingInfo info);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly.

33.9.10 Notes

Some points to note:

• there is a demonstration CompassDemo1.java application included in the JFreeChart demo
collection.

33.10 ContourPlot

33.10.1 Overview

A custom plot that displays (x, y, z) data in the form of a 2D contour plot. This class is deprecated
as of version 1.0.4.

33.10.2 Draw Method

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 321

33.11 ContourPlotUtilities

33.11.1 Overview

A class that contains static utility methods used by the contour plot implementation. This class is
deprecated as of version 1.0.4.

33.12 ContourValuePlot

33.12.1 Overview

An interface used by the contour plot implementation. This interface is deprecated as of version
1.0.4.

33.13 CrosshairState

33.13.1 Overview

This class maintains information about the crosshairs on a plot, as the plot is being rendered.
Crosshairs will often need to “lock on” to the data point nearest to the anchor point (which is
usually set by a mouse click). This class keeps track of the data item that is “closest” (either in
screen space or in data space) to the anchor point.

33.13.2 Constructors

The default constructor:

å public CrosshairState();

Creates a new instance where distance is calculated in screen space.

å public CrosshairState(boolean calculateDistanceInDataSpace);

Creates a new instance where you can select to measure distance in data space or screen space.

33.13.3 Methods

The following method is called as a plot is being rendered:

å public void updateCrosshairPoint(double candidateX, double candidateY);

Considers the candidate point and updates the crosshair point if the candidate is the “closest”
to the anchor point.

33.14 DatasetRenderingOrder

33.14.1 Overview

This class defines the tokens that can be used to specify the dataset rendering order in a CategoryPlot

or an XYPlot. There are two tokens defined, as listed in table 33.2.

Token: Description:

DatasetRenderingOrder.FORWARD The primary dataset is rendered first, so that it appears to be
“underneath” the other datasets.

DatasetRenderingOrder.REVERSE The primary dataset is rendered last, so it appears to be “on
top” of the other datasets.

Table 33.2: DatasetRenderingOrder tokens

The default setting is DatasetRenderingOrder.REVERSE—this ensures that the primary dataset ap-
pears “on top” of the secondary datasets.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 322

33.14.2 Usage

To change the rendering order, use the following code:
CategoryPlot plot = (CategoryPlot) chart.getPlot();

plot.setDatasetRenderingOrder(DatasetRenderingOrder.FORWARD);

33.14.3 Notes

Some points to note:

• an example (OverlaidBarChartDemo1.java) is included in the JFreeChart demo collection.

33.15 DefaultDrawingSupplier

33.15.1 Overview

A default class used to provide a sequence of unique Paint, Stroke and Shape objects to be used by
renderers when drawing charts (this class implements the DrawingSupplier interface).

33.15.2 Usage

Every Plot class is initialised with an instance of this class as its drawing supplier, and it is unlikely
that you would need to use this class directly. However, you might create your own class that
implements the DrawingSupplier interface, and register it with the plot, as a way of overriding the
default series colours, line styles and shapes.

33.15.3 Constructors

The default constructor creates a drawing supplier with default sequences:

å public DefaultDrawingSupplier();

Creates a new drawing supplier with default sequences:

• the paint sequence is obtained from the createDefaultPaintArray() method in the ChartColor

class;

• the fill paint sequence contains just one colour (Color.white);

• the outline paint sequence contains just one colour (Color.lightGray);

• the stroke sequence contains just one stroke (BasicStroke(1.0f, BasicStroke.CAP SQUARE,

BasicStroke.JOIN BEVEL));

• the outline stroke sequence contains just one stroke (BasicStroke(1.0f, BasicStroke.CAP SQUARE,

BasicStroke.JOIN BEVEL));

• the shape sequence contains 10 shapes defined by the createStandardSeriesShapes() method.

The alternate constructor allows you to supply your own sequences:

å public DefaultDrawingSupplier(Paint[] paintSequence, Paint[] outlinePaintSequence, Stroke[]

strokeSequence, Stroke[] outlineStrokeSequence, Shape[] shapeSequence);

Creates a new drawing supplier with the specified sequences. None of the arrays should be
null, nor should they contain null items.1

1This is not currently enforced.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 323

33.15.4 Methods

To get the next paint in the sequence:

å public Paint getNextPaint();

Returns the next item in the paint sequence. This method should never return null.

To get the next fill paint in the sequence:

å public Paint getNextFillPaint(); [1.0.6]

Returns the next item in the fill paint sequence. This method should never return null. This
method was first introduced in JFreeChart 1.0.6.

To get the next outline paint in the sequence:

å public Paint getNextOutlinePaint();

Returns the next item in the outline paint sequence. This method should never return null.

To get the next stroke in the sequence:

å public Stroke getNextStroke();

Returns the next item in the stroke sequence. This method should never return null.

To get the next outline stroke in the sequence:

å public Stroke getNextOutlineStroke();

Returns the next item in the outline stroke sequence. This method should never return null.

To get the next shape in the sequence:

å public Shape getNextShape();

Returns the next shape in the outline stroke sequence. This method should never return null.

The following method defines the default shape sequence for JFreeChart:

å public static Shape[] createStandardSeriesShapes();

Returns an array containing ten “standard” shapes.

33.15.5 Equals, Cloning and Serialization

To test for equality with an arbitrary object:

å public boolean equals(Object obj);

Tests this drawing supplier for equality with an arbitrary object (null permitted)

Instances of this class are cloneable (the PublicCloneable interface is implemented) and serializable.

33.15.6 Notes

This class provides a default implementation of the DrawingSupplier interface.

33.16 DialShape

33.16.1 Overview

This class defines the tokens that can be used to specify the dial shape in a MeterPlot. There are
three tokens defined, as listed in table 33.3.

Token: Description:

DialShape.CIRCLE A circle.
DialShape.CHORD A chord.
DialShape.PIE A pie.

Table 33.3: DialShape tokens

The result of applying each shape to a MeterPlot is illustrated in figure 33.8.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 324

Figure 33.8: DialShape examples

33.16.2 Usage

The MeterPlot class has a method named setDialShape() that accepts the tokens defined by this
class, for example

plot.setDialShape(DialShape.CHORD);

33.17 DrawingSupplier

33.17.1 Overview

A drawing supplier provides a limitless (but ultimately repeating) sequence of Paint, Stroke and
Shape objects that can be used by renderers when drawing charts. All Plot classes will have a default
drawing supplier. This provides a single source for colors and line styles, which is particularly useful
for avoiding duplicates when a plot has multiple renderers.

You can register your own drawing supplier with a plot if you want to modify the default behaviour.
If you do this, you need to call the plot’s setDrawingSupplier() method before the chart is first
drawn (the reason being that the plot’s renderer(s) will cache the values returned by the drawing
supplier the first time a chart is drawn—subsequent changes to the drawing supplier will have no
effect on the values already cached).

In version 1.0.6, a new method (getNextFillPaint()) was added to this interface (breaking back-
wards compatibility for those that implement their own custom drawing suppliers).

33.17.2 Interface Methods

This interface defines the following methods:

å public Paint getNextPaint();

Returns the next Paint object in the sequence (never null). These are usually used as the
default series colors in charts.

å public Paint getNextOutlinePaint();

Returns the next outline Paint object in the sequence (never null).

å public Paint getNextFillPaint(); [1.0.6]

Returns the next fill Paint object in the sequence (never null). This method was added to the
interface at version 1.0.6.

å public Stroke getNextStroke();

Returns the next Stroke object in the sequence (never null). These are usually used as the
default series line style in charts.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 325

å public Stroke getNextOutlineStroke();

Returns the next outline Stroke object in the sequence (never null).

å public Shape getNextShape();

Returns the next Shape object in the sequence (never null). The shapes returned by this method
should be centered on (0, 0) in Java2D coordinates.

33.17.3 Notes

Some points to note:

• the DefaultDrawingSupplier class provides an implementation of this interface;

• if you write your own implementation of this interface, you should ensure that it implements
the PublicCloneable interface and is serializable. Otherwise, plots that use your implementa-
tion will no longer be cloneable or serializable.

33.18 FastScatterPlot

33.18.1 Overview

A custom plot that aims to be fast rather than flexible. It displays a single data series in a scatter
plot format (that is, a dot to represent each data item). A couple of techniques are used to make
this plot type faster than the other plot types provided by JFreeChart:

• data is obtained directly from an array rather than via the XYDataset interface;

• the plot draws each point directly rather than using a plug-in renderer.

33.18.2 Constructors

This class has two constructors:

å public FastScatterPlot();

Creates a new plot with no data, and axes labelled “X” and “Y”.

å public FastScatterPlot(float[][] data, ValueAxis domainAxis, ValueAxis rangeAxis);

Creates a new plot with the specified data and axes. For a description of the data array
format, see section 33.18.3. If domainAxis or rangeAxis is null, this constructor throws an
IllegalArgumentException.

33.18.3 The Data

The data for this plot is supplied as an array containing two equal-length subarrays—one for the
x-values and one for the y-values. The following sample code illustrates the creation of a small data
array in the correct format:

float[] x = new float[] { 1.0f, 2.0f, 5.0f, 6.0f };
float[] y = new float[] { 7.3f, 2.7f, 8.9f, 1.0f };
float[][] data = new float[][] { x, y };

To get/set the data array for the plot:

å public float[][] getData();

Returns a reference to the data array used by this plot (this might be null). Note that if you
update the values in the array directly, the chart will NOT be automatically repainted (as there
is no mechanism to notify the chart that the dataset has been updated).

å public void setData(float[][] data);

Sets the data array for the plot, replacing any existing data, and sends a PlotChangeEvent to
all registered listeners. If you set this to null, no data is displayed in the plot.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 326

33.18.4 The Axes

This plot supports a single domain (x) axis and a single range (y) axis. To control the domain axis:

å public ValueAxis getDomainAxis();

Returns the domain axis for the plot (never null).

å public void setDomainAxis(ValueAxis axis); [1.0.3]

Sets the domain axis for the plot, and sends a PlotChangeEvent to all registered listeners. If
axis is null, this method throws an IllegalArgumentException.

To control the range axis:

å public ValueAxis getRangeAxis();

Returns the range axis for the plot (never null).

å public void setRangeAxis(ValueAxis axis); [1.0.3]

Sets the range axis for the plot, and sends a PlotChangeEvent to all registered listeners. If axis

is null, this method throws an IllegalArgumentException.

A utility method returns the range of data values for either of the plot’s axes:

å public Range getDataRange(ValueAxis axis);

Returns the range of values in the current dataset for the specified axis. If axis does not belong
to the plot, this method returns null.

33.18.5 Rendering

For efficiency, this plot renders the data items directly, rather than via a plug-in renderer. You can
modify the color used to draw the dots for each data item:

å public Paint getPaint();

Returns the paint used to draw the dot for each data item (never null). The default value is
Color.RED.

å public void setPaint(Paint paint);

Sets the paint used to draw the dot for each data item, and sends a PlotChangeEvent to all
registered listeners.

Only one rendering color is defined, because this plot can only display data for a single series.

33.18.6 Gridlines

You can display gridlines against the domain axis and/or the range axis. For both sets of gridlines,
you can control:

• the visibility of the gridlines (whether or not they are displayed at all);

• the color of the gridlines;

• the line style for the gridlines;

For the domain axis gridlines:

å public boolean isDomainGridlinesVisible();

Returns true if gridlines are drawn for the domain axis, and false otherwise. The default value
is true.

å public void setDomainGridlinesVisible(boolean visible);

Sets a flag that controls whether or not the gridlines are displayed and sends a PlotChangeEvent

to all registered listeners.

å public Paint getDomainGridlinePaint();

Returns the paint used to draw the domain axis gridlines (never null). The default value is
Color.lightGray.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 327

å public void setDomainGridlinePaint(Paint paint);

Sets the paint used to draw the domain axis gridlines and sends a PlotChangeEvent to all
registered listeners. If paint is null, this method throws an IllegalArgumentException.

å public Stroke getDomainGridlineStroke();

Returns the stroke used to draw the domain axis gridlines (never null). The default stroke is
a thin dashed line.

å public void setDomainGridlineStroke(Stroke stroke);

Sets the stroke used to draw the domain axis gridlines and sends a PlotChangeEvent to all
registered listeners. If stroke is null, this method throws an IllegalArgumentException.

Similarly, for the range axis gridlines:

å public boolean isRangeGridlinesVisible();

Returns true if gridlines are drawn for the range axis, and false otherwise. The default value
is true.

å public void setRangeGridlinesVisible(boolean visible);

Sets a flag that controls whether or not the gridlines are displayed and sends a PlotChangeEvent

to all registered listeners.

å public Paint getRangeGridlinePaint();

Returns the paint used to draw the range axis gridlines (never null). The default value is
Color.lightGray.

å public void setRangeGridlinePaint(Paint paint);

Sets the Paint used for the range gridlines and sends a PlotChangeEvent to all registered listeners.

å public Stroke getRangeGridlineStroke();

Returns the stroke used to draw the range axis gridlines (never null). The default stroke is a
thin dashed line.

å public void setRangeGridlineStroke(Stroke stroke);

Sets the Stroke used for the range gridlines and sends a PlotChangeEvent to all registered lis-
teners. If stroke is null, this method throws an IllegalArgumentException.

33.18.7 Zooming

To support the zooming operations that can be invoked from the ChartPanel class, this plot imple-
ments the Zoomable interface:

å public boolean isDomainZoomable();

Always returns true, because the plot supports zooming along the domain axis.

å public boolean isRangeZoomable();

Always returns true, because the plot supports zooming along the range axis.

To find the current orientation of the plot:

å public PlotOrientation getOrientation();

Returns the plot orientation, which is always VERTICAL for this class.

To invoke zooming on the domain axis:

å public void zoomDomainAxes(double factor, PlotRenderingInfo info, Point2D source);

Zooms the domain axis in or out by the specified factor.

å public void zoomDomainAxes(double lowerPercent, double upperPercent, PlotRenderingInfo info,

Point2D source);

Zooms the domain axis to the specified lower and upper bounds.

To invoke zooming on the range axis:

å public void zoomRangeAxes(double factor, PlotRenderingInfo info, Point2D source);

Zooms the range axis in or out by the specified factor.

å public void zoomRangeAxes(double lowerPercent, double upperPercent, PlotRenderingInfo info,

Point2D source);

Zooms the range axis to the specified lower and upper bounds.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 328

33.18.8 Other Methods

A string describing the plot type is returned by the following method:

å public String getPlotType();

Returns a string describing the plot type. The string is localised, and intended for display in a
user interface (such as a plot property editor).

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area. In typical situations, you won’t normally call this
method directly.

å public void render(Graphics2D g2, Rectangle2D dataArea, PlotRenderingInfo info, CrosshairState

crosshairState);

Called by the draw() method, this method renders the data values.

33.18.9 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this plot for equality with an arbitrary object. Returns true if and only if:

• obj is not null;

• obj is an instance of FastScatterPlot;

• obj has the same attributes as this plot (including the data values).

Instances of this class are cloneable and serializable.

33.18.10 Notes

Some points to note:

• this plot does not support multiple datasets or axes;

• you cannot specify the orientation of the plot (it is always PlotOrientation.VERTICAL);

• this plot has no support for tooltips;

• a demo (FastScatterPlotDemo.java) is included in the JFreeChart demo collection.

33.19 GreyPalette

33.19.1 Overview

A grey palette (extends ColorPalette) used by the ContourPlot class. This class is deprecated as of
version 1.0.4.

33.20 IntervalMarker

33.20.1 Overview

An IntervalMarker is used to highlight a (fixed) range of values against the domain or range axis
for a CategoryPlot or an XYPlot. This class extends the Marker class.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 329

33.20.2 Usage

You can add a marker to an XYPlot using the addDomainMarker() or addRangeMarker() methods.
Similarly, you can add a range marker to a CategoryPlot using the addRangeMarker() method.

There is a demo application (DifferenceChartDemo2.java) included in the JFreeChart demo collec-
tion that illustrates the use of this class.

33.20.3 Constructors

This class defines several constructors:

å public IntervalMarker(double start, double end);

Creates a new instance for the specified range (in data space).

å public IntervalMarker(double start, double end, Paint paint); [1.0.9]

Equivalent to IntervalMarker(start, end, paint, new BasicStroke(0.5f), null, null, 0.8f)—
see the next constructor.

å public IntervalMarker(double start, double end, Paint paint, Stroke stroke,

Paint outlinePaint, Stroke outlineStroke, float alpha);

Creates a new instance for the specified range (in data space) and with the given attributes.

33.20.4 General Attributes

In addition to the methods inherited from Marker, this class defines:

å public double getStartValue();

Returns the lower bound of the interval.

å public void setStartValue(double value); [1.0.3]

Sets the lower bound of the interval to be highlighted, and sends a MarkerChangeEvent to all
registered listeners.

å public double getEndValue();

Returns the upper value in the interval.

å public void setEndValue(double value); [1.0.3]

Sets the upper bound of the interval to be highlighted, and sends a MarkerChangeEvent to all
registered listeners.

33.20.5 Gradient Paint Support

The marker supports the use of GradientPaint via a transformer that can dynamically update the
coordinates of the gradient to match the interval area:

å public GradientPaintTransformer getGradientPaintTransformer();

Returns the transformer applied to any GradientPaint instances used by the marker. This
method can return null, in which case any GradientPaint instance is used without transforma-
tion.

å public void setGradientPaintTransformer(GradientPaintTransformer transformer);

Sets the transformer that will be applied to any GradientPaint instances used by the marker and
sends a MarkerChangeEvent to all registered listeners. If transformer is null, any GradientPaint

instance will be used without transformation.

33.20.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object (which may be null).

Instances of this class are Cloneable and Serializable.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 330

33.20.7 Notes

Markers don’t have any code to draw themselves, this function is delegated to the renderer classes.

See Also
ValueMarker.

33.21 Marker

33.21.1 Overview

The base class for markers that can be added to a CategoryPlot or an XYPlot. Markers are used to
highlight particular values or value ranges against either the domain or range axes. Markers can be
displayed with or without labels. This abstract base class has three subclasses, as listed in Table
33.4.

Class: Description:

CategoryMarker A marker that highlights a category on the domain axis of a CategoryPlot.
ValueMarker A marker that highlights a single value on a numerical or date axis.
IntervalMarker A marker that highlights a range of values.

Table 33.4: Subclasses of Marker

33.21.2 Usage

Demo applications (MarkerDemo1 and MarkerDemo2) illustrating the use of markers are included in
the JFreeChart demo collection.

33.21.3 Constructors

Several constructors are provided for the use of subclasses—they are protected, so you cannot call
them directly:

å protected Marker();

Creates a new marker with default attributes. This is equivalent to new Marker(Color.gray).

å protected Marker(Paint paint);

Creates a new marker with the specified paint (null is not permitted). The other fields take
the following default values:

• stroke: new BasicStroke(0.5f);

• outlinePaint : Color.gray;

• outlineStroke: new BasicStroke(0.5f);

• alpha: 0.80f;

å protected Marker(Paint paint, Stroke stroke, Paint outlinePaint, Stroke outlineStroke,

float alpha);

Creates a new marker with the specified attributes. The paint and stroke arguments cannot
be null. The alpha argument should be in the range 0.0 to 1.0.

The label attributes, which cannot be specified in these constructors, take the following default
values:

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 331

Attribute: Default Value:

labelFont new Font("SansSerif", Font.PLAIN, 9);

labelPaint Color.black;
labelAnchor RectangleAnchor.TOP LEFT;
labelOffset new RectangleInsets(3.0, 3.0, 3.0, 3.0);
labelOffsetType LengthAdjustmentType.CONTRACT;
labelTextAnchor TextAnchor.CENTER;

Table 33.5: Attribute Default Values

33.21.4 General Attributes

This section describes the general attributes that control the appearance of markers. Label at-
tributes are covered in the next section.

To control the paint used to draw the marker:

å public Paint getPaint();

Returns the paint used to draw the marker (never null). The default value is Color.gray.

å public void setPaint(Paint paint);

Sets the paint used to draw the marker (null is not permitted) and sends a MarkerChangeEvent

to all registered listeners.

To control the stroke used to draw markers that are rendered as lines:

å public Stroke getStroke();

Returns the stroke used to draw the marker, if it is drawn as a line (never null). The default
value is BasicStroke(0.5f). If the marker is a rectangular region, the outline is drawn using
getOutlineStroke(), so this attribute is not used in that case.

å public void setStroke(Stroke stroke);

Sets the stroke used to draw the marker when it is drawn as a line (null is not permitted) and
sends a MarkerChangeEvent to all registered listeners.

To control the paint used to draw marker outlines:

å public Paint getOutlinePaint();

Returns the paint used to draw the marker outline (possibly null). The default value is
Color.gray. This field is not used when the marker is drawn as a line.

å public void setOutlinePaint(Paint paint);

Sets the paint used to draw the marker outline when it is drawn as a shape (typically a
rectangle), rather than a line (set this to null if you do not want the outline drawn). After
changing the value, this method sends a MarkerChangeEvent to all registered listeners.

To control the stroke used to draw marker outlines:

å public Stroke getOutlineStroke();

Returns the stroke used to draw the marker outline (possibly null). The default value is
BasicStroke(0.5f). This is not used when the marker is drawn as a line.

å public void setOutlineStroke(Stroke stroke);

Sets the stroke used to draw the marker outline when it is drawn as a shape (typically a
rectangle), rather than a line (set this to null if you do not want the outline drawn). After
changing the value, this method sends a MarkerChangeEvent to all registered listeners.

To control the alpha transparency of the marker:

å public float getAlpha();

Returns the alpha transparency for the marker (a value in the range 0.0f to 1.0f). 0.0f is
completely transparent and 1.0f is completely opaque.

å public void setAlpha(float alpha);

Sets the alpha transparency that should be used to draw the marker. This is a value in the
range 0.0f (completely transparent) to 1.0f (completely opaque). After changing the value,
this method sends a MarkerChangeEvent to all registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 332

33.21.5 Label Attributes

Labels can be drawn on or near markers. This section describes the attributes that control the
appearance and position of the label.

These methods control the label text, font and color:

å public String getLabel();

Returns the label text (which may be null). If the label string is null (the default), the marker
will be drawn without a label.

å public void setLabel(String label);

Sets the label text (null is permitted) and sends a MarkerChangeEvent to all registered listeners.

å public Font getLabelFont();

Returns the font used to display the label (never null). The default value is Font("SansSerif",

Font.PLAIN, 9).

å public void setLabelFont(Font font);

Sets the font used to display the label (null is not permitted) and sends a MarkerChangeEvent

to all registered listeners.

å public Paint getLabelPaint();

Returns the paint used to display the label text (never null). The default value is Color.black.

å public void setLabelPaint(Paint paint);

Sets the paint used to display the label text (null is not permitted) and sends a MarkerChangeEvent

to all registered listeners.

The remaining methods control the position of the label relative to the marker bounds when it is
drawn on the plot:

å public RectangleAnchor getLabelAnchor();

Returns the attribute that defines the anchor point, relative to the marker bounds, that the
label will be aligned to. The actual point is offset slightly from the marker bounds—see the
getLabelOffset() method.

å public void setLabelAnchor(RectangleAnchor anchor);

Sets the point on the marker bounds that is used for alignment of the label, then sends a
MarkerChangeEvent to all registered listeners. This anchor (after being adjusted by the label
offsets) determines a fixed point on the chart that the marker label can be aligned to.

Figure 33.9 illustrates how the marker label anchor position is calculated relative to the marker’s
bounds. One of the nine potential anchors is selected via the setLabelAnchor() method, and
the margin between the marker’s bounds and the potential anchor points is determined by the
getLabelOffset() and getLabelOffsetType() methods.

Figure 33.9: Marker insets and the label anchor

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 333

å public RectangleInsets getLabelOffset();

Returns the label offsets (never null). The default value is RectangleInsets(3.0, 3.0, 3.0,

3.0) (that is, the anchor points lie on a rectangle three Java2D units inside (or outside) the
marker’s bounding rectangle).

å public void setLabelOffset(RectangleInsets offset);

Sets the offset between the marker’s bounds and the label anchor points (null is not permitted),
then sends a MarkerChangeEvent to all registered listeners.

å public LengthAdjustmentType getLabelOffsetType();

Returns the label offset type, typically either CONTRACT (the default) or EXPAND. This controls
how the insets returned by getLabelOffset() are applied to calculate the label anchor position—
figure 33.9 illustrates the CONTRACT option, while figure 33.10 illustrates the EXPAND option.

å public void setLabelOffsetType(LengthAdjustmentType adj);

Sets the label offset type, which should be either CONTRACT or EXPAND (null is not permitted),
then sends a MarkerChangeEvent to all registered listeners.

Figure 33.10 illustrates how the label anchor points can be positioned outside the marker’s bounds
(by setting the label offset type to EXPAND).

Figure 33.10: Marker insets and the label anchor

To set the point on the label that is aligned to the label anchor:2

å public TextAnchor getLabelTextAnchor();

Returns the point on the label bounds that is aligned to the label anchor point (the default is
TextAnchor.CENTER). This method never returns null.

å public void setLabelTextAnchor(TextAnchor anchor);

Sets the point on the label that is aligned to the fixed point on the chart determined by the
getLabelAnchor() method, then sends a MarkerChangeEvent to all registered listeners.

Note that if the marker denotes a single value, the bounding rectangle may have zero width.

33.21.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this marker for equality with an arbitrary object. This method returns true if and only
if:

• obj is not null;

2Try running DrawStringDemo.java, in the JCommon distribution, to get an understanding of how the TextAnchor
setting controls basic string alignment.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 334

• obj is an instance of Marker;

• obj has the same attribute values as this marker.

Instances of this class are cloneable and serializable (in order that charts that have markers can be
cloneable and serializable).

33.21.7 Notes

Some points to note:

• markers are drawn on the chart by the plot’s main renderer—see the default drawing methods
defined in AbstractCategoryItemRenderer and AbstractXYItemRenderer;

• prior to version 1.0.3, there was no change notification mechanism for markers, so charts were
not updated automatically when marker attributes changed (one way to trigger a repaint of
the chart, at least for charts displayed in a ChartPanel, was to call chart.setNotify(true)).
From version 1.0.3 onwards, there is a change notification mechanism, so the repaint will occur
automatically.

33.22 MeterInterval

33.22.1 Overview

Represents a range of values on a MeterPlot that should be highlighted for some reason. For
example, on a temperature dial you might show intervals for “normal”, “high” and “extreme”.

33.22.2 Constructors

To create a new interval:

å public MeterInterval(String label, Range range);

Creates a new interval with the specified label and range. The default outline paint for the
interval is Color.yellow, the default outline stroke is BasicStroke(2.0f), and the default back-
ground paint is null.

å public MeterInterval(String label, Range range, Paint outlinePaint,

Stroke outlineStroke, Paint backgroundPaint);

Creates a new interval with the specified label and range. The label is typically displayed
in the plot’s legend (if visible). The range is highlighted by filling the background with
backgroundPaint. If label or range is null, this method throws an IllegalArgumentException.
All other arguments can be null.

33.22.3 Methods

To get the label for the interval:

å public String getLabel();

The label for the interval. This will normally be displayed in the plot’s legend.

å public Range getRange();

Returns the value range for the interval.

å public Paint getBackgroundPaint();

Returns the paint used to fill the background for the interval.

å public Paint getOutlinePaint();

Returns the paint used to draw the outline for the interval.

å public Stroke getOutlineStroke();

Returns the stroke used to draw the outline for the interval.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 335

33.22.4 Equals, Cloning and Serialization

To test for equality with an arbitrary object:

å public boolean equals(Object obj);

Tests the interval for equality with an arbitrary object.

Instances of this class are immutable, so it is not necessary to clone them. Serialization is supported.

33.22.5 Notes

Some points to note:

• this class is immutable—you cannot change the interval’s range or other attributes.

33.23 MeterPlot

33.23.1 Overview

A plot that displays a single value in a dial presentation. The current value is represented by a
needle in the dial, and is also displayed in the center of the dial in text format.

Figure 33.11: A meter chart

Specific intervals in the dial can be highlighted by adding MeterInterval instances to the plot.

A new class (DialPlot) is now included in the experimental directory of the JFreeChart distribution—
it is intended that DialPlot will eventually replace MeterPlot.

33.23.2 Constructors

To create a new MeterPlot:

å public MeterPlot();

Creates a new plot with a default range of 0 to 100 and no dataset.

å public MeterPlot(ValueDataset dataset);

Creates a dial with default settings, using the supplied dataset.

The plot can be customised after it is created, if the default values are not suitable.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 336

33.23.3 The Dataset

A MeterPlot displays a single value, but still uses a dataset to represent the value rather than relying
on a “value” field in the plot. This maintains the separation between the data and the “view”, and
consistency with other plot types in JFreeChart.

To access the current dataset:

å public ValueDataset getDataset();

Returns the current dataset (possibly null).

å public void setDataset(ValueDataset dataset);

Sets the dataset for the plot (null permitted) and sends a PlotChangeEvent to all registered
listeners. If the dataset is set to null, no value will be displayed on the dial.

To update the displayed value in the chart, call the setValue() method in the dataset. This will
trigger a DatasetChangeEvent which will be picked up by the chart (and cause the chart to be
repainted if it is displayed in a ChartPanel).

33.23.4 The Current Value Display

A needle is used to indicate the current value on the dial. To change the color of the needle:

å public Paint getNeedlePaint();

Returns the paint used to display the needle on the dial. The default is Color.green.

å public void setNeedlePaint(Paint paint);

Sets the color of the needle on the dial and sends a PlotChangeEvent to all registered listeners.
An IllegalArgumentException is thrown if paint is null.

The current value is also displayed (near the center of the dial) in text format, with the units
appended. To change the font used to display the current value:

å public Font getValueFont();

Returns the font used to display the current value in the middle of the plot (never null).

å public void setValueFont(Font font);

Sets the font used to display the current value and sends a PlotChangeEvent to all registered
listeners. An IllegalArgumentException is thrown if font is null.

To change the color used to display the current value:

å public Paint getValuePaint();

Returns the paint used to display the current value (never null).

å public void setValuePaint(Paint paint);

Sets the paint used to display the current value and sends a PlotChangeEvent to all registered
listeners. An IllegalArgumentException is thrown if paint is null.

To change the “units” for the value:

å public String getUnits();

Returns a string describing the units for the dial (possibly null). This is displayed after the
value in the middle of the dial.

å public void setUnits(String units);

Sets the unit description for the plot and sends a PlotChangeEvent to all registered listeners. If
this is set to null, then no units are displayed with the meter value.

33.23.5 The Dial Range, Shape and Background

The range of values that can be displayed on the dial is configurable using the following methods:

å public Range getRange();

Returns the range of data values on the dial (never null). The default is 0 to 100.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 337

å public void setRange(Range range);

Sets the range of data values on the dial and sends a PlotChangeEvent to all registered listeners.
An IllegalArgumentException is thrown if range is null. If the current value in the plot’s dataset
falls outside this range, no needle will be displayed.

To control the shape of the dial:

å public DialShape getDialShape();

Returns the dial shape (never null). The default is DialShape.CIRCLE.

å public void setDialShape(DialShape shape);

Sets the dial shape and sends a PlotChangeEvent to all registered listeners. An IllegalArgument-

Exception is thrown if shape is null. Refer to the description of the DialShape class for a sample
of the available shapes.

The angle spanned by the dial is configurable with the following methods:

å public int getMeterAngle();

Returns the angle (in degrees) of the full range of the dial. The default value is 270 degrees.

å public void setMeterAngle(int angle);

Sets the angle (in degrees) of the full range of the dial. This is required to be in the range 1 to
360 degrees.

To change the background color of the dial:

å public Paint getDialBackgroundPaint();

Returns the paint used for the dial background (never null). The default is Color.black.

å public void setDialBackgroundPaint(Paint paint);

Sets the color of the dial background. If you set this to null, no background is painted.

To control the outline paint for the dial:

å public Paint getDialOutlinePaint();

Returns the paint used to draw the dial outline (possibly null).

å public void setDialOutlinePaint(Paint paint);

Sets the paint used to draw the dial outline and sends a PlotChangeEvent to all registered
listeners.

The dial can be drawn with or without a border:

å public boolean getDrawBorder();

Returns the flag that controls whether or not a border is drawn around the dial.

å public void setDrawBorder(boolean draw);

Sets the flag that controls whether or not a border is drawn around the dial and sends a
PlotChangeEvent to all registered listeners.

33.23.6 Tick Labels

Labels are drawn for the first and last ticks only (this is a limitation that needs to be addressed):

å public boolean getTickLabelsVisible();

Returns true if the tick labels should be displayed, and false otherwise.

å public void setTickLabelsVisible(boolean visible);

Sets the flag that controls whether or not tick labels are visible, and sends a PlotChangeEvent

to all registered listeners.

The font for the labels is controlled with the following methods:

å public Font getTickLabelFont();

Returns the font used to display the tick labels.

å public void setTickLabelFont(Font font);

Sets the font used to display the tick labels and sends a PlotChangeEvent to all registered
listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 338

The paint for the labels is controlled with the following methods:

å public Paint getTickLabelPaint();

Returns the paint used to display the tick labels.

å public void setTickLabelPaint(Paint paint);

Sets the paint used to display the tick labels and sends a PlotChangeEvent to all registered
listeners.

The formatter for the labels is controlled with the following methods:

å public NumberFormat getTickLabelFormat();

Returns the formatter used to convert the tick values to strings for display.

å public void setTickLabelFormat(NumberFormat format);

Sets the formatter used to convert the tick values to strings for display and sends a PlotChangeEvent

to all registered listeners.

33.23.7 Intervals

It is possible to highlight certain data ranges by adding one or more MeterInterval instances to the
plot.

å public List getIntervals();

Returns an unmodifiable list of the intervals for the plot. The list may be empty.

å public void addInterval(MeterInterval interval);

Adds an interval to the plot.

å public void clearIntervals();

Removes all intervals from the plot and sends a PlotChangeEvent to all registered listeners.

The sample chart in figure 33.11 contains three intervals labelled “Normal”, “Warning” and “Crit-
ical”.

33.23.8 Legend Items

This plot utilises the legend to display descriptions for the MeterInterval instances (if any) that have
been added to the plot. The following method returns the required items:

å public LegendItemCollection getLegendItems();

Returns a collection of legend items for the plot. For this plot, there is one item for each
MeterInterval that has been added to the plot.

You can override this method to customise the legend display.

33.23.9 Drawing Methods

This class has several drawing methods that are used internally. In some cases, you can override
these methods to change the appearance of the plot:

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area. This method is called by the JFreeChart class.

å protected void drawArc(Graphics2D g2, Rectangle2D area, double minValue, double maxValue,

Paint paint, Stroke stroke);

Draws an arc between the specified values.

å protected void fillArc(Graphics2D g2, Rectangle2D area, double minValue, double maxValue,

Paint paint, boolean dial);

Fills the background area between the specified values.

å protected void drawArcForInterval(Graphics2D g2, Rectangle2D meterArea,

MeterInterval interval);

Draws an interval arc.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 339

å protected void drawTick(Graphics2D g2, Rectangle2D meterArea, double value);

Draws a tick, with no label, for the given value.

å protected void drawTick(Graphics2D g2, Rectangle2D meterArea, double value, boolean label);

Draws a tick, with or without a corresponding label, for the given value.

å protected void drawValueLabel(Graphics2D g2, Rectangle2D area);

Draws the text in the middle of the dial that displays the current value.

33.23.10 Other Methods

To obtain a short description of the plot type:

å public String getPlotType();

Returns a short localised string representing the plot type.

To convert a data value to an angle:

å public double valueToAngle(double value);

Returns the angle in degrees corresponding to the given data value.

The zooming method is overridden to do nothing, zooming is not supported by this plot:

å public void zoom(double percent);

This method is overridden to do nothing.

33.23.11 Equals, Cloning and Serialization

To test the plot for equality with an arbitrary object:

å public boolean equals(Object obj);

Tests the plot for equality with an arbitrary object. The plot is equal to obj if and only if:

• obj is not null;

• obj is an instance of MeterPlot;

• this plot and obj have the same field values (not including the dataset, which is ignored
for the purposes of equality testing).

This class is both cloneable and serializable.

33.23.12 Notes

Some points to note:

• the original version of this class was contributed by Hari;

• the MeterChartDemo1 and MeterChartDemo2 classes in the JFreeChart demo collection provide
a working example of this class.

• the DialPlot class provides a newer and more flexible alternative to this class.

See Also
ValueDataset, DialShape, MeterInterval.

33.24 MultiplePiePlot

33.24.1 Overview

A specialised plot that displays data from a CategoryDataset in the form of multiple pie charts.
Figure 33.12 shows an example.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 340

Figure 33.12: A multiple pie chart

33.24.2 Constructors

There are two constructors for this class:

å public MultiplePiePlot();

Creates a new plot with a null dataset.

å public MultiplePiePlot(CategoryDataset dataset);

Creates a new plot with the specified dataset (which can be null). Data for the individual pie
charts is extracted from the dataset by column (you can change this using the setDataExtractOrder()

method).

33.24.3 Methods

This plot uses a single chart instance to draw the multiple pie charts:

å public JFreeChart getPieChart();

Returns the chart that is used to render each pie chart in the plot. Any changes you make to
this chart will be reflected in the appearance of all the pie charts.

å public void setPieChart(JFreeChart pieChart);

Sets the chart that is used to render each of the pie charts in the plot. The getPlot() method
for this chart MUST return a PiePlot instance (this includes PiePlot3D and RingPlot, since
these are subclasses of PiePlot). It is advisable to use a chart that does not include a legend.

To access the current dataset for the plot:

å public CategoryDataset getDataset();

Returns the current dataset, which may be null.

å public void setDataset(CategoryDataset dataset);

Sets the dataset for the plot and sends a PlotChangeEvent to all registered listeners. The plot
will register itself with the new dataset so that it receives notification of any changes to the
dataset (and also will unregister from the old dataset).

An important factor determining the appearance of this plot is the order in which the data is
extracted for the pie charts:

å public TableOrder getDataExtractOrder();

Returns a key that determines how data is extracted (by column or by row) to form the
individual pie charts. The default is TableOrder.BY COLUMN.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 341

å public void setDataExtractOrder(TableOrder order);

Sets the order of data extraction to one of TableOrder.BY COLUMN or TableOrder.BY ROW. In the
first case, the number of pie charts displayed will be equal to the number of columns in the
dataset, and in the second case it will be equal to the number of rows in the dataset.

A lower limit can be specified and will be used to aggregate small data values:

å public double getLimit();

Returns the smallest value that will be displayed in it’s own pie section (the default is 0.0). All
sections with values less than this will be aggregated into a single section.

å public void setLimit(double limit);

Sets the smallest value that will be displayed in it’s own pie section and sends a PlotChangeEvent

to all registered listeners.

The key used for aggregated data items can be accessed with the following methods:

å public Comparable getAggregatedItemsKey(); [1.0.2]

Returns the key used for aggregated items (never null). The default is Other—this can be
changed by calling the setAggregatedItemsKey() method.

å public void setAggregatedItemsKey(Comparable key); [1.0.2]

Sets the key that is used for aggregated items and sends a PlotChangeEvent to all registered
listeners. This method throws an IllegalArgumentException if key is null.

To determine the paint used to display the pie section for aggregated items:

å public Paint getAggregatedItemsPaint(); [1.0.2]

Returns the paint used to display the pie section for aggregated items. The default value is
Color.lightGray and this field cannot be set to null.

å public void setAggregatedItemsPaint(Paint paint); [1.0.2]

Sets the paint used to display the pie section for aggregated items and sends a PlotChangeEvent

to all registered listeners. This method throws an IllegalArgumentException if paint is null.

33.24.4 Miscellaneous Methods

The plot type is described by the following method:

å public String getPlotType();

Returns the string Multiple Pie Plot.

The legend items are created by the following method (which you are free to override):

å public LegendItemCollection getLegendItems();

Returns the legend items for the plot. Depending on the data extract order, this will be the
column keys or the row keys from the dataset.

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly.

33.24.5 Equals, Cloning and Serialization

The equals method is overridden:

å public boolean equals(Object obj);

Tests this plot for equality with an arbitrary object. This method returns true if and only if:

• obj is not null;

• obj is an instance of MultiplePiePlot;

• both plots have the same attributes (excluding the dataset and the registered listeners).

Instances of this class are cloneable and serializable.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 342

33.24.6 Notes

Some points to note:

• several demo applications (MultiplePieChartDemo1-4.java) are included in the JFreeChart
demo distribution.

• the createMultiplePieChart() and createMultiplePieChart3D() methods in the ChartFactory

class create charts using this plot.

33.25 PieLabelDistributor

33.25.1 Overview

The PiePlot class uses this class to arrange section labels so that they do not overlap one another.
This is largely an implementation detail—you won’t need to use this class directly.

33.26 PieLabelRecord

33.26.1 Overview

A temporary holder of information about the label for one section of a PiePlot. Instances of this
class are used by the PieLabelDistributor class. Typically, you won’t use this class directly.

33.27 PiePlot

33.27.1 Overview

The PiePlot class draws pie charts using data obtained through the PieDataset interface. A sample
chart is shown in figure 33.13.

Pie Chart Demo 1

One Two Three Four Five Six

Six

Five

Four

Three

One

Two

Figure 33.13: A simple pie chart (see PieChartDemo1.java)

Refer to chapter 5 for a general overview of the pie chart support in JFreeChart. The PiePlot class
extends Plot. A subclass (PiePlot3D) that draws plots with a 3D effect is also available.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 343

33.27.2 Constructors

To construct a pie plot:

å public PiePlot(PieDataset dataset);

Creates a pie plot for the given dataset (null is permitted). All plot attributes are initialised
with default values—these can be changed at any time.

This class also has a default constructor:

å public PiePlot();

Creates a new plot with no dataset.

33.27.3 Attributes

The attributes maintained by the PiePlot class, which are in addition to those inherited from the
Plot class, are listed in table 33.6.

Attribute: Description:

interiorGap The amount of space to leave blank around the outside of the pie,
expressed as a percentage of the chart height and width. Extra space
is added for the labels.

circular A flag that controls whether the pie chart is constrained to be circular,
or allowed to take on an elliptical shape to fit the available space.

startAngle The angle of the first pie section, expressed in degrees (0 degrees is
three o’clock, 90 degrees is twelve o’clock, 180 degrees is nine o’clock
and 270 degrees is six o’clock).

direction Pie sections can be ordered in a clockwise (Rotation.CLOCKWISE) or
anticlockwise (Rotation.ANTI CLOCKWISE) direction.

sectionPaint The paint used for all sections (usually null). Deprecated as of 1.0.6.
sectionPaintList The paint used for each section, unless overridden by sectionPaint.
baseSectionPaint The default paint, used when no other setting is specified.
sectionOutlinesVisible A flag that controls whether or not section outlines are drawn.
sectionOutlinePaint The outline paint used for all sections (usually null). Deprecated as

of 1.0.6.
sectionOutlinePaintList The outline paint used for each section.
baseSectionOutlinePaint The default outline paint, used when no other setting is specified.
sectionOutlineStroke The outline stroke used for all sections (usually null).Deprecated as

of 1.0.6.
sectionOutlineStrokeList The outline stroke used for each section.
baseSectionOutlineStroke The default outline stroke, used when no other setting is specified.
shadowPaint The shadow paint.
shadowXOffset The x-offset for the shadow effect.
shadowYOffset The y-offset for the shadow effect.
explodePercentages The amount (percentage) to “explode” each pie section.
labelGenerator The section label generator, an instance of

PieSectionLabelGenerator.
labelFont The font for the section labels.
labelPaint The colour for the section labels.
labelBackgroundPaint The background colour for the section labels.
maximumLabelWidth The maximum label width as a percentage of the plot width.
labelGap The gap for the section labels.
labelLinkMargin The label link margin.
labelLinkPaint The Paint used for the lines that connect the pie sections with their

corresponding labels.
labelLinkStroke The Stroke used for the lines that connect the pie sections to their

corresponding labels.
toolTipGenerator A plug-in tool tip generator.
urlGenerator A plug-in URL generator (for image map generation).
pieIndex The index for this plot (only used by the MultiplePiePlot class).

Table 33.6: Attributes for the PiePlot class

The following default values are used where necessary:

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 344

Name: Value:

DEFAULT INTERIOR GAP 0.1 (10 percent)
DEFAULT START ANGLE 90.0

DEFAULT LABEL FONT new Font("SansSerif", Font.PLAIN, 10);

DEFAULT LABEL PAINT Color.black;

DEFAULT LABEL BACKGROUND PAINT new Color(255, 255, 192);

DEFAULT LABEL GAP 0.10 (10 percent)

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 345

33.27.4 The Plot Border

The PiePlot draws a border around the outside of the plot, with the chart title and legend appearing
outside this border. This border is common to all plot types, but is especially noticeable in pie
charts (and other charts that don’t have axes). You can change the appearance of this border (or
hide it completely) using methods inherited from the Plot class—refer to section 33.30.6 for details.

33.27.5 The Dataset

To access the dataset being used by the plot:

å public PieDataset getDataset();

Returns the current dataset (possibly null).

å public void setDataset(PieDataset dataset);

Replaces the dataset being used by the plot (this triggers a DatasetChangeEvent).

33.27.6 General Methods

To control whether the pie chart is circular or elliptical:

å public boolean isCircular();

Returns the flag that controls whether or not the pie chart is constrained to be circular in
appearance. The default value is true.

å public void setCircular(boolean flag);

Equivalent to setCircular(flag, true)—see next method.

å public void setCircular(boolean circular, boolean notify);

Sets a flag that controls whether the pie chart is circular or elliptical in shape, and sends a
PlotChangeEvent to all registered listeners.

To control the position of the first section in the chart:

å public double getStartAngle();

Returns the angle (in degrees) at which the first pie section starts. Zero is at 3 o’clock, and as
the angle increases it proceeds anticlockwise around the chart (so that 90 degrees, the current
default, is at 12 o’clock). This is the same encoding used by Java’s Arc2D class.

å public void setStartAngle(double angle);

Sets the angle (in degrees) at which the first section starts, and sends a PlotChangeEvent to all
registered listeners.

To control the direction (clockwise or anticlockwise) of the sections in the pie chart:

å public Rotation getDirection();

Returns the direction in which the pie sections are drawn. The default value is Rotation.CLOCKWISE.

å public void setDirection(Rotation direction);

Sets the direction of the sections in the pie chart. Use one of the constants Rotation.CLOCKWISE

(the default) and Rotation.ANTICLOCKWISE.

To control the amount of space around the pie chart:

å public double getInteriorGap();

Returns the gap around the interior of the pie plot (the region where the labels are drawn) as
a percentage of the plot width and height. The default value is 0.08.

å public void setInteriorGapPercent(double percent);

Sets the amount of space to leave inside the plot area and sends a PlotChangeEvent to all
registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 346

33.27.7 Section Paint

The paint used to fill each section in the pie chart is, by default, auto-populated from the plot’s
DrawingSupplier. However, you can easily customise the colours using the methods described below.

To control the paint associated with a section:

å public Paint getSectionPaint(Comparable key); [1.0.3]

Returns the paint associated with the specified section, which may be null.

å public void setSectionPaint(Comparable key, Paint paint); [1.0.3]

Sets the paint to use for the specified section and sends a PlotChangeEvent to all registered
listeners.

The base section paint is a default that is used when no other setting is available:

å public Paint getBaseSectionPaint();

Returns the base section paint, which is never null. The default value is Color.gray.

å public void setBaseSectionPaint(Paint paint);

Sets the base section paint (null is not permitted) and sends a PlotChangeEvent to all registered
listeners.

An override setting is available, but deprecated as of JFreeChart 1.0.6 because it is more or less
redundant:

å public Paint getSectionPaint(); [Deprecated, 1.0.6]

Returns the paint that should be used for ALL sections in the PiePlot. The default value is
null.

å public void setSectionPaint(Paint paint); [Deprecated, 1.0.6]

Sets the paint that applies to ALL sections in the PiePlot and sends a PlotChangeEvent to all
registered listeners.

The PiePlot drawing code makes use of the following utility methods:

å protected Paint lookupSectionPaint(Comparable key); [1.0.3]

Returns the paint associated with the given key, or null.

å protected Paint lookupSectionPaint(Comparable key, boolean autoPopulate); [1.0.3]

Returns the paint associated with the given key. If autoPopulate is true and there is currently
no paint defined, a new paint is fetched from the plot’s DrawingSupplier.

33.27.8 Section Outlines

The sections in a pie plot can be drawn with or without an outline:

å public boolean getSectionOutlinesVisible();

Returns true if section outlines should be drawn for the plot, and false otherwise. The default
value is true.

å public void setSectionOutlinesVisible(boolean visible);

Sets the flag that controls whether or not section outlines are drawn, and sends a PlotChangeEvent

to all registered listeners.

The paint and stroke attributes used to draw the section outlines are specified via the following
methods:

å public Paint getSectionOutlinePaint(); [Deprecated, 1.0.6]

Returns the override value for the section outline paint. This defaults to null, which means
the getSectionOutlinePaint(int) method will be called instead.

å public void setSectionOutlinePaint(Paint paint); [Deprecated, 1.0.6]

Sets the override value for the section outline paint and sends a PlotChangeEvent to all registered
listeners. Most of the time, you should leave this set to null so that the per-series and base-level
settings are exposed.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 347

å public Paint getSectionOutlinePaint(int section);

Returns the outline paint to use for the specified section. If this is null, the plot will use the
value returned by getBaseSectionOutlinePaint() instead.

å public void setSectionOutlinePaint(int section, Paint paint);

Sets the paint used to outline a particular section in the chart and sends a PlotChangeEvent to
all registered listeners.

å public Paint getBaseSectionOutlinePaint();

Returns the default section outline paint, which is used when no other non-null setting is
specified. The default value is Color.gray.

å public void setBaseSectionOutlinePaint(Paint paint);

Sets the default section outline paint (null is not permitted) and sends a PlotChangeEvent to
all registered listeners.

Similar methods are defined for the outline stroke:
å public Stroke getSectionOutlineStroke(); [Deprecated, 1.0.6]

Returns the override value for the section outline stroke. This defaults to null, which means
the getSectionOutlineStroke(int) method will be called instead.

å public void setSectionOutlineStroke(Stroke stroke); [Deprecated, 1.0.6]

Sets the override value for the section outline stroke and sends a PlotChangeEvent to all registered
listeners. Most of the time, you should leave this set to null so that the per-series and base-level
settings are exposed.

å public Stroke getSectionOutlineStroke(int section);

Returns the outline stroke to use for the specified section. If this is null, the plot will use the
value returned by getBaseSectionOutlineStroke() instead.

å public void setSectionOutlineStroke(int section, Stroke stroke);

Sets the stroke used to outline a particular section in the chart and sends a PlotChangeEvent to
all registered listeners.

å public Stroke getBaseSectionOutlineStroke();

Returns the default section outline stroke, which is used when no other non-null setting is
specified. The default value is BasicStroke(0.5f).

å public void setBaseSectionOutlineStroke(Stroke stroke);

Sets the default section outline stroke (null is not permitted) and sends a PlotChangeEvent to
all registered listeners.

33.27.9 Shadow Effect

The pie plot will draw a “shadow” effect. To control the paint used to draw the shadow:
å public Paint getShadowPaint();

Returns the paint used to draw the shadow for each pie section. If this is null, no shadow is
drawn. The default value is Color.gray.

å public void setShadowPaint(Paint paint);

Sets the paint used to draw the “shadow” effect. If you set this to null, no shadow effect will
be drawn.

The x-offset for the shadow effect is controlled with the following methods:
å public double getShadowXOffset();

Returns the x-offset for the shadow effect, in Java2D units. The default value is 4.0f.

å public void setShadowXOffset(double offset);

Sets the x-offset (in Java2D units) for the shadow effect, and sends a PlotChangeEvent to all
registered listeners.

The y-offset for the shadow effect is controlled by these methods:
å public double getShadowYOffset();

Returns the y-offset for the shadow effect, in Java2D units. The default value is 4.0f.

å public void setShadowYOffset(double offset);

Sets the y-offset (in Java2D units) for the shadow effect, and sends a PlotChangeEvent to all
registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 348

33.27.10 Exploded Sections

It is possible to “explode” sections of the pie chart.

å public double getExplodePercent(Comparable key);

Returns the amount by which a specific section in the pie plot is offset, as a percentage of the
radius of the pie.

å public void setExplodePercent(Comparable key, double percent);

Sets the amount by which a specific section of the pie plot is offset, expressed as a percentage
of the radius of the pie, then sends a PlotChangeEvent to all registered listeners.

The following utility method is used internally:

å public double getMaximumExplodePercent();

Returns the maximum offset for the pie plot.

The PieChartDemo2 application (included in the JFreeChart demo collection) provides a demo.

33.27.11 Section Labels

Section labels are generated by a user-definable generator object:

å public PieSectionLabelGenerator getLabelGenerator();

Returns the section label generator for the plot (possibly null). The default value is an instance
of StandardPieSectionLabelGenerator.

å public void setLabelGenerator(PieSectionLabelGenerator generator);

Sets the label generator for the plot and sends a PlotChangeEvent to all registered listeners. If
you set this to null, no section labels will be displayed on the plot.

For example, to display percentage values for the pie sections:

PiePlot plot = (PiePlot) chart.getPlot();
PieSectionLabelGenerator generator = new StandardPieSectionLabelGenerator(

"{0} = {2}", new DecimalFormat("0"), new DecimalFormat("0.00%"));
plot.setLabelGenerator(generator);

To control the font used to display the section labels:

å public Font getLabelFont();

Returns the font (never null) used to display the section labels. The default value is Font("SansSerif",
Font.PLAIN, 10).

å public void setLabelFont(Font font);

Sets the font used to display the section labels, and sends a PlotChangeEvent to all registered
listeners. If font is null, this method throws an IllegalArgumentException.

To control the colour of the section labels:

å public Paint getLabelPaint();

Returns the colour used to display the section labels (never null).

å public void setLabelPaint(Paint paint);

Sets the colour used to display the section labels and sends a PlotChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

To control the background colour of the section labels:

å public Paint getLabelBackgroundPaint();

Returns the colour used to fill the section label boxes—if this is null, the boxes are transparent
(the plot background colour will show through).

å public void setLabelBackgroundPaint(Paint paint);

Sets the colour used to fill the section label boxes and sends a PlotChangeEvent to all registered
listeners. If you set this to null, the label boxes will be transparent (the plot background colour
will show through).

To control the outline colour of the section label boxes:

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 349

Section Label

labelFont labelPaint
labelOutlineStroke

labelOutlinePaint
labelShadowPaint

labelBackgroundPaint

Figure 33.14: PieSectionLabels.pdf

å public Paint getLabelOutlinePaint();

Returns the colour used to draw the outline around the section labels. If this is null, no outline
is drawn.

å public void setLabelOutlinePaint(Paint paint);

Sets the colour used to draw the outline around the section labels and sends a PlotChangeEvent

to all registered listeners. If you set this to null, the label boxes will not have an outline drawn.

To control the outline stroke for the section label boxes:

å public Stroke getLabelOutlineStroke();

Returns the stroke used to draw the outline around the section labels. If this is null, no outline
box is drawn.

å public void setLabelOutlineStroke(Stroke stroke);

Sets the stroke used to draw outlines around the section labels, and sends a PlotChangeEvent to
all registered listeners. If stroke is null, no outlines will be draw.

To control the shadow paint for the section labels:

å public Paint getLabelShadowPaint();

Returns the paint used to draw the shadows beneath the section label boxes. If this is null, no
shadow is drawn. The default value is DEFAULT LABEL SHADOW PAINT (Color(151, 151, 151, 128)).

å public void setLabelShadowPaint(Paint paint);

Sets the paint used to draw the shadows beneath the section label boxes, and sends a PlotChangeEvent

to all registered listeners. If paint is null, no shadow will be drawn.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 350

To control the padding for the section labels:

å public RectangleInsets getLabelPadding(); [1.0.7]

Returns the padding (never null for the section labels. This is the whitespace around the text
and inside the outline.

å public void setLabelPadding(RectangleInsets padding); [1.0.7]

Sets the padding for the section labels and sends a PlotChangeEvent to all registered listeners.
If padding is null, this method throws an IllegalArgumentException.

The following methods allow you to plug in an alternative pie label distributor:

å public AbstractPieLabelDistributor getLabelDistributor(); [1.0.6]

Returns the object (never null) responsible for distributing the section labels to avoid overlap-
ping.

å public void setLabelDistributor(AbstractPieLabelDistributor distributor); [1.0.6]

Sets the object responsible for distributing the section labels and sends a PlotChangeEvent to all
registered listeners. If distributor is null, this method throws an IllegalArgumentException.

33.27.12 Simple Label Positioning

A new “simple” labelling option has been introduced in JFreeChart 1.0.7, where the labels are
drawn roughly in the center of each pie section. No attempt is made to avoid overlapping labels in
the case that several small pie sections are displayed alongside each other, so use this option only
for cases where that is not a concern.

å public boolean getSimpleLabels(); [1.0.7]

Returns the flag that controls whether the pie plot shows section labels in the “simple” format.
The default value is false.

å public void setSimpleLabels(boolean simple); [1.0.7]

Sets the flag that controls whether the pie plot shows section labels in the “simple” format,
and sends a PlotChangeEvent to all registered listeners.

The position of the simple labels is controlled with an offset attribute:

å public RectangleInsets getSimpleLabelOffset(); [1.0.7]

Returns the insets used to calculate the simple label anchor points relative to the pie plot’s
bounding rectangle. The default value is RectangleInsets(UnitType.RELATIVE, 0.18, 0.18, 0.18,

0.18).

å public void setSimpleLabelOffset(RectangleInsets offset); [1.0.7]

Sets the insets used to calculate the simple label anchor points relative to the pie plot’s bounding
rectangle, and sends a PlotChangeEvent to all registered listeners.

33.27.13 Label Links

With regular section labels, a linking line is drawn to connect the pie section with its corresponding
section label. To control whether or not these linking lines are drawn:

å public boolean getLabelLinksVisible();

Returns the flag that controls whether or not the section label linking lines are visible. The
default value is true.

å public void setLabelLinksVisible(boolean visible);

Sets the flag that controls whether or not the section label linking lines are visible, and sends
a PlotChangeEvent to all registered listeners.

To control the colour of the linking lines:

å public Paint getLabelLinkPaint();

Returns the label link paint (never null). The default value is Color.black.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 351

å public void setLabelLinkPaint(Paint paint);

Sets the Paint used for the lines connecting the pie sections to their corresponding labels and
sends a PlotChangeEvent to all registered listeners. If paint is null, this method throws an
IllegalArgumentException.

To control the line style for the linking lines:

å public Stroke getLabelLinkStroke();

Returns the stroke used to draw the label linking lines (never null). The default value is
BasicStroke(0.5f).

å public void setLabelLinkStroke(Stroke stroke);

Sets the Stroke used for the lines connecting the pie sections to their corresponding labels and
sends a PlotChangeEvent to all registered listeners. If stroke is null, this method throws an
IllegalArgumentException.

The overall space allocated to the section labels and their linking lines is configurable using the
following methods:

å public double getLabelGap();

Returns the gap between the edge of the pie and the label areas at the left and right side of
the pie, as a percentage of the overall plot width. The default value is 0.025 (two-and-a-half
percent).

å public void setLabelGap(double gap);

Sets the label gap and sends a PlotChangeEvent to all registered listeners.

å public double getMaximumLabelWidth();

Returns the maximum label width as a percentage of the plot width. The default value is 0.14

(fourteen percent).

å public void setMaximumLabelWidth(double width);

Sets the maximum label width (as a percentage of the plot width) and sends a PlotChangeEvent

to all registered listeners.

The label linking line has a bend or “elbow” at a point slightly outside of the pie chart. The
distance of the point from the edge of the pie chart is expressed as a percentage of the pie radius,
and is referred to as the label link margin:

å public double getLabelLinkMargin();

Returns the label link margin, expressed as a percentage of the radius of the pie chart. The
default value is 0.025 (two-and-a-half percent).

å public void setLabelLinkMargin(double margin);

Sets the label link margin, and sends a PlotChangeEvent to all registered listeners.

33.27.14 Legend Items

The legend for a pie chart is recreated each time the plot is drawn. The JFreeChart class will call
the getLegendItems() method to create a collection of items for display in the legend. The methods
below provide various configuration options for the generated legend items.

The text for each legend item is created by a label generator that can be modified:

å public PieSectionLabelGenerator getLegendLabelGenerator();

Returns the generator that derives the labels for the items in the legend (never null). The
default value is a default instance of StandardPieSectionLabelGenerator.

å public void setLegendLabelGenerator(PieSectionLabelGenerator generator);

Sets the generator that derives the labels for the items in the legend and sends a PlotChangeEvent

to all registered listeners. If generator is null, this method throws an IllegalArgumentException.

The shape displayed for each legend item is controlled via the following methods:

å public Shape getLegendItemShape();

Returns the shape displayed with each legend item (never null). The default shape is a circle
with radius 4.0 (in Java2D units).

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 352

å public void setLegendItemShape(Shape shape);

Sets the shape to be displayed with each legend item and sends a PlotChangeEvent to all regis-
tered listeners. If shape is null, this method throws an IllegalArgumentException.

A generator can be used to create the tool tip text for each item in the legend:
å public PieSectionLabelGenerator getLegendLabelToolTipGenerator();

Returns the generator that creates the tool tips for each item in the legend. The default value
is null.

å public void setLegendLabelToolTipGenerator(PieSectionLabelGenerator generator);

Sets the generator that creates the tool tips for each item in the legend and sends a PlotChangeEvent

to all registered listeners. If generator is null, no tool tips will be displayed for the legend items.

Similarly, a generator is used to create URLs for each item in the legend (for use when creating
HTML image maps):

å public PieURLGenerator getLegendLabelURLGenerator(); [1.0.4]

Returns the generator that creates the URL for each item in the legend. These are only used
when creating HTML image maps. The default value is null.

å public void setLegendLabelURLGenerator(PieURLGenerator generator); [1.0.4]

Sets the generator that creates the URL for each item in the legend and sends a PlotChangeEvent

to all registered listeners. If generator is null, no URLs will be generated.

33.27.15 Tool Tips

If you are displaying your pie chart in a ChartPanel, or writing and you want to customise the
tooltip text, you can register your own tool tip generator with the plot:

å public PieToolTipGenerator getToolTipGenerator();

Returns the tool tip generator for the plot. The default value is null.3

å public void setToolTipGenerator(PieToolTipGenerator generator);

Registers a tool tip generator with the pie plot and sends a PlotChangeEvent to all registered
listeners. You can set this to null if you do not require tooltips.

33.27.16 URLs

If you create an HTML image map for a pie chart, it is possible to assign a URL to each pie section
in the chart:

å public PieURLGenerator getURLGenerator();

Returns the current URL generator (possibly null) for the plot.

å public void setURLGenerator(PieURLGenerator generator);

Sets the URL generator for the plot and sends a PlotChangeEvent to all registered listeners.

33.27.17 Handling for Null and Zero Values

A couple of flags in the PiePlot class control how zero and null values in the dataset are treated by
the plot:

å public boolean getIgnoreNullValues();

The default value is false.

å public void setIgnoreNullValues(boolean flag);

Sets the flag that controls whether or not null values in the dataset are ignored, then sends a
PlotChangeEvent to all registered listeners.

å public boolean getIgnoreZeroValues();

The default value is false.

å public void setIgnoreZeroValues(boolean flag);

Sets the flag that controls whether or not zero values in the dataset are ignored, then sends a
PlotChangeEvent to all registered listeners.

3Although if you use the ChartFactory class to create a pie chart, it may install a tool tip generator for you.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 353

33.27.18 Draw Method

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D area, Point2D anchor,

PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly.

33.27.19 Other Methods

å protected Comparable getSectionKey(int section); [1.0.3]

Returns the key for the specified section.

An index can be assigned to a PiePlot—this is used by the MultiplePiePlot class as a way of identify-
ing subplots, and the index is picked up the StandardPieURLGenerator class when generating URLs
for HTML image maps:

å public int getPieIndex();

Returns the index that has been assigned to the plot.

å public void setPieIndex(int index);

Sets the index for the plot. This method generates no notification event.

As a workaround for JRE bug 4836495, a minimum arc angle is maintained by the plot—pie segments
with an angle less than this value are not drawn:

å public double getMinimumArcAngleToDraw();

Returns the minimum angle for drawing the arc segment for a pie section. The default value
is 0.00001.

å public void setMinimumArcAngleToDraw(double angle);

Sets the minimum angle for drawing a pie segment. Any segment with an angle less than this
value will not be drawn. This is a workaround for a JRE bug:

• see http://bugs.sun.com/bugdatabase/view bug.do?bug id=4836495

33.27.20 Notes

Some points to note:

• chapter 5 provides a general overview of the pie chart support in JFreeChart;

• there are several methods in the ChartFactory class that will construct a default pie chart for
you;

• the DatasetUtilities class has methods for creating a PieDataset from a CategoryDataset;

• the PieChartDemo1 class in the org.jfree.chart.demo package provides a simple pie chart
demonstration (plus, there are more demos included in the JFreeChart demo collection).

• the default section label format changed between version 1.0.1 and 1.0.2 of JFreeChart—in
later versions, only the section key (and not the value) is displayed;

• some label layout bug fixes included from version 1.0.8 onwards have resulted in the chart
dimensions changing—you may need to adjust your code for this.

See Also
PieDataset, PieSectionLabelGenerator, PieToolTipGenerator, Plot.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 354

33.28 PiePlot3D

33.28.1 Overview

An extension of the PiePlot class that draws pie charts with a 3D effect—see figure 33.15 for an
example. The ChartFactory class has a createPieChart3D() method that you can use to create a
ready-made JFreeChart instance containing a PiePlot3D.

Pie Chart 3D Demo 1

Java Visual Basic C / C + + PHP Perl

Visual Basic

Java

C / C + +

PHP

Perl

Visual Basic

Java

C / C + +

PHP

Perl

Visual Basic

Java

C / C + +

PHP

Perl

Visual Basic

Java

C / C + +

PHP

Perl

Figure 33.15: A pie chart with 3D effect (see PieChart3DDemo1.java)

33.28.2 Limitations

To avoid over-selling this plot type, let’s point out that it has some limitations:

• the 3D effect is drawn using plain 2D graphics primitives—there is no 3D engine performing
a perspective transformation, no ability to control the viewing angle, etc. The effect looks
fine when the plot is wider than it is tall, but resizing the chart can result in the perspective
looking wrong;

• the plot does not support the “exploded” sections that the regular PiePlot class supports;

For now, we suggest that you avoid this class unless you can live with its limitations. In the future,
we hope to reimplement this class using a proper 3D graphics engine.

33.28.3 Constructor

To create a new instance:

å public PiePlot3D();

Equivalent to PiePlot3D(null)—see the next constructor.

å public PiePlot3D(PieDataset dataset);

Creates a new plot with the specified dataset (null is permitted).

33.28.4 General Attributes

This class inherits most of its attributes from the PiePlot class.

The depth factor specifies the size of the 3D effect as a percentage of the height of the plot area:

å public double getDepthFactor();

Returns the depth factor for the 3D effect, as a percentage of the height of the pie plot. The
default value is 0.12 (twelve percent).

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 355

å public void setDepthFactor(double factor);

Sets the depth factor (as a percentage of the height of the pie plot) and sends a PlotChangeEvent

to all registered listeners.

A new flag has been introduced in JFreeChart 1.0.7 to control whether or not the sides of the
pie plot are drawn in a darker colour—this only works when the sectionPaint is an instance of
java.awt.Color:

å public boolean getDarkerSides(); [1.0.7]

Returns the flag that controls whether or not the sides of the pie plot are drawn using a darker
colour. The default is false (to preserve the existing behaviour).

å public void setDarkerSides(boolean darker); [1.0.7]

Sets the flag that controls whether or not the sides of the pie plot are drawn using a darker
colour, and sends a PlotChangeEvent to all registered listeners.

33.28.5 Other Methods

The other methods are intended for use by JFreeChart—you won’t normally call these methods
directly:

å public String getPlotType();

Returns a localised string describing the plot type. This can be used for display to end-users
(for example, in the property editors).

The JFreeChart class will call the following method to draw the plot:

å public void draw(...);

Draws the plot within a specified area.

å protected void drawSide(...);

Draws the sides for one segment.

33.28.6 Equals, Cloning and Serialization

This class overrides the equals() method:4

å public boolean equals(Object obj);

Tests this plot for equality with an arbitrary object. If obj is null, this method returns false.

Instances of this class are Cloneable and Serializable.

33.28.7 Notes

Some points to note:

• the translucent appearance of the sample chart is achieved by setting the plot’s foreground
alpha to 0.5f—see the setForegroundAlpha() method in the Plot class;

• some demos (PieChart3DDemo1-3.java) are included in the JFreeChart demo collection.

• additional information is provided in section 5.8;

See Also
PiePlot.
4At least, as of version 1.0.5 it does!

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 356

33.29 PiePlotState

33.29.1 Overview

A class that records temporary state information during the drawing of a pie chart. This allows one
instance of a PiePlot to be drawn to multiple targets simultaneously (for example, a chart might
be drawn on the screen at the same time it is being saved to a file).

33.30 Plot

33.30.1 Overview

An abstract base class that controls the visual representation of data in a chart. The JFreeChart

class maintains a reference to a Plot, and will provide it with an area in which to draw itself (after
allocating space for the chart titles and legend).

A range of subclasses are used to create different types of charts:

• CategoryPlot – for bar charts and other plots where one axis displays categories and the other
axis displays values;

• MeterPlot – dials, thermometers and other plots that display a single value;

• PiePlot – for pie charts;

• XYPlot – for line charts, scatter plots, time series charts and other plots where both axes
display numerical (or date) values;

Figure 33.16 illustrates the plot class hierarchy.

Plot
#dataset

PiePlot
+getDataset()

MeterPlot
+getMeterDataset()

CategoryPlot
+getDataset()
+getDomainAxis()
+getRangeAxis()

XYPlot
+getDataset()
+getDomainAxis()
+getRangeAxis()

ThermometerPlot

CombinedDomainCategoryPlot CombinedRangeCategoryPlot

OverlaidCategoryPlot OverlaidXYPlot

CombinedDomainXYPlot CombinedRangeXYPlot

Figure 33.16: Plot classes

When a chart is drawn, the JFreeChart class first draws the title (or titles) and legend. Next,
the plot is given an area (the plot area) into which it must draw a representation of its dataset.
This function is implemented in the draw() method, each subclass of Plot takes a slightly different
approach.

33.30.2 Constructors

This class is abstract, so the constructor is protected. You cannot create an instance of this class
directly, you must use a subclass.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 357

Attribute: Description:

parent The parent plot (possibly null).
datasetGroup The dataset group (not used).
insets The amount of space to leave around the outside of the plot.
outlineStroke The Stroke used to draw an outline around the plot area.
outlinePaint The Paint used to draw an outline around the plot area.
backgroundPaint The Paint used to draw the background of the plot area.
backgroundImage An image that is displayed in the background of the plot

(can be null).
backgroundImageAlignment The image alignment.
backgroundAlpha The alpha transparency value used when coloring the plot’s

background, and also when drawing the background image
(if there is one).

foregroundAlpha The alpha transparency used to draw items in the plot’s
foreground.

noDataMessage A string that is displayed by some plots when there is no
data to display.

noDataMessageFont The Font used to display the “no data” message.
noDataMessagePaint The Paint used to display the “no data” message.
drawingSupplier The drawing supplier (provides default colors and line

strokes).

Table 33.7: Attributes for the Plot class

33.30.3 Attributes

This class maintains the attributes listed in table 33.7.
All subclasses will inherit these core attributes.

33.30.4 Usage

To customise the appearance of a plot, you first obtain a reference to the plot as follows:
Plot plot = chart.getPlot();

With this reference, you can change the appearance of the plot by modifying it’s attributes. For
example:

plot.setBackgroundPaint(Color.lightGray);

plot.setNoDataMessage("There is no data.");

Very often, you will find it necessary to cast the Plot object to a specific subclass so that you can
access attributes that are defined by the subclass. Refer to the usage notes for each subclass for
more details.

33.30.5 The Plot Type

The following method returns a string indicating the plot type:

å public abstract String getPlotType();

Returns a string indicating the plot type. This method must never return null. The string can
be localised (that is, a different string may be returned for each locale).

The method is abstract, and subclasses are required to implement it.

33.30.6 The Plot Border

An border is drawn around the outside of most plot types. You can change the appearance of the
border by modifying the Paint and Stroke used to draw it (or set either to null to hide the border
completely).

å public Paint getOutlinePaint();

Returns the paint used to draw the plot outline. The default value is Color.GRAY.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 358

å public void setOutlinePaint(Paint paint);

Sets the paint used to draw the plot outline and sends a PlotChangeEvent to all registered
listeners. If you set this to null, no outline will be drawn.

å public Stroke getOutlineStroke();

Returns the stroke used to draw the plot outline. The default value is BasicStroke(0.5f).

å public void setOutlineStroke(Stroke stroke);

Sets the stroke used to draw the plot outline and sends a PlotChangeEvent to all registered
listeners. If you set this to null, no outline will be drawn.

For the CategoryPlot and XYPlot classes, the outline is drawn around all four sides of the data area.
Note that each of the plot’s axes may also draw a line along the edge of the data area—see the
axisLineVisible attribute defined in the Axis class.

33.30.7 The Plot Background

The background area for a plot is the area inside the plot’s axes (if the plot has axes)—it does not
include the chart titles, the legend or the axis labels.

The plot’s background is filled with the backgroundPaint:

å public Paint getBackgroundPaint();

Returns the paint used to fill the plot’s background, or null if the plot has a transparent
background. The default value is Color.WHITE.

å public void setBackgroundPaint(Paint paint);

Sets the background paint for the plot and sends a PlotChangeEvent to all registered listeners.
You can set this attribute to null for a transparent plot background (in this case, the chart’s
background is visible—see the JFreeChart class for more information).

The alpha transparency for the plot’s background is configurable:

å public float getBackgroundAlpha();

Returns the alpha transparency for the plot’s background. The default value is 1.0f (opaque).

å public void setBackgroundAlpha(float alpha);

Sets the alpha transparency for the plot’s background and sends a PlotChangeEvent to all regis-
tered listeners. The range of values permitted is 0.0f (fully transparent) through to 1.0f (fully
opaque). If the background is at all transparent, you will be able to see the chart’s background
showing through.

You can also add an image to the background area:

å public Image getBackgroundImage();

Returns the background image for the plot. The default value is null.

å public void setBackgroundImage(Image image);

Sets the background image for the plot5 and sends a PlotChangeEvent to all registered listeners.
If image is null, no background image will be drawn.

A number of options are provided for aligning the background image:

å public int getBackgroundImageAlignment();

Returns the alignment type for the background image. The default values is Align.FIT (which
means the image is stretched to fit the available space).

To modify the alignment, use the following method:

å public void setBackgroundImageAlignment(int alignment);

Sets the alignment for the background image and sends a PlotChangeEvent to all registered
listeners. For the alignment argument, use one of the predefined constants in the Align class from
the JCommon class library: CENTER, TOP, BOTTOM, LEFT, RIGHT, TOP LEFT, TOP RIGHT, BOTTOM LEFT,
BOTTOM RIGHT, FIT HORIZONTAL, FIT VERTICAL and FIT (stretches to fill the entire area).

5Take care that the image supplied is actually loaded into memory. The createImage() method in Java’s Toolkit
class will load images asynchronously, which can result in a chart being drawn before the background image is
available—see section 20.4 for more information.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 359

The background image can be drawn using an alpha-transparency, you can set this as follows:

å public float getBackgroundImageAlpha();

Returns the alpha transparency for drawing the background image.

å public void setBackgroundImageAlpha(float alpha);

Sets the alpha transparency for drawing the background image, and sends a PlotChangeEvent

to all registered listeners.

There are similar methods in the JFreeChart class that allow you to control the background area
for the chart (which encompasses the entire chart area).

33.30.8 The Plot Insets

The space around the outside of the plot is controlled by the plot insets:

å public RectangleInsets getInsets();

Returns the insets for the plot (never null). The default value is RectangleInsets(4.0, 8.0,

4.0, 8.0).

å public void setInsets(RectangleInsets insets);

Equivalent to setInsets(insets, true)—see next method.

å public void setInsets(RectangleInsets insets, boolean notify);

Sets the insets for the plot and, if notify is true, sends a PlotChangeEvent to all registered
listeners. If insets is null, this method throws an IllegalArgumentException.

33.30.9 The Drawing Supplier

The “drawing supplier” is a plug-in object responsible for providing a never-ending sequence of
Paint and Stroke objects for the plot and its renderers. A default instance is installed for every
plot automatically, but you can provide a custom supplier if you need to:

å public DrawingSupplier getDrawingSupplier();

Returns the drawing supplier for the plot (or the plot’s parent if this is a subplot).

å public void setDrawingSupplier(DrawingSupplier supplier);

Sets the drawing supplier and sends a PlotChangeEvent to all registered listeners. A null supplier
is not permitted.

In cases where there is a hierarchy of plots, the intention is that the drawing supplier of the root
plot is shared by all the subplots—this ensures that colors are not duplicated by subplots.

33.30.10 The Parent Plot

Some plot classes (such as the CombinedDomainXYPlot class) manage a number of child plots. A child
plot can access its parent plot via the following method:

å public Plot getParent();

Returns the parent plot, or null if this plot has no parent.

å public void setParent(Plot parent);

Sets the parent plot for this plot. This method is intended for use by JFreeChart, you shouldn’t
need to call it directly. In fact, setting the parent plot incorrectly will corrupt your chart.

If a plot has a parent, then it is sometimes referred to as a subplot. The following method can be
used to determine if a plot is a subplot:

å public boolean isSubplot();

Returns true if this plot is a subplot.

To determine the plot at the root of a hierarchy of plots, use the following method:

å public Plot getRootPlot()

Returns this plot if there is no parent plot, otherwise returns the root plot for this plot’s parent.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 360

33.30.11 The Dataset Group

The datasetGroup attribute is not currently used. It was originally intended to provide a single
object on which to synchronise access to multiple datasets, for those plots that use more than one
dataset. However, this has never been implemented.

å public DatasetGroup getDatasetGroup();

Returns the dataset group for the plot. This is not used.

å protected void setDatasetGroup(DatasetGroup group);

Sets the dataset group for the plot. This is not used.

33.30.12 The “No Data” Message”

Some plots will display a message when no data is available for plotting. The message itself is a
simple string, controlled via the following methods:

å public String getNoDataMessage();

Returns the string displayed by some plots when no data is available. The default value is null.

å public void setNoDataMessage(String message);

Sets the string displayed by some plots when no data is available and sends a PlotChangeEvent

to all registered listeners.

To control the font:

å public Font getNoDataMessageFont();

Returns the font used to display the “no data” message (never null). The default value is
Font("SansSerif", Font.PLAIN, 12).

å public void setNoDataMessageFont(Font font);

Sets the font used to display the “no data” message and sends a PlotChangeEvent to all registered
listeners. If font is null, this method throws an IllegalArgumentException.

To control the paint:

å public Paint getNoDataMessagePaint();

Returns the paint used to display the “no data” message (never null). The default value is
Color.BLACK.

å public void setNoDataMessagePaint(Paint paint);

Sets the paint used to display the “no data” message and sends a PlotChangeEvent to all regis-
tered listeners. If paint is null, this method throws an IllegalArgumentException.

33.30.13 Legend Items

The following method returns a new collection of legend items for the plot:

å public LegendItemCollection getLegendItems();

This implementation returns null—subclasses should override this method.

33.30.14 Other Methods

The JFreeChart class expects every plot to implement the draw() method, and uses this to draw
the plot in a specific area via a Graphics2D instance. You won’t normally need to call this method
yourself:

å public abstract void draw(Graphics2D g2, Rectangle2D area,

Point2D anchor, PlotState parentState, PlotRenderingInfo info);

Draws the chart using the supplied Graphics2D. The plot should be drawn within the plotArea.

If you wish to record details of the items drawn within the plot, you need to supply a
ChartRenderingInfo object. Once the drawing is complete, this object will contain a lot of
information about the plot. If you don’t want this information, pass in null.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 361

The following method (only used by plots that have axes) receives notification of axis changes:

å public void axisChanged(AxisChangeEvent event);

Fires a PlotChangeEvent.

The following method receives notification whenever a Marker managed by the plot is modified:

å public void markerChanged(MarkerChangeEvent event); [1.0.3]

Called whenever a marker managed by this plot is changed. In response, this method fires a
PlotChangeEvent which, by default, will be received by the chart that owns this plot.

33.30.15 Notes

Refer to specific subclasses for information about setting the colors, shapes and line styles for data
drawn by the plot.

33.31 PlotOrientation

33.31.1 Overview

Used to represent the orientation of a plot (in particular, the CategoryPlot and XYPlot classes).
There are two values, as listed in table 33.8.

Class: Description:

PlotOrientation.HORIZONTAL A “horizontal” orientation.
PlotOrientation.VERTICAL A “vertical” orientation.

Table 33.8: Plot orientation values

The orientation corresponds to the “direction” of the range axis. So, for example, a bar chart with
a vertical orientation will display vertical bars, while a bar chart with a horizontal orientation will
display horizontal bars.

33.31.2 Notes

Some points to note:

• for interesting effects, in addition to changing the orientation of a chart you can:

– change the location of the chart’s axes—see the setAxisLocation() methods in the plot
classes;

– invert the scale of the axes—see the setInverted(boolean) method in the axis classes.

• two demos (PlotOrientationDemo1.java and PlotOrientationDemo2.java) are included in the
JFreeChart demo collection.

33.32 PlotRenderingInfo

33.32.1 Overview

This class is used to record information about the individual elements in a single rendering of a
plot. Typically, you will obtain one of these from the ChartRenderingInfo class—it is not a class
that you are likely to need to instantiate yourself.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 362

33.32.2 Constructor

To create a new instance:

å public PlotRenderingInfo(ChartRenderingInfo owner);

Creates a new instance belonging to the specified ChartRenderingInfo instance. You can supply
a null owner (JFreeChart does this internally when a temporary instance is required).

33.32.3 Methods

To find the owner of this instance:

å public ChartRenderingInfo getOwner();

Returns the ChartRenderingInfo instance that owns this PlotRenderingInfo instance. This may
be null.

To access the plot area:

å public Rectangle2D getPlotArea();

Returns the area (in Java2D space) in which the plot is drawn.

å public void setPlotArea(Rectangle2D area);

Sets the area (in Java2D space) into which the plot has been drawn. This method is used
internally by JFreeChart, you shouldn’t need to call it yourself (unless you are developing your
own plot class).

To access the data area:

å public Rectangle2D getDataArea();

Returns the area (in Java2D space) in which the data is drawn (that is, the area “inside” the
axes).

å public void setDataArea(Rectangle2D area);

Sets the area (in Java2D space) into which the data items are drawn. This method is used
internally by JFreeChart, you shouldn’t need to call it yourself (unless you are developing your
own plot class).

33.32.4 Subplot Info

Some plots (such as CombinedDomainXYPlot) manage a number of subplots, and there will be a
PlotRenderingInfo instance for each of these subplots. The following methods provide access to
these instances:

å public int getSubplotCount();

Returns the number of subplots (possibly zero).

å public void addSubplotInfo(PlotRenderingInfo info);

Adds a PlotRenderingInfo instance for a subplot.

å public PlotRenderingInfo getSubplotInfo(int index);

Returns a PlotRenderingInfo instance for the specified subplot.

å public int getSubplotIndex(Point2D source);

Returns the index of the subplot (if any) at the specified location in Java2D space. If source

is null, this method throws an IllegalArgumentException.

33.32.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

å public Object clone() throws CloneNotSupportedException;

Returns a clone of this instance. This is a deep clone except for the owner field, which is simply
copied as a reference.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 363

33.33 PlotState

33.33.1 Overview

A class that records temporary state information during the drawing of a chart. This allows a single
chart instance to be drawn to multiple targets simultaneously (for example, a chart might be drawn
on the screen at the same time it is being saved to a file).

33.34 PlotUtilities

33.34.1 Overview

A class containing static utility methods related to plots. This class was first introduced in
JFreeChart version 1.0.7.

33.34.2 Methods

To determine if a plot contains no data:

å public static boolean isEmptyOrNull(XYPlot plot); [1.0.7]

Returns true if the datasets for the specified plot are either empty or null, and false otherwise.

See Also:
DatasetUtilities

33.35 PolarPlot

33.35.1 Overview

A plot that is used to display data from an XYDataset using polar coordinates—see figure 33.17 for
an example.

Figure 33.17: A polar chart

The items in the plot are drawn by a PolarItemRenderer.

33.35.2 Usage

A demo application (PolarChartDemo1.java) is included in the JFreeChart demo collection.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 364

33.35.3 Constructors

To create a new plot:

å public PolarPlot();

Creates a new plot with no dataset, axis or renderer. If you use this constructor, you will need
to supply a plot, dataset and renderer separately.

å public PolarPlot(XYDataset dataset, ValueAxis radiusAxis,

PolarItemRenderer renderer);

Creates a new polar plot with the specified dataset, axis and renderer. The x-values in the
dataset should be in the range 0-360 degrees. The axis is typically an instance of NumberAxis

and the renderer is typically an instance of DefaultPolarItemRenderer.

Note that a convenience method (createPolarChart()) for creating charts based on this plot is
provided in the ChartFactory class.

33.35.4 Axis, Dataset and Renderer

This plot supports a single axis (the range or y-axis), dataset and renderer. To access the axis:

å public ValueAxis getAxis();

Returns the axis that provides the value scale for the plot.

å public void setAxis(ValueAxis axis);

Sets the axis that provides the value scale for the plot and sends a PlotChangeEvent to all
registered listeners. The axis will extend from the center of the plot towards the right hand
side of the chart.

To access the dataset:

å public XYDataset getDataset();

Returns the dataset for the plot (possibly null). Note that this plot only allows for a single
dataset, unlike some other plots in JFreeChart.

å public void setDataset(XYDataset dataset);

Sets the dataset for the plot (null is permitted). This method sends a DatasetChangeEvent to
the plot, which in turn generates a PlotChangeEvent for all registered listeners.

To access the renderer:

å public PolarItemRenderer getRenderer();

Returns the current renderer. If the renderer is null, no data will be displayed.

å public void setRenderer(PolarItemRenderer renderer);

Sets the renderer and sends a PlotChangeEvent to all registered listeners. If you set the renderer
to null, no data will be displayed.

33.35.5 Angle Gridlines

The “angle gridlines” are the (optional) lines radiating out from the center of the chart. These are
hard-coded (at present) to appear at 45 degree intervals. You can control whether or not the labels
for the gridlines are visible with the following methods:

å public boolean isAngleLabelsVisible();

Returns the flag that controls whether or not the angle labels are visible.

å public void setAngleLabelsVisible(boolean visible);

Sets the flag that controls whether or not the angle labels are visible and sends a PlotChangeEvent

to all registered listeners. If the new flag value is the same as the old flag value, this method
does nothing.

The font used to display the labels:

å public Font getAngleLabelFont();

Returns the font for the angle labels (never null).

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 365

å public void setAngleLabelFont(Font font);

Sets the font for the angle labels and sends a PlotChangeEvent to all registered listeners. An
exception is thrown if font is null.

The (foreground) paint used to display the labels:

å public Paint getAngleLabelPaint();

Returns the paint for the angle labels (never null).

å public void setAngleLabelPaint(Paint paint);

Sets the paint for the angle labels and sends a PlotChangeEvent to all registered listeners. An
exception is thrown if paint is null.

To control whether or not the angle gridlines are displayed:

å public boolean isAngleGridlinesVisible();

Returns the flag that controls whether or not the angle gridlines are displayed.

å public void setAngleGridlinesVisible(boolean visible);

Sets the flag that controls whether or not the angle gridlines are visible and sends a PlotChangeEvent

to all registered listeners. If the new flag value is the same as the old flag value, this method
does nothing.

The stroke and paint used for the gridlines is controlled with the following methods:

å public Stroke getAngleGridlineStroke();

Returns the stroke used to display the angle gridlines (never null).

å public void setAngleGridlineStroke(Stroke stroke);

Sets the stroke used to display the angle gridlines and sends a PlotChangeEvent to all registered
listeners. An exception is thrown if stroke is null.

å public Paint getAngleGridlinePaint();

Returns the paint used to display the angle gridlines (never null).

å public void setAngleGridlinePaint(Paint paint);

Sets the paint used to display the angle gridlines and sends a PlotChangeEvent to all registered
listeners. An exception is thrown if paint is null.

33.35.6 Radius Gridlines

The “radius gridlines” are drawn as circles at a regular interval that is controlled by the size of the
tick unit on the plot’s axis.

å public boolean isRadiusGridlinesVisible();

Returns the flag that controls whether or not the radius gridlines are drawn.

å public void setRadiusGridlinesVisible(boolean visible);

Sets the flag that controls whether or not the radius gridlines are visible and sends a PlotChangeEvent

to all registered listeners. If the new flag value is the same as the old flag value, this method
does nothing.

å public Stroke getRadiusGridlineStroke();

Returns the radius gridline stroke (never null).

å public void setRadiusGridlineStroke(Stroke stroke);

Sets the stroke used to draw the radius gridlines and sends a PlotChangeEvent to all registered
listeners. An exception is thrown if stroke is null.

å public Paint getRadiusGridlinePaint();

Returns the radius gridline paint (never null).

å public void setRadiusGridlinePaint(Paint paint);

Sets the paint used to draw the radius gridlines and sends a PlotChangeEvent to all registered
listeners. An exception is thrown if paint is null.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 366

33.35.7 Corner Text Items

This plot provides an option to add one or more short text items (called “corner text items”) to
the lower right corner of the plot:

å public void addCornerTextItem(String text);

Adds a small text item to be displayed at the bottom right corner of the plot and sends a
PlotChangeEvent to all registered listeners. An exception is thrown if text is null.

å public void removeCornerTextItem(String text);

Removes the specified item from the list of corner text items (if the item is not in the list, this
method does nothing) and sends a PlotChangeEvent to all registered listeners.

å public void clearCornerTextItems();

Removes all corner text items from the list and sends a PlotChangeEvent to all registered listen-
ers.

33.35.8 Drawing Methods

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly. Likewise for these other drawing
methods:

å protected void drawCornerTextItems(Graphics2D g2, Rectangle2D area);

Draws the corner text items (in the lower right corner of the plot).

å protected AxisState drawAxis(Graphics2D g2, Rectangle2D plotArea, Rectangle2D dataArea);

Draws the radial axis. This extends from the center of the plot out towards the right hand side
of the chart.

å protected void render(Graphics2D g2, Rectangle2D dataArea, PlotRenderingInfo info);

Draws the data values on the chart using the current renderer.

å protected void drawGridlines(Graphics2D g2, Rectangle2D dataArea, List angularTicks, List

radialTicks);

Draws the gridlines for the chart.

33.35.9 Zooming Methods

This plot supports zooming for the range axis only. Most of the methods documented below belong
to the Zoomable interface, but because the plot has only one axis, some of the methods do nothing.
The objective of these methods is to support the zooming mechanism provided by the ChartPanel

class.

å public PlotOrientation getOrientation();

Returns PlotOrientation.HORIZONTAL always. This method is required by the Zoomable interface,
but not used by this class.

å public boolean isDomainZoomable();

Returns false, because there is no domain axis to zoom.

å public boolean isRangeZoomable();

Returns true to indicate that the range axis is zoomable.

å public void zoom(double percent);

Zooms in or out by the specified amount. Values less than 1.0 reduce the axis range (“zoom
in”) and values greater than 1.0 expand the axis range (“zoom out”).

å public void zoomRangeAxes(double factor, PlotRenderingInfo state, Point2D source);

Zooms the range axis.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 367

å public void zoomRangeAxes(double lowerPercent, double upperPercent,

PlotRenderingInfo state, Point2D source);

Zooms the range axis.

å public void zoomDomainAxes(double factor, PlotRenderingInfo state, Point2D source);

This method does nothing, since the plot has no domain axes.

å public void zoomDomainAxes(double lowerPercent, double upperPercent,

PlotRenderingInfo state, Point2D source);

This method does nothing, since the plot has no domain axes.

33.35.10 Other Methods

The remaining methods in this class are:

å public String getPlotType();

Returns a short (localised) string describing the plot type.

å public int getSeriesCount();

A convenience method that returns the number of series in the plot’s dataset (or zero if the
dataset is null).

å public Range getDataRange(ValueAxis axis);

Returns the range of y-values for the specified axis. For this plot (which has only one axis and
one dataset) this is the range of y-values in the plot’s dataset.

å public LegendItemCollection getLegendItems();

Returns the legend items for the plot. This method is called by the chart drawing code, you
won’t normally need to call it yourself. You can override this method to alter the items that
are displayed in the legend.

The plot registers itself with its dataset and receives notification of any changes to the dataset via
the following method:

å public void datasetChanged(DatasetChangeEvent event);

This method is called whenever the plot’s dataset is updated. You won’t normally need to call
this method directly.

Likewise, the plot registers itself with its renderer and receives notification of any changes to the
renderer via the following method:

å public void rendererChanged(RendererChangeEvent event);

This method is called whenever the plot’s renderer is updated. You won’t normally need to
call this method directly.

33.35.11 Equals, Cloning and Serialization

To test a plot for equality with an arbitrary object:

å public boolean equals(Object obj);

Returns true if this plot is equal to obj and false otherwise.

To create a clone of the plot:

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the plot (note that the dataset is not cloned).

This class implements Serializable.

33.35.12 Notes

Some points to note:

• this plot does not support multiple axes, datasets or renderers;

• a demo (PolarChartDemo1.java) is included in the JFreeChart demo collection.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 368

33.36 RainbowPalette

33.36.1 Overview

A rainbow palette (extends ColorPalette) used by the ContourPlot class. This class is deprecated
as of version 1.0.4.

33.37 RingPlot

33.37.1 Overview

A ring plot is an adaptation of a pie plot, where a hole is left in the middle of the “pie”—see figure
33.18 for an example. This class extends the PiePlot class.

Figure 33.18: A ring chart

33.37.2 Constructors

The default constructor:

å public RingPlot();

Creates a new plot with null for the dataset.

To create a new plot with a given dataset:

å public RingPlot(PieDataset dataset);

Creates a new plot with the specified dataset (null is permitted).

33.37.3 Section Depth

The depth (or thickness) of the ring is configurable with the following methods:

å public double getSectionDepth(); [1.0.3]

Returns the section depth as a percentage of the plot’s radius. The default value is 0.20 (twenty
percent).

å public void setSectionDepth(double sectionDepth); [1.0.3]

Sets the section depth and sends a PlotChangeEvent to all registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 369

33.37.4 Separators

The plot can draw lines to highlight the separation between sections. The separators have a number
of attributes that can be customised:

• visibility – you can display or hide the separators;

• stroke – the line style for the separator lines;

• paint – the color for the separator lines;

• inner extension – the amount by which the separator lines extend into the interior of the plot;

• outer extension – the amount by which the separator lines extend outside the plot.

These attributes are controlled by the following methods:

å public boolean getSeparatorsVisible();

Returns true if the separators between sections are visible, and false otherwise. The default
value is true.

å public void setSeparatorsVisible(boolean visible);

Sets the flag that controls whether or not the separators between sections are visible, and sends
a PlotChangeEvent to all registered listeners.

å public Stroke getSeparatorStroke();

Returns the stroke used to draw the separator lines, if they are visible. This method never
returns null. The default value is BasicStroke(0.5f).

å public void setSeparatorStroke(Stroke stroke);

Sets the stroke used to draw the separator lines (null not permitted) and sends a PlotChangeEvent

to all registered listeners.

å public Paint getSeparatorPaint();

Returns the paint used to draw the separator lines, if they are visible. This method never
returns null. The default value is Color.gray.

å public void setSeparatorPaint(Paint paint);

Sets the paint used to draw the separator lines (null not permitted) and sends a PlotChangeEvent

to all registered listeners.

å public double getInnerSeparatorExtension();

Returns the length of the separator line drawn inside the ring for each section. The value is a
percentage of the ring depth (the default is 0.20).

å public void setInnerSeparatorExtension(double percent);

Sets the length of the inner separator line as a percentage of the ring depth and sends a
PlotChangeEvent to all registered listeners.

å public double getOuterSeparatorExtension();

Returns the length of the outer separator line for each section, as a percentage of the ring
depth. The default value is 0.20 (twenty percent).

å public void setOuterSeparatorExtension(double percent);

Sets the length of the outer separator line as a percentage of the ring depth, and sends a
PlotChangeEvent to all registered listeners.

33.37.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this plot for equality with an arbitrary object. Note that the plot’s dataset is NOT
considered in the equality test.

This class is Cloneable and Serializable.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 370

33.37.6 Notes

Some points to note:

• this plot only supports a single ring. Support for multiple concentric rings would be an
interesting addition to JFreeChart;

• a demo (RingChartDemo1.java) is included in the JFreeChart demo collection.

33.38 SeriesRenderingOrder

33.38.1 Overview

Used to represent the order in which a plot passes the series in a dataset to the renderer. There
are two values, as listed in table 33.9.

Class: Description:

SeriesRenderingOrder.FORWARD Forward.
SeriesRenderingOrder.REVERSE Reverse.

Table 33.9: Series rendering order values

33.38.2 Notes

See the setSeriesRenderingOrder() method in the XYPlot class.

33.39 SpiderWebPlot

33.39.1 Overview

A plot that displays data from a CategoryDataset in a format that resembles a spider web—see
figure 33.19 for an example.

Figure 33.19: A spider web chart (see SpiderWebChartDemo1.java)

33.39.2 Constructors

There are three constructors for this class:

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 371

å public SpiderWebPlot();

Creates a new plot with a null dataset. All attributes are initialised with default values.

å public SpiderWebPlot(CategoryDataset dataset);

Creates a new plot with the given dataset (null is permitted), with each row in the dataset
representing a series.

å public SpiderWebPlot(CategoryDataset dataset, TableOrder extract);

Creates a new plot with the given dataset. The extract argument controls whether rows or
columns in the dataset are represented as “series” for the plot.

33.39.3 Methods

To get a brief description of the plot type:

å public String getPlotType();

Returns a short, localised, string describing the plot type (“Spider Web Plot” in English).

To access the plot’s dataset:

å public CategoryDataset getDataset();

Returns the plot’s dataset, which may be null.

å public void setDataset(CategoryDataset dataset);

Sets the dataset for the plot and sends a PlotChangeEvent to all registered listeners. The dataset
can be set to null.

To control the order in which data items are read from the dataset:

å public TableOrder getDataExtractOrder();

Returns the “order” in which data items are extracted from the dataset. For TableOrder.BY ROW

(the default), each row is considered to be a series. For TableOrder.BY COLUMN, each column in
the dataset is considered to be a series.

å public void setDataExtractOrder(TableOrder order);

Sets the “order” in which data items are extracted from the dataset, and sends a PlotChangeEvent

to all registered listeners. If order is null, this method throws an IllegalArgumentException.

To specify the starting position for the first category:

å public double getStartAngle();

Returns the angle of the first category, in degrees, relative to a radial line extending from
the center of the plot horizontally to the right (that is, 3 o’clock on a clock face), in an anti-
clockwise direction. The default value is 90.0 which draws the first category at the top of the
plot (that is, 12 o’clock).

å public void setStartAngle(double angle);

Sets the angle for the first category, in degrees, and sends a PlotChangeEvent to all registered
listeners.

To specify the direction in which categories are added to the plot:

å public Rotation getDirection();

Returns the direction in which the categories are added to the plot. The default is Rotation.CLOCKWISE.

å public void setDirection(Rotation direction);

Sets the direction in which the categories are added to the plot and sends a PlotChangeEvent to
all registered listeners.

To control the size of the shapes drawn for each data item:

å public double getHeadPercent();

Returns the size of the shapes drawn at each data point. This is a percentage of width and
height of the plot area. The default value is 0.01 (one percent).

å public void setHeadPercent(double percent);

Sets the size of the shapes drawn at each data point and sends a PlotChangeEvent to all registered
listeners. The size is a percentage of the plot area height and width.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 372

To control whether the “web” for each data series is filled or unfilled:

å public boolean isWebFilled();

Returns the flag that controls whether the interior of the polygon defined by the data points
for one series is filled. The default value is true.

å public void setWebFilled(boolean flag);

Sets the flag that controls whether the interior of the polygon defined by the data points for
each series is filled, and sends a PlotChangeEvent to all registered listeners.

å public double getMaxValue();

Returns the maximum value for display on the axes.

å public void setMaxValue(double value);

Sets the maximum value for display on the axes.

å public double getInteriorGap();

Returns a percentage between 0.0 and 0.40 (forty percent) indicating the amount of whitespace
to leave around the plot (some of which is used for the labels). The default value is 0.25.

å public void setInteriorGap(double percent);

Sets the amount of whitespace around the plot as a percentage (in the range 0.0 to 0.40).

To appearance and position of the category labels on the chart can be controlled via the following
methods:

å public Font getLabelFont();

Returns the font used to display category labels (never null). The default is Font("SansSerif",

Font.PLAIN, 10).

å public void setLabelFont(Font font);

Sets the font used to display category labels and sends a PlotChangeEvent to all registered
listeners. An exception is thrown if font is null.

å public Paint getLabelPaint();

Returns the paint used to display category labels (never null). The default is Color.black.

å public void setLabelPaint(Paint paint);

Sets the paint used to display category labels and sends a PlotChangeEvent to all registered
listeners. An exception is thrown if paint is null.

å public double getAxisLabelGap();

Returns the gap between the end of each “radial” axis and the corresponding label, expressed
as a percentage of the axis length. The default value is 0.10 (ten percent).

å public void setAxisLabelGap(double gap);

Sets the gap between the end of each “radial” axis and the corresponding label, expressed as a
percentage of the axis length, and sends a PlotChangeEvent to all registered listeners.

33.39.4 Series Attributes

Paint

The paint used to draw each series is specified on a “per series” basis:

å public Paint getSeriesPaint(int series);

Returns the paint for the specified series. If getSeriesPaint() returns a non-null value, this is
returned. Otherwise, the method checks to see if a specific value has been set for the series, in
which case that is returned. If all else fails, the value returned by getBaseSeriesPaint() is used.

å public void setSeriesPaint(int series, Paint paint);

Sets the paint for the specified series and sends a PlotChangeEvent to all registered listeners. It
is permitted to set this to null.

The base paint is used as the fallback for any series that doesn’t have a paint explicitly defined:

å public Paint getBaseSeriesPaint();

Returns the default series paint (never null).

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 373

å public void setBaseSeriesPaint(Paint paint);

Sets the default series paint and sends a PlotChangeEvent to all registered listeners.

As a convenience, you can override the paint for ALL series, although in typical usage you won’t
need to do this:6

å public Paint getSeriesPaint();

Returns the override paint for all series. The default value is null.

å public void setSeriesPaint(Paint paint);

Sets the override paint for all series and sends a PlotChangeEvent to all registered listeners.

OutlinePaint

The outline paint used to for each series (to draw the outline of the shape at each data point) is
specified on a “per series” basis:

å public Paint getSeriesOutlinePaint(int series);

Returns the outline paint for the specified series. If getSeriesOutlinePaint() returns a non-
null value, this is returned. Otherwise, the method checks to see if a specific value has
been set for the series, in which case that is returned. If all else fails, the value returned
by getBaseSeriesOutlinePaint() is used.

å public void setSeriesOutlinePaint(int series, Paint paint);

Sets the outline paint for the specified series and sends a PlotChangeEvent to all registered
listeners. It is permitted to set this to null.

The base paint is used as the fallback for any series that doesn’t have a paint explicitly defined:

å public Paint getBaseSeriesOutlinePaint();

Returns the default series outline paint (never null).

å public void setBaseSeriesOutlinePaint(Paint paint);

Sets the default series outline paint and sends a PlotChangeEvent to all registered listeners.

As a convenience, you can override the outline paint for ALL series, although in typical usage you
won’t need to do this:7

å public Paint getSeriesOutlinePaint();

Returns the override outline paint for all series. The default value is null.

å public void setSeriesOutlinePaint(Paint paint);

Sets the outline paint for the specified series and sends a PlotChangeEvent to all registered
listeners. It is permitted to set this to null.

OutlineStroke

The outline stroke used to for each series (to draw the outline of the shape at each data point) is
specified on a “per series” basis:

å public Stroke getSeriesOutlineStroke(int series);

Returns the outline stroke for the specified series. If getSeriesOutlineStroke() returns a non-
null value, this is returned. Otherwise, the method checks to see if a specific value has
been set for the series, in which case that is returned. If all else fails, the value returned
by getBaseSeriesOutlineStroke() is used.

å public void setSeriesOutlineStroke(int series, Stroke stroke);

Sets the outline stroke for the specified series and sends a PlotChangeEvent to all registered
listeners. It is permitted to set this to null.

The base stroke is used as the fallback for any series that doesn’t have a stroke explicitly defined:

å public Stroke getBaseSeriesOutlineStroke();

Returns the default series outline stroke (never null).

6These methods could be (much) better named.
7These methods could be (much) better named.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 374

å public void setBaseSeriesOutlineStroke(Stroke stroke);

Sets the default series outline stroke and sends a PlotChangeEvent to all registered listeners.

As a convenience, you can override the outline stroke for ALL series, although in typical usage you
won’t need to do this:8

å public Stroke getSeriesOutlineStroke();

Returns the override outline stroke for all series. The default value is null.

å public void setSeriesOutlineStroke(Stroke stroke);

Sets the outline stroke for the specified series and sends a PlotChangeEvent to all registered
listeners. It is permitted to set this to null.

33.39.5 Legend Methods

A range of methods control the appearance of the legend for the plot (if the chart displays a legend):

å public Shape getLegendItemShape();

Returns the shape used for each legend item. The default value is Ellipse2D.Double(-4.0, -4.0,

8.0, 8.0).

å public void setLegendItemShape(Shape shape);

Sets the shape to use for the legend items (null) not permitted) and sends a PlotChangeEvent

to all registered listeners. For correct alignment, the supplied shape should be centered on (0,

0).

å public CategoryItemLabelGenerator getLabelGenerator();

Returns the generator that creates the labels for each category in the chart.

å public void setLabelGenerator(CategoryItemLabelGenerator generator);

Sets the generator used to create labels for each category in the chart and sends a PlotChangeEvent

to all registered listeners.

å public LegendItemCollection getLegendItems();

Returns a collection of legend items for the plot. By default, this method returns one item for
each category—you can override the method to change this behaviour.

33.39.6 Tool Tips and URLs

From version 1.0.2 onwards, this plot has support for generating tool tips (for display by the
ChartPanel class, or in HTML image maps) and URLs (for HTML image maps):

å public CategoryToolTipGenerator getToolTipGenerator(); [1.0.2]

Returns the tool tip generator (possibly null). The default value is null.

å public void setToolTipGenerator(CategoryToolTipGenerator generator); [1.0.2]

Sets the tool tip generator (null is permitted) and sends a PlotChangeEvent to all registered
listeners.

å public CategoryURLGenerator getURLGenerator(); [1.0.2]

Returns the URL generator (possibly null). The default value is null.

å public void setURLGenerator(CategoryURLGenerator generator); [1.0.2]

Sets the URL generator (null is permitted) and sends a PlotChangeEvent to all registered lis-
teners.

33.39.7 Other Methods

The draw() method is typically called by the JFreeChart class:

å public void draw(Graphics2D g2, Rectangle2D area, Point2D anchor, PlotState parentState,

PlotRenderingInfo info);

Draws the plot within the specified area.

8These methods could be (much) better named.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 375

33.39.8 Notes

Some points to note:

• this plot doesn’t use a separate renderer mechanism, although that would be a useful enhance-
ment;

• the plot does support negative values in the dataset, and the axis does not display any scale
(both of these issues need to be addressed);

• a demo (SpiderWebChartDemo1.java) is included in the JFreeChart demo collection.

33.40 ThermometerPlot

33.40.1 Overview

A plot that displays a single value in a thermometer-style representation—see figure 33.20.

ThermometerDemo2

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

37.2

°C

Figure 33.20: A simple thermometer chart (see ThermometerDemo2.java)

You can define three sub-ranges on the thermometer scale to provide some context for the displayed
value: the normal, warning and critical sub-ranges. The colour of the “mercury” in the thermometer
can be configured to change for each sub-range.

By default, the display range for the thermometer is fixed (using the overall range specified by the
user). However, there is an option to automatically adjust the thermometer scale to display only
the sub-range in which the current value falls. This allows the current data value to be displayed
with more precision.

33.40.2 Constructors

To create a new ThermometerPlot:

å public ThermometerPlot();

Equivalent to ThermometerPlot(new DefaultValueDataset())—see the next method.

å public ThermometerPlot(ValueDataset dataset);

Creates a thermometer with default settings, using the supplied dataset (which may be null).

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 376

33.40.3 The Dataset

The ThermometerPlot displays a single value which it obtains from a ValueDataset. The following
methods provide access to the dataset currently assigned to the plot:

å public ValueDataset getDataset();

Returns the current dataset (possibly null).

å public void setDataset(ValueDataset dataset);

Sets the dataset for the plot (replacing any existing dataset). It is permitted to set the dataset
to null. Calling this method triggers a PlotChangeEvent.

When you assign a dataset to the plot, the plot registers itself as a DatasetChangeListener. Updating
the dataset will result in the plot being notified, and the plot (in turn) notifies the chart. If you
display your chart in a ChartPanel, this notification mechanism results in the chart being repainted
whenever the dataset changes.

33.40.4 General Attributes

You can control the amount of white space around the thermometer:

å public RectangleInsets getPadding();

Returns the padding around the outside of the thermometer (never null). The default value is
new RectangleInsets(UnitType.RELATIVE, 0.05, 0.05, 0.05, 0.05).

å public void setPadding(RectangleInsets padding);

Sets the padding around the thermometer and sends a PlotChangeEvent to all registered listeners.
If padding is null, this method throws an IllegalArgumentException.

To control the size of the thermometer bulb:

å public int getBulbRadius(); [1.0.7]

Returns the radius (or half-width) of the thermometer, in Java2D units. The default value is
40.

å public void setBulbRadius(int r); [1.0.7]

Sets the radius of the thermometer bulb, and sends a PlotChangeEvent to all registered listeners.
No validation is performed on the argument—you should generally specify a value that is larger
that the column radius.

å public int getBulbDiameter(); [1.0.7]

Returns the bulb diameter, which is always twice the value returned by getBulbRadius(). There
is no setter method for this attribute.

To control the width of the main column of the thermometer:

å public int getColumnRadius(); [1.0.7]

Returns the radius (or half-width) of the main column of the thermometer, in Java2D units.
The default value is 20.

å public void setColumnRadius(int r); [1.0.7]

Sets the radius of the main column of the thermometer, in Java2D units, and sends a PlotChangeEvent

to all registered listeners. No validation is performed on the new value—in general, you should
specify a value that is less than the bulb radius.

å public int getColumnDiameter(); [1.0.7]

Returns the column diameter, which is always twice the value returned by getColumnRadius().
There is no setter method for this attribute.

To control the gap between the two outlines drawn to represent the thermometer:

å public int getGap(); [1.0.7]

Returns the gap, in Java2D units, between the thermometer outlines.

å public void setGap(int gap); [1.0.7]

Sets the gap, in Java2D units, between the outlines used to represent the thermometer, and
sends a PlotChangeEvent to all registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 377

To control the colour of the thermometer outline:

å public Paint getThermometerPaint();

Returns the outline paint (never null). The default value is Color.black.

å public void setThermometerPaint(Paint paint);

Sets the paint used to draw the outline of the thermometer and sends a PlotChangeEvent to all
registered listeners. If paint is null, this method does nothing.

To control the pen used to draw the thermometer outline:

å public Stroke getThermometerStroke();

Returns the outline stroke (never null). The default value is new BasicStroke(1.0f).

å public void setThermometerStroke(Stroke stroke);

Sets the stroke used to draw the outline of the thermometer and sends a PlotChangeEvent to all
registered listeners. If stroke is null, this method does nothing.

33.40.5 The Value Label

The current data value can be displayed on the plot, with settings to control the location, font,
colour, and number formatter.

First, to control the location:

å public int getValueLocation();

Returns the current value location, which is one of:

• NONE (0) – no value label is displayed;

• RIGHT (1) – the value label is displayed to the right of the thermometer;

• LEFT (2) – the value label is displayed to the left of the thermometer;

• BULB (3) – the value label is displayed inside the thermometer bulb.

The default value is BULB.

å public void setValueLocation(int location);

Sets the location at which the current value will be displayed, and sends a PlotChangeEvent to
all registered listeners. If location is not one of the values specified in getValueLocation(), this
method throws an IllegalArgumentException. Note that the default value label colour is white,

so if you change the location you should also change the colour so that the label remains visible.

The font for the value label can be set as follows:

å public Font getValueFont();

Returns the font used to display the value label, if it is visible. The default value is new

Font("SansSerif", Font.BOLD, 16).

å public void setValueFont(Font font);

Sets the font used to display the value label, if it is visible, and sends a PlotChangeEvent to all
registered listeners. If font is null, this method throws an IllegalArgumentException.

Similarly, the paint for the value label can be set as follows:

å public Paint getValuePaint();

Returns the paint used to display the value label, if it is visible. The default value is Color.white.

å public void setValuePaint(Paint paint);

Sets the paint used to display the current value and sends a PlotChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

You can set a formatter for the value label:9

å public void setValueFormat(NumberFormat formatter);

Sets the formatter for the value label and sends a PlotChangeEvent to all registered listeners.

9For whatever reason, there is currently no corresponding “getter” method.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 378

Near the top of the thermometer, a label can be shown with a temperature unit:

å public int getUnits();

Returns a code indicating the unit type:

• UNITS NONE – no unit indicator is displayed;

• UNITS FAHRENHEIT – Fahrenheit units;

• UNITS CELCIUS – Celcius units;

• UNITS KELVIN – Kelvins.

The default value is UNITS CELCIUS.

å public void setUnits(int u);

Sets the unit type and sends a PlotChangeEvent to all registered listeners. If u is not one of the
constants specified in getUnits(), this method does nothing.

å public void setUnits(String u); [DEPRECATED]

Sets the unit type via a string. This method is deprecated—use setUnits(int) instead.

33.40.6 The Range Axis

The ThermometerPlot has a single range axis that controls the display of data values. You can access
the range axis with the following methods:

å public ValueAxis getRangeAxis();

Returns the axis used by the plot. This is never null. The default value is a default NumberAxis

with no label.

å public void setRangeAxis(ValueAxis axis);

Sets the axis for the plot and sends a PlotChangeEvent to all registered listeners. If axis is null,
this method throws an IllegalArgumentException.

You can change any of the visual characteristics of the axis, but you should avoid changing the axis
range directly—instead, use the plot bounds methods specified in the next sub-section.

The axis can be displayed at the left or right of the thermometer, or not displayed at all:

å public int getAxisLocation();

Returns the axis location, which is one of:

• NONE;

• LEFT;

• RIGHT.

The default value is LEFT.

å public void setAxisLocation(int location);

Sets the axis location and sends a PlotChangeEvent to all registered listeners. If location is not
one of the values specified in getAxisLocation, this method throws an IllegalArgumentException.

The following methods don’t appear to do anything useful, and have been deprecated:

å public boolean getShowValueLines(); [DEPRECATED]

Returns the showValueLines flag.

å public void setShowValueLines(boolean flag); [DEPRECATED]

Sets a flag that doesn’t appear to do anything at all! This method has been deprecated.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 379

33.40.7 The Plot Bounds

The plot stores lower and upper bounds for the values it can display, controlled by the methods
below. Note that the axis may display some subset of the specified bounds (see the subranges in
the next section):

å public double getLowerBound();

Returns the lower bound for the plot. The default value is 0.0.

å public void setLowerBound(double lower);

Sets the lower bound for the plot and updates the current axis range.

å public double getUpperBound();

Returns the upper bound for the plot. The default value is 100.0.

å public void setUpperBound(double upper);

Sets the upper bound for the plot and updates the current axis range.

To set the overall range of values to be displayed in the thermometer:
å public void setRange(double lower, double upper);

Sets the lower and upper bounds for the value that can be displayed in the thermometer. If
the data value is outside this range, the thermometer will be drawn as “empty” or “full”.

33.40.8 Subranges

Within the plot’s bounds, you can specify three sub-ranges:

• NORMAL (0) – the normal range;

• WARNING (1) – the warning range;

• CRITICAL (2) – the critical range.

Each subrange can have a different mercury paint.

To define subranges:
å public void setSubrange(int subrange, double lower, double upper);

Sets the lower and upper bounds for a sub-range. Use one of the constants NORMAL, WARNING or
CRITICAL to indicate the sub-range.

In addition to the actual bounds for the sub-ranges, you can specify display bounds for each sub-
range:

å public void setDisplayBounds(int range, double lower, double upper);

Sets the lower and upper bounds of the display range for a sub-range. The display range is
usually equal to or slightly bigger than the actual bounds of the sub-range.

The display bounds are only used if the thermometer axis range is automatically adjusted to display
the current sub-range (see the followDataInSubranges flag in the next section).

å public boolean getFollowDataInSubranges();

Returns the flag that controls whether or not the axis range automatically changes to show
only the subrange within which the current data value falls. The default value is false.

å public void setFollowDataInSubranges(boolean flag);

If true, the thermometer range is adjusted to display only the current sub-range (which displays
the value with greater precision). If false, the overall range is displayed at all times.

By default, this flag is set to false.
A couple of additional setter methods allow you to specify the subrange value and display bounds
in one call:

å public void setSubrangeInfo(int range, double low, double hi);

Sets the value and display bounds for the specified subrange.

å public void setSubrangeInfo(int range, double rangeLow, double rangeHigh, double displayLow,

double displayHigh);

Sets the value and display bounds for the specified subrange.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 380

33.40.9 The Mercury Colour

In a real thermometer, mercury is the substance inside the thermometer that expands and contracts,
rising and falling within the glass tube and indicating the current temperature. In the Thermometer

plot, a tall thin rectangle is drawn in the middle of the plot to highlight the current value—the
colour of this indicator is the “mercury colour”.

The default mercury colour is defined with the following methods:

å public Paint getMercuryPaint();

Returns the default mercury paint (never null). This is used:

• for all values, if useSubrangePaint is false;

• for any value outside the three defined subranges, if useSubrangePaint is true.

The default value is Color.lightGray.

å public void setMercuryPaint(Paint paint);

Sets the default mercury paint and sends a PlotChangeEvent to all registered listeners. If paint

is null, this method throws an IllegalArgumentException.

A different colour can be specified for each of three user-definable subranges:

å public Paint getSubrangePaint(int range);

Returns the paint (never null) defined for the specified subrange. The default values are
Color.green, Color.orange and Color.red. If range is not in the range 0 to 2, this method
returns the default mercury paint (as returned by getMercuryPaint()).

å public void setSubrangePaint(int range, Paint paint);

Sets the paint for the specified subrange and sends a PlotChangeEvent to all registered listeners.
If range is not in the range 0 to 2, or paint is null, this method does nothing.10

The mercury colours for subranges are only used if the useSubrangePaint flag is set to true (which
is the default):

å public boolean getUseSubrangePaint();

Returns the flag that controls whether or not the subrange colours are used. The default value
is true.

å public void setUseSubrangePaint(boolean flag);

Sets the flag that controls whether or not the sub-range colours are used for the mercury in
the thermometer, and sends a PlotChangeEvent to all registered listeners.

33.40.10 Other Methods

The following methods are called by the JFreeChart class during chart drawing—you shouldn’t need
to call them directly:

å public Range getDataRange(ValueAxis axis);

Returns the default range for the specified axis. This is required by the Zoomable interface.

å public LegendItemCollection getLegendItems();

Always returns null. This plot displays only a single value, so it doesn’t need a default legend.

å public PlotOrientation getOrientation();

Always returns PlotOrientation.VERTICAL.

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly.
10This is at odds with the general JFreeChart style where an exception would be thrown.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 381

33.40.11 Zooming

This plot has in-built support zooming (a mechanism that is utilised, for example, by the ChartPanel

class):

å public boolean isDomainZoomable();

Returns false because this plot type has no domain axis.

The domain axis zooming methods are all no-ops:

å public void zoomDomainAxes(double factor, PlotRenderingInfo state, Point2D source);

Does nothing—this plot has no domain axis.

å public void zoomDomainAxes(double factor, PlotRenderingInfo state, Point2D source, boolean

useAnchor); [1.0.7]

As above.

å public void zoomDomainAxes(double lowerPercent, double upperPercent, PlotRenderingInfo state,

Point2D source);

As above.

The range axis on the plot is zoomable:

å public boolean isRangeZoomable();

Returns true to indicate that the range axis is zoomable for this plot type.

The following zooming methods are defined:

å public void zoomRangeAxes(double factor, PlotRenderingInfo state, Point2D source);

Equivalent to zoomRangeAxis(factor, state, source, false)—see next method.

å public void zoomRangeAxes(double factor, PlotRenderingInfo state, Point2D source,

boolean useAnchor); [1.0.7]

Scales the length of the range axis by the specified factor. If useAnchor is true, the axis bounds
are scaled about the source point, otherwise the scaling occurs around the central point of the
current axis range.

å public void zoomRangeAxes(double lowerPercent, double upperPercent,

PlotRenderingInfo state, Point2D source);

Updates the lower and upper bounds of the axis range to the specified points (expressed as a
point along the axis in percentage terms).

33.40.12 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this plot for equality with an arbitrary object. Note that the dataset is ignored for the
equality test. If obj is null, this method returns false.

Instances of this class are Cloneable and Serializable.

33.40.13 Notes

Some points to note:

• the ThermometerPlot class was originally contributed by Bryan Scott from the Australian
Antarctic Division.

• the JThermometer class provides a simple (but incomplete) Javabean wrapper for this class.

• a demo (ThermometerDemo1.java) is included in the JFreeChart Demo Collection.

See Also
ValueDataset.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 382

33.41 ValueAxisPlot

33.41.1 Overview

This interface should be implemented by plots that use the ValueAxis class (or its subclasses). This
provides an entry point for the axis to query the plot to find out the range of data values that will
be plotted against the axis (bear in mind that more than one dataset from the plot may be mapped
to a particular axis).

33.41.2 Methods

This interface defines a single method:

å public Range getDataRange(ValueAxis axis);

Returns the range that is required to display all data values that are plotted against the specified
axis.

33.41.3 Notes

This interface is implemented by CategoryPlot, FastScatterPlot, PolarPlot, ThermometerPlot and
XYPlot.

33.42 ValueMarker

33.42.1 Overview

A value marker is used to indicate a constant value against the domain or range axis for a
CategoryPlot or an XYPlot. This class extends the Marker class.

33.42.2 Usage

You can add a marker to an XYPlot using the addDomainMarker() or addRangeMarker() methods.
Similarly, you can add a range marker to a CategoryPlot using the addRangeMarker() method.

There is a demo application (MarkerDemo1.java) included in the JFreeChart demo collection that
illustrates the use of this class.

33.42.3 Constructors

The following constructors are defined:

å public ValueMarker(double value);

Creates a new instance with the specified value and default values for all other attributes.

å public ValueMarker(double value, Paint paint, Stroke stroke);

Creates a new instance with the specified value, paint and stroke.

å public ValueMarker(double value, Paint paint, Stroke stroke, Paint outlinePaint, Stroke

outlineStroke, float alpha);

Creates a new instance with the specified value and attributes.

33.42.4 Methods

In addition to the methods inherited from Marker, this class defines:

å public double getValue();

Returns the current value for the marker.

å public void setValue(double value); [1.0.3]

Sets the value for the marker and sends a MarkerChangeEvent to all registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 383

33.42.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object (which may be null.

Instances of this class are cloneable and serializable.

33.42.6 Notes

Some points to note:

• the marker is most often drawn as a line, but in a chart with a 3D-effect the marker will be
drawn as a polygon—for this reason, the marker has both paint and outlinePaint attributes,
and stroke and outlineStroke attributes;

See Also
IntervalMarker.

33.43 WaferMapPlot

33.43.1 Overview

A plot for generating wafer map charts.

33.43.2 Draw Method

The following method is called by the JFreeChart class during chart drawing:

å public void draw(Graphics2D g2, Rectangle2D plotArea,

Point2D anchor, PlotState parentState, PlotRenderingInfo state);

Draws the plot within the specified area.

In typical situations, you won’t normally call this method directly.

See Also
WaferMapRenderer.

33.44 XYPlot

33.44.1 Overview

Draws a visual representation of data from an XYDataset, where the domain axis measures the
x-values and the range axis measures the y-values.

The type of plot is typically displayed using a vertical orientation, but it is possible to change to a
horizontal orientation which can be useful for certain applications.

33.44.2 Layout

Axes are laid out at the left and bottom of the drawing area. The space allocated for the axes is
determined automatically. The following diagram shows how this area is divided:
Determining the dimensions of these regions is an awkward problem. The plot area can be resized
arbitrarily, but the vertical axis and horizontal axis sizes are more difficult. Note that the height
of the vertical axis is related to the height of the horizontal axis, and, likewise, the width of the
vertical axis is related to the width of the horizontal axis. This results in a “chicken and egg”
problem, because changing the width of an axis can affect its height (especially if the tick units
change with the resize) and changing its height can affect the width (for the same reason).

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 384

Figure 33.21: The plot regions

33.44.3 Constructors

To create a default instance:

å public XYPlot();

Creates a new plot with no dataset, no axes and no renderer. Take care to specify these
attributes before using the plot, otherwise JFreeChart may throw a NullPointerException.

To create a plot with a specific renderer:

å public XYPlot(XYDataset dataset, ValueAxis domainAxis, ValueAxis rangeAxis,

XYItemRenderer renderer);

Creates a new XYPlot instance with the specified dataset, axes and renderer. Any of these
arguments can be null, but in that case you should take care to specify the missing attributes
before using the plot, otherwise JFreeChart may throw a NullPointerException.

33.44.4 Datasets and Renderers

An XYPlot can have zero, one or many datasets and each dataset is usually associated with a renderer
(the object that is responsible for drawing the visual representation of each item in a dataset). A
dataset is an instance of any class that implements the XYDataset interface and a renderer is an
instance of any class that implements the XYItemRenderer interface.

To get/set a dataset:

å public XYDataset getDataset();

Equivalent to getDataset(0)—see below. This is a convenience method for developers that
typically work with a single dataset.

å public XYDataset getDataset(int index);

Returns the dataset at the specified index (possibly null).

å public void setDataset(XYDataset dataset);

Equivalent to setDataset(0, dataset)—see below. This is a convenience method for developers
that typically work with a single dataset.

å public void setDataset(int index, XYDataset dataset);

Assigns a dataset to the plot at the given index. The new dataset replaces any existing dataset
at the specified index. It is permitted to set a dataset to null (in that case, no data will be
displayed on the chart). For non-null datasets, this plot will be registered with the dataset to
receive notification of changes to the dataset.

To get/set a renderer:

å public XYItemRenderer getRenderer(int index);

Returns the renderer at the specified index (possibly null).

å public void setRenderer(int index, XYItemRenderer renderer);

Sets the renderer at the specified index and sends a PlotChangeEvent to all registered listeners.
It is permitted to set any renderer to null.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 385

A number of renderer implementations are available (and you are free to develop your own, of
course):

• CandlestickRenderer;

• ClusteredXYBarRenderer;

• HighLowRenderer;

• StandardXYItemRenderer;

• XYAreaRenderer;

• XYBarRenderer;

• XYBubbleRenderer;

• XYDifferenceRenderer;

The items in each dataset are, by default, plotted against the primary axes. You can change that
by adding a mapping between a dataset and the axes it should be plotted against—see section
33.44.10.

33.44.5 Dataset Rendering Order

When a plot has multiple datasets and renderers, the order in which the datasets are rendered has
an impact on the appearance of the chart. You can control the rendering order using the following
methods:

å public DatasetRenderingOrder getDatasetRenderingOrder();

Returns the current dataset rendering order (never null).

å public void setDatasetRenderingOrder(DatasetRenderingOrder order);

Sets the dataset rendering order and sends a PlotChangeEvent to all registered listeners. It is
not permitted to set the rendering order to null.

By default, datasets will be rendered in reverse order so that the “primary” dataset appears to be
“on top” of the other datasets.

33.44.6 Series Rendering Order

The series within each dataset are, by default, rendered in reverse order (so that the first series in
each dataset appears in front of all the other series in that dataset). You can control this using the
following methods:

å public SeriesRenderingOrder getSeriesRenderingOrder();

Returns the current series rendering order (never null). The default value is SeriesRendering-

Order.REVERSE.

å public void setSeriesRenderingOrder(SeriesRenderingOrder order);

Sets the series rendering order and sends a PlotChangeEvent to all registered listeners. This
method throws an IllegalArgumentException if order is null.

33.44.7 Axes

Most plots will have a single domain axis (or x-axis) and a single range axis (or y-axis). To get/set
the domain axis:

å public ValueAxis getDomainAxis();

Returns the domain axis with index 0.

å public void setDomainAxis(ValueAxis axis);

Sets the domain axis with index 0 and sends a PlotChangeEvent to all registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 386

To get/set the range axis:

å public ValueAxis getRangeAxis();

Returns the range axis with index 0.

å public void setRangeAxis(ValueAxis axis);

Sets the range axis with index 0 and sends a PlotChangeEvent to all registered listeners.

Multiple domain and/or range axes are also supported—see Chapter 13 for details.

å public ValueAxis getDomainAxis(int index);

Returns the domain axis at the specified index. This method can return null.

å public void setDomainAxis(int index, ValueAxis axis);

Equivalent to setDomainAxis(index, axis, true)—see below.

å public void setDomainAxis(int index, ValueAxis axis, boolean notify);

Sets the domain axis at the specified index (replacing any axis already there) and, if requested,
sends a PlotChangeEvent to all registered listeners.

å public void setDomainAxes(ValueAxis[] axes);

This is a convenience method that calls setDomainAxis(int, ValueAxis) for each axis in the array,
firing a single PlotChangeEvent once all the axes have been added. An exception is thrown if
axes is null.

å public ValueAxis getRangeAxis(int index);

Returns the range axis at the specified index. This method can return null.

å public void setRangeAxis(int index, ValueAxis axis);

Equivalent to setRangeAxis(index, axis, true)—see below.

å public void setRangeAxis(int index, ValueAxis axis, boolean notify);

Sets the range axis at the specified index (replacing any axis already there) and, if requested,
sends a PlotChangeEvent to all registered listeners.

å public void setRangeAxes(ValueAxis[] axes);

This is a convenience method that calls setRangeAxis(int, ValueAxis) for each axis in the array,
firing a single PlotChangeEvent once all the axes have been added. An exception is thrown if
axes is null.

33.44.8 Location of Axes

The plot’s axes can appear at the top, bottom, left or right of the plot area. The location for an
axis is specified using the AxisLocation class, which combines two possible locations within each
option—which one is actually used depends on the orientation (horizontal or vertical) of the plot.

For “vertical” plots (the usual default), the domain axis will appear at the top or bottom of the
plot area, and the range axis will appear at the left or right of the plot area. For “horizontal” plots,
the domain axis will appear at the left or right of the plot area, and the range axis will appear at
the top or bottom of the plot area.

To set the location for the domain axis:

å public void setDomainAxisLocation(AxisLocation location);

Sets the location for the domain axis and sends a PlotChangeEvent to all registered listeners.

Similarly, to set the location for the range axis:

å public void setRangeAxisLocation(AxisLocation location);

Sets the range axis location and sends a PlotChangeEvent to all registered listeners.

For example, to display the range axis on the right side of a chart:
plot.setRangeAxisLocation(AxisLocation.BOTTOM OR RIGHT);

This assumes the plot orientation is vertical, if it changes to horizontal the axis will be displayed
at the bottom of the chart.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 387

33.44.9 Axis Offsets

By default, the axes are drawn “flush” against the edge of the plot’s data area. It is possible to
specify an amount by which the plot’s axes are offset fromthe data area using the following methods:

å public RectangleInsets getAxisOffset();

Returns the gap between the plot’s data area and the axes.

å public void setAxisOffset(RectangleInsets offset);

Sets the gap between the plot’s data area and the axes. You cannot set this to null—for no
gap, use RectangleInsets.ZERO INSETS.

33.44.10 Mapping Datasets to Axes

For a plot with multiple datasets, renderers and axes, you need to specify which axes should be
used for each dataset. By default, the items in a dataset will be plotted against the “primary”
domain and range axes—that is, the axes at index 0.

If you want a dataset plotted against a different axis, you need to “map” the dataset to the axis.
There are separate methods to map a dataset to a domain axis and a range axis:

å public void mapDatasetToDomainAxis(int index, int axisIndex);

Maps a dataset to a domain axis. You need to take care that the dataset and axis both exist
when you create a mapping entry.

å public void mapDatasetToRangeAxis(int index, int axisIndex);

Maps a dataset to a range axis. You need to take care that the dataset and axis both exist
when you create a mapping entry.

To find the domain and/or range axis that a dataset is currently mapped to:

å public ValueAxis getDomainAxisForDataset(int index)

Returns the domain axis that the specified dataset is currently mapped to.

å public ValueAxis getRangeAxisForDataset(int index);

Returns the range axis that the specified dataset is currently mapped to.

33.44.11 Gridlines

The XYPlot class provides support for drawing gridlines against the primary domain axis and the
primary range axis (gridlines for other axes are not currently supported).11 For each axis, there is
a flag that controls whether or not the gridlines are visible. For visible gridlines, you can customise
the line style (Stroke) and color (Paint).

For example, to change the grid to display solid black lines:

XYPlot plot = (XYPlot) chart.getPlot();

plot.setDomainGridlineStroke(new BasicStroke(0.5f));

plot.setDomainGridlinePaint(Color.black);

plot.setRangeGridlineStroke(new BasicStroke(0.5f));

plot.setRangeGridlinePaint(Color.black);

If you prefer to have no gridlines at all, you can turn them off:

XYPlot plot = (XYPlot) chart.getPlot();

plot.setDomainGridlinesVisible(false);

plot.setRangeGridlinesVisible(false);

The settings for the domain axis gridlines and the range axis gridlines are independent of one
another. The following methods control the domain axis gridlines:

å public boolean isDomainGridlinesVisible();

Returns true if the plot should draw gridlines for the primary domain axis, and false otherwise.

11There is a good argument for moving this feature into the axis classes, but that hasn’t been done yet.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 388

å public void setDomainGridlinesVisible(boolean visible);

Sets the flag that controls whether or not the plot should draw gridlines for the primary domain
axis, and sends a PlotChangeEvent to all registered listeners.

å public Stroke getDomainGridlineStroke();

Returns the stroke used to draw the gridlines for the primary domain axis (the default is a thin
dashed line). This method never returns null.

å public void setDomainGridlineStroke(Stroke stroke);

Sets the stroke used to draw the gridlines for the primary domain axis, and sends a PlotChangeEvent

to all registered listeners. This method throws an IllegalArgumentException if stroke is null.

å public Paint getDomainGridlinePaint();

Returns the paint used to draw the gridlines for the primary domain axis (the default is
Color.lightGray). This method never returns null.

å public void setDomainGridlinePaint(Paint paint);

Sets the paint used to draw the gridlines for the primary domain axis, and sends a PlotChangeEvent

to all registered listeners. This method throws an IllegalArgumentException if paint is null.

Similarly, the following methods control the range axis gridlines:

å public boolean isRangeGridlinesVisible();

Returns true if the plot should draw gridlines for the primary range axis, and false otherwise.

å public void setRangeGridlinesVisible(boolean visible);

Sets the flag that controls whether or not the plot should draw gridlines for the primary range
axis, and sends a PlotChangeEvent to all registered listeners.

å public Stroke getRangeGridlineStroke();

Returns the stroke used to draw the gridlines for the primary range axis (the default is a thin
dashed line). This method never returns null.

å public void setRangeGridlineStroke(Stroke stroke);

Sets the stroke used to draw the gridlines for the primary range axis, and sends a PlotChangeEvent

to all registered listeners. This method throws an IllegalArgumentException if stroke is null.

å public Paint getRangeGridlinePaint();

Returns the paint used to draw the gridlines for the primary range axis (the default is Color.lightGray).
This method never returns null.

å public void setRangeGridlinePaint(Paint paint);

Sets the paint used to draw the gridlines for the primary range axis, and sends a PlotChangeEvent

to all registered listeners. This method throws an IllegalArgumentException if paint is null.

33.44.12 Grid Bands

The XYPlot class can color alternate bands between the tick marks on the plot’s axes. To control
this facility for the (primary) domain axis:

å public Paint getDomainTickBandPaint();

Returns the paint used to fill alternate bands between the tick values on the primary domain
axis. The default value is null (no bands are filled).

å public void setDomainTickBandPaint(Paint paint);

Sets the paint used to fill alternate bands between the tick values on the domain axis, and
sends a PlotChangeEvent to all registered listeners. If paint is null, no bands will be filled.

A similar feature is supported for the (primary) range axis:

å public Paint getRangeTickBandPaint();

Returns the paint used to fill alternate bands between the tick values on the primary range
axis. The default value is null (no bands are filled).

å public void setRangeTickBandPaint(Paint paint);

Sets the paint used to fill alternate bands between the tick values on the range axis, and sends
a PlotChangeEvent to all registered listeners. If paint is null, no bands will be filled.

A demo (GridBandDemo1.java) is included in the JFreeChart demo collection.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 389

33.44.13 Zero Base Line

A facility is provided where the plot can draw a base line against the range axis at the zero value.
This is not visible by default, but you can switch it on and control the stroke and paint using the
following methods:

å public boolean isRangeZeroBaselineVisible();

Returns the flag that controls whether or not the plot draws a base line against the zero value
of the range axis. The default value is false.

å public void setRangeZeroBaselineVisible(boolean visible);

Sets the flag that controls whether or not the plot draws a base line against the zero value of
the range axis. A PlotChangeEvent is sent to all registered listeners.

å public Stroke getRangeZeroBaselineStroke();

Returns the stroke (never null) used to draw the zero baseline, if it is visible. The default is
BasicStroke(0.5f).

å public void setRangeZeroBaselineStroke(Stroke stroke);

Sets the stroke used to draw the zero baseline, and sends a PlotChangeEvent to all registered
listeners. This method throws an IllegalArgumentException if stroke is null.

å public Paint getRangeZeroBaselinePaint();

Returns the paint (never null) used to draw the zero baseline, if it is visible. The default is
Color.black.

å public void setRangeZeroBaselinePaint(Paint paint);

Sets the paint used to draw the zero baseline and sends a PlotChangeEvent to all registered
listeners.

33.44.14 Crosshairs

The XYPlot class supports the display of crosshairs for the primary domain and range axes.12 Use
the following methods:

å public boolean isDomainCrosshairVisible();

Returns true if the crosshair for the primary domain axis is visible, and false otherwise.

å public void setDomainCrosshairVisible(boolean flag);

Sets the visibility flag for the crosshair linked to the primary domain axis, and sends a
PlotChangeEvent to all registered listeners.

å public boolean isDomainCrosshairLockedOnData();

Returns true if the crosshair automatically “snaps” to the nearest data value, and false oth-
erwise.

å public void setDomainCrosshairLockedOnData(boolean flag);

Sets the flag that determines whether or not the crosshair automatically snaps to the nearest
data value. If the flag value changes, this method sends a PlotChangeEvent to all registered
listeners.

å public double getDomainCrosshairValue();

Returns the value of the crosshair for the domain axis. Note that this value is recalculated as
the chart is repainted, so you should only rely on this value if you know that the chart has
finished painting. In particular, this method will return the old value if you call it from within
a mouse click event handler. You can use a ChartProgressListener to determine when chart
painting has completed—see CrosshairDemo1.java for an example.

å public void setDomainCrosshairValue(double value);

Sets the crosshair value for the primary domain axis and sends a PlotChangeEvent to all registered
listeners.

å public void setDomainCrosshairValue(double value, boolean notify);

Sets the crosshair value for the primary domain axis and if requested sends a PlotChangeEvent

to all registered listeners (but only if the crosshairs are visible).

12Unfortunately, it is not possible to display crosshairs for other axes at this time.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 390

å public Stroke getDomainCrosshairStroke();

Returns the domain crosshair stroke (never null). The default value is a thin dashed line.

å public void setDomainCrosshairStroke(Stroke stroke);

Sets the stroke used to display the crosshair for the primary domain axis (null is not permitted),
and sends a PlotChangeEvent to all registered listeners.

å public Paint getDomainCrosshairPaint();

Returns the paint (never null) used to draw the crosshair for the primary domain axis. The
default value is Color.blue.

å public void setDomainCrosshairPaint(Paint paint);

Sets the paint used to draw the crosshair for the primary domain axis and sends a PlotChangeEvent

to all registered listeners.

Similarly for the crosshair related to the primary range axis:

å public boolean isRangeCrosshairVisible();

Returns true if the crosshair for the primary range axis is visible, and false otherwise.

å public void setRangeCrosshairVisible(boolean flag);

Sets the visibility flag for the crosshair linked to the primary range axis, and sends a PlotChangeEvent

to all registered listeners.

å public boolean isRangeCrosshairLockedOnData();

Returns true if the crosshair automatically “snaps” to the nearest data value, and false oth-
erwise.

å public void setRangeCrosshairLockedOnData(boolean flag);

Sets the flag that determines whether or not the crosshair automatically snaps to the nearest
data value. If the flag value changes, this method sends a PlotChangeEvent to all registered
listeners.

å public double getRangeCrosshairValue();

Returns the value of the crosshair for the range axis. Note that this value is recalculated as the
chart is repainted, so you should only rely on this value if you know that the chart has finished
painting. In particular, this method will return the old value if you call it from within a mouse
click event handler. You can use a ChartProgressListener to determine when chart painting
has completed—see CrosshairDemo1.java for an example.

å public void setRangeCrosshairValue(double value);

Sets the crosshair value for the primary range axis and sends a PlotChangeEvent to all registered
listeners.

å public void setRangeCrosshairValue(double value, boolean notify);

Sets the crosshair value for the primary range axis and if requested sends a PlotChangeEvent to
all registered listeners (but only if the crosshairs are visible).

å public Stroke getRangeCrosshairStroke();

Returns the range crosshair stroke (never null). The default value is a thin dashed line.

å public void setRangeCrosshairStroke(Stroke stroke);

Sets the stroke used to display the crosshair for the primary range axis (null is not permitted),
and sends a PlotChangeEvent to all registered listeners.

å public Paint getRangeCrosshairPaint();

Returns the paint (never null) used to draw the crosshair for the primary range axis. The
default value is Color.blue.

å public void setRangeCrosshairPaint(Paint paint);

Sets the paint used to draw the crosshair for the primary range axis and sends a PlotChangeEvent

to all registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 391

33.44.15 Markers

Markers are used to highlight particular values along the domain axis or the range axis for a plot.
Typically, a marker will be represented by a solid line perpendicular to the axis against which it is
measured, although custom renderers can alter this default behaviour.

To add a marker along the domain axis:

å public void addDomainMarker(Marker marker);

Adds a marker for the domain axis. This is usually represented as a vertical line on the plot
(assuming a vertical orientation for the plot).

To add a marker along the range axis:

å public void addRangeMarker(Marker marker);

Adds a marker for the range axis. This is usually represented as a horizontal line on the plot
(assuming a vertical orientation for the plot).

To clear all domain markers:

å public void clearDomainMarkers();

Clears all the domain markers.

Likewise, to clear all range markers:

å public void clearRangeMarkers();

Clears all the range markers.

33.44.16 Annotations

You can add annotations to a plot to highlight particular data items. For example, to add the text
“Hello World!” to a plot:

XYPlot plot = (XYPlot) chart.getPlot();

XYAnnotation annotation = new XYTextAnnotation("Hello World!", 10.0, 25.0);

plot.addAnnotation(annotation);

Annotations added directly to the plot are drawn relative to the plot’s primary axes. If you need
an annotation drawn against different axes, you should assign the annotation to the appropriate
XYItemRenderer (see section 37.23.17).

The following methods are used to control the annotations for a plot:

å public void addAnnotation(XYAnnotation annotation);

Adds an annotation to the plot and sends a PlotChangeEvent to all registered listeners. If
annotation is null, this method throws an IllegalArgumentException. During rendering the
annotations are drawn last, so they always overwrite any other items drawn by the plot.

å public boolean removeAnnotation(XYAnnotation annotation);

Removes a specific annotation from the plot and, if the annotation is successfully removed,
sends a PlotChangeEvent to all registered listeners. If annotation is null, this method throws
an IllegalArgumentException. This method returns true if annotation was removed, and false

otherwise (this usually indicates that annotation was never assigned to the plot in the first
place).

å public List getAnnotations(); [1.0.1]

Returns a list of the annotations that have been assigned to the plot. The returned list may
be empty, but never null. Modifying the returned list has no effect on the plot.

å public void clearAnnotations();

Clears all annotations from the plot and sends a PlotChangeEvent to all registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 392

33.44.17 Zooming

To support the zooming operations implemented in the ChartPanel class, this plot implements the
Zoomable interface:

å public boolean isDomainZoomable();

Returns true to indicate that the domain axis (or axes) are, in fact, zoomable.

å public boolean isRangeZoomable();

Returns true to indicate that the range axis (or axes) are, in fact, zoomable.

å public PlotOrientation getOrientation();

Returns the orientation of the plot. The ChartPanel class uses this to determine whether a
“horizontal” zoom maps to the domain or range axis, and likewise for a “vertical” zoom.

å public void zoomDomainAxes(double factor, PlotRenderingInfo state, Point2D source);

Calls resizeRange(double) for each domain axis in the plot. Note that the state and source

arguments are currently ignored.

å public void zoomDomainAxes(double lowerPercent, double upperPercent,

PlotRenderingInfo state, Point2D source);

Calls zoom(lowerPercent, upperPercent) for each domain axis in the plot. Note that the state

and source arguments are currently ignored.

å public void zoomRangeAxes(double factor, PlotRenderingInfo state, Point2D source);

Calls resizeRange(double) for each range axis in the plot. Note that the state and source

arguments are currently ignored.

å public void zoomRangeAxes(double lowerPercent, double upperPercent,

PlotRenderingInfo state, Point2D source);

Calls zoom(lowerPercent, upperPercent) for each range axis in the plot. Note that the state

and source arguments are currently ignored.

33.44.18 Quadrants

The XYPlot class provides an optional facility to specify a background color for each quadrant in
the plot.

å public Point2D getQuadrantOrigin();

Returns the quadrant origin, in data space. By default, the origin is (0, 0).

å public void setQuadrantOrigin(Point2D origin);

Sets the quadrant origin, in data space, and sends a PlotChangeEvent to all registered listeners.
This method throws an IllegalArgumentException if origin is null.

å public Paint getQuadrantPaint(int index);

Returns the paint for the specified quadrant (possibly null). This method throws an Illegal-

ArgumentException if index is not in the range 0 to 3.

å public void setQuadrantPaint(int index, Paint paint);

Sets the paint for the specified quadrant and sends a PlotChangeEvent to all registered listeners.

There is a demo (PlotOrientationDemo1.java) in the JFreeChart demo collection that shows this
facility in use.

33.44.19 Other Methods

Other methods defined by XYPlot include:

å public int getWeight();

Returns the weight for a plot which is used to determine how much space to allocate to the
plot when it is being used as a subplot within a combined plot.

å public void setWeight(int weight);

Sets the weight for the plot and sends a PlotChangeEvent to all registered listeners.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 393

The following methods are used by the combined plot classes to align the axes of subplots:

å public void setFixedDomainAxisSpace(AxisSpace space);

Equivalent to setFixedDomainAxisSpace(space, true)—see the next method.

å public void setFixedDomainAxisSpace(AxisSpace space, boolean notify); [1.0.9]

Sets the fixed amount of space to reserve for the domain axes on this plot and, if requested,
sends a PlotChangeEvent to all registered listeners.

å public void setFixedRangeAxisSpace(AxisSpace space);

Equivalent to setFixedRangeAxisSpace(space, true)—see the next method.

å public void setFixedRangeAxisSpace(AxisSpace space, boolean notify); [1.0.9]

Sets the fixed amount of space to reserve for the range axes on this plot and, if requested, sends
a PlotChangeEvent to all registered listeners.

33.44.20 Notes

It is possible to display time series data with XYPlot by employing a DateAxis in place of the usual
NumberAxis. In this case, the x-values are interpreted as “milliseconds since 1-Jan-1970” as used in
java.util.Date.

See Also
Plot, XYItemRenderer, CombinedDomainXYPlot, CombinedRangeXYPlot.

33.45 Zoomable

33.45.1 Overview

This interface is designed to allow a caller (in particular, the ChartPanel class) to determine the
zooming functions supported by a plot, and to invoke those zooming operations as required. This
interface is implemented by the following plots:

• CategoryPlot;

• CombinedDomainCategoryPlot;

• CombinedDomainXYPlot;

• CombinedRangeCategoryPlot;

• CombinedRangeXYPlot;

• FastScatterPlot;

• PolarPlot;

• ThermometerPlot;

• XYPlot.

If a plot doesn’t implement this interface, the ChartPanel will assume that no zooming is possible.

CHAPTER 33. PACKAGE: ORG.JFREE.CHART.PLOT 394

33.45.2 Interface Methods

To determine whether or not the domain and range axes are zoomable:

å public boolean isDomainZoomable();

Returns true if the plot’s domain (x-axis) is zoomable, and false otherwise.

å public boolean isRangeZoomable();

Returns true if the plot’s range (y-axis) is zoomable, and false otherwise.

To determine the orientation of the plot:

å public PlotOrientation getOrientation();

Returns the plot’s orientation.

To invoke zooming operations:

å public void zoomDomainAxes(double factor, PlotRenderingInfo state, Point2D source);

Performs a zoom operation on the plot’s domain axes.

å public void zoomDomainAxes(double lowerPercent, double upperPercent,

PlotRenderingInfo state, Point2D source);

Performs a zoom operation on the plot’s domain axes.

å public void zoomRangeAxes(double factor, PlotRenderingInfo state, Point2D source);

Performs a zoom operation on the plot’s range axes.

å public void zoomRangeAxes(double lowerPercent, double upperPercent,

PlotRenderingInfo state, Point2D source);

Performs a zoom operation on the plot’s range axes.

Two new methods have been added to the interface in JFreeChart version 1.0.7—these allow the
caller to specify whether the zooming anchor point is the supplied source point, or just the centre
of the plot:

å public void zoomDomainAxes(double factor, PlotRenderingInfo state, Point2D source, boolean

useAnchor); [1.0.7]

Performs a zoom operation on the plot’s domain axes.

å public void zoomRangeAxes(double factor, PlotRenderingInfo state, Point2D source, boolean

useAnchor); [1.0.7]

Performs a zoom operation on the plot’s range axes.

See Also
ChartPanel.

Chapter 34

Package: org.jfree.chart.plot.dial

34.1 Overview

The org.jfree.chart.plot.dial package (new in version 1.0.7) contains a collection of classes
dedicated to creating dial plots—see figure 34.1 for an example. The main class in this package is
the DialPlot class.

Demo Dial 1

Temperature

18.0

-40 .0

-30 .0

-20 .0

-10 .0

0.0
10.0

20.0

30.0

40.0

50.0

60.0

Figure 34.1: Dial Plot

34.2 AbstractDialLayer

34.2.1 Overview

A base class for creating the layers that make up a dial. This class provides an event notification
mechanism so that changes to a layer can be communicated to the plot that the layer belongs to.
Subclasses include:

• ArcDialFrame;

• DialBackground;

• DialCap;

395

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 396

• DialPointer;

• DialTextAnnotation;

• DialValueIndicator;

• SimpleDialFrame;

• StandardDialRange.

• StandardDialScale.

This class implements the DialLayer interface.

34.2.2 Constructors

To create a new instance:

å protected AbstractDialLayer();

Creates a new instance. Note that this constructor is protected—it can only be called by
subclasses.

34.2.3 Attributes

Every layer has a flag that controls the visibility of the layer:

å public boolean isVisible();

Returns true if the layer is currently visible, and false otherwise. The default value is true.

å public void setVisible(boolean visible);

Sets the flag that controls whether or not the layer is visible, and sends a DialLayerChangeEvent

to all registered listeners.

34.2.4 Event Notification

A typical dial plot is constructed from a number of layers. Whenever a layer is modified, the plot
needs to detect this so it can pass on a PlotChangeEvent to its listeners.

å public void addChangeListener(DialLayerChangeListener listener);

Registers a listener so that it receives change events from this layer.

å public void removeChangeListener(DialLayerChangeListener listener);

Deregisters a listener so that it no longer receives change events from this layer.

To determine if a listener is currently registered with a layer:

å public boolean hasListener(EventListener listener);

Returns true if the specified listener is registered with the layer, and false otherwise.

å protected void notifyListeners(DialLayerChangeEvent event);

Sends the specified event to all registered listeners.

34.2.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this layer for equality with an arbitrary object. This method returns true if and only if:

• obj is an instance of AbstractDialLayer;

• the visible flag is the same for both instances.

Instances of this class are Cloneable and Serializable.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 397

34.3 ArcDialFrame

34.3.1 Overview

This frame is an alternative to the SimpleDialFrame class. Rather than a circular frame, it draws
an arc-like frame.

34.3.2 Constructors

To create a new instance:

å public ArcDialFrame();

Equivalent to ArcDialFrame(0, 180.0)—see the next constructor.

å public ArcDialFrame(double startAngle, double extent);

Creates a new frame spanning the specified arc. The startAngle and extent are specified in
degrees, using the same encoding as Java’s Arc2D class.

34.3.3 General Attributes

The start angle defines where the arc for the frame begins:

å public double getStartAngle();

Returns the start angle, in degrees. The initial value is specified in the constructor.

å public void setStartAngle(double angle);

Sets the start angle and sends a DialLayerChangeEvent to all registered listeners.

The extent is the angle through which the arc extends:

å public double getExtent();

Returns the extent, in degrees. The initial value is specified in the constructor.

å public void setExtent(double extent);

Sets the extent, in degrees, and sends a DialLayerChangeEvent to all registered listeners.

The background paint determines the colour used to fill the area between the frame outlines:

å public Paint getBackgroundPaint();

Returns the background paint (never null). The default value is Color.gray.

å public void setBackgroundPaint(Paint paint);

Sets the background paint for the frame and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

The foreground paint determines the colour used to draw the frame outline:

å public Paint getForegroundPaint();

Returns the foreground paint (never null). The default value is Color(100, 100, 150).

å public void setForegroundPaint(Paint paint);

Sets the foreground paint for the frame and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

To control the stroke used to draw the frame outline:

å public Stroke getStroke();

Returns the stroke (never null) used to draw the frame outline. The default value is BasicStroke(2.0f).

å public void setStroke(Stroke stroke);

Sets the stroke used to draw the frame outline and sends a DialLayerChangeEvent to all registered
listeners. If stroke is null, this method throws an IllegalArgumentException.

To control the radius of the inner edge of the frame:

å public double getInnerRadius();

Returns the inner radius, expressed as a percentage within the dial’s framing rectangle. The
default value is 0.25.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 398

å public void setInnerRadius(double radius);

Sets the inner radius and sends a DialLayerChangeEvent to all registered listeners.

To control the radius of the outer edge of the frame:

å public double getOuterRadius();

Returns the outer radius, expressed as a percentage within the dial’s framing rectangle. The
default value is 0.75.

å public void setOuterRadius(double radius);

Sets the outer radius and sends a DialLayerChangeEvent to all registered listeners.

34.3.4 Other Methods

The following methods are typically called by the DialPlot class—you shouldn’t need to call them
directly:

å public Shape getWindow(Rectangle2D frame);

Returns the shape for the frame’s window. Other layers in the DialPlot may be clipped to this
window shape.

å public boolean isClippedToWindow();

Returns false to indicate that this layer should not be clipped to the frame’s window.

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the frame.

34.3.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this frame for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

See Also
SimpleDialFrame.

34.4 DialBackground

34.4.1 Overview

A dial plot layer that fills the background with a single colour or a gradient.

34.4.2 Constructors

To create a new instance:

å public DialBackground();

Equivalent to DialBackground(Color.white)—see the next constructor.

å public DialBackground(Paint paint);

Creates a new dial background layer with the specified colour. If paint is null, this constructor
throws an IllegalArgumentException.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 399

34.4.3 General Attributes

The main attribute for this class is the background colour:

å public Paint getPaint();

Returns the paint used to fill the background. The default value is specified in the constructor.

å public void setPaint(Paint paint);

Sets the paint used to fill the background, and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

If the background paint is an instance of GradientPaint, a transformer is used to dynamically modify
the gradient paint coordinates to match the size and shape of the dial plot:

å public GradientPaintTransformer getGradientPaintTransformer();

Returns the current transformer (never null). The default value is an instance of
StandardGradientPaintTransformer.

å public void setGradientPaintTransformer(GradientPaintTransformer t);

Sets the transformer used for GradientPaint instances, and sends a DialLayerChangeEvent to all
registered listeners. If t is null, this method throws an IllegalArgumentException.

34.4.4 Other Methods

The plot will call the following method to determine whether the layer is clipped to the dial frame
window:

å public boolean isClippedToWindow();

Returns true, to indicate that this layer is clipped to the dial frame window.

The plot will call the following method to draw the layer:

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the background within the specified frame and view rectangles.

34.4.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

Instances of this class are cloneable (PublicCloneable) and serializable.

34.4.6 Notes

Some points to note:

• this class extends AbstractDialLayer;

• use the setBackground() method in the DialPlot class to add an instance of this class to a
plot.

34.5 DialCap

34.5.1 Overview

A small circular graphic that represents the “cap” over the rotation point of a dial’s needle.

34.5.2 Constructors

To create a new instance:

å public DialCap();

Creates a new cap with default attributes.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 400

34.5.3 General Attributes

The size of the cap is controlled by the radius:

å public double getRadius();

Returns the radius for the cap, as a percentage of the size of the plot’s framing rectangle. The
default value is 0.05 (five percent).

å public void setRadius(double radius);

Sets the radius for the cap and sends a DialLayerChangeEvent to all registered listeners.

To control the colour of the cap:

å public Paint getFillPaint();

Returns the colour used to fill the cap. The default value is Color.white.

å public void setFillPaint(Paint paint);

Sets the colour used to fill the cap and sends a DialLayerChangeEvent to all registered listeners.
If paint is null, this method throws an IllegalArgumentException.

To control the colour of the cap’s outline:

å public Paint getOutlinePaint();

Returns the colour used to draw the cap outline. The default value is Color.black.

å public void setOutlinePaint(Paint paint);

Sets the colour used to draw the cap outline and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

To control the pen stroke used to draw the cap’s outline:

å public Stroke getOutlineStroke();

Returns the stroke used to draw the cap’s outline (never null). The default value is BasicStroke(2.0f).

å public void setOutlineStroke(Stroke stroke);

Sets the stroke used to draw the cap’s outline and sends a DialLayerChangeEvent to all registered
listeners. If stroke is null, this method throws an IllegalArgumentException.

34.5.4 Other Methods

The plot will call the following method to determine whether the layer is clipped to the dial frame
window:

å public boolean isClippedToWindow();

Returns true to indicate that this layer should be clipped to the dial plot’s window.

The plot will call the following method to draw the layer:

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the cap relative to the specified frame and view rectangles.

34.5.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

Instances of this class are cloneable (PublicCloneable) and serializable.

34.5.6 Notes

Some points to note:

• this class extends AbstractDialLayer;

• use the setCap() method in the DialPlot class to add an instance of this class to a plot.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 401

34.6 DialFrame

34.6.1 Overview

A dial frame is the layer on the DialPlot that is drawn last, over top of everything else on the plot.
Two implementations of this interface are provided:

• SimpleDialFrame – a simple circular dial;

• StandardDialFrame – allows more complex dial shapes;

This interface extends DialLayer.

34.6.2 Interface Methods

This interface adds one method to those inherited from the DialLayer interface:

å public Shape getWindow(Rectangle2D frame);

Returns the shape representing the viewing window for the frame. Other layers in the DialPlot

may be clipped to this window.

34.6.3 Notes

Classes that implement this interface should also implement Serializable, otherwise serialization
for the dial plots will not work.

34.7 DialLayer

34.7.1 Overview

A DialPlot is composed of a number of layers. This interface defines the methods common to all
layers. Classes that implement this interface include:

• DialBackground;

• DialCap;

• DialPointer;

• DialTextAnnotation;

• DialValueIndicator;

• SimpleDialFrame;

• StandardDialFrame;

• StandardDialRange.

• StandardDialScale.

See also the AbstractDialLayer class.

34.7.2 General Methods

All dial layers have a flag that controls visibility:

å public boolean isVisible();

Returns true if the layer is currently visible, and false otherwise.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 402

34.7.3 Change Notification

A simple change notification mechanism is provided by all layers so that the DialPlot can track
changes to any of its layers:

å public void addChangeListener(DialLayerChangeListener listener);

Registers a listener so that it receives notification of changes to this layer.

å public void removeChangeListener(DialLayerChangeListener listener);

Deregisters a listener so that it no longer receives notification of changes to this layer.

å public boolean hasListener(EventListener listener);

Returns true if the specified listener is registered with this layer. This method is provided
mainly for unit testing purposes.

You won’t typically need to use this mechanism directly.

34.7.4 Drawing

The drawing methods are called by the DialPlot class, which first determines whether or not the
drawing for a layer should be clipped to the plot’s window (the window itself is defined by the
DialFrame):

å public boolean isClippedToWindow();

Returns true if drawing should be clipped, and false otherwise.

To draw the layer:

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the layer within the specified frame.

34.7.5 Notes

The DialFrame and DialScale interfaces extend this interface.

34.8 DialLayerChangeEvent

34.8.1 Overview

An event that originates from a DialLayer and received by a DialLayerChangeListener. This is
part of the change notification mechanism that allows the DialPlot class to track changes to the
DialLayer instances that it manages. By default, the dial plot will respond to layer changes by
forwarding a PlotChangeEvent to all its own listeners.

34.8.2 Constructors

To create a new instance:

å public DialLayerChangeEvent(DialLayer layer);

Creates a new event with the specified layer as the source.

34.8.3 Methods

To find the layer from which this event originated:

å public DialLayer getDialLayer();

Returns the layer from which this event originated.

See Also
DialLayerChangeListener.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 403

34.9 DialLayerChangeListener

34.9.1 Overview

This interface is implemented by classes that which to receive change event notifications from a
DialLayer.

34.9.2 Methods

This interface declares a single method:

å public void dialLayerChanged(DialLayerChangeEvent event);

Called to indicate that a change has been made to a DialLayer (the layer itself can be retrieved
from the event instance).

See Also
DialLayerChangeEvent.

34.10 DialPlot

34.10.1 Overview

A plot that displays a value (from a ValueDataset) in a dial format. The plot is composed of multiple
layers, providing a lot of scope to customise the appearance of the plot.

34.10.2 Constructors

This class defines two constructors:

å public DialPlot();

Equivalent to DialPlot(null)—see the next constructor.

å public DialPlot(ValueDataset dataset);

Creates a new plot based on the specified dataset (which may be null).

34.10.3 General Attributes

To control the background for the dial:

å public DialLayer getBackground();

Returns the background for the plot. The default value is null, which means no background is
drawn.

å public void setBackground(DialLayer background);

Sets the background for the dial (null is permitted) and sends a PlotChangeEvent to all registered
listeners. If you set the background to null, no background is drawn. Any DialLayer can be
used for the background, but a common choice is the DialBackground class.

The dial frame is a special layer that is drawn last on the dial, possibly covering parts of the layers
drawn earlier:

å public DialFrame getDialFrame();

Returns the dial frame (never null). The default value is a new instance of StandardDialFrame.

å public void setDialFrame(DialFrame frame);

Sets the dial frame and sends a PlotChangeEvent to all registered listeners.

The cap is a layer that is drawn immediately after the dial’s needle is drawn:

å public DialLayer getCap();

Returns the dial’s cap, which may be null (which means no cap is drawn). The cap is a layer
that is drawn immediately after the dial pointer, and is very often a small shape covering the
point where the needle is attached to the dial. The default value is null.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 404

å public void setCap(DialLayer cap);

Sets the cap and sends a PlotChangeEvent to all registered listeners. If you set the cap to null,
no cap will be drawn.

34.10.4 General Layers

The following methods allow general layers to be added to and removed from a plot:

å public void addLayer(DialLayer layer);

Adds a new layer to the plot and sends a PlotChangeEvent to all registered listeners. If layer is
null, this method throws an IllegalArgumentException.

å public int getLayerIndex(DialLayer layer);

Returns the index for the specified layer.

å public void removeLayer(int index);

Removes the layer at the specified index.

å public void removeLayer(DialLayer layer);

Removes the specified layer from the plot.

34.10.5 Datasets and Scales

The plot displays data from a ValueDataset (or possibly multiple datasets):

å public ValueDataset getDataset();

Returns the primary dataset for the plot. This may be null.

å public ValueDataset getDataset(int index);

Returns the dataset at the specified index, or null if there is no dataset.

å public void setDataset(ValueDataset dataset);

Sets the main dataset for the plot (null is permitted) and sends a PlotChangeEvent to all
registered listeners.

å public void setDataset(int index, ValueDataset dataset);

Sets the dataset at the specified index (dataset may be null) and sends a PlotChangeEvent to
all registered listeners.

å public double getValue(int datasetIndex);

A convenience method that returns the current value for the specified dataset. If there is no
dataset at the specified index, this method will return Double.NaN.

å public int getDatasetCount();

Returns the number of datasets in the plot.

Data values are plotted against a scale. Scales are added to the plot as special layers:

å public DialScale getScale(int index);

Returns the scale with the specified index, or null.

å public void addScale(int index, DialScale scale);

Adds a scale to the plot at the specified index, and sends a PlotChangeEvent to all registered
listeners.

å public void mapDatasetToScale(int index, int scaleIndex);

Maps a dataset to a particular scale (necessary when the plot has multiple scales).

å public DialScale getScaleForDataset(int datasetIndex);

Returns the scale that applies to the specified dataset.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 405

34.10.6 Pointers

The plot displays a pointer to indicate the current value of the corresponding dataset:
å public void addPointer(DialPointer pointer);

Adds a pointer to the plot.

å public int getPointerIndex(DialPointer pointer);

Returns the index of the specified pointer.

å public void removePointer(int index);

Removes the pointer at the specified index.

å public void removePointer(DialPointer pointer);

Removes the specified pointer.

34.10.7 Frame and View Rectangles

The dimensions of the dial plot are calculated relative to a framing rectangle, but in some cases
you only want a subset of the dial to be presented in the plot area—the viewing rectangle defines
this visible subset:

å public double getViewX();

The relative position of the viewing rectangle’s x-coordinate with reference to the framing
rectangle. This will be a value in the range 0.0 to 1.0, with the default value being 0.0.

å public double getViewY();

Returns the relative position of the viewing rectangle’s y-coordinate with reference to the
framing rectangle. This will be a value in the range 0.0 to 1.0, with the default value being
0.0.

å public double getViewWidth();

Returns the relative width of the viewing rectangle with reference to the framing rectangle.
This will be a value in the range 0.0 to 1.0, with the default value being 1.0.

å public double getViewHeight();

Returns the relative height of the viewing rectangle with reference to the framing rectangle.
This will be a value in the range 0.0 to 1.0, with the default value being 1.0.

å public void setView(double x, double y, double w, double h);

Sets the viewing rectangle relative to the plot’s (not known until rendering time) framing
rectangle, and sends a PlotChangeEvent to all registered listeners.

34.10.8 Other Methods

A range of other methods in this class are typically called by JFreeChart rather than user code.
å public String getPlotType();

Returns a human readable string describing the plot type.

A listener method is called whenever a layer belonging to the plot is changed:
å public void dialLayerChanged(DialLayerChangeEvent event);

Receives notification of a change to one of the layers managed by the plot (you shouldn’t need
to call this method yourself). This method responds by forwarding a PlotChangeEvent to all
registered listeners.

A utility method calculates rectangles using radius values that are specified as a percentage of the
height and width of a reference rectangle—see figure 34.2:

å public static Rectangle2D rectangleByRadius(Rectangle2D rect, double radiusW, double radiusH);

Returns a new rectangle centered on the same point as rect, which the width and height cal-
culated using the specified radius values (which are expressed as a percentage of the width and
height of the reference rectangle). Note that 0.75 is interpreted as seventy five percent.

JFreeChart will draw the plot by calling the following method:
å public void draw(Graphics2D g2, Rectangle2D area, Point2D anchor, PlotState parentState,

PlotRenderingInfo info);

Draws the plot within the specified area.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 406

Reference rectangle

radiusH

radiusW

Calculated rectangle

Figure 34.2: Calculating a rectangle “by radius”

34.10.9 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this plot for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

34.10.10 Notes

Some points to note:

• some demos (DialPlotDemo1-5.java) are included in the JFreeChart demo collection.

34.11 DialPointer

34.11.1 Overview

The base class for a pointer indicating the current value on the dial. This class implements the
DialLayer interface. Subclasses include:

• DialPointer.Pin;

• DialPointer.Pointer.

34.11.2 Constructors

The two constructors defined by this class are protected—they can only be called by subclasses:

å protected DialPointer();

Equivalent to DialPointer(0)—see the next constructor.

å protected DialPointer(int datasetIndex);

Creates a new pointer associated with the specified dataset.

34.11.3 General Attributes

The pointer is associated with a specific dataset:

å public int getDatasetIndex();

Returns the dataset index for this pointer. The default value is specified in the constructor.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 407

å public void setDatasetIndex(int index);

Sets the dataset that this pointer is associated with and sends a DialLayerChangeEvent to all
registered listeners.

The length of the pointer is determined by the radius, which is specified relative to the dial’s framing
rectangle:

å public double getRadius();

Returns the radius of the pointer, as a percentage of the dial’s framing rectangle. The default
value is 0.95 (ninety five percent).

å public void setRadius(double radius);

Sets the radius of the pointer, and sends a DialLayerChangeEvent to all registered listeners.

34.11.4 Other Methods

The DialPlot class will call the following method to determine whether or not this layer should be
clipped:

å public boolean isClippedToWindow();

Returns true to indicate that this layer is clipped to the dial frame window.

34.11.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this pointer for equality with an arbitrary object.

34.12 DialPointer.Pin

34.12.1 Overview

A dial pointer that is drawn as a thin straight line. This class extends DialPointer and implements
the DialLayer interface.

34.12.2 Constructors

To create a new instance:

å public Pin();

Equivalent to Pin(0)—see the next constructor.

å public Pin(int datasetIndex);

Creates a new dial pointer associated with the specified dataset. By default, the pointer is
drawn as a thin line (BasicStroke(3.0f)) in red.

34.12.3 General Attributes

To control the colour of the pointer:

å public Paint getPaint();

Returns the paint (never null) used to draw the pointer. The default value is Color.red.

å public void setPaint(Paint paint);

Sets the paint used to draw the pointer, and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

To control the stroke used to draw the pointer:

å public Stroke getStroke();

Returns the stroke used to draw the pointer. The default value is BasicStroke(3.0f, BasicStroke.CAP ROUND,

BasicStroke.JOIN BEVEL).

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 408

å public void setStroke(Stroke stroke);

Sets the stroke used to draw the pointer, and sends a DialLayerChangeEvent to all registered
listeners. If stroke is null, this method throws an IllegalArgumentException.

34.12.4 Other Methods

The DialPlot will call the following method to draw the pointer:

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the pointer.

34.12.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this pointer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

34.12.6 Notes

The length of the pointer is controlled by the inherited radius attribute.

See Also
DialPointer.Pointer.

34.13 DialPointer.Pointer

34.13.1 Overview

A dial pointer that is drawn in a long triangular shape.

34.13.2 Constructors

To create a new instance:

å public Pointer();

Equivalent to Pointer(0)—see the next constructor.

å public Pointer(int datasetIndex);

Creates a new pointer that is associated with the specified dataset.

34.13.3 General Attributes

The width of the base of the pointer is specified as a radius, in percentage terms relative to the

å public double getWidthRadius();

Returns the radius used to calculate the width of the base of the pointer. The default value is
0.05 (five percent).

å public void setWidthRadius(double radius);

Sets the radius used to calculate the width of the base of the pointer, and sends a DialLayerChangeEvent

to all registered listeners.

To control the paint used to fill the pointer:

å public Paint getFillPaint(); [1.0.8]

Returns the paint (never null) used to fill the pointer. The default value is Color.gray.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 409

å public void setFillPaint(Paint paint); [1.0.8]

Sets the paint used to fill the pointer and sends a DialLayerChangeEvent to all registered listeners.
If paint is null, this method throws an IllegalArgumentException.

To control the paint used to draw the pointer outline:

å public Paint getOutlinePaint(); [1.0.8]

Returns the paint (never null) used to draw the outline of the paint. The default value is
Color.black.

å public void setOutlinePaint(Paint paint); [1.0.8]

Sets the paint used to draw the pointer outline and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

34.13.4 Other Methods

The DialPlot will call the following method during chart rendering—you won’t normally need to
call this method directly:

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view)

Draws the pointer.

34.13.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this pointer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

See Also
DialPointer.Pin.

34.14 DialScale

34.14.1 Overview

A DialScale is a specialised DialLayer that has the ability to convert data values into a corresponding
angle, and vice versa. The DialPlot uses this scale to position a dial pointer that indicates the
current value of the dataset that is mapped to this scale. A typical dial scale implementation will
include drawing code to display the scale within the dial (see StandardDialScale, for example).

34.14.2 Interface Methods

To convert a data value to an angle:

å public double valueToAngle(double value);

Returns the angle (in degrees) that corresponds to the specified value.

To convert an angle to a data value:

å public double angleToValue(double angle);

Returns the value that corresponds to the given angle (which is specified in degrees).

34.14.3 Notes

This interface extends the DialLayer interface.

See Also
StandardDialScale.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 410

34.15 DialTextAnnotation

34.15.1 Overview

A dial layer that draws a text string at an arbitrary location on a dial. For example, in figure 34.1,
the “Temperature” label is drawn by an instance of this class.

34.15.2 Constructors

To create a new annotation:

å public DialTextAnnotation(String label);

Creates a new text annotation with default attributes. If label is null, this constructor throws
an IllegalArgumentException.

34.15.3 General Attributes

To control the text displayed by the annotation:

å public String getLabel();

Returns the text (never null) displayed by the annotation. The initial value is specified in the
constructor.

å public void setLabel(String label);

Sets the text to be displayed by the annotation and sends a DialLayerChangeEvent to all regis-
tered listeners. If label is null, this method throws an IllegalArgumentException.

To control the font used to display the label:

å public Font getFont();

Returns the font (never null) used to display the label. The default value is Font("Dialog",

Font.BOLD, 14).

å public void setFont(Font font);

Sets the font used to display the label and sends a DialLayerChangeEvent to all registered lis-
teners. If font is null, this method throws an IllegalArgumentException.

To control the foreground colour of the label:

å public Paint getPaint();

Returns the paint (never null) used to display the label. The default value is Color.black.

å public void setPaint(Paint paint);

Sets the paint used to display the label and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

The anchor point for the text label is defined by an angle and a radius:

å public double getAngle();

Returns the angle (in degrees) that determines the text anchor point. The encoding is the same
as for Java’s Arc2D class. The default value is -90.0.

å public void setAngle(double angle);

Sets the angle (in degrees) that determines the text anchor point, and sends a DialLayerChangeEvent

to all registered listeners.

å public double getRadius();

Returns the radius as a percentage relative to the dial’s framing rectangle. The default value
is 0.30 (thirty percent).

å public void setRadius(double radius);

Sets the radius as a percentage of the dial’s framing rectangle and sends a DialLayerChangeEvent

to all registered listeners.

Having determined the anchor point, the text is aligned according to its anchor:

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 411

å public TextAnchor getAnchor();

Returns the text anchor (never null) for the annotation. The default value is TextAnchor.TOP CENTER.

å public void setAnchor(TextAnchor anchor);

Sets the text anchor and sends a DialLayerChangeEvent to all registered listeners. If anchor is
null, this method throws an IllegalArgumentException.

34.15.4 Other Methods

The following methods are typically called by the DialPlot class during chart rendering, you won’t
normally call these methods directly:

å public boolean isClippedToWindow();

Returns true to indicate that this layer should be clipped to the dial frame window.

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the text annotation.

34.15.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this text annotation for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

34.16 DialValueIndicator

34.16.1 Overview

A dial layer that displays the value from a dataset.

34.16.2 Constructors

To create a new instance:

å public DialValueIndicator();

Equivalent to DialValueIndicator(0)—see the next constructor.

å public DialValueIndicator(int datasetIndex);

Creates a new instance that will display the value from the specified dataset.

34.16.3 General Attributes

To control the dataset from which the indicator obtains the current value:

å public int getDatasetIndex();

Returns the index of the dataset from which the indicator obtains the current value. The initial
value is specified in the constructor.

å public void setDatasetIndex(int index);

Sets the index of the dataset from which the indicator obtains the current value and sends a
DialLayerChangeEvent to all registered listeners.

To control the formatter used to convert the dataset value into a string for display purposes:

å public NumberFormat getNumberFormat();

Returns the number formatter (never null) used to convert the dataset value into a String for
the display. The default value is DecimalFormat("0.0").

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 412

å public void setNumberFormat(NumberFormat formatter);

Sets the number formatter used to convert the dataset value into a String for the display, and
sends a DialLayerChangeEvent to all registered listeners. If formatter is null, this method throws
an IllegalArgumentException.

To control the font used to display the dataset value:

å public Font getFont();

Returns the font (never null) used to display the dial value. The default value is Font("Dialog",
Font.BOLD, 14).

å public void setFont(Font font);

Sets the font used to display the dial value and sends a DialLayerChangeEvent to all registered
listeners. If font is null, this method throws an IllegalArgumentException.

To control the colour used to display the dataset value:

å public Paint getPaint();

Returns the paint (never null) used to display the dial value. The default value is Color.black.

å public void setPaint(Paint paint);

Sets the paint used to display the dial value, and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

To control the background colour for the indicator:

å public Paint getBackgroundPaint();

Returns the paint (never null) used to fill the background of the indicator. The default value
is Color.white.

å public void setBackgroundPaint(Paint paint);

Sets the paint used to fill the background of the indicator and sends a DialLayerChangeEvent to
all registered listeners. If paint is null, this method throws an IllegalArgumentException.

To control the stroke used to draw the outline for the indicator:

å public Stroke getOutlineStroke();

Returns the stroke (never null) used to draw the outline around the indicator. The default
value is BasicStroke(1.0f).

å public void setOutlineStroke(Stroke stroke);

Sets the stroke used to draw the outline around the indicator and sends a DialLayerChangeEvent

to all registered listeners. If stroke is null, this method throws an IllegalArgumentException.

To control the colour used to draw the outline for the indicator:

å public Paint getOutlinePaint();

Returns the paint (never null) used to draw the outline around the indicator. The default
value Color.blue.

å public void setOutlinePaint(Paint paint);

Sets the paint used to draw the outline around the indicator and sends a DialLayerChangeEvent

to all registered listeners. If paint is null, this method throws an IllegalArgumentException.

34.16.4 Indicator Position

The anchor point for positioning the indicator is specified in terms of an angle and a radius. To
control the angle:

å public double getAngle();

Returns the angle, in degrees, for calculating the anchor point. The default value is -90.0,
which corresponds to six o’clock on a clock face.

å public void setAngle(double angle);

Sets the angle (in degrees, using the same encoding as Java’s Arc2D class) for calculating the
anchor point used to position the indicator, and sends a DialLayerChangeEvent to all registered
listeners.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 413

To control the radius:

å public double getRadius();

Returns the radius, relative to the dial’s framing rectangle. The default value is 0.3.

å public void setRadius(double radius);

Sets the radius used to calculate the anchor point for the indicator, and sends a DialLayerChangeEvent

to all registered listeners. The radius is specified as a percentage relative to the dial’s framing
rectangle.

The value indicator is displayed as a text item in a frame. The frame anchor specifies the point on
this frame that will be aligned to the anchor point (which is calculated from the angle and radius
described previously):

å public RectangleAnchor getFrameAnchor();

Returns the frame anchor (never null). The default value is RectangleAnchor.CENTER.

å public void setFrameAnchor(RectangleAnchor anchor);

Sets the frame anchor and sends a DialLayerChangeEvent to all registered listeners. If anchor is
null, this method throws an IllegalArgumentException.

34.16.5 Indicator Dimensions

To ensure that the value indicator has a fixed width regardless of the current value in the dataset,
a template value is used to calculate the dimensions of the indicator. This template value will be
formatted using the current number formatter, then the dimensions of the string will be used to
determine the dimensions of the value indicator:

å public Number getTemplateValue();

Returns the template value (never null). The default value is Double(100.0).

å public void setTemplateValue(Number value);

Sets the template value and sends a DialLayerChangeEvent to all registered listeners. If value is
null, this method throws an IllegalArgumentException.

You should set the template value to the largest number that is likely to be displayed in the
indicator (if negative values are possible, make the template negative to allow for the sign in
the formatted string).

To control the white space around the indicator value (but within the outline):

å public RectangleInsets getInsets();

Returns the insets (never null) which determine the white-space around the indicator value.
The default value is RectangleInsets(4, 4, 4, 4).

å public void setInsets(RectangleInsets insets);

Sets the insets which determine the white space around the indicator value and sends a
DialLayerChangeEvent to all registered listeners.

34.16.6 Aligning the Indicator Value

The value anchor determines the point to which the value text will be aligned—you’ll typically set
this to RectangleAnchor.LEFT or RectangleAnchor.RIGHT:

å public RectangleAnchor getValueAnchor();

Returns the token (never null) which determines the anchor point for the value text. The
default value is RectangleAnchor.RIGHT.

å public void setValueAnchor(RectangleAnchor anchor);

Sets the token that determines the anchor point for the value text, and sends a DialLayerChangeEvent

to all registered listeners. If anchor is null, this method throws an IllegalArgumentException.

The text anchor determines the point on the text that will be aligned to the value anchor:

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 414

å public TextAnchor getTextAnchor();

Returns the token (never null) that determines the point on the text that is aligned to the
value anchor. The default value is TextAnchor.CENTER RIGHT.

å public void setTextAnchor(TextAnchor anchor);

Sets the token that determines the point on the text that is aligned to the value anchor, and
sends a DialLayerChangeEvent to all registered listeners. If anchor is null, this method throws
an IllegalArgumentException.

34.16.7 Other Methods

The following methods are typically called by the DialPlot class during chart rendering, you won’t
normally call these methods directly:

å public boolean isClippedToWindow();

Returns true to indicate that this layer should be clipped to the dial frame window.

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the dial value indicator.

34.16.8 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this indicator for equality with an arbitrary object.

34.16.9 Notes

To add an indicator to a DialPlot, use the addLayer() method.

34.17 SimpleDialFrame

34.17.1 Overview

A plain circular dial frame. This class implements the DialFrame interface.

34.17.2 Constructors

To create a new instance:

å public SimpleDialFrame();

Creates a new dial frame with default attributes.

34.17.3 General Attributes

To control the radius of the dial frame:

å public double getRadius();

Returns the radius, expressed as a percentage relative to the framing rectangle. The default
value is 0.95 (ninety-five percent).

å public void setRadius(double radius);

Sets the radius of the circular dial, as a percentage relative to the framing rectangle, and sends
a DialLayerChangeEvent to all registered listeners.

To control the background paint:

å public Paint getBackgroundPaint();

Returns the paint (never null) used to fill the space between the double lines around the outer
edge of the circle. The default value is Color.gray.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 415

å public void setBackgroundPaint(Paint paint);

Sets the paint used to fill the space between the double lines around the edge of the dial, and
sends a DialLayerChangeEvent to all registered listeners. If paint is null, this method throws an
IllegalArgumentException.

To control the foreground paint:

å public Paint getForegroundPaint();

Returns the paint (never null) used to draw the double lines around the outside of the dial.
The default value is Color.black.

å public void setForegroundPaint(Paint paint);

Sets the paint used to draw the double lines around the outside of the circular dial, and sends
a DialLayerChangeEvent to all registered listeners. If paint is null, this method throws an
IllegalArgumentException.

To control the stroke used to draw the dial outline:

å public Stroke getStroke();

Returns the stroke (never null) used to draw the dial outline. The default value is BasicStroke(2.0f).

å public void setStroke(Stroke stroke);

Sets the stroke used to draw the dial outline and sends a DialLayerChangeEvent to all registered
listeners. If stroke is null, this method throws an IllegalArgumentException.

34.17.4 Other Methods

The plot will fetch the window for this dial frame using the following method:

å public Shape getWindow(Rectangle2D frame);

Returns the window for this frame, in this case an Ellipse2D that fits within the specified frame.

å public boolean isClippedToWindow();

Returns false—this layer does not need to be clipped.

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the dial frame within the specified frame and view rectangles.

34.17.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this frame for equality with an arbitrary object.

Instances of this class are cloneable (PublicCloneable) and serializable.

See Also
StandardDialFrame.

34.18 StandardDialRange

34.18.1 Overview

A layer for a DialPlot that highlights (statically) a range of values. You could use this to indicate
ranges on a dial such as, for example, “normal”, “high” and “extreme”.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 416

34.18.2 Constructors

This class defines two constructors:

å public StandardDialRange();

Equivalent to StandardDialRange(0.0, 100.0, Color.white)—see the next constructor.

å public StandardDialRange(double lower, double upper, Paint paint);

Creates a new instance with the specified bounds. If paint is null, this constructor throws an
IllegalArgumentException.

34.18.3 General Attributes

The range is measured relative to a specific scale on the DialPlot:

å public int getScaleIndex();

Returns the scale index. The default value is 0.

å public void setScaleIndex(int index);

Sets the scale index and sends a DialLayerChangeEvent to all registered listeners.

The range is primarily defined by its lower and upper bounds, which are specified in data units:

å public double getLowerBound();

Returns the lower bound for the range, in data units.

å public void setLowerBound(double bound);

Sets the lower bound for the range and sends a DialLayerChangeEvent to all registered listeners.
If bound is not less than getUpperBound(), this method throws an IllegalArgumentException.

å public double getUpperBound();

Returns the upper bound for the range, in data units.

å public void setUpperBound(double bound);

Sets the upper bound for the range and sends a DialLayerChangeEvent to all registered listeners.
If bound is not greater than getLowerBound(), this method throws an IllegalArgumentException.

å public void setBounds(double lower, double upper);

Sets the bounds for the range and sends a DialLayerChangeEvent to all registered listeners. If
lower is not less than upper, this method throws an IllegalArgumentException.

To control the colour used to highlight the range:

å public Paint getPaint();

Returns the paint (never null) used to highlight the range. The initial value is specified in the
constructor.

å public void setPaint(Paint paint);

Sets the paint used to highlight the range and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

The range highlights are drawn at a specified radius within the dial:

å public double getInnerRadius();

Returns the radius for the inner highlight on the range. The default value is 0.48.

å public void setInnerRadius(double radius);

Sets the radius for the inner highlight and sends a DialLayerChangeEvent to all registered lis-
teners.

å public double getOuterRadius();

Returns the radius for the inner highlight on the range. The default value is 0.52.

å public void setOuterRadius(double radius);

Sets the radius for the outer highlight and sends a DialLayerChangeEvent to all registered lis-
teners.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 417

34.18.4 Other Methods

The following methods are typically called by the DialPlot class during chart rendering, you won’t
normally call these methods directly:

å public boolean isClippedToWindow();

Returns true to indicate that this layer should be clipped to the dial frame window.

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the range indicator.

34.18.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dial range for equality with an arbitrary object.

Instances of this class are Cloneable (PublicCloneable) and Serializable.

34.19 StandardDialScale

34.19.1 Overview

A standard scale that can be used on a DialPlot. The scale can display major and minor tick marks
at user-specified intervals, and numerical labels for the major tick marks.

34.19.2 Constructors

To create a new instance:

å public StandardDialScale();

Equivalent to StandardDialScale(0.0, 100.0, 175, -170, 10.0, 4)—see the next constructor.

å public StandardDialScale(double lowerBound, double upperBound, double startAngle,

double extent, double majorTickIncrement, int minorTickCount);

Creates a new dial scale covering the values lowerBound to upperBound.

34.19.3 General Attributes

To control the arc through which the scale is drawn on the dial, you can specify the starting angle
and the extent (in degrees, using the same encoding as Java’s Arc2D class):

å public double getStartAngle();

Returns the angle (in degrees) for the starting point of the scale. The initial value is specified
in the constructor.

å public void setStartAngle(double angle);

Sets the angle (in degrees, same encoding as Java’s Arc2D class) for the starting point of the
scale, and sends a DialLayerChangeEvent to all registered listeners.

To control the extent:

å public double getExtent();

Returns the extent (in degrees) for the scale. The initial value is specified in the constructor.

å public void setExtent(double extent);

Sets the extent (in degrees, same encoding as Java’s Arc2D class) for the scale, and sends a
DialLayerChangeEvent to all registered listeners.

To control the lower bound:

å public double getLowerBound(); [1.0.8]

Returns the lower bound for the scale.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 418

å public void setLowerBound(double lower); [1.0.8]

Sets the lower bound for the scale and sends a DialLayerChangeEvent to all registered listeners.

To control the upper bound:
å public double getUpperBound(); [1.0.8]

Returns the upper bound for the scale.

å public void setUpperBound(double upper); [1.0.8]

Sets the upper bound for the scale and sends a DialLayerChangeEvent to all registered listeners.

34.19.4 Tick Marks and Labels

The tick radius determines how far out on the dial the tick marks are drawn (typically they will
appear near the outer edge of the dial, but for a dial that shows more than one scale you might
want to show a scale closer to the centre):

å public double getTickRadius();

Returns the radius as a percentage of the dial’s framing rectangle. The default value is 0.70

(seventy percent).

å public void setTickRadius(double radius);

Sets the radius used to position the tick marks, and sends a DialLayerChangeEvent to all regis-
tered listeners.

The tick radius defines the reference point for the major and minor tick marks, as well as the labels
for the major tick marks. These are all described in the following sections.

34.19.5 Major Tick Marks

The scale will draw tick marks at regular (user-definable) intervals along the range. To control the
interval between tick marks:

å public double getMajorTickIncrement();

Returns the interval between major tick marks. The initial value is specified in the constructor.

å public void setMajorTickIncrement(double increment);

Sets the interval between major tick marks and sends a DialLayerChangeEvent to all registered
listeners.

To control the length of the major tick marks:
å public double getMajorTickLength();

Returns the length of the major tick marks, expressed as an amount to be subtracted from the
tick radius (see getTickRadius()). The default value is 0.04.

å public void setMajorTickLength(double length);

Sets the length of the major tick marks and sends a DialLayerChangeEvent to all registered
listeners. The length must be greater than or equal() to zero.

To control the paint used to draw the major tick marks:
å public Paint getMajorTickPaint();

Returns the paint (never null) used to draw the major tick marks. The default value is
Color.black.

å public void setMajorTickPaint(Paint paint);

Sets the paint used to draw the major tick marks and sends a DialLayerChangeEvent to all
registered listeners. If paint is null, this method throws an IllegalArgumentException.

To control the stroke used to draw the major tick marks:
å public Stroke getMajorTickStroke();

Returns the stroke (never null) used to draw the major tick marks. The default value is
BasicStroke(3.0f).

å public void setMajorTickStroke(Stroke stroke);

Sets the stroke used to draw the major tick marks, and sends a DialLayerChangeEvent to all
registered listeners. If stroke is null, this method throws an IllegalArgumentException.

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 419

34.19.6 Tick Labels

The scale will display numerical labels for the major tick marks. There is a flag to enable/disable
this feature:

å public boolean getTickLabelsVisible();

Returns the flag that controls whether or not the tick labels are visible. The default value is
true.

å public void setTickLabelsVisible(boolean visible);

Sets the flag that controls whether or not the tick labels are visible and sends a DialLayerChangeEvent

to all registered listeners.

The anchor point for each label is determined using the tick radius (see getTickRadius()) adjusted
by an offset value. Once the anchor point is determined, the value label is centred on the anchor
point:

å public double getTickLabelOffset();

Returns the tick label offset. The default value is 0.10.

å public void setTickLabelOffset(double offset);

Sets the tick label offset and sends a DialLayerChangeEvent to all registered listeners.

To control the font used to display the tick labels:

å public Font getTickLabelFont();

Returns the font (never null) used to display the tick labels. The default value is Font("Dialog",
Font.BOLD, 16).

å public void setTickLabelFont(Font font);

Sets the font used to display the tick labels, and sends a DialLayerChangeEvent to all registered
listeners. If font is null, this method throws an IllegalArgumentException.

To control the foreground colour of the tick labels:

å public Paint getTickLabelPaint();

Returns the paint (never null) used to display the tick labels. The default value is Color.black.

å public void setTickLabelPaint(Paint paint);

Sets the paint used to display the tick labels, and sends a DialLayerChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

There is a flag that controls whether or not the first tick label is displayed—this is intended for
dials that are fully circular (in which case the first and last labels occupy the same position):

å public boolean getFirstTickLabelVisible();

Returns the flag that controls whether or not the first tick label is visible. The default value is
true.

å public void setFirstTickLabelVisible(boolean visible);

Sets the flag that controls whether or not the first tick label is visible, and sends a DialLayerChangeEvent

to all registered listeners.

34.19.7 Minor Tick Marks

The scale can display minor tick marks (with no labels).

å public int getMinorTickCount();

Returns the number of minor tick marks to display between each pair of major tick marks. The
initial value is specified in the constructor.

å public void setMinorTickCount(int count);

Sets the minor tick count and sends a DialLayerChangeEvent to all registered listeners. If count

is less than zero, this method throws an IllegalArgumentException.

To control the length of the minor tick marks:

CHAPTER 34. PACKAGE: ORG.JFREE.CHART.PLOT.DIAL 420

å public double getMinorTickLength();

Returns the length of minor tick marks, as a radius specified as a percentage of the dial’s
framing rectangle. The default value is 0.02 (two percent).

å public void setMinorTickLength(double length);

Sets the minor tick length and sends a DialLayerChangeEvent to all registered listeners. If you
set the length to 0.0, no minor tick marks will be drawn.

To control the paint used for the minor tick marks:

å public Paint getMinorTickPaint();

Returns the paint (never null) used for the minor tick marks. The default value is Color.black.

å public void setMinorTickPaint(Paint paint);

Sets the paint used to display the minor tick marks, and sends a DialLayerChangeEvent to all
registered listeners. If paint is null, this method throws an IllegalArgumentException.

To control the stroke used for the minor tick marks:

å public Stroke getMinorTickStroke(); [1.0.8]

Returns the stroke (null) used for the minor tick marks. The default value is BasicStroke(1.0f).

å public void setMinorTickStroke(Stroke stroke); [1.0.8]

Sets the stroke used to draw the minor tick marks and sends a DialLayerChangeEvent to all
registered listeners. If stroke is null, this method throws an IllegalArgumentException.

34.19.8 Conversion Methods

The following methods are used to convert from data values to angles and back again—these are
used by the plot, and you won’t typically need to call these methods yourself:

å public double valueToAngle(double value);

Returns the angle (in degrees) that corresponds to the specified data value. This is a function
of the lower and upper bounds for the scale, and the starting angle and extent.

å public double angleToValue(double angle);

Returns the value that corresponds to the given angle (which is specified in degrees). This is a
function of the starting angle and extent, and the lower and upper bounds for the scale.

34.19.9 Other Methods

The following methods are typically called by the DialPlot class during chart rendering, you won’t
normally call these methods directly:

å public boolean isClippedToWindow();

Returns true to indicate that the scale should be clipped to the dial frame’s window.

å public void draw(Graphics2D g2, DialPlot plot, Rectangle2D frame, Rectangle2D view);

Draws the scale within the specified frame and view rectangles.

34.19.10 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this scale for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

Chapter 35

Package: org.jfree.chart.renderer

35.1 Overview

This package contains interfaces and classes that are used to implement renderers, plug-in objects
that are responsible for drawing individual data items on behalf of a plot.

Renderers offer a lot of scope for changing the appearance of your charts, either by changing the
attributes of an existing renderer, or by implementing a completely new renderer.

35.2 AbstractRenderer

35.2.1 Overview

An abstract class that provides support for the features common to all renderer implementations:

• colors, line styles and shapes for each series (section 35.2.3);

– paint (section 35.2.5);
– fill paint (section 35.2.6);
– outline paint (section 35.2.7);
– stroke (section 35.2.8);
– outline stroke (section 35.2.9);
– shape (section 35.2.11);

• series visibility (section 35.2.12);

• series in legend visibility (section 35.2.13);

• item labels (section 35.2.14);

– item labels visible (section 35.2.15);
– item label font (section 35.2.16);
– item label paint (section 35.2.17);
– positive item label positions (section 35.2.18);
– negative item label positions (section 35.2.19);

• chart entity generation (section 35.2.21);

This base class is extended by:

• AbstractCategoryItemRenderer;

• AbstractXYItemRenderer.

421

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 422

35.2.2 Per Series Attribute Mechanism

Many renderer attributes need to have a value defined for each series in the dataset that is assigned
to the renderer. In addition to the per-series attributes, JFreeChart will typically define a “base”
(or default) attribute value, that will be used in the event that no attribute value is defined for a
particular series.

In version 1.0.5 and earlier, many attributes also define an override setting which takes precedence
over the per-series and base settings. This, however, has caused confusion and is mostly unnecessary,
so the overrides settings have been deprecated from version 1.0.6 onwards.1

35.2.3 Common Attributes

All renderers use a common set of attributes as listed in Table 35.1.

Attribute: Description:

paint The paint override (null permitted, deprecated from 1.0.6 onwards).
paintList A list of paints that apply to individual series (only referenced if paint

is null).
autoPopulateSeriesPaint A flag that controls whether or not the per-series settings are auto-

populated (the default is true).
basePaint The paint that is used if there is no other setting.

fillPaint The fill paint override (null permitted, deprecated from 1.0.6 on-
wards).

fillPaintList A list of fill paints that apply to individual series (only referenced if
paint is null).

autoPopulateSeriesXXX A flag that controls whether or not the per-series settings are auto-
populated.

baseFillPaint The fill paint that is used if there is no other setting.

outlinePaint The outline paint override (null permitted, deprecated from 1.0.6
onwards).

outlinePaintList A list of outline paints that apply to individual series (only referenced
if outlinePaint is null).

autoPopulateSeriesXXX A flag that controls whether or not the per-series settings are auto-
populated.

baseOutlinePaint The outline paint that is used if there is no other setting.

stroke The stroke override (null permitted, deprecated from 1.0.6 onwards).
strokeList A list of stroke objects that apply to individual series (only referenced

if stroke is null).
autoPopulateSeriesXXX A flag that controls whether or not the per-series settings are auto-

populated.
baseStroke The stroke that is used if there is no other setting.

outlineStroke The outline stroke override (null permitted, deprecated from 1.0.6
onwards).

outlineStrokeList A list of outline strokes that apply to individual series (only referenced
if outlineStroke is null).

autoPopulateSeriesXXX A flag that controls whether or not the per-series settings are auto-
populated.

baseOutlineStroke The outline stroke override.

shape The shape override (null permitted, deprecated from 1.0.6 onwards).
shapeList A list of shapes that apply to individual series (only referenced if shape

is null).
autoPopulateSeriesXXX A flag that controls whether or not the per-series settings are auto-

populated.
baseShape The shape that is used if there is no other setting.

Table 35.1: Attributes for the AbstractRenderer class

1You can still use them, but they may be removed in a future release of JFreeChart.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 423

35.2.4 Setting Series Colours

Renderers are responsible for drawing the data items within a plot, so this class provides attributes
for controlling the colours that will be used. Colours are typically defined on a “per series” basis,
and stored in a lookup table.

There is a default mechanism to automatically populate the lookup table with default colours (using
the DrawingSupplier interface). However, you can manually update the paint list at any time. First,
you need to obtain a reference to the renderer(s) (note that many charts do not use more than one
renderer). Here is the code for a CategoryPlot:

CategoryPlot plot = (CategoryPlot) chart.getPlot();
AbstractRenderer r1 = (AbstractRenderer) plot.getRenderer(0);
AbstractRenderer r2 = (AbstractRenderer) plot.getRenderer(1);

The code is similar for charts that use XYPlot:

XYPlot plot = (XYPlot) chart.getPlot();
AbstractRenderer r1 = (AbstractRenderer) plot.getRenderer(0);
AbstractRenderer r2 = (AbstractRenderer) plot.getRenderer(1);

To update the series paint used by a renderer:

// change the paint for series 0, 1 and 2...
r1.setSeriesPaint(0, Color.red);
r1.setSeriesPaint(1, Color.green);
r1.setSeriesPaint(2, Color.blue);

35.2.5 Paint

The paint attribute defines the main colour used to identify a series in a chart:

Attribute: Description:

paint The paint override (null permitted). Deprecated since 1.0.6.
paintList A list of paints that apply to individual series (only referenced if paint

is null).
autoPopulateSeriesPaint A flag that controls whether or not the per-series settings are auto-

populated (the default is true).
basePaint The paint that is used if there is no other setting.

Table 35.2: Paint attributes for the AbstractRenderer class

å public Paint getItemPaint(int row, int column);

This method is called by JFreeChart to obtain a paint instance for each item that the renderer
draws. By default, it calls lookupSeriesPaint(row) which checks the current paint setting for
the series. If this is null and autoPopulateSeriesPaint is true, the drawing supplier is queried
for a new paint instance, otherwise the default paint (getBasePaint()) is returned.

You can override this method to return an arbitrary colour for any data item.

å public Paint getSeriesPaint(int series);

Returns the paint to use for all items in the specified series.

Some renderers will also use the fill and/or outline paint attributes for the renderer.

Override Paint

The override paint attribute can be used to override the per-series and base settings, but is seldom
used in practice (it defaults to null):

å public void setPaint(Paint paint); [Deprecated, 1.0.6]

Equivalent to setPaint(paint, true), see the next method for details.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 424

å public void setPaint(Paint paint, boolean notify); [Deprecated, 1.0.6]

Sets the override paint attribute and, if requested, sends a RendererChangeEvent to all registered
listeners.

A call to setPaint(Paint) forces the renderer to use the same colour for ALL series in a dataset.
To achieve the same result with non-deprecated methods, you need to set the base paint and also
switch of the auto-population of the per-series paint:

renderer.setBasePaint(Color.BLUE);
renderer.setAutoPopulateSeriesPaint(false);

Per Series Paint

The paint attribute is typically defined on a per-series basis with the following methods:

å public void setSeriesPaint(int series, Paint paint);

Equivalent to setSeriesPaint(series, paint, true), see the next method for details.

å public void setSeriesPaint(int series, Paint paint, boolean notify);

Sets the paint for a series and, if requested, sends a RendererChangeEvent to all registered
listeners.

Base Paint

The base paint is used as the default when the override and series paint settings are null:

å public Paint getBasePaint();

Returns the base paint (never null). The default value is defined by AbstractRenderer.DEFAULT PAINT

(Color.blue).

å public void setBasePaint(Paint paint);

Equivalent to setBasePaint(paint, true), see the next method for details.

å public void setBasePaint(Paint paint, boolean notify);

Sets the base paint and, if requested, sends a RendererChangeEvent to all registered listeners.
An IllegalArgumentException is thrown if paint is null.

35.2.6 Fill Paint

The fill paint attribute defines the color used to fill shapes that are drawn by the renderer:

Attribute: Description:

fillPaint The fill paint override (null permitted). Deprecated as of 1.0.6.
fillPaintList A list of fill paints that apply to individual series (only referenced if fillPaint

is null).
baseFillPaint The fill paint that is used if there is no other setting.

Table 35.3: Fill paint attributes for the AbstractRenderer class

å public Paint getItemFillPaint(int row, int column);

This method is called to obtain the fill paint for each item that the renderer draws. By default,
it simply returns the series fill paint obtained by calling getSeriesFillPaint(row). However,
you can override this method to return an arbitrary color for any data item.

å public Paint getSeriesFillPaint(int series);

Returns the fill paint to use for all items in the specified series.

Not all renderers will use the fill paint attribute.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 425

Override Fill Paint

The override fill paint attribute can be used to override the per-series and base settings (the default
is null):

å public void setFillPaint(Paint paint); [Deprecated, 1.0.6.]

Equivalent to setFillPaint(paint, true), see the next method for details.

å public void setFillPaint(Paint paint, boolean notify); [Deprecated, 1.0.6.]

Sets the override fill paint attribute and, if requested, sends a RendererChangeEvent to all regis-
tered listeners.

Per Series Fill Paint

The fill paint attribute is typically defined on a per-series basis with the following methods:

å public void setSeriesFillPaint(int series, Paint paint);

Equivalent to setSeriesFillPaint(series, paint, true), see the next method for details.

å public void setSeriesFillPaint(int series, Paint paint, boolean notify);

Sets the fill paint for a series and, if requested, sends a RendererChangeEvent to all registered
listeners.

Base Fill Paint

The base fill paint is used as the default when the override and series paint settings are null:

å public Paint getBaseFillPaint();

Returns the base fill paint (never null). The default value is Color.white.

å public void setBaseFillPaint(Paint paint);

Equivalent to setBaseFillPaint(paint, true), see the next method for details.

å public void setBaseFillPaint(Paint paint, boolean notify);

Sets the base fill paint and, if requested, sends a RendererChangeEvent to all registered listeners.
An IllegalArgumentException is thrown if paint is null.

35.2.7 OutlinePaint

The outline paint attribute defines the color used to outline shapes that are drawn by the renderer:

Attribute: Description:

outlinePaint The outline paint override (null permitted). Deprecated as of 1.0.6.
outlinePaintList A list of outline paints that apply to individual series (only referenced if

outlinePaint is null).
baseOutlinePaint The outline paint that is used if there is no other setting.

Table 35.4: Outline paint attributes for the AbstractRenderer class

å public Paint getItemOutlinePaint(int row, int column);

This method is called to obtain the outline paint for each item that the renderer draws. By de-
fault, it simply returns the series outline paint obtained by calling getSeriesOutlinePaint(row).
However, you can override this method to return an arbitrary color for any data item.

å public Paint getSeriesOutlinePaint(int series);

Returns the outline paint to use for all items in the specified series.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 426

Override Outline Paint

The override outline paint attribute can be used to override the per-series and base settings (the
default is null):

å public void setOutlinePaint(Paint paint); [Deprecated, 1.0.6]

Equivalent to setOutlinePaint(paint, true), see the next method for details.

å public void setOutlinePaint(Paint paint, boolean notify); [Deprecated, 1.0.6]

Sets the override outline paint attribute and, if requested, sends a RendererChangeEvent to all
registered listeners.

Per Series Outline Paint

The outline paint attribute is typically defined on a per-series basis with the following methods:

å public void setSeriesOutlinePaint(int series, Paint paint);

Equivalent to setSeriesOutlinePaint(series, paint, true), see the next method for details.

å public void setSeriesOutlinePaint(int series, Paint paint, boolean notify);

Sets the outline paint for a series and, if requested, sends a RendererChangeEvent to all registered
listeners.

Base Outline Paint

The base outline paint is used as the default when the override and series paint settings are null:

å public Paint getBaseOutlinePaint();

Returns the base paint (never null). The default value is defined by AbstractRenderer.DEFAULT OUTLINE PAINT

(Color.gray).

å public void setBaseOutlinePaint(Paint paint);

Equivalent to setBaseOutlinePaint(paint, true), see the next method for details.

å public void setBaseOutlinePaint(Paint paint, boolean notify);

Sets the base outline paint and, if requested, sends a RendererChangeEvent to all registered
listeners. An IllegalArgumentException is thrown if paint is null.

35.2.8 Stroke

The stroke attributes control the pen style (width and dash pattern among other things) used by
the renderer for drawing lines:

å public Stroke getItemStroke(int row, int column);

Returns the stroke used for the specified item. This method simply returns the result from
getSeriesStroke(row), but you can override it to implement a different behaviour.

å public Stroke getSeriesStroke(int series);

Returns the stroke to use for the specified series.

Some renderers won’t use this at all, while other renderers may also make use of the outline stroke
attribute—refer to the documentation for the specific renderer for more details.

Override Stroke

The override stroke attribute can be used to override the per-series and base settings, but is seldom
used in practice (it defaults to null):

å public void setStroke(Stroke stroke); [Deprecated, 1.0.6]

Equivalent to setStroke(stroke, true), see the next method for details.

å public void setStroke(Stroke stroke, boolean notify); [Deprecated, 1.0.6]

Sets the override stroke and, if requested, sends a RendererChangeEvent to all registered listeners.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 427

Per Series Stroke

The stroke attribute is typically defined on a per series basis using the following method:

å public void setSeriesStroke(int series, Stroke stroke);

Equivalent to setSeriesStroke(series, stroke, true), see the next method for details.

å public void setSeriesStroke(int series, Stroke stroke, boolean notify);

Sets the stroke for the specified series and, if requested, sends a RendererChangeEvent to all
registered listeners. You can set the stroke for a series to null, in which case the base stroke
will be used for that series.

Base Stroke

The base stroke setting is used for any series where both the override and per series settings are
not specified:

å public Stroke getBaseStroke();

Returns the base stroke (never null). The default value is defined by AbstractRenderer.DEFAULT STROKE

(BasicStroke(1.0f)).

å public void setBaseStroke(Stroke stroke);

Equivalent to setBaseStroke(stroke, true), see the next method for details.

å public void setBaseStroke(Stroke stroke, boolean notify);

Sets the base stroke and, if requested, sends a RendererChangeEvent to all registered listeners.

35.2.9 Outline Stroke

The outline stroke attributes control the pen style (width and dash pattern among other things)
used by the renderer for drawing shape outlines:

å public Stroke getItemOutlineStroke(int row, int column); [Deprecated, 1.0.6]

Returns the outline stroke used for the specified item. This method simply returns the result
from getSeriesOutlineStroke(row), but you can override it to implement a different behaviour.

å public Stroke getSeriesOutlineStroke(int series); [Deprecated, 1.0.6]

Returns the outline stroke to use for the specified series.

Some renderers won’t use this at all—refer to the documentation for the specific renderer for more
details.

Override Outline Stroke

The override outline stroke attribute can be used to override the per-series and base settings, but
is seldom used in practice (it defaults to null):

å public void setOutlineStroke(Stroke stroke);

Equivalent to setOutlineStroke(stroke, true), see the next method for details.

å public void setOutlineStroke(Stroke stroke, boolean notify);

Sets the override outline stroke and, if requested, sends a RendererChangeEvent to all registered
listeners.

Per Series Outline Stroke

The outline stroke attribute is typically defined on a per series basis using the following method:

å public void setSeriesOutlineStroke(int series, Stroke stroke);

Equivalent to setSeriesOutlineStroke(series, stroke, true), see the next method for details.

å public void setSeriesOutlineStroke(int series, Stroke stroke, boolean notify);

Sets the outline stroke for the specified series and, if requested, sends a RendererChangeEvent to
all registered listeners. You can set the outline stroke for a series to null, in which case the
base outline stroke will be used for that series.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 428

Base Outline Stroke

The base outline stroke setting is used for any series where both the override and per series settings
are not specified:

å public Stroke getBaseOutlineStroke();

Returns the base outline stroke (possibly null). The default value is is BasicStroke(1.0f)

(defined by the constant AbstractRenderer.DEFAULT OUTLINE STROKE).

å public void setBaseOutlineStroke(Stroke stroke);

Equivalent to setBaseOutlineStroke(stroke, true), see the next method for details.

å public void setBaseOutlineStroke(Stroke stroke, boolean notify);

Sets the base outline stroke and, if requested, sends a RendererChangeEvent to all registered
listeners. If you set this to null, the renderer will not draw an outline.

35.2.10 Setting Series Shapes

Renderers are initialised so that a range of default shapes are available if required. These are stored
in a lookup table that is initially empty. The lookup table has two rows (one for the primary
dataset, and one for the secondary dataset), and can have any number of columns (one per series).
When the renderer requires a Shape, it uses the dataset index (primary or secondary) and the series
index to read a shape from the lookup table. If the value is null, then the renderer turns to the
DrawingSupplier for a new shape—the next shape is returned by the getNextShape() method.

If you require more control over the shapes that are used for your plots, you can populate the lookup
table yourself using the setSeriesShape(...) method. The shape you supply can be any instance
of Shape, but should be centered on (0, 0) in Java2D space (so that JFreeChart can position the
shape at any data point).

Here is some sample code that sets four custom shapes for the primary dataset in an XYPlot:
XYPlot plot = chart.getXYPlot();
XYItemRenderer r = plot.getRenderer();
if (r instanceof StandardXYItemRenderer) {

StandardXYItemRenderer renderer = (StandardXYItemRenderer) r;
renderer.setPlotShapes(true);
renderer.setDefaultShapeFilled(true);
renderer.setSeriesShape(0, new Ellipse2D.Double(-3.0, -3.0, 6.0, 6.0));
renderer.setSeriesShape(1, new Rectangle2D.Double(-3.0, -3.0, 6.0, 6.0));
GeneralPath s2 = new GeneralPath();
s2.moveTo(0.0f, -3.0f);
s2.lineTo(3.0f, 3.0f);
s2.lineTo(-3.0f, 3.0f);
s2.closePath();
renderer.setSeriesShape(2, s2);
GeneralPath s3 = new GeneralPath();
s3.moveTo(-1.0f, -3.0f);
s3.lineTo(1.0f, -3.0f);
s3.lineTo(1.0f, -1.0f);
s3.lineTo(3.0f, -1.0f);
s3.lineTo(3.0f, 1.0f);
s3.lineTo(1.0f, 1.0f);
s3.lineTo(1.0f, 3.0f);
s3.lineTo(-1.0f, 3.0f);
s3.lineTo(-1.0f, 1.0f);
s3.lineTo(-3.0f, 1.0f);
s3.lineTo(-3.0f, -1.0f);
s3.lineTo(-1.0f, -1.0f);
s3.closePath();
renderer.setSeriesShape(3, s3);

}

35.2.11 Shape

Many renderers (though not all) will display a shape at each data point, so this class includes a
mechanism for storing the shapes that will be used. Be aware that any shapes you supply should be
centred around the origin ((0, 0)), as this is assumed in the code that translates shapes into position
at chart rendering time. For example, a rectangle centred at the origin would be Rectangle(-3.0,

-4.0, 6.0, 8.0):

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 429

å public Shape getItemShape(int row, int column);

Returns the shape to use for the specified item. This method simply returns the value from
getSeriesShape(row), but you can override this if you want to return a custom shape for a
specific item.

å public Shape getSeriesShape(int series);

Returns the shape to use for items in the specified series.

Override Shape

The override shape, if non-null, applies to all series:

å public void setShape(Shape shape); [Deprecated, 1.0.6]

Equivalent to setShape(shape, true), see the next method for details.

å public void setShape(Shape shape, boolean notify); [Deprecated, 1.0.6]

Sets the override shape and, if requested, sends a RendererChangeEvent to all registered listeners.
Set this to null for no override.

Series Shapes

The renderer can store shape attributes on a per-series basis:

å public void setSeriesShape(int series, Shape shape);

Equivalent to setSeriesShape(series, shape, true), see the next method for details.

å public void setSeriesShape(int series, Shape shape, boolean notify);

Sets the shape for the specified series and, if requested, sends a RendererChangeEvent to all
registered listeners. You can set the shape to null, in which case the base shape (see the next
section) will be used for the specified series.

Base Shape

The base shape is used as the default if no override or series shape is specified:

å public Shape getBaseShape();

Returns the current base shape (never null). The default base shape is a Rectangle(-3.0, -3.0,

6.0, 6.0).

å public void setBaseShape(Shape shape);

Equivalent to setBaseShape(shape, true), see the next method for details.

å public void setBaseShape(Shape shape, boolean notify);

Sets the base shape and, if requested, sends a RendererChangeEvent to all registered listeners.
An IllegalArgumentException is thrown if shape is null.

35.2.12 Series Visibility

By default, a renderer will display all the series in a dataset, but it is possible to change this
behaviour by changing the series visibility flags—see table 35.5.2

Attribute: Description:

seriesVisible The override flag (null permitted). This field is redundant and dep-
recated from version 1.0.6 onwards.

seriesVisibleList A list of flags that apply to individual series (these are only referenced
if seriesVisible is null).

baseSeriesVisible The default visibility for all series.

Table 35.5: Series visibility attributes for the AbstractRenderer class

To determine the current visibility of an item or series:
2Note that not all renderers respect these flags yet, but eventually they all will.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 430

å public boolean getItemVisible(int series, int item);

Returns true if the specified item should be displayed by the renderer, and false otherwise. The
default implementation of this method just returns the value from isSeriesVisible(series). For
different behaviour, subclass the renderer you are using and override this method.

å public boolean isSeriesVisible(int series);

Returns true if the specified series is visible, and false otherwise. This method checks the
override, per-series and base settings as appropriate.

Override Flag

An override flag is provided for the series visibility. This is mainly for completeness, typically you
won’t need to set this (it defaults to null). This flag is deprecated from version 1.0.6 onwards.

å public Boolean getSeriesVisible(); [Deprecated 1.0.6]

Returns the override flag for series visibility. If this is non-null, the isSeriesVisible(int)

method returns the boolean value of this flag.

å public void setSeriesVisible(Boolean visible); [Deprecated 1.0.6]

Equivalent to setSeriesVisible(visible, true), see the method below.

å public void setSeriesVisible(Boolean visible, boolean notify); [Deprecated 1.0.6]

Sets the override flag for series visibility and, if requested, sends a RendererChangeEvent to all
registered listeners. If you don’t need an override, set this flag to null.

Per Series Flags

The per-series visibility flags allow complete control over which series are displayed in a chart
(provided that the renderer subclass supports this feature):

å public Boolean getSeriesVisible(int series);

Returns the flag that controls the visibility of the specified series. This can be null, in which
case the base level setting will apply.

å public void setSeriesVisible(int series, Boolean visible);

Calls setSeriesVisible(series, visible, true)—see below.

å public void setSeriesVisible(int series, Boolean visible, boolean notify);

Sets the visibility flag for the specified series and, if requested, sends a RendererChangeEvent to
all registered listeners. This flag can be set to null, in which case the base level flag applies.

Base Flag

The base flag, which defaults to true, applies when there is no override flag set and no series level
flag set:

å public boolean getBaseSeriesVisible();

Returns the default series visibility.

å public void setBaseSeriesVisible(boolean visible);

Calls setBaseSeriesVisible(visible, true). See the next method description for details.

å public void setBaseSeriesVisible(boolean visible, boolean notify);

Sets the default series visibility and, if requested, sends a RendererChangeEvent to all registered
listeners.

35.2.13 Series Visibility in Legend

By default, a renderer will create legend items for all series when asked (see the createLegendItems()

method implemented by AbstractCategoryItemRenderer and AbstractXYItemRenderer), but it is possible
to change this behaviour by changing the series visibility flags—see table 35.6.
To determine the current visibility of a series in the legend:

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 431

Attribute: Description:

seriesVisibleInLegend The override flag (null permitted). Deprecated as of version 1.0.6.
seriesVisibleInLegendList A list of flags that apply to individual series (these are only referenced

if seriesVisibleInLegend is null).
baseSeriesVisibleInLegend The default legend visibility for all series.

Table 35.6: Legend visibility attributes for the AbstractRenderer class

å public boolean isSeriesVisibleInLegend(int series);

Returns true if the specified series is visible, and false otherwise. This method checks the
override, per-series and base level flags as appropriate (take care not to confuse this method
with getSeriesVisibleInLegend(int), which only returns the series level flag).

Override Flag

An override flag is provided for the series visibility in the legend. This is mainly for completeness,
typically you won’t need to set this (it defaults to null):

å public Boolean getSeriesVisibleInLegend(); [Deprecated, 1.0.6]

Returns the override flag for series visibility in the legend. This may be null.

å public void setSeriesVisibleInLegend(Boolean visible); [Deprecated, 1.0.6]

Equivalent to setSeriesVisibleInLegend(visible, true), see the next method for details.

å public void setSeriesVisibleInLegend(Boolean visible, boolean notify); [Deprecated, 1.0.6]

Sets the override flag and, if requested, sends a RendererChangeEvent to all registered listeners.
You can set the override flag to null (the default) if you want the per-series flags to take effect.

Per Series Settings

The per-series visibility flags allow complete control over which series are displayed in the legend:

å public Boolean getSeriesVisibleInLegend(int series);

Returns the per-series flag controlling visibility in the legend, for the specified series. Don’t
confuse this method with the similarly named isSeriesVisibleInLegend(int) method.

å public void setSeriesVisibleInLegend(int series, Boolean visible);

Equivalent to setSeriesVisibleInLegend(series, visible, true), see the next method for de-
tails.

å public void setSeriesVisibleInLegend(int series, Boolean visible, boolean notify);

Sets the flag controlling visibility of the specified series in the legend and, if requested, sends
a RendererChangeEvent to all registered listeners. If the flag for a series is set to null, the
value defined by the base flag (see the next section) will apply for that series when calling the
isSeriesVisibleInLegend(int) method.

Base Flag

The base flag provides the default visibility for a series in the legend. This value (the default is
true) is used only if the override and per-series flags are both null:

å public boolean getBaseSeriesVisibleInLegend();

Returns the base flag controlling the visibility of series in the legend. This value is returned by
the isSeriesVisibleInLegend(int) method when both the override flag and the series flag are
null.

å public void setBaseSeriesVisibleInLegend(boolean visible);

Equivalent to setBaseSeriesVisibleInLegend(visible, true), see the next method for details.

å public void setBaseSeriesVisibleInLegend(boolean visible, boolean notify);

Sets the base flag controlling the visibility of series in the legend and sends a RendererChangeEvent

to all registered listeners.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 432

35.2.14 Item Label Attributes

All renderers use a common set of item label attributes (some renderers may ignore these settings):

Attribute: Description:

itemLabelsVisible The itemLabelsVisible override flag (null permitted).
Deprecated as of 1.0.6.

itemLabelsVisibleList A list of flags that apply to individual series (only ref-
erenced if itemLabelsVisible is null).

baseItemLabelsVisible The flag that is used if there is no other setting.

itemLabelFont The itemLabelFont override (null permitted). Depre-
cated as of 1.0.6.

itemLabelFontList A list of fonts that apply to individual series (only ref-
erenced if itemLabelFont is null).

baseItemLabelFont The font that is used if there is no other setting.

itemLabelPaint The itemLabelPaint override (null permitted). Depre-
cated as of 1.0.6.

itemLabelPaintList A list of paints that apply to individual series (only
referenced if itemLabelPaint is null).

baseItemLabelPaint The font that is used if there is no other setting.

itemLabelAnchor The itemLabelAnchor override (null permitted). Dep-
recated as of 1.0.6.

itemLabelAnchorList A list of anchors that apply to individual series (only
referenced if itemLabelAnchor is null).

baseItemLabelAnchor The anchor that is used if there is no other setting.

itemLabelTextAnchor The itemLabelTextAnchor override (null permitted).
Deprecated as of 1.0.6.

itemLabelTextAnchorList A list of text anchors that apply to individual series
(only referenced if itemLabelTextAnchor is null).

baseItemLabelTextAnchor The text anchor that is used if there is no other setting.

itemLabelRotationAnchor The itemLabelRotationAnchor override (null permit-
ted). Deprecated as of 1.0.6.

itemLabelRotationAnchorList A list of rotation anchors that apply to individual series
(only referenced if itemLabelRotationAnchor is null).

baseItemLabelRotationAnchor The anchor that is used if there is no other setting.

itemLabelAngle The itemLabelAngle override (null permitted). Depre-
cated as of 1.0.6.

itemLabelAngleList A list of angles that apply to individual series (only
referenced if itemLabelAnchor is null).

baseItemLabelAngle The angle that is used if there is no other setting.

Table 35.7: Attributes for the AbstractRenderer class

35.2.15 Item Label Visibility

The item label visibility attributes control the visibility of individual item labels:

Attribute: Description:

itemLabelsVisible The override visibility flag (null permitted).
itemLabelsVisibleList A list of flags that apply to individual series (these are only referenced

if itemLabelsVisible is null).
baseItemLabelsVisible The default item label visibility for all series.

Table 35.8: Item label visibility attributes for the AbstractRenderer class

å public boolean isItemLabelVisible(int row, int column);

Returns true if the item label is visible for the specified item, and false otherwise. Note that

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 433

the row index corresponds to the series and the column index corresponds to the item within
the series (or the category). The default implementation of this method simply returns the
value from isSeriesItemLabelsVisible(row), but you can override the method to control label
visibility on a per-item basis.

å public boolean isSeriesItemLabelsVisible(int series);

Returns true if item labels are visible for the specified series, and false otherwise.

Override Item Label Visibility

The override item labels visible attribute can be used to override the per-series and base settings,
but is seldom used in practice (it defaults to null):

å public void setItemLabelsVisible(boolean visible); [Deprecated, 1.0.6]

Equivalent to setItemLabelsVisible(Boolean.valueOf(visible), see the next method for details.

å public void setItemLabelsVisible(Boolean visible); [Deprecated, 1.0.6]

Equivalent to setItemLabelsVisible(visible, true), see the next method for details.

å public void setItemLabelsVisible(Boolean visible, boolean notify); [Deprecated, 1.0.6]

Sets the override item labels visible flag and, if requested, sends a RendererChangeEvent to all
registered listeners.

Per Series Item Label Visibility

The item labels attribute can be defined on a per series basis using the following methods:

å public void setSeriesItemLabelsVisible(int series, boolean visible);

Equivalent to setSeriesStroke(series, Boolean.valueOf(visible)), see the next method for de-
tails.

å public void setSeriesItemLabelsVisible(int series, Boolean visible);

Equivalent to setSeriesStroke(series, Boolean.valueOf(visible), true), see the next method
for details.

å public void setSeriesItemLabelsVisible(int series, Boolean visible, boolean notify);

Sets the item labels visible flag for the specified series and, if requested, sends a RendererChangeEvent

to all registered listeners. You can set the flag for a series to null, in which case the base item
labels visible flag will be used for that series.

Base Item Label Visibility

The base item labels visible setting is used for any series where both the override and per series
settings are not specified:

å public Boolean getBaseItemLabelsVisible();

Returns the base item labels flag. A null value should be interpreted as Boolean.FALSE.3

å public void setBaseItemLabelsVisible(boolean visible);

Equivalent to setBaseItemLabelsVisible(Boolean.valueOf(visible)), see the next method for
details.

å public void setBaseItemLabelsVisible(Boolean visible);

Equivalent to setBaseItemLabelsVisible(visible, true), see the next method for details.

å public void setBaseItemLabelsVisible(Boolean visible, boolean notify);

Sets the base item labels visible flag and, if requested, sends a RendererChangeEvent to all
registered listeners. You can set this flag to null, but that will be interpreted as equivalent to
Boolean.FALSE.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 434

Attribute: Description:

itemLabelFont The override font (null permitted). Deprecated as of 1.0.6.
itemLabelFontList A list of fonts that apply to individual series (these are only referenced

if itemLabelFont is null).
baseItemLabelFont The default item label font for all series.

Table 35.9: Item label font attributes for the AbstractRenderer class

35.2.16 Item Label Font

The item label font attributes control the font that is used by the renderer to draw item labels. For
most applications, a single font will be used for all labels, so you can just set the base item label
font, and leave the override and per series settings at their default null values.
To determine the item label font:

å public Font getItemLabelFont(int row, int column);

Returns the item label font for the specified item.

Override Item Label Font

The override item label font overrides the per series and base level settings, unless it is null (which
is the default).

å public Font getItemLabelFont(); [Deprecated, 1.0.6]

Returns the override item label font. The default value is null.

å public void setItemLabelFont(Font font); [Deprecated, 1.0.6]

Equivalent to setItemLabelFont(font, true)—see the next method.

å public void setItemLabelFont(Font font, boolean notify); [Deprecated, 1.0.6]

Sets the override item label font and, if requested, sends a RendererChangeEvent to all registered
listeners.

Per Series Item Label Font

To control the item label font on a per series basis:

å public Font getSeriesItemLabelFont(int series);

Returns the item label font for the specified series, or null if no font has been explicitly set for
the series.

å public void setSeriesItemLabelFont(int series, Font font);

Equivalent to setSeriesItemLabelFont(series, font, true)—see the next method.

å public void setSeriesItemLabelFont(int series, Font font, boolean notify);

Sets the item label font for a series and, if requested, sends a RendererChangeEvent to all regis-
tered listeners.

Base Item Label Font

The base item label font is used when no per series or override settings are in place (which is the
default):

å public Font getBaseItemLabelFont();

Returns the base item label font (never null). The default is Font("SansSerif", Font.PLAIN,

10).

å public void setBaseItemLabelFont(Font font);

Equivalent to setBaseItemLabelFont(font, true)—see the next method.

å public void setBaseItemLabelFont(Font font, boolean notify);

Sets the base item label font and, if requested, sends a RendererChangeEvent to all registered
listeners.

3This field should have been defined as a boolean, but is now part of the published API so we have to support it.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 435

35.2.17 Item Label Paint

The item label paint attributes control the paint that is used by the renderer to draw item labels.
For most applications, a single paint will be used for all labels, so you can just set the base item
label paint, and leave the override and per series settings at their default null values.

Attribute: Description:

itemLabelPaint The override paint (null permitted). Deprecated as of 1.0.6.
itemLabelPaintList A list of paints that apply to individual series (these are only refer-

enced if itemLabelPaint is null).
baseItemLabelPaint The default item label paint for all series.

Table 35.10: Item label paint attributes for the AbstractRenderer class

To determine the item label paint for an item:

å public Paint getItemLabelPaint(int row, int column);

Returns the item label paint (never null) for an item.

Override Item Label Paint

The override item label font overrides the per series and base settings, unless it is null (which is
the default):

å public Paint getItemLabelPaint(); [Deprecated, 1.0.6]

Returns the override item label font. The default value is null.

å public void setItemLabelPaint(Paint paint); [Deprecated, 1.0.6]

Equivalent to setItemLabelPaint(paint, true)—see the next method.

å public void setItemLabelPaint(Paint paint, boolean notify); [Deprecated, 1.0.6]

Sets the override item label paint and, if requested, sends a RendererChangeEvent to all registered
listeners.

Per Series Item Label Paint

To control the item label paint on a per series basis:

å public Paint getSeriesItemLabelPaint(int series);

Returns the item label paint (possibly null) for a series.

å public void setSeriesItemLabelPaint(int series, Paint paint);

Equivalent to setSeriesItemLabelPaint(series, paint, true)—see the next method.

å public void setSeriesItemLabelPaint(int series, Paint paint, boolean notify);

Sets the item label paint for a series and, if requested, sends a RendererChangeEvent to all
registered listeners.

Base Item Label Paint

The base item label paint is the default paint used to draw the item labels (if they are visible). It
is used when there is no per-series or override setting:

å public Paint getBaseItemLabelPaint();

Returns the default item label paint. The default value is Color.black.

å public void setBaseItemLabelPaint(Paint paint);

Equivelant to setBaseItemLabelPaint(paint, true)—see the next method.

å public void setBaseItemLabelPaint(Paint paint, boolean notify);

Sets the base item label paint and, if notify is true, sends a RendererChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 436

35.2.18 Positive Item Label Position

The positive item label position attributes (see table 35.11) control the position of item labels for
those items that have a data value that is positive.

Attribute: Description:

positiveItemLabelPosition The positiveItemLabelPosition override flag (null permitted).
Deprecated as of 1.0.6.

seriesPositiveItemLabelPositionList A list of positions that apply to individual series (only refer-
enced if positiveItemLabelPosition is null).

basePositiveItemLabelPosition The base position for all series, the default value
is ItemLabelPosition(ItemLabelAnchor.OUTSIDE12,

TextAnchor.BOTTOM CENTER)

Table 35.11: Positive item label position attributes

To determine the label position for an item with a positive value, JFreeChart calls the following
method:

å public ItemLabelPosition getPositiveItemLabelPosition(int row, int column);

Returns the position for the specified item. The return value is derived from the override, per
series and base level settings.

Override Positive Item Label Position

The override positive item label position attribute provides a mechanism to override all other
settings (this is rarely required):

å public ItemLabelPosition getPositiveItemLabelPosition(); [Deprecated, 1.0.6]

Returns the positive item label position override. The default value is null.

å public void setPositiveItemLabelPosition(ItemLabelPosition position); [Deprecated, 1.0.6]

Equivalent to setPositiveItemLabelPosition(position, true)—see the next method.

å public void setPositiveItemLabelPosition(ItemLabelPosition position, boolean notify); [Deprecated,

1.0.6]

Sets the positive item label position for the specified series and, if requested, sends a RendererChangeEvent

to all registered listeners.

Per Series Positive Item Label Position

The per series positive item label positions apply when no override is set.

å public ItemLabelPosition getSeriesPositiveItemLabelPosition(int series);

Returns the positive item label position for the specified series (this may be null).

å public void setSeriesPositiveItemLabelPosition(int series, ItemLabelPosition position);

Equivalent to setSeriesPositiveItemLabelPosition(series, position, true)—see the next method.

å public void setSeriesPositiveItemLabelPosition(int series, ItemLabelPosition position,

boolean notify);

Sets the positive item label position for the specified series and, if requested, sends a RendererChangeEvent

to all registered listeners.

Base Positive Item Label Position

The base setting for the positive item label position attribute is used when no per series or override
setting is specified:

å public ItemLabelPosition getBasePositiveItemLabelPosition();

Returns the base positive item label position. The default value is ItemLabelPosition(ItemLabelAnchor.OUTSIDE12,
TextAnchor.BOTTOM CENTER).

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 437

å public void setBasePositiveItemLabelPosition(ItemLabelPosition position);

Equivalent to setBasePositiveItemLabelPosition(position, true)—see the next method.

å public void setBasePositiveItemLabelPosition(ItemLabelPosition position, boolean notify);

Sets the base positive item label position and, if requested, sends a RendererChangeEvent to all
registered listeners.

35.2.19 Negative Item Label Position

The negative item label position attributes (see table 35.12) control the position of item labels for
those items that have a data value that is negative.

Attribute: Description:

negativeItemLabelPosition The negativeItemLabelPosition override flag (null permitted).
Deprecated as of 1.0.6.

seriesNegativeItemLabelPositionList A list of positions that apply to individual series (only refer-
enced if negativeItemLabelPosition is null).

baseNegativeItemLabelPosition The base position for all series, the default value
is ItemLabelPosition(ItemLabelAnchor.OUTSIDE6,

TextAnchor.TOP CENTER))

Table 35.12: Negative item label position attributes

To determine the label position for an item with a negative value, JFreeChart calls the following
method:

å public ItemLabelPosition getNegativeItemLabelPosition(int row, int column);

Returns the position for the specified item. The return value is derived from the override, per
series and base level settings.

Override Negative Item Label Position

The override negative item label position attribute provides a mechanism to override all other
settings (this is rarely required):

å public ItemLabelPosition getNegativeItemLabelPosition(); [Deprecated, 1.0.6]

Returns the negative item label position override. The default value is null.

å public void setNegativeItemLabelPosition(ItemLabelPosition position); [Deprecated, 1.0.6]

Equivalent to setNegativeItemLabelPosition(position, true)—see the next method.

å public void setNegativeItemLabelPosition(ItemLabelPosition position, boolean notify); [Deprecated,

1.0.6]

Sets the negative item label position for the specied series and, if requested, sends a RendererChangeEvent

to all registered listeners.

Per Series Negative Item Label Position

The per series negative item label positions apply when no override is set:

å public ItemLabelPosition getSeriesNegativeItemLabelPosition(int series);

Returns the negative item label position for the specied series (this may be null).

å public void setSeriesNegativeItemLabelPosition(int series, ItemLabelPosition position);

Equivalent to setSeriesNegativeItemLabelPosition(series, position, true)—see the next method.

å public void setSeriesNegativeItemLabelPosition(int series, ItemLabelPosition position, boolean

notify);

Sets the negative item label position for the specified series and, if requested, sends a RendererChangeEvent

to all registered listeners.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 438

Base Negative Item Label Position

The base setting for the negative item label position attribute is used when no per series or override
setting is specied:

å public ItemLabelPosition getBaseNegativeItemLabelPosition();

Returns the base negative item label position. The default value is
ItemLabelPosition(ItemLabelAnchor.OUTSIDE6, TextAnchor.TOP CENTER).

å public void setBaseNegativeItemLabelPosition(ItemLabelPosition position);

Equivalent to setBaseNegativeItemLabelPosition(position, true)—see the next method.

å public void setBaseNegativeItemLabelPosition(ItemLabelPosition position, boolean notify);

Sets the base negative item label position and, if requested, sends a RendererChangeEvent to all
registered listeners.

35.2.20 Item Label Anchor Offset

The item label anchor offset allows some control over the position of item labels, by controlling how
far the anchor point is shifted from its natural position:

å public double getItemLabelAnchorOffset();

Returns the offset (in Java2D units). The default value is 2.0.

å public void setItemLabelAnchorOffset(double offset);

Sets the item label anchor offset and sends a RendererChangeEvent to all registered listeners.

The following utility method calculates the item label anchor point relative to the given (x, y)

location:

å protected Point2D calculateLabelAnchorPoint(ItemLabelAnchor anchor,

double x, double y, PlotOrientation orientation);

Calculates the item label anchor point relative to the specified data point. Some renderers
override this method if there is a more natural way to calculate the anchor point (for instance,
the BarRenderer can calculate the anchor points relative to the bar rectangle).

35.2.21 Entity Generation

Support for tooltips, mouse events, and URLs in HTML image maps relies on the generation of a
ChartEntity for each item in a series. In some situations, it can be useful to generate entities for a
subset of the series in a dataset only. All renderers inherit a set of flags that make this possible.

Attribute: Description:

createEntities The createEntities override flag (null permitted). Deprecated
as of 1.0.6.

seriesCreateEntitiesList A list of flags that apply to individual series (only referenced
if createEntities is null).

baseCreateEntities The default flag for all series.

Table 35.13: Attributes for the AbstractRenderer class

To determine whether or not an entity should be created for an item in a chart, JFreeChart calls
the following method:

å public boolean getItemCreateEntity(int series, int item);

Returns true if an entity should be created for the specified item, and false otherwise. The
result is determined by looking at the override, per series and base level settings for this
attribute.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 439

Override Create Entities Flag

The override create entities flag can be used to override the per series and base level flags. It is
rarely needed, and is typically left at its default value of null:

å public Boolean getCreateEntities(); [Deprecated, 1.0.6]

Returns the override flag. This is null by default.

å public void setCreateEntities(Boolean create); [Deprecated, 1.0.6]

Equivalent to setCreateEntities(create, true)—see the next method.

å public void setCreateEntities(Boolean create, boolean notify); [Deprecated, 1.0.6]

Sets the override flag (null is permitted) and, if requested, sends a RendererChangeEvent to all
registered listeners.

Per Series Create Entities Flag

The per series flags apply when no override is defined. If the per series flag is null, then the base
flag will be used.

å public Boolean getSeriesCreateEntities(int series);

Returns the create entities flag for the specified series (possible null).

å public void setSeriesCreateEntities(int series, Boolean create);

Equivalent to setSeriesCreateEntities(series, create, true)—see the next method.

å public void setSeriesCreateEntities(int series, Boolean create, boolean notify);

Sets the create series flag for the specified series (null is permitted) and, if requested, sends a
RendererChangeEvent to all registered listeners.

Base Create Entities Flag

The base create entities flag is used when no other setting is defined.

å public boolean getBaseCreateEntities();

Returns the base create entities flag. The default value is true.

å public void setBaseCreateEntities(boolean create);

Equivalent to setBaseCreateEntities(true)—see the next method.

å public void setBaseCreateEntities(boolean create, boolean notify);

Sets the base create entities flag and, if requested, sends a RendererChangeEvent to all registered
listeners.

35.2.22 Equals, Cloning and Serialization

The equals() method is overridden:

å public boolean equals(Object obj);

Returns true if this renderer is equal to obj, and false otherwise. An object is considered
“equal” to this renderer if:

• it is not null;

• it is an instance of AbstractRenderer;

• it has the same attribute settings as this renderer;

Registered listeners are not included in the equality test.

By design, all renderers should be Cloneable and Serializable. Some Java classes (particularly
those that implement the Java2D Shape and Paint interfaces) do not provide built-in support for
cloning and serialization. Where possible, special code has been written to handle these cases.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 440

35.2.23 Notes

Some points to note:

• subclasses include AbstractCategoryItemRenderer and AbstractXYItemRenderer.

35.3 AreaRendererEndType

35.3.1 Overview

This class defines the tokens that can be used to specify the representation of the ends of an area
chart. There are three tokens defined, as listed in table 35.14.

Token: Description:

AreaRendererEndType.TAPER Taper down to zero.
AreaRendererType.TRUNCATE Truncates at the first and last values.
AreaRendererType.LEVEL Fill to the edges of the chart level with the first

and last data values.

Table 35.14: AreaRendererEndType tokens

35.3.2 Usage

The AreaRenderer class has a method named setEndType() that accepts the tokens defined by this
class.

35.4 DefaultPolarItemRenderer

35.4.1 Overview

A default renderer for use by the PolarPlot class. This class extends AbstractRenderer and imple-
ments the PolarItemRenderer interface.

35.4.2 Constructor

To create a new renderer:

å public DefaultPolarItemRenderer();

Creates a new renderer instance.

35.4.3 General Attributes

Most attributes are inherited from the AbstractRenderer class.

To control whether or not each series is drawn as a “filled” polygon:

å public boolean isSeriesFilled(int series);

Returns true if the area “inside” the series should be filled, and false otherwise.

å public void setSeriesFilled(int series, boolean filled);

Sets the flag that controls whether or not the specified series is “filled”. By default, the setting
is false.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 441

35.4.4 Other Methods

The remaining methods are called by JFreeChart—you won’t normally call these methods directly.
To find the plot that the renderer is assigned to:

å public PolarPlot getPlot();

Returns the plot that the renderer is assigned to.

å public void setPlot(PolarPlot plot);

Sets the plot that the renderer is assigned to. Typically the plot will set this when the renderer
is added to the plot.

å public DrawingSupplier getDrawingSupplier();

A convenience method that returns the drawing supplier from the plot that the renderer is
assigned to.

å public LegendItem getLegendItem(int series);

Returns a legend item for the specified series.

å public void drawAngularGridLines(Graphics2D g2, PolarPlot plot, List ticks,

Rectangle2D dataArea);

Draws the gridlines representing the angles around the plot.

å public void drawRadialGridLines(Graphics2D g2, PolarPlot plot, ValueAxis radialAxis,

List ticks, Rectangle2D dataArea);

Draws the circular gridlines showing the units along the axis.

å public void drawSeries(Graphics2D g2, Rectangle2D dataArea, PlotRenderingInfo info,

PolarPlot plot, XYDataset dataset, int seriesIndex);

Draws a series within the specified dataArea.

35.4.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

See Also
PolarPlot.

35.5 GrayPaintScale

35.5.1 Overview

A PaintScale implementation that returns shades of gray to represent the values in a range.

This class was first introduced in JFreeChart version 1.0.4.

35.5.2 Constructors

To create a new instance:

å public GrayPaintScale(); [1.0.4]

Equivalent to GrayPaintScale(0.0, 1.0)—see the next constructor.

å public GrayPaintScale(double lowerBound, double upperBound); [1.0.4]

Creates a new scale covering the specified value range.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 442

35.5.3 Methods

The following methods are defined:

å public double getLowerBound(); [1.0.4]

Returns the lower bound for the value range.

å public double getUpperBound(); [1.0.4]

Returns the upper bound for the value range.

å public Paint getPaint(double value); [1.0.4]

Returns a shade of gray for the specified value. A value at the lower bound will return black,
a value at the upper bound will return white.

35.5.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.4]

Tests this paint scale for equality with an arbitrary object.

35.5.5 Notes

This class can be used with the XYBlockRenderer class.

See Also
PaintScale, PaintScaleLegend.

35.6 LookupPaintScale

35.6.1 Overview

A PaintScale implementation that uses a lookup table to convert values to corresponding Paint

instances. This class is intended for use by the XYBlockRenderer class. This class was first
introduced in JFreeChart version 1.0.4.

35.6.2 Constructors

To create a new instance:

å public LookupPaintScale(); [1.0.4]

Equivalent to LookupPaintScale(0.0, 1.0, Color.lightGray)—see the next constructor.

å public LookupPaintScale(double lowerBound, double upperBound, Paint defaultPaint); [1.0.4]

Creates a new scale covering the specified range and with the given default paint. If defaultPaint
is null, this method throws an IllegalArgumentException.

35.6.3 Methods

The following methods are defined:

å public Paint getDefaultPaint(); [1.0.4]

Returns the default paint, as specified in the constructor. This is never null.

å public double getLowerBound(); [1.0.4]

Returns the lower bound for the value range.

å public double getUpperBound(); [1.0.4]

Returns the upper bound for the value range.

To fetch a Paint instance from the lookup table:

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 443

å public Paint getPaint(double value); [1.0.4]

Returns the color for the specified value. For any value outside the bounds specified in the
constructor, this method will return getDefaultPaint().

To add a new entry to the lookup table:

å public void add(Number n, Paint p); [1.0.4]

Adds a new entry to the lookup table (or replaces an existing entry if n matches an existing
value). The entries are stored in ascending order by value—a look up for a given value will
return p if the value is greater than or equal to n, but less than the value for the next entry in
the lookup table).

35.6.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.4]

Tests this paint scale for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

35.6.5 Notes

Some points to note:

• this class is designed for use with the XYBlockRenderer class;

• a couple of demos (XYBlockRendererDemo1-2.java) are included in the JFreeChart demo col-
lection.

See Also
PaintScale, PaintScaleLegend.

35.7 NotOutlierException

35.7.1 Overview

An exception that is, in fact, never used in JFreeChart.

35.8 Outlier

35.8.1 Overview

Represents an outlier in a box-and-whisker plot. Instances of this class are created on a temporary
basis during chart drawing.

35.8.2 Constructor

To create a new instance:

å public Outlier(double xCoord, double yCoord, double radius);

Creates a new outlier at the specified coordinates (in Java2D space).

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 444

35.8.3 Methods

The following methods are defined:
å public Point2D getPoint();

Returns the location of the outlier, in Java2D space.

å public void setPoint(Point2D point);

Sets the location of the outlier, in Java2D space.

å public double getX();

Returns the x-coordinate for the outlier, in Java2D space.

å public double getY();

Returns the y-coordinate for the outlier, in Java2D space.

å public double getRadius();

Returns the radius of the outlier, in Java2D units.

å public void setRadius(double radius);

Sets the radius of the outlier, in Java2D units.

å public int compareTo(Object o);

Compares this Outlier to an arbitrary object.

å public boolean overlaps(Outlier other);

Tests if this outlier overlaps with the specified outlier.

å public String toString();

Returns a string representation of this outlier, useful for debugging.

See Also
BoxAndWhiskerRenderer, XYBoxAndWhiskerRenderer.

35.9 OutlierList

35.9.1 Overview

Represents a collection of outliers for a single item in a box-and-whisker plot.

See Also
Outlier, OutlierListCollection.

35.10 OutlierListCollection

35.10.1 Overview

Represents a collection of outlier lists for a box-and-whisker plot.

See Also
OutlierList.

35.11 PaintScale

35.11.1 Overview

An interface used by the XYBlockRenderer class to convert values (within a certain range) to Paint

instances. Current implementations include:

• GrayPaintScale;

• LookupPaintScale;

This interface was first introduced in JFreeChart version 1.0.4.

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 445

35.11.2 Interface Methods

This interface defines the following methods:

å public double getLowerBound(); [1.0.4]

Returns the lower bound of the value range.

å public double getUpperBound(); [1.0.4]

Returns the upper bound of the value range.

å public Paint getPaint(double value); [1.0.4]

Returns the color associated with the specified value. If value is outside the range getLowerBound()

to getUpperBound(), the behaviour is implementation dependent—check the documentation for
the implementing class for details.

See Also
PaintScaleLegend.

35.12 PolarItemRenderer

35.12.1 Overview

A renderer that is used by the PolarPlot class. The DefaultPolarItemRenderer class provides an
implementation of this interface.

35.12.2 Change Listeners

You can register any number of RendererChangeListener objects with the renderer and they will
receive notification of any changes to the renderer:

å public void addChangeListener(RendererChangeListener listener);

Registers a listener with the renderer.

å public void removeChangeListener(RendererChangeListener listener);

Deregisters a listener so that it no longer receives change notifications from the renderer.

It is not common that you need to do this yourself, but the mechanism is used by the PolarPlot

class to monitor changes to the renderer (in order to trigger automatic chart updates).

35.12.3 Methods

To create a legend item for a series (this method is called by the plot):

å public LegendItem getLegendItem(int series);

Creates a legend item for the specified series.

To draw the representation of a series (this method is called by the plot):

å public void drawSeries(Graphics2D g2, Rectangle2D dataArea, PlotRenderingInfo info,

PolarPlot plot, XYDataset dataset, int seriesIndex);

Draws a series within the specified dataArea.

To draw the angle grid lines (this method is called by the plot):

å public void drawAngularGridLines(Graphics2D g2, PolarPlot plot, List ticks,

Rectangle2D dataArea);

Draws the angle gridlines for the plot.

å public void drawRadialGridLines(Graphics2D g2, PolarPlot plot, ValueAxis radialAxis,

List ticks, Rectangle2D dataArea);

Draws the radius (circular) gridlines for the plot.

å public PolarPlot getPlot();

Returns the plot that the renderer is assigned to (or null).

CHAPTER 35. PACKAGE: ORG.JFREE.CHART.RENDERER 446

å public void setPlot(PolarPlot plot);

Sets the plot that the renderer is assigned to. Typically the plot will set this itself when the
renderer is added to the plot.

35.13 RendererState

35.13.1 Overview

A base class for maintaining state information that is initialised at the start of the chart drawing
process, and passed to each invocation of the renderer’s drawItem() method. Subclasses include:

• CategoryItemRendererState;

• XYItemRendererState.

35.13.2 Constructors

To create a new instance:

å public RendererState(PlotRenderingInfo info);

Creates a new instance that maintains a reference to the plot rendering info (which may be
null).

35.13.3 Methods

This class defines two methods:

å public PlotRenderingInfo getInfo();

Returns the object that collects plot rendering information for the current chart drawing. If
this is null, no information is recorded.

å public EntityCollection getEntityCollection();

Returns the object that collects chart entity information for the current rendering. This may
be null, in which case no entity information is recorded. Chart entities are used to support
tooltips, drill-down charts and HTML image maps.

35.13.4 Equals, Cloning and Serialization

As this class is intended to represent temporary state information, it is neither cloneable nor seri-
alizable, and it does not override the equals() method.

See Also
CategoryItemRendererState, XYItemRendererState.

35.14 WaferMapRenderer

35.14.1 Overview

A renderer used by the WaferMapPlot class.

Chapter 36

Package:
org.jfree.chart.renderer.category

36.1 Overview

This package contains interfaces and classes that are used to implement renderers for the CategoryPlot
class. Renderers offer a lot of scope for changing the appearance of your charts, either by changing
the attributes of an existing renderer, or by implementing a completely new renderer.

36.2 AbstractCategoryItemRenderer

36.2.1 Overview

A base class (extending AbstractRenderer) that can be used to implement a new CategoryItemRenderer.
Subclasses include:

• AreaRenderer;

• BarRenderer;

• LevelRenderer;

• LineAndShapeRenderer.

To create a CategoryItemRenderer implementation requires a lot of methods to be written—by ex-
tending this base class, you can save yourself a lot of effort.

36.2.2 Constructors

The default constructor creates a renderer with no tooltip generator and no URL generator. The
constructor is protected.

36.2.3 Attributes

The attributes maintained by this class are listed in Table 36.1.

36.2.4 The Pass Count

Most renderers draw data items in a single pass through the dataset. However, some renderers
might require two or more passes through the dataset, in order to draw items in a layered fashion.
The plot will call the following method to determine how many passes the renderer requires:

447

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 448

Attribute: Description:

plot The CategoryPlot that the renderer is assigned to.
toolTipGenerator The CategoryToolTipGenerator that generates tool tips

for ALL series (can be null).
toolTipGeneratorList A list of CategoryToolTipGenerator objects used to create

tool tips for individual series.
baseToolTipGenerator The base CategoryToolTipGenerator used to create tool

tips when there is no other generator available.
itemLabelGenerator The CategoryItemLabelGenerator that generates item la-

bels for ALL series (can be null).
itemLabelGeneratorList A list of CategoryItemLabelGenerator objects used to cre-

ate item labels for individual series. If null, the baseLa-
belGenerator is used instead.

baseItemLabelGenerator The base CategoryItemLabelGenerator used to create
item labels when no other generator is available.

itemURLGenerator The CategoryURLGenerator that applies to ALL series.
itemURLGeneratorList A list of CategoryURLGenerator objects that apply to indi-

vidual series. If null, the baseItemURLGenerator is used
instead.

baseItemURLGenerator The base CategoryURLGenerator, used when no other gen-
erator is available.

legendItemLabelGenerator The generator for the series name in the legend.
legendItemToolTipGenerator The generator for the tool tips for the legend items.
legendItemURLGenerator The generator for the URL for hyperlinks for the legend

items(in HTML image maps)

Table 36.1: Attributes for the AbstractCategoryItemRenderer class

å public int getPassCount();

Returns 1, which is the default number of passes required by a renderer. If a subclass requires
more than one pass through the dataset, it must override this method.

Standard renderers that require multiple passes through the dataset include:

• LineAndShapeRenderer;

• StackedAreaRenderer;

• StackedBarRenderer;

• StackedBarRenderer3D.

36.2.5 Methods

The following method is called once every time the chart is drawn:

å public CategoryItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea,

CategoryPlot plot, Integer index, PlotRenderingInfo info);

Performs any initialisation required by the renderer. The default implementation simply stores
a local reference to the info object (which may be null).

The number of rows and columns in the dataset (a CategoryDataset) is cached by the renderer in
the initialise() method.
To draw the plot background:

å public void drawBackground(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea);

Draws the plot background. Some renderers will choose to override this method, but for most
the default behaviour is OK.

To draw the plot outline:

å public void drawOutline(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea);

Draws the plot outline. Some renderers will choose to override this method, but for most the
default behaviour is OK.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 449

To draw a domain gridline:

å public void drawDomainGridline(Graphics2D g2, CategoryPlot plot,

Rectangle2D dataArea, double value);

Draws a domain gridline at the specified value. This method is called by the CategoryPlot class.

To draw a range gridline:

å public void drawRangeGridline(Graphics2D g2, CategoryPlot plot,

ValueAxis axis, Rectangle2D dataArea, double value);

Draws a range gridline at the specified value. This method is called by the CategoryPlot class.

To draw a range marker:

å public void drawRangeMarker(Graphics2D g2, CategoryPlot plot,

ValueAxis axis, Marker marker, Rectangle2D dataArea);

Draws a range marker. This method is called by the CategoryPlot class.

To get a legend item:

å public LegendItem getLegendItem(int datasetIndex, int series);

Returns a legend item for the specified series. The datasetIndex is zero for the primary dataset,
and 1..N for the secondary datasets.

To get the CategoryItemLabelGenerator for a data item:

å public CategoryItemLabelGenerator getItemLabelGenerator(int row, int column);

Returns the item label generator for a specific data item. By default, this method just calls
the getSeriesLabelGenerator() method.

To get the CategoryItemLabelGenerator for a series:

å public CategoryItemLabelGenerator getSeriesItemLabelGenerator(int series);

Returns the item label generator for a series. This method returns the labelGenerator if it is
set, otherwise it looks up the labelGeneratorList to get a generator specific to the series. If the
series-specific generator is null, the baseLabelGenerator is returned.

To get the CategoryURLGenerator for a data item:

å public CategoryURLGenerator getItemURLGenerator(int row,int column);

Returns the item URL generator for a specific data item. By default, this method just calls
the getSeriesItemURLGenerator() method.

To get the CategoryURLGenerator for a series:

å public CategoryURLGenerator getSeriesItemURLGenerator(int series);

Returns the item URL generator for a series. This method returns the itemURLGenerator if it
is set, otherwise it looks up the itemURLGeneratorList to get a generator specific to the series.
If the series-specific generator is null, the baseItemURLGenerator is returned.

To get the row count:

å public int getRowCount();

Returns the row count.

To get the column count:

å public int getColumnCount();

Returns the column count.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 450

36.2.6 Legend Items

All renderers should implement the LegendItemSource interface, to allow a legend to fetch the relevant
items for display. This requires the provision of the following method:

å public LegendItemCollection getLegendItems();

Returns the legend items for this renderer. This implementation returns one item for each
series that the renderer is responsible for, taking into account the series visibility flags.

The individual legend items are created with a call to the following method:

å public LegendItem getLegendItem(int datasetIndex, int series);

Creates a legend item for the specified series.1 This method can return null, in which case
no legend item will be added to the series (in this default implementation, null is returned if
either isSeriesVisible(series) or isSeriesVisibleInLegend(series) returns false). Subclasses
may override this method to provide customised legend items.

A plug-in generator is used to create each legend item label, so that you can customise the label if
necessary:

å public CategorySeriesLabelGenerator getLegendItemLabelGenerator();

Returns the legend item label generator (never null). The default generator simply returns the
series key converted to a string using the key’s toString() method.

å public void setLegendItemLabelGenerator(CategorySeriesLabelGenerator generator);

Sets the legend item label generator and sends a RendererChangeEvent to all registered listeners.
If generator is null, this method throws an IllegalArgumentException.

Each legend item can (optionally) have a tool tip associated with it. If you require tool tips, you
need to specify a tool tip generator:

å public CategorySeriesLabelGenerator getLegendItemToolTipGenerator();

Returns the tool tip generator for the legend items created by this renderer. The default is
null.

å public void setLegendItemToolTipGenerator(CategorySeriesLabelGenerator generator);

Sets the tool tip generator for the legend items created by this renderer, and sends a RendererChangeEvent

to all registered listeners. If you set this to null, no tool tips will be generated.

Similarly, each legend item can (optionally) have a URL associated with it (these are used only in
HTML image maps). If you require URLs, you need to specified a URL generator:

å public CategorySeriesLabelGenerator getLegendItemURLGenerator();

Returns the URL generator for the legend items created by this renderer. The default is null.
The URLs are used to provide hyperlinks in HTML image maps.

å public void setLegendItemURLGenerator(CategorySeriesLabelGenerator generator);

Sets the URL generator for the legend items created by this renderer, and sends a RendererChangeEvent

to all registered listeners. If you set this to null, no URLs will be generated.

36.2.7 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object. Note that the test does NOT take
into account the plot that the renderer is assigned to.

Instances of this class are cloneable and serializable.

36.2.8 Notes

If you are implementing your own renderer, you do not have to use this base class, but it does save
you some work.

1The dataset argument is passed in because the renderer itself has no state information to know which dataset
it is rendering.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 451

36.3 AreaRenderer

36.3.1 Overview

A renderer that represents the items in a CategoryDataset using a polygon that fills the area between
the x-axis and the data points—an example is shown in figure 36.1. This renderer is designed for
use with the CategoryPlot class.

Area Chart

Series 1 Series 2 Series 3

An area chart demonstration. We use this subtitle as an example of what happens when
you get a really long title or subtitle.

Typ
e 1

Typ
e 2

Typ
e 3

Typ
e 4

Typ
e 5

Typ
e 6

Typ
e 7

Typ
e 8

Category

0

1

2

3

4

5

6

7

8

V
a

lu
e

Figure 36.1: An area chart (see AreaChartDemo1.java)

36.3.2 Constructor

To create a new renderer:

å public AreaRenderer();

Creates a new renderer with default attributes.

The ChartFactory.createAreaChart() method can also be used to create a chart that uses this type
of renderer.

36.3.3 General Attributes

To control how the end points of the area chart are represented:

å public AreaRendererEndType getEndType();

Returns a token indicating how the ends of the area drawn by this renderer are handled (never
null). The default value is AreaRendererEndType.TAPER.

å public void setEndType(AreaRendererEndType type);

Sets the token that controls how the end points are drawn on the area chart and sends
a RendererChangeEvent to all registered listeners. If type is null, this method throws an
IllegalArgumentException.

Other attributes are inherited from AbstractCategoryItemRenderer.

36.3.4 Other Methods

The following methods are typically called by JFreeChart—you shouldn’t need to call them directly:

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 452

å public LegendItem getLegendItem(int datasetIndex, int series);

Overridden to use a custom graphic in the legend item.

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis, ValueAxis rangeAxis,

CategoryDataset dataset, int row, int column, int pass);

Draws one item from the dataset.

36.3.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

36.3.6 Notes

Some points to note:

• the createAreaChart() method in the ChartFactory class will create a default chart that uses
this renderer;

• this class extends AbstractCategoryItemRenderer;

• a demo (AreaChartDemo1.java) is included in the JFreeChart demo collection.

See Also
AbstractCategoryItemRenderer, XYAreaRenderer.

36.4 BarRenderer

36.4.1 Overview

This renderer is used in conjunction with a CategoryPlot to create bar charts from data in a
CategoryDataset. The renderer will handle plots with a vertical orientation (see figure 36.2) or a
horizontal orientation (see figure 36.3).

The renderer will recognise the use of GradientPaint instances for series colors and use a special
transformer to apply these to bar regions.

This class extends the AbstractCategoryItemRenderer base class.

36.4.2 Constructor

The constructor creates a new renderer with default settings:

å public BarRenderer();

Creates a new renderer with a default settings. By default, the renderer will draw outlines
around the bars, will have an item margin of 20% (this controls the amount of space allocated to
the gaps between bars within a single category), and will use a StandardGradientPaintTransformer

when a series color is an instance of GradientPaint.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 453

Bar Chart Demo 1

First Second Third

Category 1

Category 2

Category 3

Category 4

Category 5

Category

0

1

2

3

4

5

6

7

8

V
a

lu
e

Figure 36.2: A vertical bar chart (see BarChartDemo1.java)

Prison Population Rates - Selected Countries

Prison Population Rates

Source: http://www.homeoffice.gov.uk/rds/pdfs2/r188.pdf

0 5 0 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Prisoners Per 100,000 National Population

Norway

Switzerland

France

Syria

Germany

China

Australia

Egypt

England & Wales

New Zealand

Chile

Iran

Singapore

South Africa

Ukraine

USA

C
o

u
n

tr
y

5 9

6 9

8 5

9 3

9 6

111

116

121

129

157

205

229

359

404

406

686

Figure 36.3: A horizontal bar chart (see BarChartDemo5.java)

36.4.3 The Base Value

By default, the renderer draws a bar between zero (the base value) and the data value of the item to
be displayed. Some specialised bar charged require a non-zero base value—you can use the following
methods to access/modify the base value:

å public double getBase();

Returns the base value for the bars. The default value is 0.0.

å public void setBase(double base);

Sets the base value for the bars and sends a RendererChangeEvent to all registered listeners.

The includeBaseInRange flag controls whether or not JFreeChart will include the base value when
calculating the bounds for the chart’s range axis:

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 454

å public boolean getIncludeBaseInRange(); [1.0.1]

Returns true if the base value should be included in the auto range calculation for the chart’s
range axis, and false otherwise. The default value is true.

å public void setIncludeBaseInRange(boolean include); [1.0.1]

Sets the flag that controls whether or not the base value is included in the auto range calculation
for the range axis, and sends a RendererChangeEvent to all registered listeners.

36.4.4 Controlling the Width of Bars

The renderer automatically calculates the width of the bars to fit the available space for the plot,
so you cannot directly control how wide the bars are. However, the bar width is a function of the
following attributes that you can control:

• the lowerMargin, upperMargin and categoryMargin attributes, all defined by the CategoryAxis

(see figure 24.8.1 for more information about the purpose of these attributes);

• the itemMargin attribute belonging to the renderer (see below).

The itemMargin attribute controls the amount of space between bars within a category :

å public double getItemMargin();

Returns the item margin as a percentage of the overall length of the category axis (the default
is 0.20, or twenty percent). This controls the amount of space that is allocated to the gaps
between bars within the same category.

å public void setItemMargin(double percent);

Sets the item margin and sends a RendererChangeEvent to all registered listeners.

The dynamic bar width calculation can result in very wide bars if you have only a few data values
in a chart. If you would like to specify a “cap” for the bar width, use the maximumBarWidth attribute:

å public double getMaximumBarWidth();

Returns the maximum bar width allowed, as a percentage of the length of the category axis.
The default is 1.00 (100 percent) which means that the bar widths are never capped.

å public void setMaximumBarWidth(double percent);

Sets the maximum bar width as a percentage of the axis length and sends a RendererChangeEvent

to all registered listeners. For example, setting this to 0.05 will ensure that the bars never exceed
five percent of the length of the axis. This can improve the appearance of charts where there
is a possibility that only one or two bars will be displayed.

36.4.5 Bar Outlines

The drawBarOutline flag controls whether the bars drawn by the renderer are outlined:

å public boolean isDrawBarOutline();

Returns the flag that controls whether an outline is added to each bar drawn by this renderer.
The default value is false.

å public void setDrawBarOutline(boolean draw);

Sets the flag that controls whether or not an outline is drawn around each bar and sends a
RendererChangeEvent to all registered listeners. The Paint and Stroke used for the bar outline
is specified using methods in the superclass.

36.4.6 Gradient Paint Support

You can set the colour for the bars in a series using the setSeriesPaint() method inherited from
the AbstractRenderer class.2

2Note that the setSeriesFillPaint() method does NOT change the bar colour—the fill paint is ignored by this
renderer.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 455

To provide better support for the use of GradientPaint objects to color the bars drawn by this
renderer, you can specify a transformer that will dynamically adjust the GradientPaint to fit each
bar:

å public GradientPaintTransformer getGradientPaintTransformer();

Returns the transformer used for GradientPaint instances. If this is null, any GradientPaint

instance will be used in its raw form (i.e. with fixed coordinates), which you typically don’t
want.

å public void setGradientPaintTransformer(GradientPaintTransformer transformer);

Sets the transformer (null is permitted) used to transform GradientPaint instances and sends
a RendererChangeEvent to all registered listeners.

The BarChartDemo1.java application, included in the JFreeChart demo collection, provides an ex-
ample of the use of this attribute.

36.4.7 Item Labels

This renderer supports the display of item labels. For the most part, these are controlled using
methods defined in the super class, but there are some settings that are specific to the bar renderer.

Due to the rectangular nature of the bars, the renderer calculates anchor points that are arranged
as shown in figure 36.4. Note that the numbers correspond (roughly) to the position of the hours
on a clock face.

OUTSIDE_1

OUTSIDE_2

OUTSIDE_3

OUTSIDE_4

OUTSIDE_5OUTSIDE_6OUTSIDE_7

OUTSIDE_8

OUTSIDE_9

OUTSIDE_10

OUTSIDE_11 OUTSIDE_12

CENTER

INSIDE_12

INSIDE_6

Figure 36.4: Item Label Anchors for Bars

When an item label is displayed inside a bar, the renderer will calculate if the bar is large enough
to contain the text. If not, the renderer will check to see if a “fallback” label position has been
specified. If there is a fallback position, the label is displayed there, and if there is no fallback
position the label is not displayed at all. Two fallback positions can be specified, one for positive
values and one for negative values (this covers the standard case where positive value labels that
don’t fit within a bar should be displayed above the bar, and negative value labels that don’t fit
within a bar should be displayed below the bar).

å public ItemLabelPosition getPositiveItemLabelPositionFallback();

Returns the fallback position for positive value labels that don’t fit within a bar. This can be
null, in which case the label won’t be displayed at all.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 456

å public void setPositiveItemLabelPositionFallback(ItemLabelPosition position);

Sets the fallback position for positive item labels (null is permitted) and sends a RendererChangeEvent

to all registered listeners. Set the fallback position to null if you prefer labels to be hidden if
they don’t fit within the bar.

å public ItemLabelPosition getNegativeItemLabelPositionFallback();

Returns the fallback position for negative value labels that don’t fit within a bar. This can be
null, in which case the label won’t be displayed at all.

å public void setNegativeItemLabelPositionFallback(ItemLabelPosition position);

Sets the fallback position for negative item labels (null is permitted) and sends a RendererChangeEvent

to all registered listeners. Set the fallback position to null if you prefer labels to be hidden if
they don’t fit within the bar.

36.4.8 Other Methods

This class implements all the methods in the CategoryItemRenderer interface.

å public CategoryItemRendererState initialise(Graphics2D g2,

Rectangle2D dataArea, CategoryPlot plot, int rendererIndex, PlotRenderingInfo info);

This method is called by the plot at the start of every chart drawing run (you shouldn’t need
to call this method yourself). It initialises the renderer and creates a state object that will be
passed to each invocation of the drawItem() method for this drawing run only.

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis,

ValueAxis rangeAxis, CategoryDataset dataset, int row, int column);

This method is called (by the plot) once for each item in the dataset. The renderer state is the
same object that was created in the initialise() method.

For very small data values (relative to the axis range), you can have bars with a length of less than
1 pixel (on-screen)—when the value gets too small, the bar will disappear. If you want to ensure
that a line is always drawn so that the small bar is visible, you can specify a minimum bar length
with this method:

å public void setMinimumBarLength(double min);

Sets the minimum length that will be used for a bar, specified in Java 2D units. You can set
this to 1.0, for example, to ensure that very short bars do not disappear.

36.4.9 Internal Methods

The following methods are used internally by the renderer:

å protected void calculateBarWidth(CategoryPlot plot, Rectangle2D dataArea,

int rendererIndex, CategoryItemRendererState state)

This method is called during the initialisation of each drawing run to calculate the width of each
bar. The calculated value is stored in the renderer state so it doesn’t need to be recalculated
for every bar in the chart.

36.4.10 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object. This method returns true if and only
if:

• obj is not null;

• obj is an instance of BarRenderer;

• obj has the same attributes as this renderer;

Instances of this class are Cloneable and Serializable.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 457

36.4.11 Notes

Some points to note:

• this renderer inherits seriesPaint and seriesFillPaint attributes from AbstractRenderer. The
bar colour is determined by the former—the seriesFillPaint attribute is never used by this
renderer;

• the ChartFactory class uses this renderer when it constructs bar charts via the createBar-

Chart() method;

• a range of demos (for example, BarChartDemo1.java) is included in the JFreeChart demo
collection.

See Also
BarRenderer3D, StackedBarRenderer, StackedBarRenderer3D.

36.5 BarRenderer3D

36.5.1 Overview

A renderer that draws items from a CategoryDataset using bars with a 3D effect—see figure 36.5.

3D Bar Chart Demo

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6 Series 7 Series 8 Series 9

Category 1

Category 2

Category 3

Category 4

Category

-12 .5

-10 .0

- 7 . 5

- 5 . 0

- 2 . 5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

V
a

lu
e

Figure 36.5: A bar chart with 3D effect (see BarChart3DDemo1.java)

This renderer is a subclass of BarRenderer and is designed for use with the CategoryPlot class.

36.5.2 Constructors

There are two constructors:

å public BarRenderer3D();

Equivalent to BarRenderer(12.0, 8.0)—see below.

å public BarRenderer3D(double xOffset, double yOffset);

Creates a new renderer with the specified offsets for the 3D effect (specified in Java2D units).

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 458

36.5.3 Attributes

To access the 3D offset (which is defined in the constructor):
å public double getXOffset();

Returns the x-offset for the 3D effect, in Java2D units. The default value is 12.0. This attribute
can only be set via the class constructor.

å public double getYOffset();

Returns the y-offset for the 3D effect, in Java2D units. The default value is 8.0. This attribute
can only be set via the class constructor.

The “wall paint” is the color used to highlight the inner wall of the data area in the plot:
å public Paint getWallPaint();

Returns the paint used to draw the inside walls of the plot area, highlighting the 3D effect.
The default value is Color(0xDD, 0xDD, 0xDD). This method never returns null.

å public void setWallPaint(Paint paint);

Sets the paint used to draw the inside walls of the plot area, highlighting the 3D effect, and
sends a RendererChangeEvent to all registered listeners. If paint is null, this method throws an
IllegalArgumentException.

36.5.4 Other Methods

Several methods are overridden to add support for the 3D effect. JFreeChart calls these methods,
you won’t normally call them directly:

å public CategoryItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea,

CategoryPlot plot, int rendererIndex, PlotRenderingInfo info);

Overridden for the purpose of adjusting the dataArea, some of which is taken away by the 3D
effect.

å public void drawItem(Graphics2D g2, CategoryItemRendererState state, Rectangle2D dataArea,

CategoryPlot plot, CategoryAxis domainAxis, ValueAxis rangeAxis, CategoryDataset dataset,

int row, int column, int pass);

Draws a single bar with 3D effect.

å public void drawBackground(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea);

Draws the background area, taking into account the 3D effect.

å public void drawOutline(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea);

Draws the plot outline, taking into account the 3D effect.

å public void drawDomainGridline(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,

double value);

Draws a domain gridline, taking into account the 3D effect.

å public void drawRangeGridline(Graphics2D g2, CategoryPlot plot, ValueAxis axis,

Rectangle2D dataArea, double value);

Draws a range gridline, taking into account the 3D effect.

å public void drawRangeMarker(Graphics2D g2, CategoryPlot plot, ValueAxis axis,

Marker marker, Rectangle2D dataArea);

Draws a range marker, taking into account the 3D effect.

36.5.5 Equals, Cloning and Serialization

This class overrides the equals() method:
å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object, returning true if and only if:

• obj is not null;

• obj is an instance of BarRenderer3D;

• obj has the same x- and y-offset and wall paint settings;

• super.equals(obj) returns true.

Instances of this class are Cloneable (PublicCloneable) and Serializable.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 459

36.5.6 Notes

Some points to note:

• this class is a subclass of BarRenderer and implements the CategoryItemRenderer interface.

• the 3D effect drawn by this renderer is sensitive to the order in which the data items are
drawn (see section 33.3.8);

• a couple of demos (BarChart3DDemo1.java and BarChart3DDemo2.java) are included in the JFree-
Chart demo collection.

See Also
BarRenderer, StackedBarRenderer3D, CategoryAxis3D.

36.6 BoxAndWhiskerRenderer

36.6.1 Overview

A renderer that is used to create a box-and-whisker chart using data from a special dataset
(BoxAndWhiskerCategoryDataset). A sample chart is shown in Figure 36.6.

Figure 36.6: A chart generated with a BoxAndWhiskerRenderer

The chart indicates the following data items:

• the mean value is drawn as a filled circle (with a diameter equal to half the width of the box);

• the median is drawn as a short horizontal line;

• the box highlights the range from quartile 1 to quartile 3;

• the capped line extending from each end of the box indicates the full range of regular values;

• hollow circles are used to indicate outlier values;

• triangles at each extreme indicate the presence of far out values.

Note that a similar renderer (XYBoxAndWhiskerRenderer) is available for use with the XYPlot class.

36.6.2 Constructors

To create a new renderer:
å public BoxAndWhiskerRenderer();

Creates a new renderer.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 460

36.6.3 Methods

To control the color of the median and mean indicators:

å public Paint getArtifactPaint();

Returns the Paint used to draw the median and mean indicators. The default is Color.black.

å public void setArtifactPaint(Paint paint);

Sets the Paint used to draw the median and mean indicators and sends a RendererChangeEvent

to all registered listeners. If paint is null, this method throws an IllegalArgumentException.

To determine whether or not the boxes are filled:

å public boolean getFillBox();

Returns true if the boxes are filled, and false otherwise. The default is true.

å public void setFillBox(boolean flag);

Sets the flag that controls whether or not the boxes are filled, and sends a RendererChangeEvent

to all registered listeners.

To control the spacing between items within a category:3

å public double getItemMargin();

Returns the item margin as a percentage of the overall length of the category axis (the default
is 0.20, or twenty percent). This controls the amount of space that is allocated to the gaps
between items within the same category.

å public void setItemMargin(double margin);

Sets the item margin and sends a RendererChangeEvent to all registered listeners.

The method that creates legend items is overridden:

å public LegendItem getLegendItem(int datasetIndex, int series);

Returns a legend item for the specified series. This method is overridden to return a box as
the legend item shape.

36.6.4 Notes

Some points to note:

• a demo application (BoxAndWhiskerDemo1.java) is included in the JFreeChart demo collection.

See Also
XYBoxAndWhiskerRenderer.

36.7 CategoryItemRenderer

36.7.1 Overview

A category item renderer is an object that is assigned to a CategoryPlot and assumes responsibility
for drawing the visual representation of individual data items in a dataset. This interface defines the
methods that must be provided by all category item renderers—the plot will only use the methods
defined in this interface.

A number of different renderers have been developed, allowing different chart types to be generated
easily. The following table lists the renderers that have been implemented to date:

3The spacing between categories is controlled by the CategoryAxis.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 461

AbstractCategoryItemRenderer

MinMaxCategoryRendererAreaRenderer LineAndShapeRenderer

BarRenderer

CategoryItemRenderer

IntervalBarRenderer

DefaultCategoryItemRenderer

BarRenderer3D

StackedAreaRenderer

StackedBarRenderer

StackedBarRenderer3D

Figure 36.7: Category item renderers

Class: Description:

AreaRenderer Used to create area charts.
BarRenderer Represents data using bars (anchored at zero).
BarRenderer3D Represents data using bars (anchored at zero) with a 3D effect.
BoxAndWhiskerRenderer A box-and-whisker plot.
CategoryStepRenderer Connects data values using a stepped line.
GanntRenderer For displaying simple Gantt charts.
GroupedStackedBarRenderer Stacked bar charts with custom groupings.
IntervalBarRenderer Draws intervals using bars. This renderer can be used to create

simple Gantt charts.
LayeredBarRenderer For layered bar charts.
LevelRenderer Displays levels (usually overlaid on top of a regular bar chart).
LineAndShapeRenderer Draws lines and/or shapes to represent data.
LineRenderer3D A line chart with 3D effect.
MinMaxCategoryRenderer For plotting min-max ranges.
StackedAreaRenderer For stacked area charts.
StackedBarRenderer Used to create a stacked bar charts.
StackedBarRenderer3D For stacked bar charts with a 3D effect.
StatisticalBarRenderer For bar charts with an error indicator.
StatisticalLineAndShapeRenderer For line charts with an error indicator.

The AbstractCategoryItemRenderer is a useful base class for implementing this interface, if you are
developing your own renderer.

36.7.2 General Methods

To find the plot that the renderer is currently assigned to:

å public CategoryPlot getPlot();

Returns the plot that the renderer is currently assigned to.

å public void setPlot(CategoryPlot plot);

Sets the plot that the renderer is currently assigned to. This method is called by the CategoryPlot

class, you shouldn’t need to call this yourself.

The following method returns the range of values that will be spanned by the visual representation
of the specified dataset, as drawn by this renderer:

å public Range findRangeBounds(CategoryDataset dataset);

Returns the range of values that will be spanned by ths visual representation of the data values
in the specified dataset, as drawn by this renderer. This method is used to determine an
appropriate default range for the y-axis on a plot.

The interface defines an initialisation method:

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 462

å public CategoryItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea,

CategoryPlot plot, Integer index, PlotRenderingInfo info);

This method is called exactly once at the start of every chart redraw. The method returns
a state object that the plot will pass to the drawItem() method for each data item that the
renderer needs to draw. Thus, it gives the renderer a chance to precalculate any information
it might require later when rendering individual data items.

The pass count refers to the number of passes that the renderer makes through the dataset. The
majority of renderers use just a single pass, but some renderers make two or more passes, drawing
the data items in several layers:

å public int getPassCount();

Returns the number of passes through the dataset that need to be made by this renderer.

The most important method is the one that actually draws a data item:

å public void drawItem(...);

Draws one item on a category plot. The CategoryPlot class will iterate through the data items,
passing them to the renderer one at a time.

å public LegendItem getLegendItem(int datasetIndex, int series);

Returns a legend item for the specified series.

36.7.3 The Paint and Outline Paint

This interface assumes that the renderer stores values for the paint and outline paint attributes on
a per-series basis, with a default value that can be used when no value is specified for a particular
series. By convention, the CategoryPlot will always call the following method to obtain the paint
value for a data item:

å public Paint getItemPaint(int row, int column);

Returns the paint to use for the specified data item. This method should never return null.

The per-series paint settings can be controlled via the following methods:

å public Paint getSeriesPaint(int series);

Returns the paint for the specified series (possibly null).

å public void setSeriesPaint(int series, Paint paint);

Sets the paint for the specified series (null is permitted) and sends a RendererChangeEvent to
all registered listeners.

The default value (to be used in the case that there is no value specified for a particular series) is
controlled via the following methods:

å public Paint getBasePaint();

Returns the default paint, typically used when no per-series paint is defined. This method
should never return null.

å public void setBasePaint(Paint paint);

Sets the default paint to be used when no per-series paint is defined. If paint is null, this
method should throw an IllegalArgumentException. If the new paint value is different to the
existing value, this method should send a RendererChangeEvent to all registered listeners.

Similarly for the outline paint, the CategoryPlot will always call the following method to obtain the
outline paint for a data item:

å public Paint getItemOutlinePaint(int row, int column);

Returns the outline paint to use for the specified data item. This method should never return
null.

The per-series outline paint settings can be controlled via the following methods:

å public Paint getSeriesOutlinePaint(int series);

Returns the paint for the specified series (possibly null).

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 463

å public void setSeriesOutlinePaint(int series, Paint paint);

Sets the paint for the specified series (null is permitted) and sends a RendererChangeEvent to
all registered listeners.

The default outline paint value (to be used in the case that there is no value specified for a particular
series) is controlled via the following methods:

å public Paint getBaseOutlinePaint();

Returns the default outline paint, typically used when no per-series outline paint is defined.
This method should never return null.

å public void setBaseOutlinePaint(Paint paint);

Sets the default outline paint to be used when no per-series outline paint is defined. If paint is
null, this method should throw an IllegalArgumentException. If the new paint value is different
to the existing value, this method should send a RendererChangeEvent to all registered listeners.

36.7.4 The Stroke

The style of lines (if any) drawn by the renderer is controlled by the stroke attribute. A renderer
should always call the following method to determine the stroke on a per-item basis:

å public Stroke getItemStroke(int row, int column);

Returns the stroke for the specified data item. This method should never return null.

For the convenience of developers using the renderer API, the interface assumes that a renderer
stores stroke attributes on a per-series basis (at least), with a default value that is used when no
per-series stroke is defined:

å public Stroke getSeriesStroke(int series);

Returns the stroke for the specified series, or null is no stroke is defined.

å public void setSeriesStroke(int series, Stroke stroke);

Sets the stroke for the specified series and sends a RendererChangeEvent to all registered listeners.

å public Stroke getBaseStroke();

Returns the default stroke (never null). This is used when no other stroke setting is available.

å public void setBaseStroke(Stroke stroke);

Sets the default stroke, to be used when no other stroke is available. If stroke is null, this
method throws an IllegalArgumentException.

36.7.5 The Outline Stroke

The outline stroke controls the pen style used to draw the outline of any shapes drawn by the
renderer (for example, the bars in a bar chart, or the circles/squares/triangles drawn at each data
point by a LineAndShapeRenderer). A renderer should always call the following method to determine
the outline stroke on a per-item basis:

å public Stroke getItemOutlineStroke(int row, int column);

Returns the outline stroke for the specified item. This method should never return null.

For the convenience of developers using the renderer API, the interface assumes that a renderer
stores outline stroke attributes on a per-series basis (at least), with a default value that is used
when no per-series outline stroke is defined:

å public Stroke getSeriesOutlineStroke(int series);

Returns the outline stroke for the specified series, or null if no outline stroke is defined.

å public void setSeriesOutlineStroke(int series, Stroke stroke);

Sets the outline stroke for the specified series and sends a RendererChangeEvent to all registered
listeners.

å public Stroke getBaseOutlineStroke();

Returns the default outline stroke (never null). This is used when no other setting is available.

å public void setBaseOutlineStroke(Stroke stroke);

Sets the default outline stroke, to be used when no other stroke is available. If stroke is null,
this method throws an IllegalArgumentException.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 464

36.7.6 The Shapes

Some renderers draw a shape to represent each data item:

å public Shape getItemShape(int row, int column);

Returns the shape for the specified data item. This method should never return null. The
shape will be defined with the point (0, 0) at its centre, so that it can be easily translated into
an arbitrary (x, y) position at rendering time.

For the convenience of developers using the renderer API, the interface assumes that shape attributes
are stored on a per-series basis (at least) with a default shape that is used when no per-series shape
is defined:

å public Shape getSeriesShape(int series);

Returns the shape for the specified series, or null if no shape is defined for the series.

å public void setSeriesShape(int series, Shape shape);

Sets the shape for the specified series (null is permitted) and sends a RendererChangeEvent to
all registered listeners.

å public Shape getBaseShape();

Returns the default shape (never null). This is used when no other shape is available.

å public void setBaseShape(Shape shape);

Sets the default shape to be used when no other shape is available. If shape is null, this method
throws an IllegalArgumentException.

36.7.7 Item Labels

An item label is a short text string that can be displayed near each data item in a chart. Whenever
the renderer requires an item label, it obtains a label generator via the following method:

å public CategoryItemLabelGenerator getLabelGenerator(int series, int item);

Returns the label generator for the specified data item. In theory, this method could return
a different generator for each item but, in practice, it will often return the same generator for
every item (or one generator per series). The method can return null if no generator has been
set for the renderer—in this case, no item labels will be displayed.

To set a generator for a particular series:

å public CategoryItemLabelGenerator getSeriesItemLabelGenerator(int series);

Returns the item label generator for the specified series, or null.

å public void setSeriesItemLabelGenerator(int series, CategoryItemLabelGenerator generator);

Sets the item label generator for the specified series (null is permitted) and sends a RendererChangeEvent

to all registered listeners.

To control the default item label generator:

å public CategoryItemLabelGenerator getBaseItemLabelGenerator();

Returns the default item label generator (possibly null).

å public void setBaseItemLabelGenerator(CategoryItemLabelGenerator generator);

Sets the default item label generator (null is permitted) and sends a RendererChangeEvent to
all registered listeners.

To set a generator that will be used for all data items in the chart (note that this override feature
has been deprecated):

å public void setItemLabelGenerator(CategoryItemLabelGenerator generator); [Deprecated, 1.0.6]

Sets the item label generator that will be used for ALL data items in the chart, and sends a
RendererChangeEvent to all registered listeners. Set this to null if you prefer to set the generator
on a “per series” basis.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 465

36.7.8 The Item Label Font

To determine the font used to display each item label (if visible), a renderer will normally call the
following method:

å public Font getItemLabelFont(int row, int column);

Returns the font to use for the item label for the specified data item. This method should never
return null.

For the convenience of developers using the renderer API, the interface assumes that a renderer
defines the item label font on a per-series basis (at least) with a default value that is used if no
per-series font is defined:

å public Font getSeriesItemLabelFont(int series);

Returns the item label font for the specified series, or null.

å public void setSeriesItemLabelFont(int series, Font font);

Sets the item label font for the specified series (null is permitted) and sends a RendererChangeEvent

to all registered listeners.

å public Font getBaseItemLabelFont();

Returns the default item label font (never null).

å public void setBaseItemLabelFont(Font font);

Sets the default item label font and sends a RendererChangeEvent to all registered listeners. If
font is null, this method throws an IllegalArgumentException.

36.7.9 The Item Label Paint

To determine the paint used to display each item label (if visible), a renderer will normally call the
following method:

å public Paint getItemLabelPaint(int row, int column);

Returns the paint used to draw the item label for the specified data item. This method should
never return null.

For the convenience of developers using the renderer API, the interface assumes that a renderer
defines the item label paint on a per-series basis (at least) with a default value that is used if no
per-series paint is defined:

å public Paint getSeriesItemLabelPaint(int series);

Returns the item label paint for the specified series, or null.

å public void setSeriesItemLabelPaint(int series, Paint paint);

Sets the item label paint for the specified series (null is permitted) and sends a RendererChangeEvent

to all registered listeners.

å public Paint getBaseItemLabelPaint();

Returns the default item label paint (never null).

å public void setBaseItemLabelPaint(Paint paint);

Sets the default item label paint and sends a RendererChangeEvent to all registered listeners. If
paint is null, this method throws an IllegalArgumentException.

36.7.10 The Item Label Position

The position of the item labels is specified with two attributes, one for data items with positive
values and another for data items with negative values.

For positive data items, the renderer will normally determine the item label position by calling the
following method:

å public ItemLabelPosition getPositiveItemLabelPosition(int row, int column);

Returns the item label position for the specified data item. This method should never return
null.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 466

For the convenience of developers using the renderer API, the interface assumes that the item label
position is defined on a per-series basis (at least) with a default value that is used if no per-series
position is defined:

å public ItemLabelPosition getSeriesPositiveItemLabelPosition(int series);

Returns the item label position (possibly null) for positive value items in the specified series.

å public void setSeriesPositiveItemLabelPosition(int series, ItemLabelPosition position);

Equivalent to setSeriesPositiveItemLabelPosition(series, position, true)—see the next method.

å public void setSeriesPositiveItemLabelPosition(int series, ItemLabelPosition position, boolean

notify);

Sets the item label position for positive value items in the specified series and, if requested,
sends a RendererChangeEvent to all registered listeners.

To control the default value:

å public ItemLabelPosition getBasePositiveItemLabelPosition();

Returns the default item label position (never null) for positive value data items.

å public void setBasePositiveItemLabelPosition(ItemLabelPosition position);

Equivalent to setBasePositiveItemLabelPosition(position, true)—see the next method.

å public void setBasePositiveItemLabelPosition(ItemLabelPosition position, boolean notify);

Sets the default item label position for positive value data items and, if requested, sends a
RendererChangeEvent to all registered listeners.

For negative data items, the renderer will normally determine the item label position by calling the
following method:

å public ItemLabelPosition getNegativeItemLabelPosition(int row, int column);

Returns the item label position for the specified data item. This method should never return
null.

For the convenience of developers using the renderer API, the interface assumes that the item label
position is defined on a per-series basis (at least) with a default value that is used if no per-series
position is defined:

å public ItemLabelPosition getSeriesNegativeItemLabelPosition(int series);

Returns the item label position (possibly null for negative value items in the specified series.

å public void setSeriesNegativeItemLabelPosition(int series, ItemLabelPosition position);

Equivalent to setSeriesNegativeItemLabelPosition(series, position, true)—see the next method.

å public void setSeriesNegativeItemLabelPosition(int series, ItemLabelPosition position,

boolean notify);

Sets the item label position for negative value items in the specified series and, if requested,
sends a RendererChangeEvent to all registered listeners.

To control the default value:

å public ItemLabelPosition getBaseNegativeItemLabelPosition();

Returns the default item label position (never null) for negative value data items.

å public void setBaseNegativeItemLabelPosition(ItemLabelPosition position);

Equivalent to setBaseNegativeItemLabelPosition(position, true)—see the next method.

å public void setBaseNegativeItemLabelPosition(ItemLabelPosition position,

boolean notify);

Sets the default item label position for negative value data items and, if requested, sends a
RendererChangeEvent to all registered listeners.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 467

36.7.11 Item Label Visibility

To determine whether or not an item label should be displayed for a data item, the renderer calls
the following method:

å public boolean isItemLabelVisible(int row, int column);

Returns true if an item label should be displayed for the specified data item, and false other-
wise.

å public boolean isSeriesItemLabelsVisible(int series);

Performs a lookup for the given series to determine whether or not the item labels are visible
for the specified series. This method looks at the override, per-series and default flags and
returns the appropriate value.4

For the convenience of developers using the renderer API, it is assumed that the renderer stores
visibility flags on a per-series basis (at least) with a default setting. To control the visibility of item
labels for a particular series:

å public void setSeriesItemLabelsVisible(int series, boolean visible);

Sets a flag that controls whether or not item labels are visible for the specified series.

å public void setSeriesItemLabelsVisible(int series, Boolean visible);

Equivalent to setSeriesItemLabelsVisible(series, visible, true)—see the next method.

å public void setSeriesItemLabelsVisible(int series, Boolean visible, boolean notify);

Sets a flag that controls whether or not item labels are visible for the specified series and sends
a RendererChangeEvent to all registered listeners. If visible is null, the baseItemLabelsVisible
flag determines the visibility.

The default visibility flag is controlled via the following methods:

å public Boolean getBaseItemLabelsVisible();

Returns the default value of the flag for item label visibility. A null value should be interpreted
as Boolean.FALSE (this is an error in the API design, the return value should have been a boolean

primitive).

å public void setBaseItemLabelsVisible(boolean visible);

Equivalent to setBaseItemLabelsVisible(Boolean.valueOf(visible))—see the next method.

å public void setBaseItemLabelsVisible(Boolean visible);

Equivalent to setBaseitemLabelsVisible(visibile, true)—see the next method.

å public void setBaseItemLabelsVisible(Boolean visible, boolean notify);

Sets the default value of the item label visibility flag, and sends a RendererChangeEvent to all
registered listeners. You should not set this to null, but if you do the null value will be
interpreted as Boolean.FALSE.

An override flag is available, but this has been deprecated and you should avoid using it:

å public void setItemLabelsVisible(boolean visible); [Deprecated, 1.0.6]

Sets the flag that controls whether or not item labels are visible for all series drawn by this
renderer. If you prefer to set the visibility on a per series basis, you need to set this flag to
null (see the next method).

å public void setItemLabelsVisible(Boolean visible); [Deprecated, 1.0.6]

Sets the flag that controls whether or not item labels are visible for all series drawn by this
renderer. Set this to null if you prefer to set the visibility on a per series basis.

4This method is an error in the API—it should return a Boolean flag for just the per-series value. For compatibility
reasons, this won’t be fixed in the 1.0.x series of JFreeChart releases.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 468

36.7.12 Tooltips

A tool tip is a short text string that is displayed temporarily in a GUI while the mouse pointer
hovers over a particular item in a chart. Whenever the renderer requires a text string for a tool tip,
it calls the following method:

å public CategoryToolTipGenerator getToolTipGenerator(int series, int item);

Returns the tool tip generator for the specified data item (possibly null).

For the convenience of developers using the renderer API, the interface assumes that the tool tip
generator is defined on a per-series basis (at least) with a default generator that is used if no other
is available:

å public CategoryToolTipGenerator getSeriesToolTipGenerator(int series);

Returns the tooltip generator (possibly null) for the data items in the specified series.

å public void setSeriesToolTipGenerator(int series, CategoryToolTipGenerator generator);

Sets the tool tip generator (null is permitted) for the specified series and sends a RendererChangeEvent

to all registered listeners.

å public CategoryToolTipGenerator getBaseToolTipGenerator();

Returns the default tool tip generator (possibly null).

å public void setBaseToolTipGenerator(CategoryToolTipGenerator generator);

Sets the default tool tip generator (null is permitted) and sends a RendererChangeEvent to all
registered listeners.

There is an override setting, but this has been deprecated and you should avoid using it:

å public CategoryToolTipGenerator getToolTipGenerator(); [Deprecated 1.0.6]

Returns the tool top generator (possibly null) that will be used for ALL data items.

å public void setToolTipGenerator(CategoryToolTipGenerator generator); [Deprecated 1.0.6]

Sets the tool tip generator that will be used for ALL data items in the chart, and sends a
RendererChangeEvent to all registered listeners.

36.7.13 Item URLs

The ChartEntity objects created by the renderer for each data item can have a URL associated
with them. To provide flexibility, URLs are generated using a plugin object (similar to the tooltip
generator).

URLs are only used in HTML image maps at present. If you are not generating HTML
image maps, then you should leave the URL generators set to null.

A renderer will normally obtain the URL generator for a data item by calling the following method:

å public CategoryURLGenerator getItemURLGenerator(int series, int item);

Returns the URL generator for the specified data item. This method may return null, in which
case no URL will be associated with the data item.

For the convenience of developers using the renderer API, the interface assumes that the item
URL generator is defined on a per-series basis (at least) with a default generator that is used if no
per-series generator is defined.

å public CategoryURLGenerator getSeriesItemURLGenerator(int series);

Returns the URL generator (possibly null) for the specified series.

å public void setSeriesItemURLGenerator(int series, CategoryURLGenerator generator);

Sets the URL generator for the specified series (null is permitted) and sends a RendererChangeEvent

to all registered listeners.

å public CategoryURLGenerator getBaseItemURLGenerator();

Returns the default URL generator (possibly null).

å public void setBaseItemURLGenerator(CategoryURLGenerator generator);

Sets the default URL generator (null is permitted) and sends a RendererChangeEvent to all
registered listeners.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 469

36.7.14 Series Visibility

All renderers maintain a set of visibility flags to control whether or not a series will be drawn by
the renderer. Be aware that some renderers ignore these flags.

At rendering time, JFreeChart will check the visibility of each item using the following method:

å public boolean getItemVisible(int series, int item);

Returns true if the specified item will be drawn by the renderer, and false otherwise.

The default implementation of getItemVisible(int, int) will simply return the visibility flag for
the specified series—but you can subclass any renderer and override getItemVisible() if you want
some different behaviour.

The following method checks the visibility of a series by first checking the per-series flags and, if no
flag is defined for the specified series, then checking the base flag value:

å public boolean isSeriesVisible(int series);

Returns true if the specified series will be drawn by the renderer, and false otherwise.

A set of visibility flags can be defined on a per-series basis. A flag may be set to null, in which case
the base flag value will be used.

å public Boolean getSeriesVisible(int series);

Returns the visibility flag for the specified series. This may be null.

å public void setSeriesVisible(int series, Boolean visible);

Equivalent to setSeriesVisible(series, visible, true)—see the next method.

å public void setSeriesVisible(int series, Boolean visible, boolean notify);

Sets the visibility flag for the specified series and, if requested, sends a RendererChangeEvent to
all registered listeners. The visible argument may be null.

The base visibility flag is used for any series with no specific visibility setting:

å public boolean getBaseSeriesVisible();

Returns the default visibility for all series.

å public void setBaseSeriesVisible(boolean visible);

Equivalent to setBaseSeriesVisible(visible, true)—see the next method.

å public void setBaseSeriesVisible(boolean visible, boolean notify);

Sets the default visibility for all series and, if requested, sends a RendererChangeEvent to all
registered listeners.

36.7.15 Miscellaneous Methods

The following methods perform drawing tasks that the plot needs to complete, but by delegat-
ing these to the renderer it provides an opportunity for the renderer to customise the drawing if
necessary.

å public void drawBackground(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea);

Draws the background of the plot area (the area enclosed by the axes). A simple implementation
for this method is to simply call the drawBackground() method in the CategoryPlot class—
however, the renderers with a 3D effect will do something different.

å public void drawOutline(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea);

Draws an outline for the plot area. Most renderers will use a standard implementation (for
example, a call to the drawOutline() method in the plot), but those renderers that have a 3D
effect will implement this method differently.

å public void drawDomainGridline(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,

double value);

Draws a gridline perpendicular to the domain axis.

å public void drawRangeGridline(Graphics2D g2, CategoryPlot plot, ValueAxis axis,

Rectangle2D dataArea, double value);

Draws a gridline perpendicular to the range axis.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 470

å public void drawDomainMarker(Graphics2D g2, CategoryPlot plot, CategoryAxis axis,

CategoryMarker marker, Rectangle2D dataArea);

Draws a marker against the specified axis.

å public void drawRangeMarker(Graphics2D g2, CategoryPlot plot, ValueAxis axis,

Marker marker, Rectangle2D dataArea);

Draws a marker against the specified axis.

36.7.16 Change Listeners

All renderers must support a change notification mechanism, which is designed to allow the CategoryPlot
(or any other “change listener”) to receive notification whenever any attribute of the renderer
changes. To register a change listener with the renderer:

å public void addChangeListener(RendererChangeListener listener);

Registers a listener so that it receives notification of changes to this renderer.

å public void removeChangeListener(RendererChangeListener listener);

Deregisters a listener so that it no longer receives notification of changes to this renderer.

There probably aren’t many situations where you will need to register a listener with the renderer.
The CategoryPlot class registers itself so that it is notified of changes to any of its renderers and,
in turn, passes on a change notification to its own listeners.

36.7.17 Notes

Some points to note:

• this interface defines attributes that are common to most renderers. However, some renderers
will not use all the attributes defined here (for example, the BarRenderer class never uses the
shape attribute;

• classes that implement the CategoryItemRenderer interface are used by the CategoryPlot class.
They cannot be used by the XYPlot class (which uses implementations of the XYItemRenderer

interface).

See Also
CategoryPlot, AbstractCategoryItemRenderer.

36.8 CategoryItemRendererState

36.8.1 Overview

This class records state information for a CategoryItemRenderer during the process of drawing a
chart. Recall that the plot uses a renderer to draw the individual data items in a chart. In the
plot’s render() method, a call is made to the renderer’s initialise() method, which returns a state
object. Subsequently, for every call the plot makes to the renderer’s drawItem() method, it passes
in the same state object (which can be updated with new state information during the rendering).

This scheme is designed to allow two or more different threads to use a single renderer to draw a
chart to different output targets simultaneously.

36.8.2 Constructors

To create a new state instance:

å public CategoryItemRendererState(PlotRenderingInfo info);

Creates a new state object with a reference to the specified info for plot rendering (which may
be null.

In general, this class is instantiated in the renderer’s initialize() method.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 471

36.8.3 Methods

To access the bar width (only used by some renderers):

å public double getBarWidth();

Returns the bar width, in Java2D units.

å public void setBarWidth(double width);

Sets the bar width. This method is intended for internal use (by the renderer), you shouldn’t
call this method directly.

To access the running total for the current series:

å public double getSeriesRunningTotal();

Returns the running total for the current series.

å void setSeriesRunningTotal(double total);

Sets the running total for teh current series. This method is intended for internal use (by the
renderer), you shouldn’t call this method directly (actually, it is package private so you can’t
in any case).

36.8.4 Equals, Cloning and Serialization

As this class is intended to represent temporary state information, it is neither cloneable nor seri-
alizable, and it does not override the equals() method.

See Also
RendererState.

36.9 CategoryStepRenderer

36.9.1 Overview

A renderer that draws a stepped line (or stepped lines) connecting the data items in a CategoryDataset—
see figure 36.8 for an example. This renderer is designed for use with the CategoryPlot class.

Category Step Chart

Series 1 Series 2 Series 3

Typ
e 1

Typ
e 2

Typ
e 3

Typ
e 4

Typ
e 5

Typ
e 6

Typ
e 7

Typ
e 8

Category

0

1

2

3

4

5

6

7

8

V
a

lu
e

Figure 36.8: A step chart (see CategoryStepChartDemo1.java)

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 472

36.9.2 Constructor

To create a new renderer:
å public CategoryStepRenderer();

Equivalent to CategoryStepRenderer(false)—see the next constructor.

å public CategoryStepRenderer(boolean stagger);

Creates a new renderer. If stagger is true, the vertical steps for each series are offset slightly
from one another.

36.9.3 Methods

A flag controls whether or not the stepped lines are offset slightly from one another:
å public boolean getStagger();

Returns the flag that controls whether or not the stepped line for each series is offset from the
other stepped lines (to avoid the vertical lines overlapping). The initial value is set via the
constructors. In the sample chart (see figure 36.8) this flag is set to true.

å public void setStagger(boolean shouldStagger);

Sets the flag that controls whether or not the stepped lines for the series are offset from one
another, and sends a RendererChangeEvent to all registered listeners.

36.9.4 Other Methods

All of the following methods are used internally by JFreeChart—you won’t normally call them
directly:

å public LegendItem getLegendItem(int datasetIndex, int series);

Overrides the inherited method to generate a legend item with a graphic that is appropriate
for this style of renderer.

å protected CategoryItemRendererState createState(PlotRenderingInfo info);

Overrides the inherited method to return a state object with a reusable Line2D for drawing
purposes.

å protected void drawLine(Graphics2D g2, State state, PlotOrientation orientation,

double x0, double y0, double x1, double y1);

Draws a line connecting the specified coordinates (which are in Java2D space). The x and y
values will be switched if the orientation is horizontal.

å public void drawItem(...);

Draws one item from the dataset.

36.9.5 Equals, Cloning and Serialization

This class overrides the equals() method:
å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object. This method returns true if:

• obj is not null;

• obj is an instance of CategoryStepRenderer;

• obj has the same attributes as this renderer.

Instances of this class are Cloneable (PublicCloneable) and Serializable.

36.9.6 Notes

Some points to notes:

• there is no method in the ChartFactory class to create a chart using this renderer. Instead,
you must manually assign a renderer instance to a CategoryPlot instance;

• a demo (CategoryStepChartDemo1.java) is included in the JFreeChart demo collection.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 473

See Also
XYStepRenderer.

36.10 DefaultCategoryItemRenderer

36.10.1 Overview

This class is an alias for the LineAndShapeRenderer class.

36.11 GanttRenderer

36.11.1 Overview

A renderer that is used to draw simple Gantt charts—an example is shown in figure 36.9.

Figure 36.9: A Gantt chart

The renderer is used with the CategoryPlot class and accesses data via the GanttCategoryDataset

interface. The createGanttChart() method in the ChartFactory class will create a JFreeChart instance
that uses this rendeerer.

36.11.2 Methods

The renderer can highlight the “percentage complete” for a task, provided that this information is
specified in the dataset. The colors used for this indicator are set with the following methods:

å public void setCompletePaint(Paint paint);

Sets the Paint used to draw the portion of the task that is completed and sends a RendererChangeEvent

to all registered listeners.

å public void setIncompletePaint(Paint paint);

Sets the Paint used to draw the portion of the task that is not yet completed and sends a
RendererChangeEvent to all registered listeners.

The width of the “percentage complete” indicator can be controlled by specifying the start and end
percentage values relative to the width (not length!) of the task bars:

å public void setStartPercent(double percent);

Sets the start position for the indicator as a percentage of the width of the task bar (for example,
0.30 is thirty percent)

å public void setEndPercent(double percent);

Sets the end position for the indicator as a percentage of the width of the task bar (for example,
0.70 is seventy percent)

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 474

As an example, by setting the start and end percentages in the above methods to 0.30 and 0.70

(say), the middle forty percent of the task bar is occupied by the “percentage complete” indicator.

36.11.3 Notes

Some points to note:

• this class extends IntervalBarRenderer;

• you can enable or disable bar outlines using the setDrawBarOutline() method inherited from
the BarRenderer class;

• two demo applications (GanttDemo1.java and GanttDemo2.java) are included in the JFreeChart
demo distribution.

36.12 GroupedStackedBarRenderer

36.12.1 Overview

This renderer is used to draw grouped and stacked bar charts using data from a CategoryDataset

(see figure 36.10).

Figure 36.10: A grouped and stacked bar chart

This class extends the StackedBarRenderer class.

36.12.2 Constructor

To create a new renderer:

å public GroupedStackedBarRenderer();

Creates a new renderer with default settings. By default, all series are mapped to a single
group—you can change this using the setSeriesToGroupMap() method.

36.12.3 Mapping Series To Groups

This renderer requires you to specify the mapping between series and groups using the following
method:

å public void setSeriesToGroupMap(KeyToGroupMap map);

Sets the map that controls which series are grouped together.

Refer to the source code for StackedBarChartDemo4 for an example of this.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 475

36.12.4 Other Methods

The following method is called by JFreeChart when determining the axis range that will display
ALL the data in the dataset. Due to the stacking performed by this renderer, the range will depend
on the way that the series are grouped together:

å public Range getRangeExtent(CategoryDataset dataset);

Returns the range of data values in the dataset, after taking into account the stacking that is
performed by this renderer.

36.12.5 Notes

Some points to note:

• there is a demo (StackedBarChartDemo4.java) included in the JFreeChart demo collection.

36.13 IntervalBarRenderer

36.13.1 Overview

A renderer that draws bars to represent items from an IntervalCategoryDataset—see figure 36.11.

Figure 36.11: A chart that uses an IntervalBarRenderer

This renderer is used with the CategoryPlot class, and is an extension of BarRenderer.

36.13.2 Constructors

This class has a single constructor:

å public IntervalBarRenderer();

Creates a new renderer instance. After the renderer is created, you can customise it using the
methods inherited from its ancestor classes.

36.13.3 Methods

The following methods are called by the CategoryPlot class during chart rendering, you won’t
normally call them directly:

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis, ValueAxis rangeAxis,

CategoryDataset dataset, int row, int column, int pass);

Handles the drawing of a single item. If dataset is an instanceof
IntervalCategoryDataset, the bars are rendered for the interval defined by the dataset. Other-
wise, the method passes control back to the super class to draw a regular bar.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 476

å protected void drawInterval(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis,

ValueAxis rangeAxis, IntervalCategoryDataset dataset, int row, int column);

Handles the drawing of a single interval (called from the drawItem() method).

Many other methods are inherited from BarRenderer.

36.13.4 Notes

Some points to note:

• the IntervalCategoryToolTipGenerator interface can be used to generate tooltips with this
renderer;

• a demo (IntervalBarChartDemo1) is included in the JFreeChart demo collection.

See Also
DefaultIntervalCategoryDataset, GanttRenderer.

36.14 LayeredBarRenderer

36.14.1 Overview

A renderer that draws layered bars to represent items from an CategoryDataset—see figure 36.12
for an example.

Layered Bar Chart Demo 1

First Second Third

Category 1 Category 2 Category 3 Category 4 Category 5

Category

0

1

2

3

4

5

6

7

8

V
a

lu
e

Figure 36.12: A layered bar chart (see LayeredBarChartDemo1.java)

36.14.2 Constructors

To create a new renderer:

å public LayeredBarRenderer();

Creates a new renderer with default settings.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 477

36.14.3 Methods

With this renderer, the bar width varies by series. Most of the time, the default widths are
acceptable, but you can specify a custom width if necessary:

å public double getSeriesBarWidth(int series);

Returns the bar width as a percentage of the default bar width (where 1.0 is 100%).

å public void setSeriesBarWidth(int series, double width);

Sets the bar width as a percentage of the default bar width. Bear in mind that the default bar
width decreases as the series index increases.

å protected void calculateBarWidth(CategoryPlot plot, Rectangle2D dataArea, int rendererIndex,

CategoryItemRendererState state);

Updates the state with the bar width calculated for the current series/renderer.

å public void drawItem(Graphics2D g2, CategoryItemRendererState state, Rectangle2D dataArea,

CategoryPlot plot, CategoryAxis domainAxis, ValueAxis rangeAxis, CategoryDataset data, int

row, int column, int pass);

Draws a bar to represent one data item.

å protected void drawHorizontalItem(Graphics2D g2, CategoryItemRendererState state, Rectangle2D

dataArea, CategoryPlot plot, CategoryAxis domainAxis, ValueAxis rangeAxis, CategoryDataset

data, int row, int column);

Draws a horizontal bar to represent a data item.

å protected void drawVerticalItem(Graphics2D g2, CategoryItemRendererState state, Rectangle2D

dataArea, CategoryPlot plot, CategoryAxis domainAxis, ValueAxis rangeAxis, CategoryDataset

data, int row, int column);

Draws a vertical bar to represent a data item.

36.14.4 Notes

Some points to note:

• a demo (LayeredBarChartDemo1.java) is included in the JFreeChart demo distribution.

36.15 LevelRenderer

36.15.1 Overview

A renderer that draws horizontal lines to represent items from an CategoryDataset. The lines
occupy the same width along the axis that a bar drawn by the BarRenderer class would occupy—for
example, see figure 36.13.

36.15.2 General Attributes

This renderer defines a couple of attributes in addition to those it inherits from its superclass
(AbstractCategoryItemRenderer).

To control the gap between items:

å public double getItemMargin();

Returns the item margin as a percentage of the overall length of the category axis (the default
is 0.20, or twenty percent). This controls the amount of space that is allocated to the gaps
between items within the same category.

å public void setItemMargin(double percent);

Sets the item margin and sends a RendererChangeEvent to all registered listeners.

To set a cap for the maximum width of each item:

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 478

Overlaid Bar Chart 2

S1 S2 Prior 1 Prior 2

Category 1 Category 2 Category 3 Category 4 Category 5

Category

0

1

2

3

4

5

6

7

8

V
a

lu
e

Figure 36.13: A chart that uses a LevelRenderer

å public double getMaximumItemWidth();

Returns the maximum item width allowed, as a percentage of the length of the category axis.
The default is 1.00 (100 percent) which means that the item widths are never capped.

å public void setMaximumItemWidth(double percent);

Sets the maximum item width as a percentage of the axis length and sends a RendererChangeEvent

to all registered listeners. For example, setting this to 0.05 will ensure that the items never
exceed five percent of the length of the axis. This can improve the appearance of charts where
there is a possibility that only one or two items will be displayed.

36.15.3 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object. Returns true if and only if:

• obj is not null;

• obj is an instanceof LevelRenderer;

• both renderers have equal field values.

This renderer is Cloneable and Serializable.

36.15.4 Notes

Some points to note:

• the item widths for this renderer are intended to match those calculated by the BarRenderer

class;

• a demo for this renderer (OverlaidBarChartDemo2.java) is included in the JFreeChart demo
collection.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 479

36.16 LineAndShapeRenderer

36.16.1 Overview

A renderer that displays data items by drawing a shape at each data point and/or connecting data
points with straight lines—see figure 36.14 for an example. The renderer works with a CategoryPlot

and obtains data from a CategoryDataset.

Line Chart Demo 7

Series 1 Series 2 Series 3

Category 1 Category 2 Category 3 Category 4 Category 5

Category

0

2 0

4 0

6 0

8 0

100

120

140

160

180

200

220

240

260

280

300

C
o

u
n

t

Figure 36.14: A chart that uses a LineAndShapeRenderer

36.16.2 Usage

You can create a chart that uses this renderer via the createLineChart() method in the ChartUtilities

class.

Alternatively, you can install an instance of this renderer on an existing chart (provided that the
chart uses a CategoryPlot) with the following code:

CategoryPlot plot = (CategoryPlot) chart.getPlot();

LineAndShapeRenderer renderer = new LineAndShapeRenderer();

plot.setRenderer(renderer);

If you use the latter approach, be aware that the newly created renderer doesn’t have tool-tip or
item label generators installed (you can add these if you need them).

36.16.3 Constructors

The default constructor creates a renderer that draws both shapes and lines:

å public LineAndShapeRenderer();

Creates a new renderer that draws both shapes and lines.

A second constructor allows you to select shapes and/or lines:

å public LineAndShapeRenderer(boolean lines, boolean shapes);

Creates a new renderer that draws shapes and/or lines.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 480

36.16.4 Line Visibility

To determine if a line should be drawn between the current item and the previous item, the following
method is called by the renderer’s drawing code:

å public boolean getItemLineVisible(int series, int item);

Returns true if a line should be drawn between the current item and the previous item, and
false otherwise.

This method is called for every data item, even though the default implementation can access only
the per-series settings provided by the renderer. You can override this method if you need to vary
the line visibility on a per-item basis.

The line visibility settings are arranged into the standard three-layer mechanism for renderer at-
tributes (see 35.2.2). To get the top level (override) setting for the visibility of lines:

å public Boolean getLinesVisible(); [Deprecated 1.0.7]

Returns Boolean.TRUE if lines are visible for all series, Boolean.FALSE if lines are invisible for all
series, and null (the default) if the lower level settings should be referenced instead.

å public void setLinesVisible(Boolean visible); [Deprecated 1.0.7]

Sets the override flag for the visibility of lines for all series and sends a RendererChangeEvent to
all registered listeners. You should set this value to null (the default) if you don’t require an
override setting.

å public void setLinesVisible(boolean visible); [Deprecated 1.0.7]

As above.

If the override setting is null, the “per series” settings apply:

å public Boolean getSeriesLinesVisible(int series);

Returns Boolean.TRUE if lines are visible for the specified series, Boolean.FALSE if lines are invisible
for the specified series, and null (the default) if the lower level settings should be referenced
instead.

å public void setSeriesLinesVisible(int series, Boolean flag);

Sets the line visibility flag for the specified series and sends a RendererChangeEvent to all regis-
tered listeners. If you set the value for a series to null, the base value will be used instead.

å public void setSeriesLinesVisible(int series, boolean visible);

As above.

If neither the override nor the per series settings are set, the base level flag is used:

å public boolean getBaseLinesVisible();

Returns true if lines are visible, by default, for all series, and false otherwise.

å public void setBaseLinesVisible(boolean flag);

Sets the default value for line visibility and sends a RendererChangeEvent to all registered listen-
ers.

The line color (Paint) and style (Stroke) settings are inherited from the AbstractRenderer class.

36.16.5 Shapes

The shapes displayed by the renderer (if it is configured to display shapes) are inherited from the
AbstractRenderer class—see section 35.2.11.

36.16.6 Shape Visibility

The visibility of shapes can be controlled on a per-item basis. To determine if a shape should be
drawn for an item, the renderer will call the following method:

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 481

å public boolean getItemShapeVisible(int series, int item);

Returns true if the shape should be drawn for this item, and false otherwise. The default
implementation of this method does a look-up on the per-series settings for this renderer (see
the methods below). Override this method if you want to control shape visibility on a per-item
basis.

The override flag, if non-null, applies to all series:

å public Boolean getShapesVisible(); [Deprecated 1.0.7]

Returns the override flag for shape visibility. By default, this method returns null.

å public void setShapesVisible(Boolean visible); [Deprecated 1.0.7]

Sets the override flag for shape visibility, and sends a RendererChangeEvent to all registered
listeners. You should leave this flag set to null if you want the per-series flags to apply.

å public void setShapesVisible(boolean visible); [Deprecated 1.0.7]

As above.

To control shape visibility on a per-series basis:

å public Boolean getSeriesShapesVisible(int series);

Returns a flag that indicates whether or not shapes are visible for a series. If this method
returns null, the base setting will apply.

å public void setSeriesShapesVisible(int series, Boolean flag);

Sets the flag that controls the visibility of shapes for a series, and sends a RendererChangeEvent

to all registered listeners. You can set the flag to null, in which case the base flag will be used.

å public void setSeriesShapesVisible(int series, boolean visible);

As above.

The base flag defines the default visibility when both the per-series and override flags are null:

å public boolean getBaseShapesVisible();

Returns true if shapes are visible, by default, for all series, and false otherwise.

å public void setBaseShapesVisible(boolean flag);

Sets the default value for shape visibility and sends a RendererChangeEvent to all registered
listeners.

36.16.7 Controlling Shape Outlines

If the renderer is configured to draw shapes, then the shapes can be drawn with or without outlines,
according to the setting of the drawOutlines flag:

å public boolean getDrawOutlines();

Returns true if the renderer draws outlines around each shape, and false otherwise. The
default value is true.

å public void setDrawOutlines(boolean flag);

Sets the flag that controls whether or not outlines are drawn around shapes, and sends a
RendererChangeEvent to all registered listeners.

The renderer uses one of two possible colors (inherited from AbstractRenderer) for the shape outlines:
(a) the outline paint for the current series, or (b) the (regular) paint for the current series. The
selection is determined by the useOutlinePaint flag:

å public boolean getUseOutlinePaint();

Returns true if the renderer draws shape outlines using the outline paint, and false if the
regular series paint is used (the default).

å public void setUseOutlinePaint(boolean use);

Sets the flag that controls which paint is used for the shape outlines and sends a RendererChangeEvent

to all registered listeners.

The outline stroke is inherited from the AbstractRenderer class—see section 35.2.9.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 482

36.16.8 Controlling Shape Filling

The renderer can fill each shape (with either the regular series paint or the series fill paint) or leave
the shapes empty (usually only when shape outlines are drawn). The flags that control this are set
using the “three layer, per series” approach common to many other renderer attributes.

å public boolean getItemShapeFilled(int series, int item);

Returns true if the shape for the specified item should be filled, and false if it should remain
unfilled. This method simply calls the getSeriesShapeFilled(int) method—override it if you
need to control the shape filling on a per item basis.

å public boolean getSeriesShapesFilled(int series);

Returns true if all shapes for the specified series should be filled, and false if they should
remain unfilled.

An override flag can control shape filling for all series:

å public Boolean getShapesFilled(); [Deprecated 1.0.7]

Returns Boolean.TRUE if all shapes are filled, Boolean.FALSE if all shapes are unfilled, and null

if the override setting does not apply.

å public void setShapesFilled(boolean filled); [Deprecated 1.0.7]

Sets the override flag for filling all shapes, and sends a RendererChangeEvent to all registered
listeners.

å public void setShapesFilled(Boolean filled); [Deprecated 1.0.7]

Sets the override flag for filling all shapes, and sends a RendererChangeEvent to all registered
listeners. If you set this to null, the override setting does not apply.

å public void setSeriesShapesFilled(int series, boolean filled);

Sets the flag that controls whether or not the shapes are filled for the specified series.

å public void setSeriesShapesFilled(int series, Boolean filled);

Sets the flag that controls whether or not the shapes are filled for the specified series (if null,
the default setting applies).

å public boolean getBaseShapesFilled();

Returns the renderer’s default setting for filling shapes. This will be used only when the override
setting is null and the per-series setting is null.

å public void setBaseShapesFilled(boolean flag);

Sets the default setting for filling shapes and sends a RendererChangeEvent to all registered
listeners.

The renderer can use either the regular series paint to fill shapes or the series fill paint, according
to the setting of the useFillPaint attribute:

å public boolean getUseFillPaint();

Returns true of the renderer should use the series fill paint to fill shapes, and false if it should
use the regular series paint.

å public void setUseFillPaint(boolean flag);

Sets the flag that controls whether the series fill paint or the regular series paint is used to fill
shapes.

Both the series fill paint and regular series paint settings are inherited from the AbstractRenderer

class.

36.16.9 Rendering Methods

The following methods are used during the chart drawing process, most applications won’t call
them directly:

å public int getPassCount();

Returns 2, to indicate that this renderer requires two passes through the dataset. Lines are
drawn in the first pass, and shapes are drawn in the second pass.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 483

å public LegendItem getLegendItem(int datasetIndex, int series);

Returns a legend item for the specified series. The legend item will reflect the line and shape
visibility settings for the specified series.

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis,

ValueAxis rangeAxis, CategoryDataset dataset, int row, int column, int pass);

Draws a single item from the dataset. This method is called by the CategoryPlot class, you
don’t normally need to call it directly.

36.16.10 Equals, Cloning and Serialization

This renderer overrides the equals() method:

å public boolean equals(Object obj);

Returns true if this renderer is equal to the specified object, and false otherwise.

Instances of this class are Cloneable (PublicCloneable) and Serializable.

36.16.11 Notes

Some points to note:

• for line charts where the x-values are values (dates or numbers), use an XYLineAndShapeRenderer;

• if you set the fill and/or outline paint attributes for this renderer, be sure to check the current
settings of the useFillPaint and useOutlinePaint attributes;

36.17 LineRenderer3D

36.17.1 Overview

A line renderer that uses a “pseudo-3D” effect to draw line charts on a CategoryPlot using data
from a CategoryDataset.5

36.17.2 Constructor

To create a new renderer:

å public LineRenderer3D();

Creates a new default renderer.

36.17.3 General Attributes

The 3D effect is controlled by offsets that can be configured with the following methods:

å public double getXOffset();

Returns the x-offset for the 3D effect. The offset is measured in Java2D units. The default
value is 12.0.

å public void setXOffset(double xOffset);

Sets the x-offset (in Java2D units) for the 3D effect, and sends a RendererChangeEvent to all
registered listeners.

å public double getYOffset();

Returns the y-offset for the 3D effect. The offset is measured in Java2D units. The default
value is 8.0.

5Note that we discourage the use of this renderer, since the 3D effect obscures the information content in the
chart.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 484

Line Chart 3D Demo 1

C1 C2 C3 C4

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100

105

110

115

120

125

130

135

140

145

C
la

ss
 C

o
u

n
t

Figure 36.15: A line chart with 3D effect (see LineChart3DDemo1.java)

å public void setYOffset(double yOffset);

Sets the y-offset (in Java2D untis) for the 3D effect, and sends a RendererChangeEvent to all
registered listeners.

The colour of the “sides” (or “walls”) of the plot background area can be controlled with the
following methods:

å public Paint getWallPaint();

Returns the paint used to colour the offset part of the data area.

å public void setWallPaint(Paint paint);

Sets the paint used to colour the offset part of the data area, and sends a RendererChangeEvent

to all registered listeners.

36.17.4 Drawing Methods

Various drawing methods are overridden to incorporate the 3D effect—you won’t normally call any
of these methods directly:

å public void drawBackground(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea);

Draws the plot background, taking into account the 3D offset defined by the renderer.

å public void drawOutline(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea);

Draws the plot outline, taking into account the 3D offset defined by the renderer.

å public void drawDomainGridline(Graphics2D g2, CategoryPlot plot, Rectangle2D dataArea,

double value);

Draws a domain gridline, adjusted for the 3D offset.

å public void drawRangeGridline(Graphics2D g2, CategoryPlot plot, ValueAxis axis,

Rectangle2D dataArea, double value);

Draws a range gridline, adjusted for the 3D offset.

å public void drawRangeMarker(Graphics2D g2, CategoryPlot plot, ValueAxis axis,

Marker marker, Rectangle2D dataArea);

Draws a range marker, adjusted for the 3D offset.

å public void drawItem(Graphics2D g2, CategoryItemRendererState state, Rectangle2D dataArea,

CategoryPlot plot, CategoryAxis domainAxis, ValueAxis rangeAxis, CategoryDataset dataset,

int row, int column, int pass);

Draws the visual representation of one data item on the chart.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 485

36.17.5 Equals, Cloning and Serialization

This renderer overrides the equals() method:6

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

See Also
LineAndShapeRenderer.

36.18 MinMaxCategoryRenderer

36.18.1 Overview

A renderer that plots data from a CategoryDataset with:

• an icon for each data item;

• special icons for the minimum and maximum value items within each category;

• a line connecting the minimum and maximum value items within each category.

An example is shown in figure 36.16. This renderer extends AbstractCategoryItemRenderer.

Min/Max Category Plot

First Second Third

C1 C2 C3 C4 C5 C6 C7 C8

Category

0

1

2

3

4

5

6

7

8

V
a

lu
e

Figure 36.16: A chart that uses a MinMaxCategoryRenderer

36.18.2 Constructor

To create a new renderer:

å public MinMaxCategoryRenderer();

Creates a new renderer with default settings.

6As of JFreeChart 1.0.4.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 486

36.18.3 General Attributes

The renderer draws a line between the minimum and maximum value items within each category.
The Paint and Stroke for this line are controlled via the following methods:

å public Paint getGroupPaint();

Returns the paint used to draw the line between the minimum and maximum value items within
each category. The default value is Color.black. This method never returns null.

å public void setGroupPaint(Paint paint);

Sets the paint used to draw the line between the minimum and maximum value items within
each category, and sends a RendererChangeEvent to all registered listeners. If paint is null, this
method throws an IllegalArgumentException.

å public void setGroupStroke(Stroke groupStroke);

Returns the stroke used to draw the line between the minimum and maximum value items
within each category. The default value is BasicStroke(1.0f). This method never returns null.

å public Stroke getGroupStroke();

Sets the stroke used to draw the line between the minimum and maximum value items within
each category, and sends a RendererChangeEvent to all registered listeners. If stroke is null, this
method throws an IllegalArgumentException.

This renderer highlights data items by drawing an icon for each data value. The same icon is used
for all series:

å public Icon getObjectIcon();

Returns the Icon that is displayed for each data item (note that a special icon is displayed for
the data items with the minimum and maximum values in each category). The default icon is
a horizontal line. This method never returns null.

å public void setObjectIcon(Icon icon);

Sets the Icon that is displayed for each data item and sends a RendererChangeEvent to all
registered listeners. If icon is null, this method throws an IllegalArgumentException.

The maximum and minimum value items within each category are marked with special icons:

å public Icon getMaxIcon();

Returns the Icon that is displayed for the maximum value data item within each category. The
default icon is a hollow circle. This method never returns null.

å public void setMaxIcon(Icon icon);

Sets the Icon that is displayed for the maximum value data item and sends a RendererChangeEvent

to all registered listeners. If icon is null, this method throws an IllegalArgumentException.

å public Icon getMinIcon();

Returns the Icon that is displayed for the minimum value data item within each category. The
default icon is a hollow circle. This method never returns null.

å public void setMinIcon(Icon minIcon);

Sets the Icon that is displayed for the minimum value data item and sends a RendererChangeEvent

to all registered listeners. If icon is null, this method throws an IllegalArgumentException.

By default, the renderer does not connect the data points in a series (with a line), however this is
configurable via the following methods:

å public boolean isDrawLines();

Returns true if lines are drawn to connect the items within a series, and false otherwise. The
default value is false.

å public void setDrawLines(boolean draw);

Sets the flag that controls whether or not lines are drawn to connect the items within a series.
If the new value of the flag is different to the old, a RendererChangeEvent is sent to all registered
listeners.

If the lines between items are drawn, they use the paint and stroke attributes inherited from the
AbstractRenderer class.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 487

36.18.4 Drawing Methods

Each item is drawn using the following method:

å public void drawItem(Graphics2D g2, CategoryItemRendererState state, Rectangle2D dataArea,

CategoryPlot plot, CategoryAxis domainAxis, ValueAxis rangeAxis, CategoryDataset dataset, int

row, int column, int pass);

Draws the specified item. This method is called by the CategoryPlot instance during chart
rendering, you won’t normally call it yourself.

36.18.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.7]

Tests this method for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

36.18.6 Notes

Some points to note:

• a demo (MinMaxCategoryPlotDemo1.java) is included in the JFreeChart demo collection;

See Also
AbstractCategoryItemRenderer, StatisticalLineAndShapeRenderer.

36.19 ScatterRenderer

36.19.1 Overview

A renderer that draws shapes on a CategoryPlot for all the items in a MultiValueCategoryDataset—
see figure 36.17 for an example. This class was first introduced in JFreeChart version 1.0.7.

Series 1 Series 2

C1 C2 C3

Category

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

V
a

lu
e

Figure 36.17: Sample chart (see ScatterRendererDemo1.java)

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 488

36.19.2 Constructor

To create a new instance:

å public ScatterRenderer(); [1.0.7]

Creates a new instance with default attributes.

36.19.3 General Attributes

To control whether the points for each series are offset from one another:

å public boolean getUseSeriesOffset(); [1.0.7]

Returns the flag that controls whether or not the data points for the series within each category
are offset from one another. The default value is true.

å public void setUseSeriesOffset(boolean offset); [1.0.7]

Sets the flag that controls whether or not series items are offset from one another, and sends a
RendererChangeEvent to all registered listeners.

The item margin controls the spacing between items within a category. It mirrors the behaviour of
the item margin for the BarRenderer class, so that it is possible to align the shapes plotted by this
renderer with bars plotted by another renderer:

å public double getItemMargin(); [1.0.7]

Returns the item margin, as a percentage of the axis length. The default value is 0.20 (twenty
percent).

å public void setItemMargin(double margin); [1.0.7]

Sets the item margin (as a percentage of the axis length) and sends a RendererChangeEvent to
all registered listeners.

The shapes for each data item can be drawn with or without outlines:

å public boolean getDrawOutlines(); [1.0.7]

Returns the flag that controls whether or not the shape outlines are drawn. The default value
is false.

å public void setDrawOutlines(boolean flag); [1.0.7]

Sets the flag that controls whether or not the shape outlines are drawn, and sends a RendererChangeEvent

to all registered listeners.

The outlines can be drawn using either the regular series paint (the default) or the renderer’s outline
paint:

å public boolean getUseOutlinePaint(); [1.0.7]

Returns the flag that controls whether the series outline paint settings are used to draw the
outlines. The default value is false, which means the regular series paint is used.

å public void setUseOutlinePaint(boolean use); [1.0.7]

Sets the flag that controls whether the renderer’s outline paint or regular paint is used to draw
shape outlines, and sends a RendererChangeEvent to all registered listeners.

36.19.4 Per Series Attributes

Flags that control whether or not the shapes are filled are defined on a per-series basis for this
renderer, with a base or default setting for any series that has no explicit setting.

å public boolean getItemShapeFilled(int series, int item); [1.0.7]

Returns a flag that determines whether or not the shapes for the specified item are filled. By
default, this method does a lookup on the per-series settings (see the following methods), using
the base setting if no per-series setting is specified.

Flags determining whether or not shapes are filled can be set on a per-series basis:

å public boolean getSeriesShapesFilled(int series); [1.0.7]

Returns a flag for the specified series that controls whether or not the renderer fills the shapes
it draws.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 489

å public void setSeriesShapesFilled(int series, boolean filled); [1.0.7]

Equivalent to setSeriesShapeFilled(series, Boolean.valueOf(filled))—see the next method.

å public void setSeriesShapesFilled(int series, Boolean filled); [1.0.7]

Sets a flag for the specified series that controls whether or not the renderer fills the shapes it
draws, and sends a RendererChangeEvent to all registered listeners.

å public boolean getBaseShapesFilled(); [1.0.7]

Returns the default flag that controls whether or not shapes are filled. The default value is
true.

å public void setBaseShapesFilled(boolean flag); [1.0.7]

Sets the base flag that controls whether or not the renderer fills shapes, and sends a RendererChangeEvent

to all registered listeners.

To control whether or not the renderer’s fill paint is used:

å public boolean getUseFillPaint(); [1.0.7]

Returns a flag that controls whether or not the renderer’s fill paint is used to fill shapes. The
default value is false.

å public void setUseFillPaint(boolean flag); [1.0.7]

Sets the flag that controls whether the renderer’s fill paint or regular paint is used to fill shapes,
and sends a RendererChangeEvent to all registered listeners.

36.19.5 Other Methods

The other methods defined (or overridden) in this renderer are intended for internal use by JFreeChart—
typically you won’t need to call these methods directly.

To draw one item7 from the dataset:

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis, ValueAxis rangeAxis,

CategoryDataset dataset, int row, int column, int pass); 1[.0.7]

Draws the visual representation of one data item from the dataset. Note that this method
expects dataset to be an instance of MultiValueCategoryDataset.

To fetch a legend item:

å public LegendItem getLegendItem(int datasetIndex, int series); [1.0.7]

Returns a legend item representing the specified series.

36.19.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.7]

Tests this renderer for equality with an arbitrary object.

Instances of this renderer are Cloneable and Serializable.

36.19.7 Notes

Some points to note:

• this renderer requires a dataset that implements the MultiValueCategoryDataset interface;

• a demo (ScatterRendererDemo1.java) is included in the JFreeChart demo collection.

7Bear in mind that an “item” is a list of values, so the renderer may draw multiple shapes for the item.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 490

36.20 StackedAreaRenderer

36.20.1 Overview

A renderer that draws a “stacked” form of area chart from the data in a CategoryDataset. An
example is shown in figure 36.18.

Figure 36.18: A chart that uses a StackedAreaRenderer

36.20.2 Constructors

This renderer has only the default constructor:
å public StackedAreaRenderer();

Creates a new renderer instance.

36.20.3 Methods

The super class (AreaRenderer) has methods that can be used to customise this renderer. The
methods added by this class are intended to be called by other JFreeChart classes, you won’t
normally need to call these methods yourself.

å public Range findRangeBounds(CategoryDataset dataset);

Returns the range of values that this renderer requires to display all the items from the dataset.

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis,

ValueAxis rangeAxis, CategoryDataset dataset,

int row, int column, int pass);

Draws one item from the dataset.

36.20.4 Notes

Some points to note:

• a demo (StackedAreaChartDemo.java) is included in the JFreeChart demo distribution.

36.21 StackedBarRenderer

36.21.1 Overview

A renderer that draws stacked bar charts (this class extends the BarRenderer class). An example is
shown in figure 36.19. This renderer works with a CategoryPlot and any dataset that implements
the CategoryDataset interface.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 491

Stacked Bar Chart Demo 1

Series 1 Series 2 Series 3

Category 1 Category 2 Category 3 Category 4

Category

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

V
a

lu
e

32.4

17.8

27.7

43.2

15.6

18.3

2 3

11.3

25.5

1 3

11.8

29.5

Figure 36.19: A chart that uses a StackedBarRenderer

36.21.2 Constructors

This renderer has two constructors:

å public StackedBarRenderer();

Equivalent to StackedBarRenderer(false)—see the next constructor.

å public StackedBarRenderer(boolean renderAsPercentages);

Creates a new renderer instance. If renderAsPercentages is true, each bar will represent a
percentage, and all the bars within a category will sum to 100%.

36.21.3 General Attributes

Most attributes for this renderer are inherited from the BarRenderer class.

36.21.4 Displaying Bars as Percentage Values

The renderAsPercentages flag controls the style of chart drawn. If it is set to true, the bars all add
to 100 % within each category.

å public boolean getRenderAsPercentages();

Returns the flag that controls whether each bar represents the data value or its percentage of
the category total. The initial value is specified in the constructor.

å public void setRenderAsPercentages(boolean asPercentages);

Sets the flag that controls whether each bar represents the data value or its percentage of the
category total. A RendererChangeEvent is sent to all registered listeners.

36.21.5 Other Methods

These methods are used internally by JFreeChart, you won’t normally need to call them directly.

å public int getPassCount();

Returns 2, the number of times the renderer needs to pass through the dataset for rendering.
The second pass is used to draw item labels, if they are visible.

å public Range findRangeBounds(CategoryDataset dataset);

Returns the range of values required by the renderer to ensure that all items in the dataset are
visible. This is used to set the default axis range.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 492

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis,

ValueAxis rangeAxis, CategoryDataset data, int row, int column, int pass);

Draws one item from the dataset.

36.21.6 Equals, Cloning and Serialization

To test the renderer for equality with another object:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

This renderer is Cloneable and Serializable.

36.21.7 Notes

Some points to note:

• to control the space between the bars, see the setCategoryMargin() method in the CategoryAxis

class.

• a demo (StackedBarChartDemo1.java) is included in the JFreeChart demo distribution.

See Also
BarRenderer, StackedBarRenderer3D.

36.22 StackedBarRenderer3D

36.22.1 Overview

A renderer that draws stacked bars with a 3D effect. An example is shown in figure 36.20. This
renderer works with a CategoryPlot class and uses data from any CategoryDataset.

Figure 36.20: A chart that uses a StackedBarRenderer3D

36.22.2 Constructors

To create a new renderer:

å public StackedBarRenderer3D();

Creates a new renderer with the renderAsPercentages flag set to false. All other defaults are
set by the super class (BarRenderer3D).

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 493

å public StackedBarRenderer3D(double xOffset, double yOffset);

Creates a new renderer with the specified offsets for the 3D effect.

å public StackedBarRenderer3D(boolean renderAsPercentages);

Creates a new renderer with the specified value for the renderAsPercentages flag. All other
defaults are set by the super class (BarRenderer3D). [Since 1.0.2]

å public StackedBarRenderer3D(double xOffset, double yOffset, boolean renderAsPercentages);

Creates a new renderer with the specified offsets for the 3D effect and the specified value for
the renderAsPercentages flag. [Since 1.0.2]

36.22.3 Methods

The renderAsPercentages flag controls whether the values are displayed as percentages that stack
up to 100%—see figure 36.21 for an example:

Figure 36.21: A StackedBarRenderer3D with renderAsPercentages set

å public boolean getRenderAsPercentages();

Returns true if the renderer displays values in percentage terms, and false if the actual values
are displayed. [Since 1.0.2]

å public void setRenderAsPercentages(boolean asPercentages);

Sets the flag that controls whether the renderer displays values in percentage terms or as
outright values and sends a RendererChangeEvent to all registered listeners. [Since 1.0.2]

The remaining methods are called by JFreeChart, you won’t normally need to call them yourself:

å public int getPassCount();

Returns 2, the number of passes through the dataset required by the renderer. The second pass
is used to draw the item labels, if they are visible.

å public Range findRangeBounds(CategoryDataset dataset);

Returns the range of values required by the renderer to display all the items in the dataset.
This is used to set the default axis range. If the renderAsPercentages flag is true, the range is
0.0 to 1.0, otherwise it is the range that covers the sum of the stacked values.

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis,

ValueAxis rangeAxis, CategoryDataset data, int row, int column, int pass);

Draws one item from the dataset.

36.22.4 Equals, Cloning and Serialization

To test this renderer for equality with an arbitrary object:

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 494

å public boolean equals(Object obj);

Returns true if and only if:

• obj is not null;

• obj is an instance of StackedBarRenderer3D;

• all the fields in this renderer match those in obj.

Instances of this class are Cloneable and Serializable.

36.22.5 Notes

Some points to note:

• when using this renderer, you need to ensure that the plot is using axes that support the
3D effect—see CategoryAxis3D and NumberAxis3D. This is because the size of the data area is
slightly reduced to make space for the 3D effect, and the axes need to take this into account;

• a demo (StackedBarRenderer3DDemo1.java) is included in the JFreeChart demo distribution.

See Also
BarRenderer3D, StackedBarRenderer.

36.23 StatisticalBarRenderer

36.23.1 Overview

A renderer that draws bars for each data value and then overlays a standard deviation indicator.
An example is shown in figure 36.22. This renderer works with a CategoryPlot and requires a
StatisticalCategoryDataset.

Statistical Bar Chart Demo 1

Row 1 Row 2

Column 1 Column 2 Column 3 Column 4

Type

6

8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

2 6

2 8

3 0

V
a

lu
e

1 0 2 2 1 5 1 8 1 3 2 8 7 1 7

Figure 36.22: A chart that uses a StatisticalBarRenderer

36.23.2 Constructors

This renderer has only the default constructor:
å public StatisticalBarRenderer();

Creates a new renderer instance. The errorIndicatorPaint defaults to Color.gray. Other de-
faults are inherited from BarRenderer.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 495

36.23.3 Attributes

This class inherits most of its attributes from the BarRenderer class.

To control the colour of the error indicators:

å public Paint getErrorIndicatorPaint();

Returns the paint used to display the error indicator for each bar. If this is null then the item
outline paint is used instead. The default value is Color.gray.

å public void setErrorIndicatorPaint(Paint paint);

Sets the paint used to display the error indicator for each bar, then sends a RendererChangeEvent

to registered listeners. You can set this to null, in which case the item outline paint will be
used for the error indicators instead.

To control the stroke used to draw the error indicators:

å public Stroke getErrorIndicatorStroke(); [1.0.8]

Returns the stroke used to draw the error indicators. The default value is BasicStroke(1.0f).

å public void setErrorIndicatorStroke(Stroke stroke); [1.0.8]

Sets the stroke used to draw the error indicator for each bar, and sends a RendererChangeEvent

to all registered listeners. You can set this attribute to null, in which case the item outline
stroke will be used instead.

36.23.4 Other Methods

The renderer overrides the drawItem() method, which is called by JFreeChart when a chart is being
drawn (normally you won’t need to call this method yourself):

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis,

ValueAxis rangeAxis, CategoryDataset data, int row, int column, int pass);

Draws one item from the dataset.

36.23.5 Equals, Cloning and Serialization

To test the renderer for equality with another object:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

This class is Cloneable and Serializable.

36.23.6 Notes

Some points to note:

• a demo (StatisticalBarChartDemo1.java) is included in the JFreeChart demo distribution.

See Also
StatisticalLineAndShapeRenderer.

36.24 StatisticalLineAndShapeRenderer

36.24.1 Overview

A renderer that draws lines and/or shapes for each data value and then overlays a standard deviation
indicator. An example is shown in figure 36.23. This renderer works with a CategoryPlot and
requires a StatisticalCategoryDataset.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 496

Figure 36.23: A chart that uses a StatisticalLineAndShapeRenderer

36.24.2 Constructors

This renderer has two constructors:

å public StatisticalLineAndShapeRenderer();

Creates a new renderer instance. By default, both lines and shapes are visible. The errorIndicatorPaint

defaults to null, which means the series paint will be used. Other defaults are inherited from
LineAndShapeRenderer.

å public StatisticalLineAndShapeRenderer(boolean linesVisible,

boolean shapesVisible);

Creates a new renderer instance with lines and/or shapes visible as requested. The errorIndicatorPaint

defaults to null, which means the series paint will be used. Other defaults are inherited from
LineAndShapeRenderer.

36.24.3 Attributes

In addition to the attributes inherited from LineAndShapeRenderer, this class defines an error-

IndicatorPaint attribute:

å public Paint getErrorIndicatorPaint();

Returns the paint used to display the error indicator for each item. If this is null then the
item paint is used instead (that is, the error indicator will use the same color as the line/shape
for the item).

å public void setErrorIndicatorPaint(Paint paint);

Sets the paint used to display the error indicator for each item, then sends a RendererChangeEvent

to registered listeners. You can set this to null, in which case the item paint will be used for
the error indicators instead.

36.24.4 Other Methods

The renderer overrides the drawItem() method, which is called by JFreeChart when a chart is being
drawn (normally you won’t need to call this method yourself):

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis,

ValueAxis rangeAxis, CategoryDataset data, int row, int column, int pass);

Draws one item from the dataset.

36.24.5 Equals, Cloning and Serialization

To test the renderer for equality with another object:

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 497

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

This class is Cloneable and Serializable.

36.24.6 Notes

Some points to note:

• a demo (StatisticalLineChartDemo1.java) is included in the JFreeChart demo distribution.

36.25 WaterfallBarRenderer

36.25.1 Overview

A renderer for drawing “waterfall” charts on a CategoryPlot using data from a CategoryDataset. A
waterfall chart highlights the difference between two values and the components that make up that
difference. An example is shown in figure 36.24.

Product Cost Breakdown

Labour Administration Marketing Distribution Total Expense

Expense Category

0

5

1 0

1 5

2 0

2 5

3 0

C
o

st
 P

e
r

U
n

it

$15.76

$8.66

$4.71

$3.51

$32.64

Figure 36.24: Sample chart (see WaterfallChartDemo1.java)

36.25.2 Constructors

This renderer has two constructors:

å public WaterfallBarRenderer();

Creates a new renderer with default colors. The defaults are blue for the first value/bar, yellow
for the last value/bar, green for intermediate values that are positive and red for intermediate
values that are negative.

å public WaterfallBarRenderer(Paint firstBarPaint,

Paint positiveBarPaint, Paint negativeBarPaint, Paint lastBarPaint);

Creates a new renderer with the specified colors. An IllegalArgumentException is thrown if any
of these is null.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 498

36.25.3 Methods

This renderer defines the following methods to control the color of the bars it draws:

å public Paint getFirstBarPaint();

Returns the paint used for the first bar drawn—this will never be null.

å public void setFirstBarPaint(Paint paint);

Sets the paint used for the first bar, and sends a RendererChangeEvent to all registered listeners.
An IllegalArgumentException is thrown if the supplied argument is null.

å public Paint getLastBarPaint();

Returns the paint used for the last bar drawn—this will never be null.

å public void setLastBarPaint(Paint paint);

Sets the paint used for the last bar drawn by the renderer, and sends a RendererChangeEvent

to all registered listeners. An IllegalArgumentException is thrown if the supplied argument is
null.

å public Paint getPositiveBarPaint();

Returns the paint used for intermediate bars that have a positive value—this will never be null.

å public void setPositiveBarPaint(Paint paint);

Sets the paint used for the intermediate bars representing positive values, and sends a RendererChangeEvent

to all registered listeners. An IllegalArgumentException is thrown if the supplied argument is
null.

å public Paint getNegativeBarPaint();

Returns the paint used for intermediate bars that have a negative value—this will never be
null.

å public void setNegativeBarPaint(Paint paint);

Sets the paint used for the intermediate bars representing negative values, and sends a RendererChangeEvent

to all registered listeners. An IllegalArgumentException is thrown if the supplied argument is
null.

Further methods for customising the renderer are inherited from the BarRenderer class.

36.25.4 Other Methods

The renderer has a couple of other methods that will be called by the CategoryPlot class when it is
drawing the chart—you won’t typically call these methods directly.

å public Range findRangeBounds(CategoryDataset dataset);

Returns the range of values that this renderer needs to display all the data in the specified
dataset.

å public void drawItem(Graphics2D g2, CategoryItemRendererState state,

Rectangle2D dataArea, CategoryPlot plot, CategoryAxis domainAxis,

ValueAxis rangeAxis, CategoryDataset dataset, int row, int column, int pass);

Draws one item from the dataset.

36.25.5 Equals, Cloning and Serialization

To test an object for equality with this renderer:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

This renderer can be Cloneable and Serializable.

CHAPTER 36. PACKAGE: ORG.JFREE.CHART.RENDERER.CATEGORY 499

36.25.6 Notes

Some points to note:

• a “shortcut” has been taken in the implementation of this renderer: the value for the last
bar could be derived from the values of the other bars, but instead the renderer expects the
final value to be part of the dataset. This means that you need to ensure that the final value
corresponds to the sum of the preceding values (although this is not enforced).

• the createWaterfallChart() method in the ChartFactory class can be used to create a “ready
made” chart;

• a demo (WaterfallChartDemo1.java) is included in the JFreeChart demo distribution.

Chapter 37

Package:
org.jfree.chart.renderer.xy

37.1 Overview

This package contains interfaces and classes that are used to implement renderers for the XYPlot

class. Renderers offer a lot of scope for changing the appearance of your charts, either by changing
the attributes of an existing renderer, or by implementing a completely new renderer. JFreeChart
provides many different renderers, and most of them are easily customised.

37.2 AbstractXYItemRenderer

37.2.1 Overview

A base class (extending AbstractRenderer) that can be used for creating new XYItemRenderer im-
plementations. Subclasses include:

• CandlestickRenderer;

• HighLowRenderer;

• StandardXYItemRenderer;

• WindItemRenderer;

• XYAreaRenderer;

• XYAreaRenderer2;

• XYBarRenderer;

• XYBlockRenderer;

• XYBoxAndWhiskerRenderer;

• XYBubbleRenderer;

• XYDifferenceRenderer;

• XYDotRenderer;

• XYLineAndShapeRenderer;

• XYStepAreaRenderer;

• YIntervalRenderer.

500

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 501

37.2.2 Constructors

This class provides a default constructor:

å protected AbstractXYItemRenderer();

Creates a new renderer. This allocates storage for the label generator(s), tool tip generator(s)
and the URL generator.

37.2.3 The Plot

Renderers are assigned to plots, and the following methods are used to provide a link from a renderer
to the plot it has been assigned to:

å public XYPlot getPlot();

Returns the plot that the renderer is currently assigned to. This method returns null if the
renderer has not been assigned to a plot yet.

å public void setPlot(XYPlot plot);

Sets the plot that the renderer is assigned to. This method is called by JFreeChart—you
shouldn’t need to call it yourself (and, in fact, setting this field incorrectly will have unpre-
dictable results).

37.2.4 Item Labels

Item labels are small text strings (typically showing just the data value) displayed on or near
each data item. Flags that control whether or not item labels are visible are inherited from the
AbstractRenderer class—see section 35.2.15. Most renderers have support for item labels, but some
still need this to be implemented.

To allow for customisation of the labels themselves, the renderer uses a generator to create the
text for the labels. In most cases, you can probably use the same generator for all series, so it is
sufficient just to set the base (or default) item label generator:

å public XYItemLabelGenerator getBaseItemLabelGenerator();

Returns the default item label generator (possibly null).

å public void setBaseItemLabelGenerator(XYItemLabelGenerator generator);

Sets the default item label generator (null is permitted) and sends a RendererChangeEvent to
all registered listeners.

For greater control, you can specify a different generator for each series:

å public XYItemLabelGenerator getSeriesItemLabelGenerator(int series);

Returns the item label generator for the specified series. This method can return null.

å public void setSeriesItemLabelGenerator(int series, XYItemLabelGenerator generator);

Sets the generator for the specified series, and sends a RendererChangeEvent to all registered
listeners. You can set this to null if you want the base generator to be used.

There is an option to specify an override generator that will be used for ALL series, although it is
rare that it is necessary to use this:

å public XYItemLabelGenerator getItemLabelGenerator(); [1.0.5]

Returns the override generator for ALL series. The default value is null.

å public void setItemLabelGenerator(XYItemLabelGenerator generator);

Sets the override generator for ALL series. You can set this to null, in which case the per-series
and base settings will determine the generator to be used.

JFreeChart itself will always call the following method to retrieve a generator to use for a particular
data item—this provides a single override point if you want to take full control over the selection
of a generator to use:

å public XYItemLabelGenerator getItemLabelGenerator(int series, int item);

Returns the item label generator for the specified data item. If this is null, no item label will
be displayed.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 502

37.2.5 Tool Tip Generators

The renderer can generate tool tips for each data item. These are supported for charts displayed
in a ChartPanel, as well as in HTML image maps. JFreeChart calls the following method to obtain
a tool tip generator for each data item:

å public XYToolTipGenerator getToolTipGenerator(int series, int item);

Returns the tool tip generator for the specified data item. This method can return null, in
which case no tool tip will be displayed for the data item.

In general, you can define a single default tool tip generator that can be used for all data items:

å public XYToolTipGenerator getBaseToolTipGenerator();

Returns the default tool tip generator (possibly null).

å public void setBaseToolTipGenerator(XYToolTipGenerator generator);

Sets the default tool tip generator (null is permitted) and sends a RendererChangeEvent to all
registered listeners.

If necessary, however, you can specify a different tool tip generator for each series:

å public XYToolTipGenerator getSeriesToolTipGenerator(int series);

Returns the tool tip generator for the specified series, or null if no generator is defined for that
series.

å public void setSeriesToolTipGenerator(int series, XYToolTipGenerator generator);

Sets the tool tip generator for a series, and sends a RendererChangeEvent to all registered listeners.

An override generator can be specified for ALL series, although it is rare that this is required:

å public XYToolTipGenerator getToolTipGenerator(); [1.0.5]

Returns the override generator to be used for ALL series. The default value is null.

å public void setToolTipGenerator(XYToolTipGenerator generator);

Sets the override generator to use for ALL series, and sends a RendererChangeEvent to all regis-
tered listeners.

37.2.6 URLs

URLs are used in the construction of HTML image maps (see the ImageMapUtilities class). To
allow for customisation of the URLs generated for each data item, you can supply a URL generator
to the renderer:

å public XYURLGenerator getURLGenerator();

Returns the URL generator (possibly null).

å public void setURLGenerator(XYURLGenerator urlGenerator);

Sets the URL generator (null is permitted) and sends a RendererChangeEvent to all registered
listeners.

There are currently no per-series settings for this attribute.

37.2.7 Hot Spot

For tool tips and URLs, the “hot spot” is the area within which the tool tip or URL is active. In
general, the renderer will determine the shape of the hot spot according to the visual representation
of the data (for example, in a bar chart the hot spot is usually the entire bar). As a fall back,
however, a generic hotspot will be calculated as a circle with the following radius:

å public int getDefaultEntityRadius();

Returns the default entity radius, in Java2D units. The default value is 3.0.

å public void setDefaultEntityRadius(int radius);

Sets the default entity radius, in Java2D units. No change event is generated in this case.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 503

37.2.8 Annotations

Annotations are small graphical items that can be drawn at specific locations on a plot. We provide
the facility to add annotations to a renderer, so that the location of the annotation can be computed
using the axes that the renderer is linked to:

å public void addAnnotation(XYAnnotation annotation);

Equivalent to addAnnotation(annotation, Layer.FOREGROUND)—see the next method.

å public void addAnnotation(XYAnnotation annotation, Layer layer);

Adds an annotation to the renderer, for drawing in the specified layer, and sends a RendererChangeEvent

to all registered listeners.

å public boolean removeAnnotation(XYAnnotation annotation);

Removes the specified annotation, returning true if the annotation is actually removed, and
false if the annotation was not removed (for example, if the annotation wasn’t in fact assigned
to this renderer).

å public void removeAnnotations();

Removes all annotations and sends a RendererChangeEvent to all registered listeners.

37.2.9 Legend Items

The renderer is responsible for creating legend items, so that the legend item for each series matches
whatever visual representation the renderer creates. JFreeChart will call the following method to
obtain a collection of legend items for all the series that the renderer is responsible for:

å public LegendItemCollection getLegendItems();

Returns a collection of legend items (the collection may be empty). Note that a new collection
is returned each time this method is called—modifying the returned collection has no effect on
the renderer.

To create a legend item for a series (this method is called by the plot):

å public LegendItem getLegendItem(int index, int series);

Returns a legend item that represents the specified series. The index argument tells the renderer
which dataset it is rendering (only the plot tracks this)—0 for the primary dataset, or n+1 for
a secondary dataset (where n is the index of the secondary dataset).

The series label for each legend item is created by a generator:

å public XYSeriesLabelGenerator getLegendItemLabelGenerator();

Returns the series label generator for the legend items. This method never returns null. The
default value is StandardXYSeriesLabelGenerator("0").

å public void setLegendItemLabelGenerator(XYSeriesLabelGenerator generator);

Sets the legend item label generator and sends a RendererChangeEvent to all registered listeners.
If generator is null, this method throws an IllegalArgumentException.

Similarly, the tool tip for each legend item is created by a generator:

å public XYSeriesLabelGenerator getLegendItemToolTipGenerator();

Returns the tool tip generator for the legend items. The default value is null.

å public void setLegendItemToolTipGenerator(XYSeriesLabelGenerator generator);

Sets the legend item tool tip generator and sends a RendererChangeEvent to all registered listen-
ers. The generator argument can be null.

And finally, the URL for each legend item (only used in HTML image maps) is

å public XYSeriesLabelGenerator getLegendItemURLGenerator();

Returns the generator that is responsible for creating URLs for each legend item. The default
value is null.

å public void setLegendItemURLGenerator(XYSeriesLabelGenerator generator);

Sets the legend item URL generator and sends a RendererChangeEvent to all registered listeners.
The generator argument can be null.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 504

37.2.10 The Pass Count

The pass count refers to the number of times the XYPlot scans through the dataset passing individual
data items to the renderer for drawing. Most renderers require only a single pass through the
dataset, but some will use a second pass to overlay shapes (for example) over previously drawn
items.

The plot will call the following method to determine how many passes the renderer requires:

å public int getPassCount();

Returns 1 to indicate that the renderer requires only a single pass through the dataset.

Renderers that require more than one pass through the dataset should override this method.

37.2.11 Domain and Range Markers

A default method is supplied for displaying a domain marker as a line on the plot:

å public void drawDomainMarker(...);

Draws a line perpendicular to the domain axis to represent a Marker.

A default method is supplied for displaying a range marker as a line on the plot:

å public void drawRangeMarker(...);

Draws a line perpendicular to the range axis to represent a Marker.

Most renderers will use these methods by default, but some may override them.

37.2.12 Grid Bands

It is possible to fill the space between alternate grid lines with a different color to create a “band”
effect.

37.2.13 Initialisation

Each time a chart is drawn, the plot will initialise the renderer by calling the following method:

å public XYItemRendererState initialise()

Initialises the renderer and returns a state object that the plot will pass to all subsequent calls
to the drawItem() method. The state object is discarded once the chart is fully drawn.

37.2.14 Other Methods

Other methods include:

å public Range findDomainBounds(XYDataset dataset);

Returns the range that should be set for the domain axis in order that all the data in the
specified dataset will be visible when drawn by this renderer.

å public Range findRangeBounds(XYDataset dataset);

Returns the range that should be set for the range axis in order that all the data in the specified
dataset will be visible when drawn by this renderer. Some renderers (for example, those that
stack values) will override this method.

å public DrawingSupplier getDrawingSupplier();

A convenience method that returns the drawing supplier for the plot that the renderer is
assigned to, or null if the renderer is not currently assigned to a plot. The drawing supplier
provides a single source for obtaining series colors (and other attributes), so that multiple
renderers in a single plot do not end up using duplicate colors.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 505

37.2.15 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

37.2.16 Notes

Some points to note:

• this class provides a property change mechanism to support the requirements of the XYItemRenderer
interface;

See Also
XYItemRenderer, XYPlot.

37.3 CandlestickRenderer

37.3.1 Overview

A candlestick renderer draws each item from an OHLCDataset as a box with lines extending from the
top and bottom. Candlestick charts are typically used to display financial data—the box represents
the open and closing prices, while the lines indicate the high and low prices for a trading period
(often one day). This renderer is designed for use with the XYPlot class.

Candlestick Demo 1

Series 1

7-Jan 14-Jan 21-Jan 28-Jan 4-Feb 11-Feb 18-Feb

Time

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

V
a

lu
e

Figure 37.1: A sample chart (see CandlestickChartDemo1.java)

This renderer also has the ability to represent volume information in the background of the chart,
although the same effect is sometimes better achieved with a second dataset, renderer and range
axis.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 506

37.3.2 Constructors

To create a new renderer:

å public CandlestickRenderer();

Equivalent to CandlestickRenderer(-1.0) – see the next constructor.

å public CandlestickRenderer(double candleWidth);

Equivalent to CandlestickRenderer(candleWidth, true, new HighLowItemLabelGenerator()) – see
the next constructor.

å public CandlestickRenderer(double candleWidth, boolean drawVolume,

XYToolTipGenerator toolTipGenerator);

Creates a new renderer. If candleWidth is -1, the width will be calculated automatically. The
drawVolume flag controls whether or not volume bars are drawn in the background of the plot.
The toolTipGenerator is used to create tool tips, or you can leave this as null.

37.3.3 General Attributes

This class inherits many attributes from AbstractXYItemRenderer. In addition, it defines some
attributes of its own.

To control the width of the candles:

å public double getCandleWidth();

Returns the width of the candles in Java2D units.

å public void setCandleWidth(double width);

Sets the width of each candle in Java2D units, and sends a RendererChangeEvent to all registered
listeners. If the value is negative, then the renderer will automatically determine a width each
time the chart is redrawn.

To control the paint used to fill candles:

å public Paint getUpPaint();

Returns the paint used to fill candles where the closing price is higher than the opening price
(that is, where the price has gone up). If this is null, the renderer will fill the candle using the
regular series paint.

å public void setUpPaint(Paint paint);

Sets the fill color for candles where the closing price is higher than the opening price, and sends
a RendererChangeEvent to all registered listeners. You can set this to null, in which case the
renderer uses the regular series paint to fill the candles.

Similarly for the “down” paint:

å public Paint getDownPaint();

Returns the paint used to fill candles where the closing price is lower than the opening price
(that is, where the price has gone down). If this is null, the renderer will fill the candle using
the regular series paint.

å public void setDownPaint(Paint paint);

Sets the fill color for candles where the closing price is lower than the opening price, and sends
a RendererChangeEvent to all registered listeners. You can set this to null, in which case the
renderer uses the regular series paint to fill the candles.

This renderer can draw the outline of the candles using either the regular series paint or the series
outline paint:

å public boolean getUseOutlinePaint(); [1.0.5]

Returns the flag that controls whether the renderer uses the regular series paint or the series
outline paint to draw the outlines.

å public void setUseOutlinePaint(boolean use); [1.0.5]

Sets the flag that controls whether the renderer uses the series outline paint, and sends a
RendererChangeEvent to all registered listeners.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 507

To control whether or not volume bars are drawn in the background of the chart:

å public boolean getDrawVolume(); [1.0.5]

Returns the flag that controls whether or not the renderer draws volume bars in the background
of the chart. The initial value is set in the constructor.

å public void setDrawVolume(boolean flag);

Sets the flag that controls whether or not volume bars are drawn in the background of the plot,
and sends a RendererChangeEvent to all registered listeners.

To control the colour used to draw the volume bars (if they are visible):

å public Paint getVolumePaint(); [1.0.7]

Returns the paint (never null) used to fill the volume bars. The default value is Color.gray.

å public void setVolumePaint(Paint paint); [1.0.7]

Sets the paint used to fill the volume bars, and sends a RendererChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

37.3.4 Auto Width Calculation

If the candle width attribute is set to -1, the renderer will automatically determine the candle width
at drawing time.

å public int getAutoWidthMethod();

Returns an integer that indicates the type of auto-width calculation. The default value is
WIDTHMETHOD AVERAGE.

å public void setAutoWidthMethod(int autoWidthMethod);

Sets the type of auto width calculation and sends a RendererChangeEvent to all registered lis-
teners. The valid types are:

• WIDTHMETHOD AVERAGE – the default;

• WIDTHMETHOD SMALLEST – bases the width on the smallest gap between consecutive x-values
in the dataset;

• WIDTHMETHOD INTERVALDATA – assumes that the dataset implements the IntervalXYDataset

interface, and looks at the x-interval to determine the width.

After the candle width is calculated according to the width calculation method, it is then subject
to three adjustments. First, the autoWidthGap is subtracted, then the width is multiplied by the
autoWidthFactor, and finally the width is capped according to the maxCandleWidthInMilliseconds:

å public double getAutoWidthGap();

Returns the amount of space (measured in Java2D units) to leave on each side of every candle
drawn by the renderer. The default value is 0.0.

å public void setAutoWidthGap(double autoWidthGap);

Sets the amount of space to leave on each side of every candle, and sends a RendererChangeEvent

to all registered listeners.

å public double getAutoWidthFactor();

Returns the factor by which the candle width is multiplied during the auto-width calculation.
The default value is 4.5 / 7.0.

å public void setAutoWidthFactor(double autoWidthFactor);

Sets the factor by which the candle width is multiplied during the auto-width calculation, and
sends a RendererChangeEvent to all registered listeners.

å public double getMaxCandleWidthInMilliseconds();

The maximum candle width in milliseconds. The default value is equivalent to 20 hours, which
is a reasonable value for displaying daily data.

å public void setMaxCandleWidthInMilliseconds(double millis);

Sets the maximum candle width in milliseconds (along the axis) and sends a RendererChangeEvent

to all registered listeners.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 508

37.3.5 Other Methods

These methods are called by the XYPlot class—you won’t normally call them directly:

å public XYItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset dataset, PlotRenderingInfo info);

Initialises the renderer. This method is called once each time a chart is drawn.

å public void drawItem(...);

Draws a single item from the dataset.

37.3.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

37.3.7 Notes

Some points to note:

• this renderer expects the dataset to be an implementation of the OHLCDataset interface;

• a demo (CandlestickChartDemo1.java) is included in the JFreeChart demo collection.

See Also
HighLowRenderer.

37.4 ClusteredXYBarRenderer

37.4.1 Overview

A renderer that draws bars from the items in an IntervalXYDataset—see figure ??.

XY Bar Chart Demo 2

Series 1 Series 2

1-Jan 2-Jan 3-Jan 4-Jan 5-Jan

Date

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

Y

Figure 37.2: A sample chart (see XYBarChartDemo2.java)

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 509

This renderer is designed to work with an XYPlot. It differs slightly from the XYBarRenderer class,
in that it adjusts the position and width of each of the bars, making the assumption that the bars
for all the series should be clustered within the same x-interval.

37.4.2 Constructors

Two constructors are defined:

å public ClusteredXYBarRenderer();

Equivalent to ClusteredXYBarRenderer(0.0, false)—see next constructor.

å public ClusteredXYBarRenderer(double margin, boolean centerBarAtStartValue);

Creates a new renderer. The margin (a percentage) indicates how much (if any) of each bar
should be trimmed off. The centerBarAtStartValue flag controls whether or not the cluster of
bars is shifted so that it centers around the starting x-value returned by the dataset.

37.4.3 Methods

The drawItem() method handles the rendering of a single item for the plot.

37.4.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object. Returns true if and only if:

• obj is not null;

• obj is an instance of ClusteredXYBarRenderer;

• obj has the same values for the margin and centerBarAtStartValue attributes;

• super.equals(obj) returns true.

Instances of this class are Cloneable and Serializable.

37.4.5 Notes

Some points to note:

• this renderer casts the dataset to IntervalXYDataset, so you should ensure that the plot is
supplied with the correct type of data;

• a demo (ClusteredXYBarRendererDemo1.java) is included in the JFreeChart demo collection;

• it would probably be a good idea to merge this class with the XYBarRenderer class, but this
hasn’t been done yet.

See Also
XYBarRenderer.

37.5 CyclicXYItemRenderer

37.5.1 Overview

A renderer for drawing “cyclic” charts.

See Also
CyclicNumberAxis.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 510

37.6 DefaultXYItemRenderer

37.6.1 Overview

This class is an alias for the XYLineAndShapeRenderer class.

37.7 DeviationRenderer

37.7.1 Overview

A subclass of XYLineAndShapeRenderer that can highlight a range of y-values in the background of
a series that is typically rendered as a line—see figure 37.3 for an example. This class implements
the XYItemRenderer interface, so it can be used with the XYPlot class. This class was first introduced
in JFreeChart version 1.0.5.

DeviationRenderer - Demo 2

Series 1 Series 2

Mar-2007 May-2007 Jul-2007 Sep-2007 Nov-2007 Jan-2008 Mar-2008

Date

9 0

9 1

9 2

9 3

9 4

9 5

9 6

9 7

9 8

9 9

100

101

102

103

104

105

106

107

Y

Figure 37.3: A sample chart (see DeviationRendererDemo2.java)

37.7.2 Constructor

To create a new renderer:

å public DeviationRenderer(); [1.0.5]

Equivalent to DeviationRenderer(true, true)—see the next constructor.

å public DeviationRenderer(boolean lines, boolean shapes); [1.0.5]

Creates a new renderer that draws lines and shapes as specified (these settings can be modified
on a per-series basis using methods inherited from the XYLineAndShapeRenderer class).

37.7.3 General Attributes

Most attributes (the line style and color, fill color and so on) are controlled by methods inherited
from XYLineAndShapeRenderer.

The shading of the y-interval for each series is drawn using some transparency, which is user
configurable with the following methods:

å public float getAlpha(); [1.0.5]

Returns the alpha transparency used when drawing the background shading for each series.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 511

å public void setAlpha(float alpha); [1.0.5]

Sets the alpha transparency used when drawing the background shading for each series, and
sends a RendererChangeEvent to all registered listeners. If alpha is not in the range 0.0f to 1.0f,
this method will throw an IllegalArgumentException.

The (inherited) drawSeriesLineAsPath flag is not modifiable for this class:

å public void setDrawSeriesLineAsPath(boolean flag); [1.0.5]

This method is overridden to do nothing—this renderer ALWAYS draws the series line as a
single path, so the flag inherited from XYLineAndShapeRenderer should never be changed.

37.7.4 Other Methods

The other methods in this renderer are typically used internally, you shouldn’t need to call them
directly.

The renderer makes three passes through the dataset, drawing the y-interval highlighting on the
first pass, the lines on the second pass, and then drawing the shapes on the final pass. The number
of passes is returned by the following method:

å public int getPassCount(); [1.0.5]

Returns 3.

When the renderer is initialised (at the start of every chart drawing), it creates a new state instance
that will be passed to each invocation of the drawItem() method:

å public XYItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset dataset, PlotRenderingInfo info); [1.0.5]

Initialises the renderer and returns a new state object.

å protected boolean isItemPass(int pass); [1.0.5]

Returns true if the specified pass is the one in which the shapes are drawn. This provides a
mechanism for this renderer to control which pass the superclass uses to draw the shapes.

å protected boolean isLinePass(int pass); [1.0.5]

Returns true if these specified pass is the one in which the lines are drawn. This provides a
mechanism for this renderer to control which pass the superclass uses to draw the lines.

å public void drawItem(...); [1.0.5]

Draws a single data item. In fact, with this implementation all the items are aggregated in
the renderer state until the last item in the series is reached, then everything for that series is
drawn at once.

37.7.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.5]

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

37.7.6 Notes

Some points to note:

• this class was first introduced in JFreeChart 1.0.5;

• an IntervalXYDataset is required by this renderer (see YIntervalSeriesCollection for a useful
dataset implementation);

• a couple of demos (DeviationRendererDemo1-2.java) are included in the JFreeChart demo
collection.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 512

37.8 HighLowRenderer

37.8.1 Overview

A high-low renderer draws each item in an OHLCDataset using lines to mark the “high-low” range
for a trading period, plus small marks to indicate the “open” and “close” values.

Figure 37.4: A chart that uses a HighLowRenderer

This renderer is designed for use with the XYPlot class. It requires an OHLCDataset.

37.8.2 Constructors

To create a new renderer:

å public HighLowRenderer();

Creates a new renderer.

37.8.3 Methods

The renderer has flags that control whether or not the open and close ticks are drawn for each data
value:

å public boolean getDrawOpenTicks();

Returns the flag that controls whether or not the open tick is drawn for each data value.

å public void setDrawOpenTicks(boolean draw);

Sets the flag that controls whether or not an open tick is drawn for each data value (the default
value is true). A RendererChangeEvent is sent to all registered listeners.

å public boolean getDrawCloseTicks();

Returns the flag that controls whether or not the close tick is drawn for each data value.

å public void setDrawCloseTicks(boolean draw);

Sets the flag that controls whether or not a close tick is drawn for each data value (the default
value is true). A RendererChangeEvent is sent to all registered listeners.

The paint used for the open and close ticks is the same as the series paint, but it can be overridden
with the following methods:

å public Paint getOpenTickPaint();

Returns the paint (possibly null) used for the open tick mark.

å public void setOpenTickPaint(Paint paint);

Sets the paint used to draw the open tick mark for each data value. If this is null (the default)
then the renderer’s series paint is used instead.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 513

å public Paint getCloseTickPaint();

Returns the paint (possibly null) used for the close tick mark.

å public void setCloseTickPaint(Paint paint);

Sets the paint used to draw the open tick mark for each data value. If this is null (the default)
then the renderer’s series paint is used instead.

Finally, this class implements the drawItem() method defined in the XYItemRenderer interface:
å public void drawItem(Graphics2D g2, XYItemRendererState state, Rectangle2D dataArea,

PlotRenderingInfo info, XYPlot plot, ValueAxis domainAxis, ValueAxis rangeAxis,

XYDataset dataset, int series, int item, CrosshairState crosshairState, int pass);

Draws a single item in the dataset. This method is called by the XYPlot class during chart
rendering—you won’t normally call this method yourself.

37.8.4 Equals, Cloning and Serialization

This class overrides the equals method:
å public boolean equals(Object obj);

Tests this renderer for equality with an arbitary object. This method returns true if and only
if:

• obj is not null,

• obj is an instance of HighLowRenderer,

• obj and this renderer have the same field values.

Instances of this class are Cloneable and Serializable.

37.8.5 Notes

Some points to note:

• this renderer requires the dataset to be an instance of OHLCDataset;

• the createHighLowChart() method in the ChartFactory class makes use of this renderer.

37.9 StackedXYAreaRenderer

37.9.1 Overview

A stacked area renderer that draws items from a TableXYDataset. An example is shown in figure
37.5.

37.9.2 Constructors

The following constructors are defined:
å public StackedXYAreaRenderer();

Equivalent to StackedXYAreaRenderer(AREA)—see the next constructor.

å public StackedXYAreaRenderer(int type);

Equivelant to StackedXYAreaRenderer(type, null, null)—see the next constructor.

å public StackedXYAreaRenderer(int type, XYToolTipGenerator labelGenerator, XYURLGenerator

urlGenerator);

Creates a new renderer with the specified type, which should be one of:

• AREA – draws the area underneath the data points;

• AREA AND SHAPES – draws the area underneath the data points, and adds a shape at each
data point;

• SHAPES – draws shapes only;

• LINES – draws lines only;

• SHAPES AND LINES – draws shapes and lines.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 514

Figure 37.5: A chart created using StackedXYAreaRenderer

37.9.3 General Attributes

This class inherits most of its attributes from the XYAreaRenderer class.

To control the color of the shape outlines:

å public Paint getShapePaint();

Returns the paint used to draw the shape outlines. The default value is null, which means the
regular series paint is used to draw the shape outlines.

å public void setShapePaint(Paint shapePaint);

Sets the paint used to draw the shape outlines, and sends a RendererChangeEvent to all registered
listeners. If you set this attribute to null, the shape outlines are drawn using the series paint.

To control the stroke used to draw the shape outlines:

å public Stroke getShapeStroke();

Returns the stroke used to draw the shape outlines. The default value is null, which means
the regular series stroke is used instead.

å public void setShapeStroke(Stroke shapeStroke);

Sets the stroke used to draw the shape outlines, and sends a RendererChangeEvent to all registered
listeners. If you set this attribute to null, the shape outlines are drawn using the series stroke.

37.9.4 Other Methods

The other methods in this class are intended for use by JFreeChart—you won’t normally call these
methods directly:

å public XYItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset dataset, PlotRenderingInfo info);

Initialises the renderer and returns a state object that will be passed to each call to the
drawItem() method.

å public int getPassCount();

Returns 2, as this renderer requires two passes through the dataset.

å public Range findRangeBounds(XYDataset dataset);

Returns the range that should be used on the range axis for this renderer to display all the
values in the specified dataset. This takes into account that the values are stacked by this
renderer.

å public void drawItem(...);

Draws one item from the dataset.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 515

37.9.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

37.9.6 Notes

A couple of demos (StackedXYAreaChartDemo1-2.java) are included in the JFreeChart demo collec-
tion.

See Also
StackedXYAreaRenderer2.

37.10 StackedXYAreaRenderer2

37.10.1 Overview

An XYItemRenderer that fills the area under a series, and stacks each series on top of the other—for
example, see figure 37.6.

Stacked XY Area Chart Demo 1

Series 1 Series 2

5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

X Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Y
 V

al
ue

Figure 37.6: A sample chart (see StackedXYAreaChartDemo1.java)

The ChartFactory class has a createStackedXYAreaChart() that returns a ready-made JFreeChart

instance that uses an instance of this renderer.

37.10.2 Constructors

To create a new instance:

å public StackedXYAreaRenderer2();

Equivalent to StackedXYAreaRenderer2(null, null)—see the next constructor.

å public StackedXYAreaRenderer2(XYToolTipGenerator toolTipGenerator, XYURLGenerator urlGenerator);

Creates a new renderer with the specified tool tip and URL generators (which may be null).

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 516

37.10.3 General Attributes

This class inherits most of its attributes from the XYAreaRenderer2 class.

It also defines a flag that controls the rounding of x-coordinates, which can help to avoid vertical
striping effects when drawing to the screen (with the sacrifice of a little accuracy):

å public boolean getRoundXCoordinates(); [1.0.4]

Returns the flag that controls whether or not the x-coordinates (in drawing space) are rounded.
The default value is true.

å public void setRoundXCoordinates(boolean round); [1.0.4]

Sets the flag that controls whether or not the x-coordinates (in drawing space) are rounded,
and sends a RendererChangeEvent to all registered listeners.

37.10.4 Other Methods

The other methods are intended for use by JFreeChart—you won’t normally call these methods
yourself:

å public int getPassCount();

Returns 1, as this renderer requires a single pass.

å public Range findRangeBounds(XYDataset dataset);

Returns the range that should be used on the range axis for this renderer to display all the
values in the specied dataset. This takes into account that the values are stacked by this
renderer.

å public void drawItem(...);

Handles the drawing of a single item from the dataset.

37.10.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object. If obj is null, this method returns
false.

Instances of this class are Cloneable and Serializable.

37.10.6 Notes

Some points to note:

• a couple of demos (StackedXYAreaChartDemo1-2.java) are included in the JFreeChart demo col-
lection.

See Also
StackedXYAreaRenderer.

37.11 StackedXYBarRenderer

37.11.1 Overview

A renderer for drawing stacked bar charts on an XYPlot using data from a TableXYDataset—see
figure 37.7 for an example. This class extends XYBarRenderer.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 517

Holes-In-One / Double Eagles
PGA Tour, 1983 to 2003

http://www.golfdigest.com/majors/masters/index.ssf?/majors/masters/gw20040402albatross.html

Albatrosses Aces

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Date

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

C
o

u
n

t

2 1

2 4

3 2

2 0

2 8

1 7

3 1

3 2

2 9 3 1

2 5

4 4

3 5

4 0

3 2 3 2 3 0 2 9
2 8

3 9

3 2

0
2 1 1 2 2 1

5 5

2
4 3 2 1 2 1

4
6 5 4

2

Figure 37.7: A sample chart (see StackedXYBarChartDemo2.java)

37.11.2 Constructors

There are two constructors:

å public StackedXYBarRenderer();

Equivalent to StackedXYBarRenderer(0.0)—see the next constructor.

å public StackedXYBarRenderer(double margin);

Creates a new instance with the specified margin. The margin is a percentage amount to trim
off the width of each bar drawn by the renderer—for example, 0.10 is ten percent.

37.11.3 General Attributes

In addition to the attributes inherited from XYBarRenderer, this class defines a renderAsPercentages

flag:

å public boolean getRenderAsPercentages(); [1.0.5]

Returns the flag that controls whether the renderer displays the values as a percentage of the
total. The default value is false.

å public void setRenderAsPercentages(boolean asPercentages); [1.0.5]

Sets the flag that controls whether the renderer displays the values as percentage of the total
across all series, and sends a RendererChangeEvent to all registered listeners.

37.11.4 Other Methods

The following methods are called by JFreeChart—you won’t normally call these methods directly:

å public int getPassCount();

Returns 2 to indicate that two passes are required by this renderer. The bars are drawn in the
first pass, while the item labels (if any) are drawn in the second pass.

å public Range findRangeBounds(XYDataset dataset);

Returns the range that should be set for the range axis in order to display all the values in the
specified dataset (taking into account the fact that the renderer “stacks” values).

å public XYItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset data, PlotRenderingInfo info);

Initialises the renderer. This method is called by the XYPlot class, you won’t normally need to
call it yourself.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 518

å public void drawItem(...);

Draws one item from the dataset. This method is called by the XYPlot class, you won’t normally
need to call it yourself.

37.11.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object (null is permitted).

Instances of this class are Cloneable and Serializable.

37.11.6 Notes

Some points to note:

• this renderer requires a dataset that implements the TableXYDataset interface (which guar-
antees that all series share the same set of x-values, a requirement to allow values to be
stacked).

• several demos (StackedXYBarChartDemo1-3.java) are included in the JFreeChart demo distri-
bution.

See Also
XYBarRenderer.

37.12 StandardXYItemRenderer

37.12.1 Overview

An XYItemRenderer for the XYPlot class that represents data by drawing lines between (x, y) data
points. There is also a mechanism for drawing shapes or images at each at each (x, y) data point
(with or without the lines).

Special note: this renderer has been retained for historical reasons—in general, you should use the
XYLineAndShapeRenderer instead.

37.12.2 Constructors

To create a StandardXYItemRenderer:

å public StandardXYItemRenderer();

Equivalent to StandardXYItemRenderer(LINES)—see the next constructor.

å public StandardXYItemRenderer(int type);

Equivalent to StandardXYItemRenderer(type, null, null)—see next constructor.

å public StandardXYItemRenderer(int type, XYToolTipGenerator toolTipGenerator);

Equivalent to StandardXYItemRenderer(type, toolTipGenerator, null)—see next constructor.

å public StandardXYItemRenderer(int type, XYToolTipGenerator toolTipGenerator,

XYURLGenerator urlGenerator);

Creates a new renderer. The type argument should be one of: LINES, SHAPES or SHAPES AND LINES.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 519

37.12.3 Lines

To control whether or not the renderer draws lines between data points:

å public boolean getPlotLines();

Returns the flag that controls whether or not the renderer draws lines between the data points.
The initial value is set according to the type argument in the constructor.

å public void setPlotLines(boolean flag);

Sets the flag that controls whether or not lines are plotted between data points, and sends a
RendererChangeEvent to all registered listeners.

By default, this renderer draws lines between each pair of data items, one pair at a time. If you
specify a dashed stroke for any series, this process of drawing the series as a sequence of line segments
can distort (or even completely hide) the dashed appearance of the series line. One workaround for
this is to set the following flag, which causes the renderer to store a complete path for the series,
and draw the entire path only when the last item in the series is reached:

å public boolean getDrawSeriesLineAsPath();

Returns the flag that controls whether the series line is drawn as a single path, rather than a
sequence of line segments.

å public void setDrawSeriesLineAsPath(boolean flag);

Sets the flag that controls whether the series line is drawn as a single path, and sends a
RendererChangeEvent to all registered listeners.

This renderer can draw discontinous lines:

å public boolean getPlotDiscontinuous();

Returns the flag that controls whether the discontinuous lines feature is being used. The default
value is false.

å public void setPlotDiscontinuous(boolean flag); [1.0.5]

Sets the flag that controls whether or not the discontinuous lines feature should be used, and
sends a RendererChangeEvent to all registered listeners.

The renderer compares the distance between the current and previous data points to the current
gap threshold, then connects the points with a line only if the distance is below the threshold:

å public double getGapThreshold();

Returns the current gap threshold. The default value is 1.0.

å public void setGapThreshold(double t);

Sets the gap threshold and sends a RendererChangeEvent to all registered listeners.

The gap threshold can be interpreted as an absolute distance along the x-axis, or a relative distance
(compared to the range from the minimum x-value to the maximum x-value):

å public UnitType getGapThresholdType();

Returns a token that indicates whether the gap threshold is specified in absolute or relative
terms. The default value is UnitType.RELATIVE. This method never returns null.

å public void setGapThresholdType(UnitType thresholdType);

Sets the token that indicates whether the gap threshold is specified in relative or absolute units,
and sends a RendererChangeEvent to all registered listeners.

37.12.4 Shapes

This renderer can draw shapes to highlight individual data items. Each shape can be drawn as an
outline, or filled—in either case, the renderer uses the regular series paint, not the outline or fill
paint (which are ignored).1 The shapes themselves are configurable using methods inherited from
the AbstractRenderer class.

1The XYLineAndShapeRenderer is more flexible in this area.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 520

Visibility

To control the visibility of the shapes:2

å public boolean getBaseShapesVisible();

Returns the flag that controls whether or not the renderer draws shapes to highlight the data
points. The initial value is set in the constructor according to the type argument.

å public void setBaseShapesVisible(boolean flag);

Sets the flag that controls whether or not the renderer draws shapes to highlight the data
points, and sends a RendererChangeEvent to all registered listeners.

Fill State

This renderer can fill shapes (using the regular series paint) or leave them empty—the following
method is called for each item, to determine whether or not the shape for that item is filled:

å public boolean getItemShapeFilled(int series, int item);

Returns true if the shape for the specified data item should be filled, and false otherwise. By
default, this method does a look-up on the base, per-series and override flags that you can set
using other methods defined by this renderer—see below.

To control the default setting for the shape

å public boolean getBaseShapesFilled();

Returns the default flag that controls whether or not shapes are filled. This setting is used
when there is no per-series or override flag set.

å public void setBaseShapesFilled(boolean flag);

Sets the default flag that controls whether or not shapes are filled, then sends a RendererChangeEvent

to all registered listeners.

You can specify the shape fill status on a per-series basis:

å public boolean getSeriesShapesFilled(int series);

Returns a flag that determines whether or not the shapes for the given series are filled. This.

å public void setSeriesShapesFilled(int series, Boolean flag);

Sets the flag that determines whether or not the shape for the specified series are filled, then
sends a RendererChangeEvent to all registered listeners.

An override flag can be used to control the fill status for all series:

å public Boolean getShapesFilled(); [1.0.5]

Returns the override flag that controls whether or not shapes are filled for all series. The default
value is null (which means that the renderer looks at the per-series and base settings instead).

å public void setShapesFilled(boolean filled);

Equivalent to setShapesFilled(Boolean.valueOf(filled))—see the next method.

å public void setShapesFilled(Boolean filled);

Sets the override flag that controls whether or not shapes are filled for ALL series, and sends a
RendererChangeEvent to all registered listeners. In general, you’ll want to leave this set to null,
so that the per-series or base settings apply.

37.12.5 Images

This renderer is capable of displaying small images at each data point, but only if you subclass the
renderer and override the getImage() method, and also set the following flag:

å public boolean getPlotImages();

Returns the flag that controls whether the renderer draws an image to represent each data
point.

2Attributes to control shape visibility on a per-series basis have never been added to this renderer, which is one
reason for recommending the use of XYLineAndShapeRenderer ahead of this class.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 521

å public void setPlotImages(boolean flag);

Sets the flag that controls whether or not the renderer draws an image to represent each data
point, and sends a RendererChangeEvent to all registered listeners.

å protected Image getImage(Plot plot, int series, int item, double x, double y);

Returns null always. Override this method and return an appropriate image for the specified
item, if you would like this renderer to display an image for each data point.

å protected Point getImageHotspot(Plot plot, int series, int item, double x, double y,

Image image);

Returns the point within the image that is the “hot spot”.

37.12.6 Legend Items

To create a legend item for a series, JFreeChart will call the following method:

å public LegendItem getLegendItem(int datasetIndex, int series);

Returns a legend item for the specified series that incorporates the shape returned by getLegend-

Line().

To control the small graphical item used to represent a line in the legend:

å public Shape getLegendLine();

Returns the shape used to represent lines in the legend. The default value is Line2D.Double(-7.0,
0.0, 7.0, 0.0). This method never returns null.

å public void setLegendLine(Shape line);

Sets the shape used to represent lines in the legend and sends a RendererChangeEvent to all
registered listeners. If line is null, this method throws an IllegalArgumentException. If you
supply a custom shape via this method, it should be centered about (0, 0) so that it can be
positioned accurately within the legend.

37.12.7 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable (PublicCloneable) and Serializable.

37.12.8 Notes

Some points to note:

• this class implements the XYItemRenderer interface;

• in general you should avoid using this renderer, and use XYLineAndShapeRenderer instead.

37.13 VectorRenderer

37.13.1 Overview

A renderer that displays vector data from a VectorXYDataset—see figure 37.8 for an example. This
class implements the XYItemRenderer interface, so it can be used with the XYPlot class. This class
was first introduced in JFreeChart version 1.0.6.

37.13.2 Constructor

To create a new renderer:

å public VectorRenderer(); [1.0.6]

Creates a new renderer.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 522

Vector Plot Demo 1

Series 1

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9

X

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

2 6

2 8

Y

Figure 37.8: A sample chart (see VectorRendererDemo1.java)

37.13.3 Methods

The following methods are overridden to adjust the data bounds to take into account the length of
the vectors:

å public Range findDomainBounds(XYDataset dataset);

Returns the range required to display all the x-values in the dataset. This method is typically
called by JFreeChart—you shouldn’t need to call this method yourself.

å public Range findRangeBounds(XYDataset dataset);

Returns the range required to display all the y-values in the dataset. This method is typically
called by JFreeChart—you shouldn’t need to call this method yourself.

The draw item method is overridden to implement the custom rendering performed by this class:

å public void drawItem(...);

Draws a single item from the dataset. The XYPlot class will call this method as necessary—you
don’t need to call this method directly.

37.13.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.5]

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

37.13.5 Notes

Some points to note:

• this class was first introduced in JFreeChart 1.0.6;

• a VectorXYDataset is required by this renderer (see VectorSeriesCollection for a useful dataset
implementation);

• a demo (VectorRendererDemo1.java) is included in the JFreeChart demo collection.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 523

37.14 WindItemRenderer

37.14.1 Overview

A renderer that XYPlot uses to draw wind plots.

Figure 37.9: A sample chart using WindItemRenderer

37.14.2 Notes

Some points to note:

• this renderer requires a WindDataset for the data;

• a demo (WindChartDemo1.java) is included in the JFreeChart demo collection.

37.15 XYAreaRenderer

37.15.1 Overview

A renderer draws each item in an XYDataset using a polygon that fills the area between the x-axis
and the data point—see figure 37.10 for an example. This renderer is designed to be used with the
XYPlot class.

37.15.2 Constructors

The following constructors are defined:

å public XYAreaRenderer();

Equivalent to XYAreaRenderer(AREA)—see the next constructor.

å public XYAreaRenderer(int type);

Creates a new XYAreaRenderer using one of the following types: SHAPES, LINES, SHAPES AND LINES,
AREA, AREA AND SHAPES.

å public XYAreaRenderer(int type, XYToolTipGenerator toolTipGenerator,

XYURLGenerator urlGenerator);

Creates a new renderer with the specified tool tip generator and URL generator (either may
be null).

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 524

XY Area Chart Demo 2

Random 1

Mar-2007 Apr-2007 May-2007 Jun-2007 Jul-2007 Aug-2007

Time

- 2 . 5

- 2 . 0

- 1 . 5

- 1 . 0

- 0 . 5

0.0

0.5

1.0

1.5

2.0

2.5

V
a

lu
e

Figure 37.10: A chart using XYAreaRenderer (see XYStepAreaRendererDemo1.java)

37.15.3 General Attributes

Several flags control the rendering process. These flags are initialised in the constructor, and cannot
be updated without creating a new renderer:

å public boolean getPlotShapes();

Returns the flag that controls whether or not shapes are drawn at each data point.

å public boolean getPlotLines();

Returns the flag that controls whether or not lines are drawn between each data point.

å public boolean getPlotArea();

Returns a flag that controls whether or not the area is being filled for each series.

A flag controls whether or not outlines are drawn for the area representing each series:

å public boolean isOutline();

Returns the flag that controls whether or not outlines are drawn.

å public void setOutline(boolean show);

Sets the flag that controls whether or not outlines are drawn and sends a RendererChangeEvent

to all registered listeners.

37.15.4 Legend Items

This renderer provides an option to modify the small graphic displayed in each legend item:

å public Shape getLegendArea();

Returns the shape used for legend items (never null).

å public void setLegendArea(Shape area);

Sets the shape used for legend items and sends a RendererChangeEvent to all registered listeners.
If area is null, this method throws an IllegalArgumentException.

JFreeChart will call the following method to obtain a legend item for each series that is handled by
this renderer:

å public LegendItem getLegendItem(int datasetIndex, int series);

Returns a legend item for a series within a particular dataset. This method is implemented to
use getLegendArea() for the small graphic displayed in the legend.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 525

37.15.5 Other Methods

To initialise the renderer (this method is called by the plot, you won’t normally need to call it
yourself):

å public XYItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea,

XYPlot plot, XYDataset data, PlotRenderingInfo info);

Initialises the renderer. The plot will call this method at the start of the drawing process, each
time a chart is drawn.

å public void drawItem(Graphics2D g2, XYItemRendererState state,

Rectangle2D dataArea, PlotRenderingInfo info, XYPlot plot,

ValueAxis domainAxis, ValueAxis rangeAxis, XYDataset dataset,

int series, int item, CrosshairState crosshairState, int pass);

Draws a single item (this method is called by the plot).

37.15.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object. This method returns true if:

• obj is not null;

• obj is an instance of XYAreaRenderer;

• obj has the same attributes as this renderer.

Instances of this class are Cloneable and Serializable.

37.15.7 Notes

Some points to note:

• this class extends AbstractXYItemRenderer;

• for stacked area charts, use the StackedXYAreaRenderer class;

• this class uses code copied from the StandardXYItemRenderer class, and some additional work
is required to eliminate the duplication;

• a couple of demos (XYAreaChartDemo1-2.java) are included in the JFreeChart demo collection.

See Also
AreaRenderer, StackedXYAreaRenderer.

37.16 XYBarRenderer

37.16.1 Overview

This renderer can be used within an XYPlot to draw bar charts with data from an IntervalXYDataset—
see figure 37.11 for an example.

37.16.2 Constructors

To create a new instance:

å public XYBarRenderer();

Creates a new renderer. The margin defaults to 0.0 (see the next constructor).

å public XYBarRenderer(double margin);

Creates a new renderer with the specified margin (which is expressed as a percentage, for
example 0.10 is ten percent).

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 526

State Executions - USA

Executions

Source: http://www.amnestyusa.org/abolish/listbyyear.do

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

Year

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

N
u

m
b

e
r

o
f

P
e

o
p

le

Figure 37.11: A sample chart (see XYBarChartDemo1.java)

37.16.3 General Attributes

To control the “margin” for the renderer:

å public double getMargin();

Returns the margin used by the renderer, as a percentage of the bar width (for example, 0.10
is ten percent).

å public void setMargin(double margin);

Sets the margin for the renderer and sends a RendererChangeEvent to all registered listeners.
The margin is specified as a percentage of the bar width (for example, 0.10 is ten percent) and
is the amount that is trimmed from the bar width before the bar is displayed.

To control whether or not outlines are drawn for each bar:

å public boolean isDrawBarOutline();

Returns a flag that controls whether or not bar outlines are drawn. The default value is false.

å public void setDrawBarOutline(boolean draw);

Sets a flag that controls whether or not bar outlines are drawn, and sends a RendererChangeEvent

to all registered listeners.

To control the way that the length of the bars is determined:

å public double getBase();

Returns the base value for the bars (usually 0.0, but you can set it to any value).

å public void setBase(double base);

Sets the base value for the bars (defaults to 0.0). This setting is ignored if the getUseYInterval()

method returns true.

å public boolean getUseYInterval();

Returns a flag that controls how the length of the bars is determined.

å public void setUseYInterval(boolean use);

Sets a flag that controls how the length of the bars is determined. If true, the y-interval from
the dataset is used. If false, the y-value from the dataset determines one end of the bar, and
the getBase() method determines the other end of the bar.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 527

37.16.4 Gradient Paint Support

This renderer supports the use of GradientPaint for any series colour by using a transformer:

å public GradientPaintTransformer getGradientPaintTransformer();

Returns the transformer used for GradientPaint instances. This method can return null, in
which case any GradientPaint instance will be used without being transformed.

å public void setGradientPaintTransformer(GradientPaintTransformer transformer);

Sets the transformer used for GradientPaint instances and sends a RendererChangeEvent to all
registered listeners. If transformer is null, the renderer will use any GradientPaint instance
without transformation.

37.16.5 Other Methods

The following two methods are usually called by the XYPlot, you shouldn’t need to call them directly:

å public XYItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset dataset, PlotRenderingInfo info);

Initialises the renderer for drawing a chart.

å public void drawItem(Graphics2D g2, XYItemRendererState state, Rectangle2D dataArea,

PlotRenderingInfo info, XYPlot plot, ValueAxis domainAxis, ValueAxis rangeAxis,

XYDataset dataset, int series, int item, CrosshairState crosshairState, int pass);

Draws one item from the dataset.

37.16.6 Equals, Cloning and Serialization

This class overrides the equals(Object) method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object (null is permitted). This method
returns true if and only if:

• obj is not null;

• obj is an instance of XYBarRenderer;

• both renderers have the same attributes (excluding the registered listeners).

Instances of this class are Cloneable and Serializable.

37.16.7 Notes

Some points to note:

• this renderer casts the dataset to IntervalXYDataset, so you should ensure that the plot is
supplied with the correct type of data.

See Also
ClusteredXYBarRenderer.

37.17 XYBlockRenderer

37.17.1 Overview

A renderer that draws coloured (or gray-scale) blocks to represent the z-values from an XYZDataset.
For example see figure 37.12. The z-values are converted to colours using a PaintScale. This
renderer was first introduced in JFreeChart version 1.0.4.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 528

XYBlockChartDemo1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
ca

le

- 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0

X

- 5 0

- 4 5

- 4 0

- 3 5

- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

Y

Figure 37.12: A sample chart (see XYBlockChartDemo1.java)

37.17.2 Constructors

To create a new renderer:

å public XYBlockRenderer(); [1.0.4]

Creates a new renderer with the following defaults:

• blockWidth = 1.0;

• blockHeight = 1.0;

• blockAnchor = RectangleAnchor.CENTER;

• paintScale = new LookupPaintScale();.

37.17.3 Attributes

To control the width and height of the blocks drawn by this renderer:

å public double getBlockWidth(); [1.0.4]

Returns the block width in data units (that is, measured against the domain axis). The default
value is 1.0.

å public void setBlockWidth(double width); [1.0.4]

Sets the block width and sends a RendererChangeEvent to all registered listeners. If width is less
than or equal to zero, this method throws an IllegalArgumentException.

å public double getBlockHeight(); [1.0.4]

Returns the block height in data units (that is, measured against the range axis). The default
value is 1.0.

å public void setBlockHeight(double height); [1.0.4]

Sets the block height and sends a RendererChangeEvent to all registered listeners. If height is
less than or equal to zero, this method throws an IllegalArgumentException.

Each block drawn by the renderer is aligned to its (x, y) location using an anchor point:

å public RectangleAnchor getBlockAnchor(); [1.0.4]

Returns the anchor point on the block that will be aligned to the (x, y) location on the plot.
The default value is RectangleAnchor.CENTER.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 529

å public void setBlockAnchor(RectangleAnchor anchor); [1.0.4]

Sets the anchor point and sends a RendererChangeEvent to all registered listeners. If anchor is
null, this method throws an IllegalArgumentException.

To access the paint scale used by the renderer:

å public PaintScale getPaintScale(); [1.0.4]

Returns the paint scale used by this renderer (never null).

å public void setPaintScale(PaintScale scale); [1.0.4]

Sets the paint scale used by this renderer and sends a RendererChangeEvent to all registered
listeners. If scale is null, this method throws an IllegalArgumentException.

37.17.4 Other Methods

The axis ranges required by this renderer are slightly greater than the default ranges calculated on
the basis of the x-values and y-value alone, because the renderer draws blocks at each data point.
The following method overrides take this into account:

å public Range findDomainBounds(XYDataset dataset); [1.0.4]

Returns the domain axis range required to display all the data in the specified dataset.

å public Range findRangeBounds(XYDataset dataset); [1.0.4]

Returns the range axis range required to display all the data in the specified dataset.

Each item is drawn with a call to the following method (JFreeChart calls this method, you don’t
have to):

å public void drawItem(Graphics2D g2, XYItemRendererState state, Rectangle2D dataArea,

PlotRenderingInfo info, XYPlot plot, ValueAxis domainAxis, ValueAxis rangeAxis,

XYDataset dataset, int series, int item, CrosshairState crosshairState,

int pass); [1.0.4]

Draws the block for one item in the dataset.

37.17.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.4]

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

37.17.6 Notes

Some points to note:

• this renderer works with an XYPlot;

• the dataset must be an instance of XYZDataset, because the block colours are determined by
the z-value in the dataset;

• several demos (XYBlockChartDemo1-3.java) are included in the JFreeChart demo collection.

See Also
XYZDataset.

37.18 XYBoxAndWhiskerRenderer

37.18.1 Overview

A renderer that is used to create a box-and-whisker chart using data from an BoxAndWhiskerXYDataset.
A sample chart is shown in Figure 37.13.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 530

Figure 37.13: A chart generated with an XYBoxAndWhiskerRenderer.

37.18.2 Constructors

To create a new renderer:

å public XYBoxAndWhiskerRenderer();

Creates a new renderer where the box width is calculated automatically.

å public XYBoxAndWhiskerRenderer(double boxWidth);

Creates a new renderer with the specified box width.

37.18.3 Notes

Some points to note:

• for tool tips, you can use the BoxAndWhiskerXYToolTipGenerator class;

• there is a demo (XYBoxAndWhiskerDemo1.java) included in the JFreeChart demo collection.

See Also
BoxAndWhiskerRenderer.

37.19 XYBubbleRenderer

37.19.1 Overview

An XYBubbleRenderer displays items from an XYZDataset by drawing a bubble at each (x, y) point.
The size (diameter) of the bubble is determined by the z-value from the dataset.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 531

37.19.2 Constructors

The following constructors are defined:

å public XYBubbleRenderer();

Equivalent to XYBubbleRenderer(SCALE ON BOTH AXES)—see the next constructor.

å public XYBubbleRenderer(int scaleType);

Creates a new renderer with the specified scaleType, which must be one of the following integer
constants defined by this class:

• SCALE ON BOTH AXES;

• SCALE ON DOMAIN AXIS;

• SCALE ON RANGE AXIS.

The width and height of the bubble is calculated from the dataset’s z-value scaled against the
specified axis.

37.19.3 Attributes

The scaleType attribute determines how the bubble is scaled relative to the domain and range axes:

å public int getScaleType();

Returns the method used to determine the size of the bubbles drawn by this renderer:

• SCALE ON BOTH AXES – bubbles are drawn as ellipses where the width and height of the
ellipse is determined by the z-value scaled against both axes;

• SCALE ON DOMAIN AXIS – bubbles are drawn as circles where the diameter of the circle is
determined by the z-value scaled against the domain axis;

• SCALE ON RANGE AXIS – bubbles are drawn as circles where the diameter of the circle is
determined by the z-value scaled against the range axis.

37.19.4 Other Methods

The following methods are called by JFreeChart—you won’t normally call them directly.

å public LegendItem getLegendItem(int datasetIndex, int series);

Returns a legend item for the specified series. This method is overridden so that the legend
item has a circle for the legend graphic.

å public void drawItem(Graphics2D g2, XYItemRendererState state, Rectangle2D dataArea,

PlotRenderingInfo info, XYPlot plot, ValueAxis domainAxis, ValueAxis rangeAxis,

XYDataset dataset, int series, int item, CrosshairState crosshairState, int pass);

Draws a bubble representing one item from the dataset.

37.19.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object. This method returns true if and only
if:

• obj is not null;

• obj is an instance of XYBubbleRenderer;

• obj has the same attributes as this renderer.

Instances of this class are Cloneable and Serializable.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 532

37.19.6 Notes

Some notes:

• this class implements the XYItemRenderer interface and extends the AbstractXYItemRenderer

class.

• a demo application (BubbleChartDemo1.java) is included in the JFreeChart demo collection.

See Also
XYZDataset.

37.20 XYDifferenceRenderer

37.20.1 Overview

A renderer that highlights the difference between the items in two series by filling in the area
between the lines for each series. The fill color alternates between a “positive” color (used when
series 1 is greater than series 2) and a “negative” color (used when series 1 is less than series 2).
Figure 37.14 shows an example.

Figure 37.14: A chart generated with an XYDifferenceRenderer.

37.20.2 Usage

This renderer is designed for use with the XYPlot class. It expects an XYDataset that has exactly
two series, with both series having the same set of x-values. The renderer does not handle null

values.

There are two demos available: DifferenceChartDemo1.java and
DifferenceChartDemo2.java.

37.20.3 Constructors

To create a new renderer:
å public XYDifferenceRenderer();

Creates a new renderer instance that uses Color.green for the positive paint, Color.red for the
negative paint, and does not display shapes at each data point.

å public XYDifferenceRenderer(Paint positivePaint, Paint negativePaint,

boolean shapes);

Creates a new renderer instance with the given (non-null) colors. The shapes argument controls
whether or not the renderer displays shapes at each data point.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 533

37.20.4 Accessor Methods

The following methods for accessing the attributes defined by this renderer (in addition to those
inherited from AbstractXYItemRenderer):

å public Paint getPositivePaint();

Returns the paint used to fill the area between series 1 and series 2 when the difference is
positive (that is, the y-value in series 1 is greater than the corresponding y-value in series 2).

å public void setPositivePaint(Paint paint);

Sets the paint used to fill the area between series 1 and series 2 when the difference is positive,
and sends a RendererChangeEvent to all registered listeners.

å public Paint getNegativePaint();

Returns the paint used to fill the area between series 1 and series 2 when the difference is
negative (that is, the y-value in series 1 is less than the corresponding y-value in series 2).

å public void setNegativePaint(Paint paint);

Sets the paint used to fill the area between series 1 and series 2 when the difference is negative,
and sends a RendererChangeEvent to all registered listeners.

å public boolean getShapesVisible();

Returns the flag that controls whether or not the renderer displays shapes at each data point.

å public void setShapesVisible(boolean flag);

Sets the flag that controls whether or not the renderer displays shapes at each data point, and
sends a RendererChangeEvent to all registered listeners.

å public int getPassCount();

Returns 2, the number of passes required by this renderer to draw the data items. In the first
pass, the “difference” area between the two series is filled with the specified colors. In the
second pass, the series lines and item shapes are drawn.

A flag can be set to perform rounding on the x-coordinates to improve on-screen rendering:

å public boolean getRoundXCoordinates(); [1.0.4]

Returns a flag that controls whether or not the x-coordinates are rounded to integers, which
can prevent “striping” for charts displayed on-screen. The default value is false.

å public void setRoundXCoordinates(boolean round); [1.0.4]

Sets the flag that controls whether or not the x-coordinates are rounded to integers and sends
a RendererChangeEvent to all registered listeners.

As mentioned, the methods that set an attribute will send a RendererChangeEvent to all registered
listeners. This will usually trigger a chain of events that will lead to the chart itself being repainted,
if necessary.

37.20.5 Rendering Methods

The following methods are called by the XYPlot, you shouldn’t need to call them directly:

å public XYItemRendererState initialise(Graphics2D g2,

Rectangle2D dataArea, XYPlot plot, XYDataset data, PlotRenderingInfo info);

Initialises the renderer.

å public void drawItem(Graphics2D g2, XYItemRendererState state,

Rectangle2D dataArea, PlotRenderingInfo info, XYPlot plot,

ValueAxis domainAxis, ValueAxis rangeAxis, XYDataset dataset,

int series, int item, CrosshairState crosshairState, int pass);

Draws an item—this method will be called for each item in the dataset.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 534

37.20.6 Equals, Cloning and Serialization

This renderer overrides the equals() method:

å public boolean equals(Object obj);

Tests the renderer for equality with obj (which may be null).

This renderer can be cloned:

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the renderer. In typical usage, the specified exception will not be thrown,
however it is possible to trigger the exception if some attribute of the renderer is not cloneable.

This renderer is serializable.

37.21 XYDotRenderer

37.21.1 Overview

A renderer that can be used by an XYPlot to display items from an XYDataset. The renderer fills a
rectangle (a single pixel by default) at each (x, y) point—see figure 37.15 for an example.

Scatter Plot Demo 4

Sample 0 Sample 1 Sample 2 Sample 3

- 1 0 0 - 7 5 - 5 0 - 2 5 0 2 5 5 0 7 5 100

X

- 7 5 0

- 5 0 0

- 2 5 0

0

250

500

750

1,000

Y

Figure 37.15: A sample chart (see ScatterPlotDemo4.java)

This renderer offers better performance (but less flexibility) than the XYLineAndShapeRenderer class,
because it simply fills a rectangle for each data item, rather than filling and drawing a shape.

37.21.2 Constructor

The default constructor is the only constructor available:

å public XYDotRenderer();

Creates a new renderer with the default dot size of 1 unit by 1 unit.

37.21.3 Methods

Accessor methods are provided for the “dot” (actually a rectangle) width and height:

å public int getDotWidth(); [1.0.2]

Returns the current dot width. The default value is 1.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 535

å public void setDotWidth(int w); [1.0.2]

Sets the dot width and sends a RendererChangeEvent to all registered listeners.

å public int getDotHeight(); [1.0.2]

Returns the current dot height. The default value is 1.

å public void setDotHeight(int h); [1.0.2]

Sets the dot height and sends a RendererChangeEvent to all registered listeners.

To control the shape used in the legend for each series:

å public Shape getLegendShape(); [1.0.7]

Returns the shape (never null) used in the legend to represent the series. The default value is
Rectangle2D.Double(-3.0, -3.0, 6.0, 6.0).

å public void setLegendShape(Shape shape); [1.0.7]

Sets the shape used in the legend to represent each series. If shape is null, this method throws
an IllegalArgumentException.

This class implements the drawItem() method defined in the XYItemRenderer interface. This method
is usually called by the plot, you don’t need to call it yourself. Many other methods are inherited
from the AbstractXYItemRenderer base class.

37.21.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable, so that chart’s using this type of renderer
are cloneable and serializable. This renderer also implements the PublicCloneable interface.

37.21.5 Notes

Some points to note:

• tooltips, item labels and URLs are NOT generated by this renderer (these features may be
added in a future release);

• a demo application (ScatterPlotDemo4.java) is included in the JFreeChart demo collection.

See Also
XYItemRenderer.

37.22 XYErrorRenderer

37.22.1 Overview

A renderer that extends XYLineAndShapeRenderer to display error bars about each data item. This
renderer is designed to be used with an XYPlot to display items from an IntervalXYDataset—see
figure 37.16 for an example. This class implements the XYItemRenderer interface, and was first added
to JFreeChart at version 1.0.3.

37.22.2 Constructor

The default constructor is the only constructor available:

å public XYErrorRenderer();

Creates a new renderer. By default, error bars are drawn for both the x-values and the y-values,
using the series paint.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 536

XYErrorRenderer Demo 1

Series 1 Series 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

X

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

Y

Figure 37.16: A sample chart (see XYErrorRendererDemo1.java)

37.22.3 General Attributes

To control whether or not error bars are drawn for the x-values:

å public boolean getDrawXError();

Returns the flag that controls whether or not error bars are drawn for the x-values in the
dataset. The default value is true.

å public void setDrawXError(boolean draw);

Sets the flag that controls whether or not error bars are drawn for the x-values in the dataset,
and sends a RendererChangeEvent to all registered listeners.

To control whether or not error bars are drawn for the y-values:

å public boolean getDrawYError();

Returns the flag that controls whether or not error bars are drawn for the y-values in the
dataset. The default value is true.

å public void setDrawYError(boolean draw);

Sets the flag that controls whether or not error bars are drawn for the y-values in the dataset,
and sends a RendererChangeEvent to all registered listeners.

To control the length of the caps at the end of the error bars:

å public double getCapLength();

Returns the length of the caps at each end of the error bar (in Java2D units). The default
value is 4.0.

å public void setCapLength(double length);

Sets the length of the caps at each end of the error bar for each data value and sends a
RendererChangeEvent to all registered listeners. The cap length is specified in Java2D units.

By default, the renderer draws error bars using the series paint. You can override this with the
following methods:

å public Paint getErrorPaint();

Returns the paint used to draw the error bars, or null if the renderer should use the series
paint. The default value is null.

å public void setErrorPaint(Paint paint);

Sets the paint used to draw the error bars and sends a RendererChangeEvent to all registered
listeners. If you set this attribute to null, the error bars will be drawn using the series paint.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 537

37.22.4 Other Methods

The following methods are typically called by JFreeChart—you won’t normally call them directly:

å public Range findDomainBounds(XYDataset dataset);

Returns the range required by this renderer to display all of the domain values in the dataset.
If dataset is null, this method returns null. This method is overridden to include the x-interval
when the dataset is an instance of IntervalXYDataset.

å public Range findRangeBounds(XYDataset dataset);

Returns the range required by this renderer to display all of the range values in the dataset. If
dataset is null, this method returns null. This method is overridden to include the y-interval
when the dataset is an isntance of IntervalXYDataset.

37.22.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Returns true if obj is equal to this instance.

Instances of this class are Cloneable and Serializable.

37.22.6 Notes

Some points to note:

• this renderer requires the dataset to be an instance of IntervalXYDataset in order to draw the
error bars—in the event that the dataset is just a regular XYDataset, this renderer falls back
to the behaviour of the XYLineAndShapeRenderer class;

• a couple of demos (XYErrorRendererDemo1-2.java) are included in the JFreeChart demo col-
lection;

• this class was added to JFreeChart at version 1.0.3.

See Also
XYItemRenderer.

37.23 XYItemRenderer

37.23.1 Overview

An XY item renderer is a plug-in class that works with an XYPlot and assumes responsibility for
drawing individual data items in a chart. This interface defines the methods that every renderer
must support.

A range of different renderers are supplied in the JFreeChart distribution. Figure 37.17 shows the
class hierarchy.

As well as drawing the visual representation of a data item, the renderer is also responsible for
generating tooltips (for charts displayed in a ChartPanel) and URL references for charts displayed
in an HTML image map.

A summary of the available renderers is given in Table 37.1.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 538

AbstractXYItemRenderer

StandardXYItemRenderer

AreaXYItemRenderer

CandleStickRenderer

HighLowRenderer

SignalRenderer

XYBarRenderer

XYDifferenceRenderer

YIntervalRenderer

XYItemRenderer

DefaultXYItemRenderer

XYStepRenderer

XYDotRenderer

XYBubbleRenderer

ClusteredXYBarRenderer

WindItemRenderer

Figure 37.17: Renderer hierarchy

37.23.2 Core Methods

A renderer should be assigned to only one plot at a time. The following methods are used by
JFreeChart to track the link between the renderer and the plot:

å public XYPlot getPlot();

Returns the plot that this renderer is assigned to.

å public void setPlot(XYPlot plot);

Sets the plot that this renderer is assigned to. JFreeChart calls this method, you shouldn’t
need to.

At certain times, the plot will ask the renderer to determine the axis bounds necessary to display
all the data from a given dataset. Generally, the bounds will be the lowest and highest data values
in the dataset, but depending on the type of rendering, a slightly different range may be required:

å public Range findDomainBounds(XYDataset dataset);

Returns the bounds for a domain axis that this renderer requires to display all of the data in
the specified dataset.

å public Range findRangeBounds(XYDataset dataset);

Returns the bounds for a range axis that this renderer requires to display all of the data in the
specified dataset.

The initialise() method is called once at the beginning of the chart drawing process, and gives
the renderer a chance to initialise itself:

å public void initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset dataset, ChartRenderingInfo info);

Initialises the renderer. If possible, a renderer will pre-calculate any values that help to improve
the performance of the drawItem() method.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 539

Class: Description:

CandlestickRenderer Candlestick charts.
ClusteredXYBarRenderer XY bar charts with automatic clustering.
DeviationRenderer Line charts with deviation indicators.
HighLowRenderer High-low-open-close charts.
StackedXYAreaRenderer Stacked area charts.
StackedXYBarRenderer Stacked bar charts.
StandardXYItemRenderer Line charts and scatter plots.
WindItemRenderer Wind charts.
XYAreaRenderer Area charts.
XYBarRenderer Bar charts with numerical domain values.
XYBlockRenderer Heat map charts.
XYBoxAndWhiskerRenderer Box-and-whisker charts.
XYBubbleRenderer Bubble charts.
XYDifferenceRenderer Difference charts.
XYDotRenderer Scatter plots.
XYErrorRenderer Line charts with error bars.
XYLineAndShapeRenderer Line charts and scatter plots.
XYStepRenderer Step charts.
XYStepAreaRenderer Step charts.
YIntervalRenderer Interval charts.

Table 37.1: Classes that implement the XYItemRenderer interface

The drawItem() method is responsible for drawing some representation of a particular data item
within a plot:

å public void drawItem(Graphics2D g2, Rectangle2D dataArea, ChartRenderingInfo info,

XYPlot plot, ValueAxis domainAxis, ValueAxis rangeAxis,

XYDataset dataset, int series, int item, CrosshairInfo info);

Draws a single data item on behalf of XYPlot.

å public int getPassCount();

Returns the number of passes (through the dataset) required by this renderer.

37.23.3 Series Visibility

A renderer should call the following method to determine if a data item is visible, before drawing
it:

å public boolean getItemVisible(int series, int item);

Returns true if the data item should be drawn, and false otherwise. Very often, this method
will be implemented to simply call isSeriesVisible(series).

å public boolean isSeriesVisible(int series);

Returns a flag that controls whether or not the items in the specified series are visible.

For convenience, the renderer defines the following methods that allow visibility flags to be specified
on a per-series and default basis:

å public Boolean getSeriesVisible(int series);

Returns a flag (possibly null) that controls whether or not the items in the specified series are
visible.

å public void setSeriesVisible(int series, Boolean visible);

Equivalent to serSeriesVisible(series, visible, true)—see the next method.

å public void setSeriesVisible(int series, Boolean visible, boolean notify);

Sets a flag (null is permitted) that controls whether or not the items in the specified series are
visible. If visible is null, this typically means that the default flag value should apply.

A default series visibility flag is defined:

å public boolean getBaseSeriesVisible();

Returns the default series visibility flag. This default is typically used when no per-series flag
has been defined.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 540

å public void setBaseSeriesVisible(boolean visible);

Equivalent to setBaseSeriesVisible(visible, true)—see the next method.

å public void setBaseSeriesVisible(boolean visible, boolean notify);

Sets the default series visibility flag and, if requested, sends a RendererChangeEvent to all regis-
tered listeners.

37.23.4 The Paint and Outline Paint

This interface assumes that the renderer stores values for the paint and outline paint attributes on
a per-series basis, with a default value that can be used when no value is specified for a particular
series. By convention, the XYPlot will always call the following method to obtain the paint value
for a data item:

å public Paint getItemPaint(int row, int column);

Returns the paint to be used for the specified item. This method should never return null.

The per-series paint settings can be controlled via the following methods:

å public Paint getSeriesPaint(int series);

Returns the paint for the specified series (possibly null).

å public void setSeriesPaint(int series, Paint paint);

Sets the paint for the specified series (null is permitted) and sends a RendererChangeEvent to
all registered listeners.

The default value (to be used in the case that there is no value specified for a particular series) is
controlled via the following methods:

å public Paint getBasePaint();

Returns the default paint, typically used when no per-series paint is defined. This method
should never return null.

å public void setBasePaint(Paint paint);

Sets the default paint to be used when no per-series paint is defined. If paint is null, this
method should throw an IllegalArgumentException. If the new paint value is different to the
existing value, this method should send a RendererChangeEvent to all registered listeners.

In a similar fashion, to obtain the outline paint for an item, the plot always call the following
method:

å public Paint getItemOutlinePaint(int row, int column);

Returns the paint to be used for the specified item.

The series outline paint settings can be controlled via the following methods:

å public Paint getSeriesOutlinePaint(int series);

Returns the outline paint for the specified series (possibly null).

å public void setSeriesOutlinePaint(int series, Paint paint);

Sets the outline paint (null permitted) for the specified series and sends a RendererChangeEvent

to all registered listeners.

å public Paint getBaseOutlinePaint();

Returns the default outline paint used when no per-series paint is defined. This method should
never return null.

å public void setBaseOutlinePaint(Paint paint);

Sets the default outline paint to be used when no per-series paint is defined. If paint is null,
this method should throw an IllegalArgumentException. If the new paint value is different to
the existing value, this method should send a RendererChangeEvent to all registered listeners.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 541

37.23.5 The Stroke and Outline Stroke

All renderers maintain default and per-series settings for the stroke and outline stroke.

å public Stroke getItemStroke(int series, int item);

Returns the stroke to use for the specified item in the dataset. This method should never return
null.

å public Stroke getSeriesStroke(int series);

Returns the stroke to use for the specified series. If this method returns null, the renderer will
typically use the default stroke (see getBaseStroke()).

å public void setSeriesStroke(int series, Stroke stroke);

Sets the stroke for the specified series and sends a RendererChangeEvent to all registered listeners.
You can set the stroke to null, in which case the renderer will use the default stroke (see
getBaseStroke()).

To control the default stroke:

å public Stroke getBaseStroke();

Returns the default stroke (never null) for the renderer.

å public void setBaseStroke(Stroke stroke);

Sets the default stroke for the renderer, and sends a RendererChangeEvent to all registered
listeners. If stroke is null, this method should throw an IllegalArgumentException.

The renderer will call the following method to fetch the outline stroke for an item:

å public Stroke getItemOutlineStroke(int row, int column);

Performs a lookup for the outline stroke. This method returns the per-series setting (see below)
if it is not null, otherwise it returns the base outline stroke.

The per-series outline stroke can be determined using the following methods:

å public Stroke getSeriesOutlineStroke(int series);

Returns the outline stroke for the specified series, or null.

å public void setSeriesOutlineStroke(int series, Stroke stroke);

Sets the outline stroke (null is permitted) for the specified series, and sends a RendererChangeEvent

to all registered listeners.

To control the default outline stroke:

å public Stroke getBaseOutlineStroke();

Returns the default outline stroke (never null) for the renderer.

å public void setBaseOutlineStroke(Stroke stroke);

Sets the default outline stroke for the renderer, and sends a RendererChangeEvent to all registered
listeners. If stroke is null, this method should throw an IllegalArgumentException.

37.23.6 The Shapes

All renderers maintain a default shape and a set of per-series shapes, even though some renderers
won’t, in fact, require them.

å public Shape getItemShape(int row, int column);

Returns a shape (never null) for the specified data item.

For the convenience of the developer interacting with this interface, it is assumed that renderers
store shapes on a per-series basis, with a default shape to be used as the fallback.

å public Shape getSeriesShape(int series);

Returns the shape (possibly null) for the specified series.

å public void setSeriesShape(int series, Shape shape);

Sets the shape (null is permitted) for the specified series and sends a RendererChangeEvent to
all registered listeners.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 542

To control the default shape for the renderer:

å public Shape getBaseShape();

Returns the default shape (never null) for the renderer.

å public void setBaseShape(Shape shape);

Sets the default shape for the renderer, and sends a RendererChangeEvent to all registered lis-
teners. If shape is null, this method should throw an IllegalArgumentException.

37.23.7 Item Labels

Item labels are small text items displayed near to the shape, line or bar representing a data item—
the label will typically display the exact data value, but this is configurable by specifying a generator
for the item labels. A renderer should always call the following method to obtain the item label
generator for a particular data item:

å public XYItemLabelGenerator getItemLabelGenerator(int row, int column);

Returns the item label generator (possibly null) for the specified data item.

A typical renderer will allow a different item label generator to be specified for each series that the
renderer handles, with a default item label generator for any series that doesn’t have a generator
specified. For convenience, the methods that support this are included in this interface:

å public XYItemLabelGenerator getSeriesItemLabelGenerator(int series);

Returns the item label generator (possibly null) for the specified series.

å public void setSeriesItemLabelGenerator(int series, XYItemLabelGenerator generator);

Sets the item label generator (null is permitted) for the specified series, and sends a RendererChangeEvent

to all registered listeners.

The default item label generator is typically used when no other generator is available—if this is
null, no item label is generated or displayed by the renderer:

å public XYItemLabelGenerator getBaseItemLabelGenerator();

Returns the default item label generator, which may be null.

å public void setBaseItemLabelGenerator(XYItemLabelGenerator generator);

Sets the default item label generator (null is permitted) and sends a RendererChangeEvent to
all registered listeners.

37.23.8 The Item Label Font and Paint

When displaying an item label, the renderer will call the following methods to determine the font
and paint to use for the label:

å public Font getItemLabelFont(int row, int column);

Returns the font (never null) used to display the item label for the specified data item.

å public Paint getItemLabelPaint(int row, int column);

Returns the paint (never null) used to display the item label for the specified data item.

A typical renderer will allow the font and paint settings to be specified on a per-series basis, with
default settings to be used for any series without an explicit setting. For convenience, the methods
that support this are included in this interface:

å public Font getSeriesItemLabelFont(int series);

Returns the font (possibly null) used to display the item labels for the specified series.

å public void setSeriesItemLabelFont(int series, Font font);

Sets the font (null is permitted) used to display the item labels for the specified series, and
sends a RendererChangeEvent to all registered listeners.

To control the default font for item labels on the chart:

å public Font getBaseItemLabelFont();

Returns the default font (never null) for the item labels on the chart.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 543

å public void setBaseItemLabelFont(Font font);

Sets the default font for the item labels on the chart, and sends a RendererChangeEvent to all
registered listeners. If font is null, this method should throw an IllegalArgumentException.

To control the item label paint on a per-series basis:

å public Paint getSeriesItemLabelPaint(int series);

Returns the paint (possibly null) used to draw the item labels for the specified series.

å public void setSeriesItemLabelPaint(int series, Paint paint);

Sets the paint (null is permitted) used to draw the item labels for the specified series, and
sends a RendererChangeEvent to all registered listners.

To control the default paint for the item labels:

å public Paint getBaseItemLabelPaint();

Returns the default paint (never null) used to draw item labels (if these are visible).

å public void setBaseItemLabelPaint(Paint paint);

Sets the default paint used to draw item labels (if these are visible) and sends a RendererChangeEvent

to all registered listeners.

37.23.9 The Item Label Position

The anchor position for item labels is specified in terms of a clock-face, with the renderer treating
positive and negative data items differently (so that, for example, a bar renderer can place item
labels for positive data items above the bar, and item labels for negative data items below the bar).

A renderer should always call the following method to find the anchor position for the item label
for positive data items:

å public ItemLabelPosition getPositiveItemLabelPosition(int row, int column);

Returns the item label position that should be used for positive data items.

For the convenience of the developer interacting with this interface, it is assumed that the item
label positions can be defined on a per series basis, with a default value to apply as the fall-back:

å public ItemLabelPosition getSeriesPositiveItemLabelPosition(int series);

Returns the item label position (possibly null) for the specified series.

å public void setSeriesPositiveItemLabelPosition(int series, ItemLabelPosition position);

Equivalent to setSeriesPositiveItemLabelPosition(series, position, true)—see the next method.

å public void setSeriesPositiveItemLabelPosition(int series, ItemLabelPosition position, boolean

notify);

Sets the item label position (null is permitetd) for the specified series and sends a RendererChangeEvent

to all registered listeners.

The default position:

å public ItemLabelPosition getBasePositiveItemLabelPosition();

Returns the default item label position (never null) to be used when there is no per-series
setting.

å public void setBasePositiveItemLabelPosition(ItemLabelPosition position);

Equivalent to setBasePositiveItemLabelPosition(position, true)—see the next method.

å public void setBasePositiveItemLabelPosition(ItemLabelPosition position, boolean notify);

Sets the default item label position (null is not permitted) and sends a RendererChangeEvent to
all registered listeners.

The renderer will call the following method to get the position for any data item with a negative
value:

å public ItemLabelPosition getNegativeItemLabelPosition(int row, int column);

Returns the item label position for the specified data item. The renderer will only call this
method for data items with negative values.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 544

For convenience, this interface assumes that the renderer supports defining item label positions
on a per-series basis, with a default value for any series with no explicit setting, via the following
methods:

å public ItemLabelPosition getSeriesNegativeItemLabelPosition(int series);

Returns the item label position (possibly null) for any data item in the specified series that
has a negative value.

å public void setSeriesNegativeItemLabelPosition(int series, ItemLabelPosition position);

Equivalent to setSeriesNegativeItemLabelPosition(series, position, true)—see next method.

å public void setSeriesNegativeItemLabelPosition(int series, ItemLabelPosition position, boolean

notify);

Sets the item label position for the specified series and sends a RendererChangeEvent to all
registered listeners.

To control the default item label position:

å public ItemLabelPosition getBaseNegativeItemLabelPosition();

Returns the default item label position for data items that have a negative value.

å public void setBaseNegativeItemLabelPosition(ItemLabelPosition position);

Equivalent to setBaseNegativeItemLabelPosition(position, true)—see the next constructor.

å public void setBaseNegativeItemLabelPosition(ItemLabelPosition position, boolean notify);

Sets the default item label position for data items that have a negative value, and sends a
RendererChangeEvent to all registered listeners.

37.23.10 The Item Label Visibility

To determine if an item label is visible for a particular data item, the renderer should always call
the following method:

å public boolean isItemLabelVisible(int row, int column);

Returns true if the item label for this data item should be displayed, and false otherwise.

å public boolean isSeriesItemLabelsVisible(int series);

Returns true if item labels are visible for the specified series, and false otherwise.

To set the flag that controls whether or not item labels are visible for a series:

å public void setSeriesItemLabelsVisible(int series, boolean visible);

Equivalent to setSeriesItemLabelsVisible(series, Boolean.valueOf(visible), true)—see the
next constructor.

å public void setSeriesItemLabelsVisible(int series, Boolean visible);

Equivalent to setSeriesItemLabelsVisible(series, visible, true)—see the next constructor.

å public void setSeriesItemLabelsVisible(int series, Boolean visible, boolean notify);

Sets the flag that controls whether or not item labels are visible for a series and, if requested,
sends a RendererChangeEvent to all registered listeners.

To control the default value:

å public Boolean getBaseItemLabelsVisible();

Returns the default flag that controls whether or not item labels are visible.

å public void setBaseItemLabelsVisible(boolean visible);

Sets the default flag that controls whether or not item labels are visible, and sends a RendererChangeEvent

to all registered listeners.

å public void setBaseItemLabelsVisible(Boolean visible);

Sets the default flag that controls whether or not item labels are visible, and sends a RendererChangeEvent

to all registered listeners.

å public void setBaseItemLabelsVisible(Boolean visible, boolean notify);

Sets the default flag that controls whether or not item labels are visible, and sends a RendererChangeEvent

to all registered listeners.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 545

37.23.11 Tool Tips

Tool tips that the renderer assigns to each data item are generated by a tool tip generator. For
each data item, the renderer will obtain the tool tip generator by calling the following method:

å public XYToolTipGenerator getToolTipGenerator(int row, int column);

Returns the tool tip generator for the specified data item. If this method returns null, no tool
tip will be assigned for this item.

Most renderers allow a tool tip generator to be specified on a per-series basis, with a default
generator providing the fall-back. For convenience, the methods that are used to specify these
generators are included in the interface:

å public XYToolTipGenerator getSeriesToolTipGenerator(int series);

Returns the tool tip generator (possibly null) for the specified series.

å public void setSeriesToolTipGenerator(int series, XYToolTipGenerator generator);

Sets the tool tip generator (null is permitted) and sends a RendererChangeEvent to all registered
listeners.

The default generator, typically used when no per-series generator is assigned, is controlled via the
following methods:

å public XYToolTipGenerator getBaseToolTipGenerator();

Returns the default tool tip generator, which may be null. This default is typically used when
the per-series generator is null.

å public void setBaseToolTipGenerator(XYToolTipGenerator generator);

Sets the default tool tip generator (null is permitted) and sends a RendererChangeEvent to all
registered listeners.

For more information about tool tips, refer to section 11.

37.23.12 URLs

A URL generator is used to generate URLs for each item drawn by the renderer. These URLs are
only used in the creation of HTML image maps. A single URL generator is used for all data items,
this attribute has not been defined on a per-series basis.

å public XYURLGenerator getURLGenerator();

Returns the URL generator (possibly null) used for all data items.

å public void setURLGenerator(XYURLGenerator urlGenerator);

Sets the URL generator (null is permitted) to be used for all data items.

For more information about HTML image map generation, refer to section 30.3.1.

37.23.13 Legend Items

This interface extends LegendItemSource which means that all renderers are a source of legend items.

å public LegendItem getLegendItem(int datasetIndex, int series);

Returns a legend item for the specified series. This method can return null, which means that
no item will be displayed in the legend for the specified series.

A plug-in generator is responsible for creating the text label for each series in the legend:

å public XYSeriesLabelGenerator getLegendItemLabelGenerator();

Returns the legend item label generator. This method should not return null.

å public void setLegendItemLabelGenerator(XYSeriesLabelGenerator generator);

Sets the legend item label generator and sends a RendererChangeEvent to all registered listeners.
If generator is null, this method should throw an IllegalArgumentException.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 546

37.23.14 Series Visibility in Legend

The chart’s legend (if it has one) will display the name of each series drawn by the renderer, unless
a flag is set to hide the series from the legend.

å public boolean isSeriesVisibleInLegend(int series);

Returns true if the specified series should be included in the legend, and false otherwise.
This method is typically implemented to do a look-up on the per-series and default visibility
flags—see the methods below.

For convenience, the methods that control the per-series and default visibility flags are included in
this interface:

å public Boolean getSeriesVisibleInLegend(int series);

Returns the flag that controls whether the specified series is visible in the legend. This method
can return null, which means that no flag is set for the series.

å public void setSeriesVisibleInLegend(int series, Boolean visible);

Equivalent to setSeriesVisibleInLegend(series, visible, true)—see the next method.

å public void setSeriesVisibleInLegend(int series, Boolean visible, boolean notify);

Sets the flag that controls whether or not the specified series is included in the legend, and
sends a RendererChangeEvent to all registered listeners.

å public boolean getBaseSeriesVisibleInLegend();

Returns the default flag that controls whether or not a series is visible in the legend. The
default value is true.

å public void setBaseSeriesVisibleInLegend(boolean visible);

Equivalent to setBaseSeriesVisibileInLegend(visible, true)—see the next method.

å public void setBaseSeriesVisibleInLegend(boolean visible, boolean notify);

Sets the default flag that controls whether or not a series is visible in the legend, and sends a
RendererChangeEvent to all registered listeners.

37.23.15 Other Methods

A range of other methods in the interface are intended for use by the XYPlot class when interacting
with a renderer.

å public void drawDomainGridLine(Graphics2D g2, XYPlot plot, ValueAxis axis, Rectangle2D dataArea,

double value);

Draws a gridline for the specified domain axis at the given value.

å public void drawRangeLine(Graphics2D g2, XYPlot plot, ValueAxis axis, Rectangle2D dataArea,

double value, Paint paint, Stroke stroke);

Draws a line perpendicular the the specified range axis corresponding to the given value.

The plot calls the following methods to draw markers against the domain and range axes:

å public void drawDomainMarker(Graphics2D g2, XYPlot plot, ValueAxis axis, Marker marker,

Rectangle2D dataArea);

Draws the specified marker that highlights a value or interval along the specified domain axis.

å public void drawRangeMarker(Graphics2D g2, XYPlot plot, ValueAxis axis, Marker marker, Rectangle2D

dataArea);

Draws the specified marker that highlights a value or interval along the specified range axis.

The following methods support the painting of grid bands:

å public void fillDomainGridBand(Graphics2D g2, XYPlot plot, ValueAxis axis, Rectangle2D dataArea,

double start, double end);

Fills a band representing the specified interval along the given domain axis.

å public void fillRangeGridBand(Graphics2D g2, XYPlot plot, ValueAxis axis, Rectangle2D dataArea,

double start, double end);

Fills a band representing the specified interval along the given range axis.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 547

37.23.16 Change Listeners

All renderers must support a change notification mechanism that allows a listener to register with
the renderer and receive a RendererChangeEvent whenever any attribute of the renderer changes.
This mechanism is used by JFreeChart to provide automatic updating of charts displayed in a
ChartPanel.

å public void addChangeListener(RendererChangeListener listener);

Registers a listener so that it will receive notification of changes to this renderer.

å public void removeChangeListener(RendererChangeListener listener);

De-registers a listener so that it will no longer receive notification of changes to this renderer.

The XYPlot class will automatically register itself with any renderer that is assigned to it.

37.23.17 Annotations

You can assign one or more XYAnnotation instances to a renderer. These annotations will be drawn
relative to the axes that the renderer is mapped to. For example, see AnnotationDemo2.java in the
JFreeChart demos.

å public void addAnnotation(XYAnnotation annotation);

Adds the annotation to the foreground layer for this renderer.

å public void addAnnotation(XYAnnotation annotation, Layer layer);

Adds the annotation to the specified layer for this renderer.

å public boolean removeAnnotation(XYAnnotation annotation);

Removes an annotation from the renderer.

å public void removeAnnotations();

Removes all annotations from the renderer.

å public void drawAnnotations(Graphics2D g2, Rectangle2D dataArea,

ValueAxis domainAxis, ValueAxis rangeAxis, Layer layer,

PlotRenderingInfo info);

Draws the annotations in the specified layer.

Note that you can also add annotations directly to an XYPlot, in which case they are drawn relative
to the plot’s primary axes.

37.23.18 Notes

Some renderers require a dataset that is a specific extension of XYDataset. For example, the
HighLowRenderer requires an OHLCDataset.

See Also
AbstractXYItemRenderer, XYPlot.

37.24 XYItemRendererState

37.24.1 Overview

A state object that retains information between the successive calls to a renderer’s drawItem()

method. This class extends the RendererState class, and is used internally by JFreeChart (you
won’t normally need to use it directly, unless you are writing your own renderer class).

37.24.2 Constructor

To create a new instance:

å public XYItemRendererState(PlotRenderingInfo info);

Creates a new state instance.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 548

37.24.3 Fields

This class defines a working Line2D instance that can be reused by a renderer to avoid creating
numerous instances that require garbage collection:

å public Line2D workingLine;

A reusable line.

See Also
RendererState

37.25 XYLineAndShapeRenderer

37.25.1 Overview

A renderer that displays items from an XYDataset by drawing a line between each (x, y) point and
overlaying a shape at each (x, y) point—for an example, see figure 37.18. One of the key features
of this renderer is that it allows you to control on a per series basis whether:

• lines are drawn between the data points;

• shapes are drawn at each data point;

• shapes are filled or not filled;

This class implements the XYItemRenderer interface, so it can be used with the XYPlot class. It
extends the AbstractXYItemRenderer base class. Subclasses include:

• DeviationRenderer;

• XYErrorRenderer;

• XYSplineRenderer.

Line Chart Demo 2

First Second Third

1 2 3 4 5 6 7 8 9 1 0

X

0

1

2

3

4

5

6

7

8

Y

Figure 37.18: A sample chart (see LineChartDemo2.java)

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 549

37.25.2 Usage

This renderer is used for several types of chart created via the ChartUtilities class:

• createXYLineChart()—creates a standard line chart;

• createTimeSeriesChart()—creates a time series line chart;

• createScatterPlot()—creates a scatter plot;

Given an arbitrary XYPlot, you can install a new instance of this renderer using the following code
(or a variation of it):

XYPlot plot = (XYPlot) chart.getPlot();

XYLineAndShapeRenderer renderer = new XYLineAndShapeRenderer();

renderer.setSeriesLinesVisible(0, true);

renderer.setSeriesShapesVisible(0, false);

renderer.setSeriesLinesVisible(1, false);

renderer.setSeriesShapesVisible(1, true);

plot.setRenderer(renderer);

Flags have been set so that items in the first series are connected with lines, while items in the
second series are displayed as individual shapes.

37.25.3 Constructor

This class has two constructors:
å public XYLineAndShapeRenderer();

Equivalent to XYLineAndShapeRenderer(true, true)—see the next constructor.

å public XYLineAndShapeRenderer(boolean lines, boolean shapes);

Creates a new renderer, with connecting lines and shapes for each data item as requested.

37.25.4 Lines

This renderer has, as you’d expect, the facility to connect data items with lines. The color and
style of the lines is controlled by methods that are inherited from the AbstractRenderer class (for
example, setSeriesPaint() and setSeriesStroke()).

In addition, this renderer defines a set of flags provides the option to show or hide the lines on a
per-series basis. To determine whether or not a line is drawn for an item (connecting the current
item with the previous item), JFreeChart calls the following method:

å public boolean getItemLineVisible(int series, int item);

Returns a flag that controls whether or not a line is drawn between the current and previous
items.

Override Line Visibility

To control whether or not lines are drawn for the items in ALL series (this is an override setting
that you should seldom if ever need to use):

å public Boolean getLinesVisible(); [Deprecated 1.0.7]

Returns the flag that controls whether lines are drawn for the items in ALL series. This flag
overrides all other settings, unless it is null. The default value is null.

å public void setLinesVisible(Boolean visible); [Deprecated 1.0.7]

Sets the flag that controls whether or not lines are drawn for the items in ALL series, and sends
a RendererChangeEvent to all registered listeners. You should leave this flag set to null if you
prefer to use the “per series” flags (see the next section).

å public void setLinesVisible(boolean visible); [Deprecated 1.0.7]

As above.

This override setting has been deprecated from version 1.0.7 onwards—you can simply rely on the
per-series and base level settings.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 550

Per Series Line Visibility

To control whether or not lines are drawn for the items in one series (this assumes the (now
deprecated) override flag in the previous section is set to null, which is the default):

å public Boolean getSeriesLinesVisible(int series);

Returns a flag that controls whether or not lines are drawn for the items in the specified series.

å public void setSeriesLinesVisible(int series, Boolean flag);

Sets a flag that controls whether or not lines are drawn for the items in the specified series,
and sends a RendererChangeEvent to all registered listeners. If this is set to null, then the base
setting (see the next section) will apply.

å public void setSeriesLinesVisible(int series, boolean visible);

As above.

The flags are stored as Boolean objects—if the flag is null for a series, then the base value is used
(see the next section).

Base Line Visibility

The base line visibility setting is used for any series where both the override and per series settings
are not specified:

å public boolean getBaseLinesVisible();

Returns the default line visibility for all series. This setting is used when no per-series or
override setting is specified. The initial value is specified in the constructor.

å public void setBaseLinesVisible(boolean flag);

Sets the default flag that controls whether or not the renderer draws lines between the (x, y)
items in a series, and sends a RendererChangeEvent to all registered listeners.

It is recommended that you set the default value as required first, and then override the setting
on a per series basis. If you have set the flag for a series, but later want to restore the default
value, note that there is a version of the setSeriesLinesVisible() method that accepts a Boolean

flag which you can set to null.

37.25.5 Dashed Lines

It is common to used a dashed stroke to draw the connecting lines between items within a series.
An issue arises when the items within a series are close together on the chart, because by default
the renderer will draw the connecting line individually for each data item (connecting the current
item to the previous item). The stroke pattern for the line is reset for each segment, which can
result in the stroke pattern not being visible for the series. A workaround is available, in which the
connecting lines for the entire series are drawn as a single line:

å public boolean getDrawSeriesLineAsPath();

Returns the flag that controls whether the connecting lines between data items are drawn as a
path, or individually. The default value is false (individual line segments).

å public void setDrawSeriesLineAsPath(boolean flag);

Sets the flag that controls whether the connecting lines between the data items are drawn as a
path, or individually. If the flag value is changed, a RendererChangeEvent is sent to all registered
listeners.

37.25.6 Item Shapes – Visibility

This renderer can draw shapes at each data point, and has flags that control:

• the visibility of the shapes;

• whether or not the shapes are filled;

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 551

To find out whether or not a shape for a data item is to be displayed:

å public boolean getItemShapeVisible(int series, int item);

Returns true if a shape should be displayed for the specified item. This performs a lookup on
the override, per-series and base level visibility settings for shape visibility—see the following
methods.

Override Shape Visibility

To control whether or not shapes are drawn for the items in ALL series (this is an override setting
that you should seldom, if ever, need to use):

å public Boolean getShapesVisible(); [Deprecated 1.0.7]

Returns the flag that controls whether shapes are drawn for the items in ALL series. This flag
overrides all other settings, unless it is null (the default).

å public void setShapesVisible(Boolean visible); [Deprecated 1.0.7]

Sets the flag that controls whether or not shapes are drawn for the items in ALL series, and
sends a RendererChangeEvent to all registered listeners. You should leave this flag set to null if
you prefer to use the per-series flags (described in the next section).

å public void setShapesVisible(boolean visible); [Deprecated 1.0.7]

As above.

This override setting has been deprecated from version 1.0.7 onwards—you can simply rely on the
per-series and base level settings.

Per Series Shape Visibility Flags

To control whether or not shapes are drawn for items in a series (this assumes the (now deprecated)
override flag in the previous section is set to null, which is the default):

å public Boolean getSeriesShapesVisible(int series);

Returns a flag that indicating whether or not shapes are displayed for the items in the specified
series.

å public void setSeriesShapesVisible(int series, Boolean flag);

Sets a flag that controls whether or not shapes are drawn for the items in the specified series,
then sends a RendererChangeEvent to all registered listeners. If this is set to null, then the base
setting (described in the next section) will apply.

å public void setSeriesShapesVisible(int series, boolean visible);

As above.

Base Shape Visibility

The base shape visibility setting is used for any series where both the override and per-series settings
are not specified:

å public boolean getBaseShapesVisible();

Returns the default shape visibility for all series. This setting is used when no per-series or
override setting is specified. The initial value is specified via the constructors.

å public void setBaseShapesVisible(boolean flag);

Sets the default flag that controls whether or not the renderer draws shapes for each (x, y)
item in a series, then sends a RendererChangeEvent to all registerd listeners.

37.25.7 Item Shapes – Fill State

This renderer defines flags to control whether or not the item shapes (if they are visible) are filled
or “hollow”:

å public boolean getItemShapeFilled(int series, int item);

Returns true if the specified item should be filled, and false otherwise. This method does a
lookup based on the flags defined in the following sections.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 552

Override Shapes Filled

To control whether or not shapes are filled for the items in ALL series (this is an override setting
that you should seldom need to use):

å public void setShapesFilled(boolean filled); [Deprecated 1.0.7]

Equivalent to setShapesFilled(Boolean.valueOf(filled))—see the next method.

å public void setShapesFilled(Boolean filled); [Deprecated 1.0.7]

Sets the flag that controls whether or not shapes are filled for the items in ALL series, and
sends a RendererChangeEvent to all registered listeners. You should leave this flag set to null if
you prefer to use the per-series flags (described in the next section).

This override setting has been deprecated from version 1.0.7 onwards—you can simply rely on the
per-series and base-level settings.

Series Shapes Filled

To control whether or not shapes are filled for items in a series (this assumes the (now deprecated)
override flag in the previous section is set to null, which is the default):

å public Boolean getSeriesShapesFilled(int series);

Returns a flag that indicates whether or not the items for the specified series should be filled.
This method can return null, which means the renderer will use the base default setting.

å public void setSeriesShapesFilled(int series, boolean flag);

Equivalent to setSeriesShapesFilled(series, Boolean.valueOf(flag))—see the next method.

å public void setSeriesShapesFilled(int series, Boolean flag);

Sets the flag that controls whether or not the renderer fills the shapes for the specified series,
and sends a RendererChangeEvent to all registered listeners.

Base Shapes Filled

This base shapes filled setting is used for any series where both the override and per-series settings
are not specified:

å public boolean getBaseShapesFilled();

Returns the default shape filled flag for all series. This setting is used when no per-series or
override setting is specified. The default values is true.

å public void setBaseShapesFilled(boolean flag);

Sets the default shapes filled flag that controls whether or not the renderer

37.25.8 Other Shape Flags

There are several additional flags that affect the shape rendering. First, shapes can be drawn with
or without outlines:

å public boolean getDrawOutlines();

Returns true if the item shapes are drawn with outlines, and false otherwise. The default
value is true.

å public void setDrawOutlines(boolean flag);

Sets the flag that controls whether or not outlines are drawn for the item shapes, and sends a
RendererChangeEvent to all registered listeners.

When rendering shapes, there are three paint settings that can be used: (1) the series paint, (2)
the series fill paint and (3) the series outline paint. By default, the renderer will simply use the
first option, the regular series paint. However, you can modify two flags to have the renderer use
the other paint settings—see figure 37.19 to see the effects.
The first flag controls whether or not the renderer uses the outline paint to draw shape outlines—if
this is false, the regular series paint is used:

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 553

XYLineAndShapeRenderer Demo 2

Series 1 Series 2 Series 3 Series 4 Series 5

This chart shows various combinations of the useFillPaint and useOutlinePaint flags.

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

X

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Y

Figure 37.19: Fill and outline options

å public boolean getUseOutlinePaint();

Returns true if the shape outlines are drawn using the outline paint, and false if the shape
outlines are drawn using the regular paint. The default value is false.

å public void setUseOutlinePaint(boolean flag);

Sets the flag that controls whether or not shape outlines are drawn using the outline paint
(if not, the series paint is used instead), then sends a RendererChangeEvent to all registered
listeners.

In a similar way, the other flag controls whether or not shapes are filled using the series fill paint:

å public boolean getUseFillPaint();

Returns true if the series fill paint is used to fill shapes, and false if the regular series paint is
used instead. The default value is false.

å public void setUseFillPaint(boolean flag);

Sets the flag that controls whether the series fill paint is used by the renderer to fill shapes,
and sends a RendererChangeEvent to all registered listeners.

37.25.9 Legend Customisation

This renderer allows a simple customisation of the legend display where you can specify the shape
(typically a line, but any shape is permitted) that will represent each series in the legend:

å public Shape getLegendLine();

Returns the shape used to represent a series in the legend. The default value is Line2D.Double(-7.0,
0.0, 7.0, 0.0). This method never returns null.

å public void setLegendLine(Shape line);

Sets the shape used to represent a series in the legend and sends a RendererChangeEvent to
all registered listeners. This method throws an IllegalArgumentException if line is null. The
supplied shape should be centered around (0, 0) as it will be translated into position by
JFreeChart’s drawing code.

For an example, see TimeSeriesDemo7.java in the JFreeChart demo collection.

37.25.10 Other Methods

The renderer makes two passes through the dataset, drawing the lines in the first pass, and then
drawing the shapes in the second pass. The number of passes is returned by the following method:

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 554

å public int getPassCount();

Returns 2.

37.25.11 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

37.25.12 Notes

Some points to note:

• the renderer makes two passes through the data. In the first pass, the lines connecting the
(x, y) data points are drawn. In the second pass, the shapes at each data point are drawn. In
this way, the lines appear to be “under” the shapes, which makes for a better presentation;

• there is some overlap between this class and the StandardXYItemRenderer class—in general,
you should try to use XYLineAndShapeRenderer;

• there are many demos for this renderer included in the JFreeChart demo collection (for ex-
ample, XYLineAndShapeRendererDemo1.java).

37.26 XYSplineRenderer

37.26.1 Overview

An extension of the XYLineAndShapeRenderer, this class connects data points using spline curves—
this results in a smooth line passing through all the data points. See figure 37.20 for an example.
This renderer was first introduced in JFreeChart version 1.0.7.

XYSplineRenderer

Series 1 Series 2

2 3 4 5 6 7 8 9 1 0 1 1

X

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

Y

Figure 37.20: A sample chart (see XYSplineRendererDemo1a.java)

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 555

37.26.2 Constructors

This class defines two constructors:

å public XYSplineRenderer(); [1.0.7]

Equivalent to XYSplineRenderer(5)—see the next method.

å public XYSplineRenderer(int precision); [1.0.7]

Creates a new renderer, with the specified precision, that displays both lines and shapes.

37.26.3 General Attributes

This renderer inherits most of its attributes from XYLineAndShapeRenderer, but adds a precision
attribute that controls the number of line segments used to approximate the curve between data
points:

å public int getPrecision(); [1.0.7]

Returns the number of line segments used to approximate the curve between data points. The
initial value is specified in the constructor (the default is 5).

å public void setPrecision(int p); [1.0.7]

Sets the number of line segments used to approximate the curve between data points, and sends
a RendererChangeEvent to all registered listeners.

37.26.4 Other Methods

The following methods, overridden in this class, are typically called by JFreeChart—you shouldn’t
need to call these methods directly:

å public XYItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset data, PlotRenderingInfo info); [1.0.7]

Initialises the renderer. The drawSeriesLineAsPath flag is set to true, and the processVisibleItemsOnly

flag is set to false—the latter optimisation can’t work in combination with the spline curve fit-
ting.

å protected void drawPrimaryLineAsPath(XYItemRendererState state, Graphics2D g2, XYPlot plot,

XYDataset dataset, int pass, int series, int item, ValueAxis domainAxis, ValueAxis rangeAxis,

Rectangle2D dataArea); [1.0.7]

Draws the line representing all the points in one series. This method is overridden to apply the
spline curve fitting.

37.26.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.7]

Tests this renderer for equality with an arbitrary object (which may be null).

Instances of this class are cloneable and serializable.

37.26.6 Notes

Some points to note:

• there is no ChartFactory method to create a chart using this renderer, so you need to construct
the chart in piece-wise fashion (refer to the demo applications for guidance);

• a demo (XYSplineRendererDemo1.java) is included in the JFreeChart demo collection.

See Also
XYLineAndShapeRenderer

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 556

37.27 XYStepRenderer

37.27.1 Overview

An XY step renderer draws items from an XYDataset using “stepped” lines to connect each (x, y)
point. This renderer is designed for use with the XYPlot class.

Figure 37.21: A sample chart using XYStepRenderer

37.27.2 Usage

A demo (XYStepRendererDemo1.java) is included in the JFreeChart demo distribution.

37.27.3 Constructors

To create a new renderer:

å public XYStepRenderer();

Creates a new default renderer.

å public XYStepRenderer(XYToolTipGenerator toolTipGenerator, XYURLGenerator urlGenerator);

Creates a new renderer with the specified tool tip generator and URL generator.

37.27.4 Equals, Cloning and Serialization

This renderer inherits an equals() method from its superclass. The renderer is both Cloneable and
Serializable.

37.27.5 Notes

Some points to note:

• the “hotspot” for tooltips is a square centered on the data point (but not the corner of the
“step”). You can use the setDefaultEntityRadius() method in the AbstractXYItemRenderer

class to increase the size of the hotspot.

See Also
CategoryStepRenderer.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 557

37.28 XYStepAreaRenderer

37.28.1 Overview

A renderer that displays data from an XYDataset in a step format with the area under the steps
filled—see figure 37.22 for an example. A demo (XYStepAreaRendererDemo1.java) is included in the
JFreeChart demo collection.

XYStepAreaRenderer Demo 1

Series 1 Series 2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

X

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Y

Figure 37.22: A sample chart (see XYStepAreaRendererDemo1.java)

37.28.2 Constructors

The following constructors are defined:

å public XYStepAreaRenderer();

Equivalent to XYStepAreaRenderer(AREA)—see the next constructor.

å public XYStepAreaRenderer(int type);

Equivalent to XYStepAreaRenderer(type, null, null)—see the next constructor.

å public XYStepAreaRenderer(int type, XYToolTipGenerator toolTipGenerator, XYURLGenerator

urlGenerator);

Creates a new renderer with the specified type, toolTipGenerator and urlGenerator. The type

should be one of the constants defined by this class:

• AREA – fills the area under the steps, but does not draw shapes;

• SHAPES – draws shapes at each data point, but does not fill the area beneath the data
points;

• AREA AND SHAPES – fills the area under the steps, and draws shapes at each data point.

Both the toolTipGenerator and urlGenerator arguments can be null.

37.28.3 General Attributes

The following methods control the general attributes for this renderer:

å public boolean isOutline();

Returns the flag that controls whether or not the outline is shown. The default is false.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 558

å public void setOutline(boolean show);

Sets the flag that controls whether or not an outline is drawn around the step area, and sends
a RendererChangeEvent to all registered listeners.

å public boolean getShapesVisible();

Returns the flag that controls whether or not shapes are drawn at each data point.

å public void setShapesVisible(boolean flag);

Sets the flag that controls whether or not shapes are drawn at each data point, and sends a
RendererChangeEvent to all registered listeners.

å public boolean isShapesFilled();

Returns the flag that controls whether or not shapes (if visible) are filled.

å public void setShapesFilled(boolean filled);

Sets the flag that controls whether or not shapes are filled, and sends a RendererChangeEvent to
all registered listeners.

å public boolean getPlotArea();

Returns the flag that controls whether or not the area beneath the steps is filled.

å public void setPlotArea(boolean flag);

Sets the flag that controls whether or not the area beneath the steps is filled, and sends a
RendererChangeEvent to all registered listeners.

å public double getRangeBase();

Returns the base value for the renderer. The default value is 0.0.

å public void setRangeBase(double val);

Sets the base value for the renderer and sends a RendererChangeEvent to all registered listeners.

37.28.4 Other Methods

The other methods in this class are called by JFreeChart—you won’t normally call these directly:

å public XYItemRendererState initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset data, PlotRenderingInfo info);

Initialises the renderer, returning a state object that will be passed to each call to drawItem().

å public void drawItem(Graphics2D g2, XYItemRendererState state, Rectangle2D dataArea,

PlotRenderingInfo info, XYPlot plot, ValueAxis domainAxis, ValueAxis rangeAxis,

XYDataset dataset, int series, int item, CrosshairState crosshairState, int pass);

Draws one item on the chart. This method is called by the plot for each item in the dataset.

37.28.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this renderer for equality with an arbitrary object. This method returns true if:

• obj is not null;

• obj is an instance of XYStepAreaRenderer;

• obj has the same attributes as this renderer.

Instances of this class are Cloneable and Serializable.

37.29 YIntervalRenderer

37.29.1 Overview

An XYItemRenderer that draws lines indicating a y-interval corresponding to each x-value—see figure
37.23 for an example. This renderer requires an IntervalXYDataset, and is designed for use with
the XYPlot class.

CHAPTER 37. PACKAGE: ORG.JFREE.CHART.RENDERER.XY 559

Y Interval Chart Demo

Series 1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

X

9 5

9 6

9 7

9 8

9 9

100

101

102

103

104

105

106

Y

Figure 37.23: A sample chart (see YIntervalChartDemo1.java)

37.29.2 Constructors

To create a new renderer:

å public YIntervalRenderer();

Creates a new renderer with default attributes.

37.29.3 Methods

The following method is called by the XYPlot class for each data item it needs to draw:

å public void drawItem(Graphics2D g2, XYItemRendererState state, Rectangle2D dataArea,

PlotRenderingInfo info, XYPlot plot, ValueAxis domainAxis, ValueAxis rangeAxis,

XYDataset dataset, int series, int item, CrosshairState crosshairState, int pass)

Draws one item from the dataset. This method is called by the XYPlot class, you won’t normally
call it yourself.

37.29.4 Notes

Some points to note:

• to customise the shapes drawn at the end points of the intervals, use the setSeriesShape(int,

Shape) method inherited from AbstractXYItemRenderer;

• a demo application (YIntervalChartDemo1.java) is included in the JFreeChart demo distribu-
tion.

Chapter 38

Package: org.jfree.chart.servlet

38.1 Overview

This package contains servlet utility classes developed for JFreeChart by Richard Atkinson. An
excellent demo for these classes can be found at:

http://homepage.ntlworld.com/richard c atkinson/jfreechart

38.2 ChartDeleter

38.2.1 Overview

A utility class that maintains a list of temporary files (chart images created by the ServletUtilities

class) and deletes them at the expiry of an HttpSession.

38.3 DisplayChart

38.3.1 Overview

A servlet that displays a chart image from the temporary directory.

38.4 ServletUtilities

38.4.1 Overview

A utility class for performing operations in a servlet environment. The methods in this class are all
static.

38.4.2 Saving Charts to Image Files

Several methods are provided to write charts to image files in the system’s temporary directory,
with automatic registration with the ChartDeleter class to remove the temporary files upon expiry
of the session. If you don’t want to use this temporary persistence mechanism, then you should use
the ChartUtilities class directly.

To save a chart in a PNG file in the temporary directory (designated by the system property
java.io.tmpdir):

å public static String saveChartAsPNG(JFreeChart chart, int width, int height,

ChartRenderingInfo info, HttpSession session) throws IOException;

Saves a chart to a PNG image file in the temporary directory and returns the filename used.

560

CHAPTER 38. PACKAGE: ORG.JFREE.CHART.SERVLET 561

The file is registered with a ChartDeleter instance that is linked to the specified session—this
means the image file will be deleted when the session expires. The info parameter should
be, if not null, a new instance of ChartRenderingInfo—it will be populated with information
about the chart as it is drawn for the PNG file (this information could be used to create an
HTML image map, for example). Note that the temporary file name prefix can be set using
the setTempFilePrefix() method.

å public static String saveChartAsPNG(JFreeChart chart, int width, int height,

HttpSession session) throws IOException;

As for the previous method, with the info argument set as null.

Equivalent methods are provided to save charts in JPEG format, but you should note that:

• JPEG is a “lossy” format that is designed for photographic images—the results for most
charts will be better if you use the PNG encoding;

• JPEG is supported by JFreeChart only when running on JRE 1.4.2 or later;

Chapter 39

Package: org.jfree.chart.title

39.1 Overview

This package contains classes that are used as chart titles and/or subtitles. The JFreeChart class
maintains one chart title (an instance of TextTitle) plus a list of subtitles (which can be any subclass
of Title).

When a chart is drawn, the title and/or subtitles will “grab” a rectangular section of the chart area
in which to draw themselves. This reduces the amount of space for plotting data, so although there
is no limit to the number of subtitles you can add to a chart, for practical reasons you need to keep
the number reasonably low.

39.2 Events

When you add a Title to a JFreeChart instance, the chart registers itself as a TitleChangeListener.
Any subsequent changes to the title will result in a TitleChangeEvent being sent to the chart. The
chart then passes the event on to all its registered ChartChangeListeners. If the chart is displayed
in a ChartPanel, the panel will receive a ChartChangeEvent and respond by repainting the chart.

39.3 CompositeTitle

39.3.1 Overview

A chart title that contains other chart titles in some arrangement. This class provides some flexibility
for displaying chart titles side-by-side or in other layouts.

39.3.2 Usage

In DualAxisDemo1.java, the following code is used to add two legends, one on the left of the chart
and the other on the right of the chart:

LegendTitle legend1 = new LegendTitle(plot.getRenderer(0));
legend1.setMargin(new RectangleInsets(2, 2, 2, 2));
legend1.setBorder(new BlockBorder());

LegendTitle legend2 = new LegendTitle(plot.getRenderer(1));
legend2.setMargin(new RectangleInsets(2, 2, 2, 2));
legend2.setBorder(new BlockBorder());

BlockContainer container = new BlockContainer(new BorderArrangement());
container.add(legend1, RectangleEdge.LEFT);
container.add(legend2, RectangleEdge.RIGHT);
container.add(new EmptyBlock(2000, 0));
CompositeTitle legends = new CompositeTitle(container);
legends.setPosition(RectangleEdge.BOTTOM);
chart.addSubtitle(legends);

562

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 563

39.3.3 Constructors

To create a new instance:
å public CompositeTitle();

Creates a new (empty) title.

å public CompositeTitle(BlockContainer container);

Creates a new title based on the specified container (which may be pre-populated with the
titles contained by this instance).

39.3.4 Methods

The following methods allow you to access the container used to hold the titles for this composite
title:

å public BlockContainer getContainer();

Returns the container that holds the titles within this composite title. You can use this to add
additional titles.

å public void setTitleContainer(BlockContainer container);

Sets the container for this composite title, replacing any existing container.

39.3.5 Layout and Drawing Methods

The JFreeChart class will call the following methods to layout and draw the titles, you won’t
normally need to call these methods yourself:

å public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);

Arranges the contents of the title within the given constraint, and returns the size of the title
after the arrangement is done.

å public void draw(Graphics2D g2, Rectangle2D area);

Draws the title within the given area.

å public Object draw(Graphics2D g2, Rectangle2D area, Object params);

Draws the title within the given area. The parameters are ignored by this method, and the
returned value is always null (this may change in the future).

39.3.6 Equality, Cloning and Serialization

This class overrides equals():
å public boolean equals(Object obj)

Tests this title for equality with an arbitrary object. This method returns true if and only if:

• obj is an instance of CompositeTitle;

• the container in obj is equal to the container for this composite title.

This class is cloneable and serializable.

39.4 DateTitle

39.4.1 Overview

A chart title that displays the current date (extends TextTitle). This class would normally be used
to add the date to a chart as a subtitle.

39.4.2 Constructor

To create a new date title for the default locale:
å public DateTitle(int style);

Creates a new date title with the specified style (defined by the DateFormat class). The title
position is, by default, the lower right corner of the chart.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 564

39.4.3 Methods

To set the date format:

å public void setDateFormat(int style, Locale locale);

Sets the date format to the given style and locale (the style is defined by constants in the
DateFormat class).

Other methods are inherited from the TextTitle class.

39.5 ImageTitle

39.5.1 Overview

A chart title that displays an image (extends Title).

39.5.2 Constructors

To create an image title:

å public ImageTitle(Image image);

Creates an image title. By default, the title is positioned at the top of the chart, and the image
is centered horizontally within the available space.

39.5.3 Methods

To change the image displayed by the image title:

å public void setImage(Image image);

Sets the image for the title and sends a TitleChangeEvent to all registered listeners.

Other methods are inherited from the Title class.

39.6 LegendGraphic

39.6.1 Overview

A graphical item, displayed as part of a legend item, that provides a visual link to a series in a
chart. The LegendTitle class uses this class in the construction of a chart’s legend.

39.6.2 Constructor

To create a new instance:

å public LegendGraphic(Shape shape, Paint fillPaint);

Creates a new graphic using the given shape and fillPaint.

39.6.3 Shape Attributes

To control whether or not the shape is visible:

å public boolean isShapeVisible();

Returns true if the shape is visible, and false otherwise.

å public void setShapeVisible(boolean visible);

Sets the visibility of the shape.

To access the shape itself:

å public Shape getShape();

Returns the shape for the legend graphic.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 565

å public void setShape(Shape shape);

Sets the shape for the legend graphic.

To control whether or not the shape is filled:

å public boolean isShapeFilled();

Returns true if the shape is filled, and false otherwise.

å public void setShapeFilled(boolean filled);

Sets the flag that controls whether or not the shape is filled.

å public Paint getFillPaint();

Returns the paint used to fill the shape.

å public void setFillPaint(Paint paint);

Sets the paint used to fill the shape.

As of version 1.0.4, this class supports the use of a GradientPaint for the fill paint, by recording a
transformer for the gradient coordinates:1

å public GradientPaintTransformer getFillPaintTransformer(); [1.0.4]

Returns the gradient paint transformer for the fill paint.

å public void setFillPaintTransformer(GradientPaintTransformer transformer); [1.0.4]

Sets the gradient paint transformer for the fill paint.

To control whether or not the shape outline is drawn:

å public boolean isShapeOutlineVisible();

Returns true if the shape outline is displayed, and false otherwise.

å public void setShapeOutlineVisible(boolean visible);

Sets the flag that controls whether or not the shape outline is drawn.

å public Paint getOutlinePaint();

Returns the paint used to draw the shape outline.

å public void setOutlinePaint(Paint paint);

Sets the paint used to draw the shape outline.

å public Stroke getOutlineStroke();

Returns the stroke used to draw the shape outline.

å public void setOutlineStroke(Stroke stroke);

Sets the stroke used to draw the shape outline.

å public RectangleAnchor getShapeAnchor(RectangleAnchor anchor);

Returns the anchor point for the shape.

å public void setShapeAnchor(RectangleAnchor anchor);

Sets the anchor point for the shape.

å public RectangleAnchor getShapeLocation();

Returns the shape location.

å public void setShapeLocation(RectangleAnchor location);

Sets the shape location.

39.6.4 Line Attributes

To control whether or not a line is drawn for the legend graphic:

å public boolean isLineVisible();

Returns true if a line is drawn for this legend graphic, and false otherwise.

å public void setLineVisible(boolean visible);

Sets the flag that controls whether or not a line is drawn for this legend graphic.

1Only some renderers support this.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 566

To control the shape of the line:

å public Shape getLine();

Returns the shape used for the line. Usually, this is a Line2D, but it is possible to use another
shape, such as a GeneralPath to draw the line.

å public void setLine(Shape line);

Sets the shape used for the line. Typically this will be a Line2D, but you can use other Shape

instances (for example, a GeneralPath). Note that, for alignment purposes, the (0, 0) coordinate
should lie approximately at the center of the line.

å public Paint getLinePaint();

Returns the Paint used to display the line.

å public void setLinePaint(Paint paint);

Sets the Paint used to display the line.

å public Stroke getLineStroke();

Returns the Stroke used to display the line.

å public void setLineStroke(Stroke stroke);

Sets the Stroke used to display the line.

39.6.5 Other Methods

The following methods are used by JFreeChart for layout and rendering:

å public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);

Arranges the graphics and returns its size.

å public void draw(Graphics2D g2, Rectangle2D area);

Draws the graphic within the specified rectangle.

å public Object draw(Graphics2D g2, Rectangle2D area, Object params);

Draws the graphic within the specified rectangle.

39.6.6 Equals, Cloning and Serialization

To check this legend for equality with another object:

å public boolean equals(Object obj);

Tests this title for equality with an arbitrary object.

This class is Cloneable and Serializable.

See Also
LegendItemBlockContainer.

39.7 LegendItemBlockContainer

39.7.1 Overview

A container used internally by JFreeChart to represent one item in a legend. This is a subclass of
BlockContainer.

39.7.2 Constructors

To create a:

å public LegendItemBlockContainer(Arrangement arrangement, int dataset, int series);

Creates a new container. The dataset and series indices are used to identify the source for this
legend item.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 567

39.7.3 Methods

å public int getDatasetIndex();

Returns the index of the dataset that this legend item represents. This is copied over to the
entity that is (optionally) created when this item is drawn.

å public int getSeriesIndex();

Returns the index of the series that this legend item represents. This is copied over to the
entity that is (optionally) created when this item is drawn.

å public Object draw(Graphics2D g2, Rectangle2D area, Object params);

Draws the container (which represents a legend item). This method is called by JFreeChart,
you won’t normally need to call it directly.

39.7.4 Notes

This class is used internally by the LegendTitle class—you won’t normally need to interact with
this class directly.

See Also
LegendGraphic, LegendTitle.

39.8 LegendTitle

39.8.1 Overview

A legend displays labels for the series in a chart, usually along with a small graphic item that
identifies the series (by color and/or style). For example, figure 39.1 shows a chart with two
legends, one on the left showing the colours for series “S1”, “S2” and “S3”, and the other on the
right showing the colour for series “S4”.

Dual Axis Chart

S1 S2 S3 S4

Category 1

Category 2

Category 3

Category 4

Category 5

Category 6

Category 7

Category 8

Category

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

V
a

lu
e

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

S
e

conda
ry

Figure 39.1: A chart with two legends (see DualAxisDemo1.java)

A legend is added to a chart using the addLegend() method in the JFreeChart class. This does the
same thing as calling addSubtitle(), since the legend is treated in the same way as any subtitle (see
Title). It is even possible to add more than one legend to a chart, and configure each to display
different subsets of the series in the chart (for example, see DualAxisDemo1.java in the JFreeChart
demo collection).

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 568

39.8.2 Usage

Adding a Legend

A chart typically has just one legend (although it is possible to add more legends to a chart, if
necessary). If you create your chart by calling one of the methods in the ChartFactory class, you
can get a default legend simply by setting the legend argument to true.

Controlling the Legend Position

The legend position can be specified by calling the setPosition() method defined in the Title class.
Assuming that your chart has a single legend (the most common case), you can change the location
of the legend as follows:

LegendTitle legend = chart.getLegend();

legend.setPosition(RectangleEdge.BOTTOM);

39.8.3 Constructors

To create a new legend:

å public LegendTitle(LegendItemSource source);

Creates a new legend that uses the specified source for legend items. Typically, the source is a
plot instance, in which case the legend will display all the series for the plot. It is possible to
display a subset of the series in the plot, by specifying a single renderer as the source.

å public LegendTitle(LegendItemSource source, Arrangement hLayout, Arrangement vLayout);

Creates a new legend that uses the specified source for legend items. The hLayout is used for
layout when the legend is at the top or bottom of the chart, and the vLayout is used when the
legend is at the left or right of the chart.

39.8.4 Legend Item Sources

The legend uses one or more sources for its legend items. A source is any class that implements the
LegendItemSource interface—this includes all plots and renderers in JFreeChart. The legend items
are fetched each time the chart is drawn (or redrawn), which allows for the fact that a dataset
change may alter the items that should be displayed in the legend.

å public LegendItemSource[] getSources();

Returns an array of the sources for the legend. The array may be empty, but is never null.

å public void setSources(LegendItemSource[] sources);

Sets the sources for the legend. A null argument will cause an exception.

By default, the legend will use the plot for the source, which results in all series being displayed
in the legend. You’ll only need to use the setSources() method if you want to display a legend (or
several legends) containing only a subset of the series in the chart.

39.8.5 Legend Appearance and Layout

The legend background is controlled with the following methods:

å public Paint getBackgroundPaint();

Returns the background paint for the legend. The default value is null.

å public void setBackgroundPaint(Paint paint);

Sets the background paint for the legend, and sends a TitleChangeEvent to all registered listeners.
If this is null, the legend will be transparent.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 569

39.8.6 Legend Item Appearance and Layout

The legend will typically contain one legend item for each series displayed in a chart. The item
has a small graphic that identifies the series in the chart, and a label that corresponds to the series
name. A number of methods are provided to customise the appearance of these legend items.

To modify the font used to display the legend item labels:

å public Font getItemFont();

Returns the font (never null) for the legend item labels. The default font is SansSerif PLAIN

10.

å public void setItemFont(Font font);

Sets the font for the legend item labels and sends a TitleChangeEvent to all registered listeners.
A null argument will cause an exception.

For example:

LegendTitle legend = chart.getLegend();
if (legend != null) {

legend.setItemFont(new Font("Dialog", Font.PLAIN, 18));
}

To set the padding around the item labels:

å public RectangleInsets getItemLabelPadding();

Returns the padding (never null) for the item labels. The default is (2.0, 2.0, 2.0, 2.0).

å public void setItemLabelPadding(RectangleInsets padding);

Sets the padding for the item labels and sends a TitleChangeEvent to all registered listeners. A
null argument will cause an exception.

To control the location of the item graphic relative to its text:

å public RectangleEdge getLegendItemGraphicEdge();

Returns the location (never null) of the item graphic relative to its text.

å public void setLegendItemGraphicEdge(RectangleEdge edge);

Sets the location of the item graphic relative to its text and sends a TitleChangeEvent to all
registered listeners. A null argument will cause an exception.

The location of the item graphic within its rectangle is determined by two attributes, the anchor
point and the location. The anchor point is a point on the item graphic that can be aligned with
the location point.

å public RectangleAnchor getLegendItemGraphicAnchor();

Returns the anchor (never null), which determines a point relative to the bounding box of the
legend item graphic that is used for alignment.

å public void setLegendItemGraphicAnchor(RectangleAnchor anchor);

Sets the anchor, which determines a point relative to the bounding box of the legend item
graphic that is used for alignment.

å public RectangleAnchor getLegendItemGraphicLocation();

Returns a location, relative to the bounding box of the legend item. The legend graphic will
be aligned relative to this point.

å public void setLegendItemGraphicLocation(RectangleAnchor anchor);

Sets the location, which defines a point relative to the bounding box of the legend item.

The padding around the legend item graphic is controlled with the following methods:

å public RectangleInsets getLegendItemGraphicPadding();

Returns the padding around the legend item graphic.

å public void setLegendItemGraphicPadding(RectangleInsets padding);

Sets the padding around the legend item graphic.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 570

39.8.7 The Legend Wrapper

A legend wrapper provides a mechanism to add one or more items (such as a title and subtitle) to
the legend, while still allowing for the automatic layout of the legend items.

å public void setWrapper(BlockContainer wrapper);

Sets the wrapper for the legend title. One of the blocks contained by wrapper should be the
item container which you can obtain from the getItemContainer() method.

å public BlockContainer getItemContainer();

Returns the container that is populated with legend items each time the legend is drawn.

A demo application (LegendWrapperDemo1.java) that shows how to use the wrapper facility is included
in the JFreeChart demo distribution

39.8.8 Other Methods

The remaining methods in the LegendTitle class are mostly used internally:
å protected void fetchLegendItems();

Fetches the legend items from the sources defined for the legend. This will be done every time
the legend is drawn.

å protected Block createLegendItemBlock(LegendItem item);

Creates a block representing the specified item. This code is contained in a separate method
to allow the possibility of overriding it to change the appearance of individual legend items.

å public Size2D arrange(Graphics2D g2, RectangleConstraint constraint);

Arranges the contents of the legend subject to the specified constraint and returns the size of
the legend.

å public void draw(Graphics2D g2, Rectangle2D area);

Draws the legend within the specified area.

å public Object draw(Graphics2D g2, Rectangle2D area, Object params);

Draws the legend within the specified area.

39.8.9 Equals, Cloning and Serialization

To check this legend for equality with another object:

å public boolean equals(Object obj);

Tests this title for equality with an arbitrary object.

This class is Cloneable and Serializable.

See Also
LegendItemSource.

39.9 PaintScaleLegend

39.9.1 Overview

A chart title that displays a PaintScale (extends Title). This is used to illustrate the color scale
used by a renderer like the XYBlockRenderer.

This class was first introduced in JFreeChart version 1.0.4.

39.9.2 Constructors

To create a new instance:

å public PaintScaleLegend(PaintScale scale, ValueAxis axis); [1.0.4]

Creates a new legend for the given scale. The supplied axis is used to show the numerical range
for the scale.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 571

39.9.3 Methods

The following methods are defined:

å public PaintScale getScale(); [1.0.4]

Returns the paint scale displayed in this legend.

å public void setScale(PaintScale scale); [1.0.4]

Sets the paint scale to be displayed in the legend and sends a TitleChangeEvent to all registered
listeners.

å public ValueAxis getAxis(); [1.0.4]

Returns the axis that shows the numerical range of the paint scale.

å public void setAxis(ValueAxis axis); [1.0.4]

Sets the axis that shows the numerical range of the paint scale and sends a TitleChangeEvent

to all registered listeners.

å public AxisLocation getAxisLocation(); [1.0.4]

Returns the location of the axis relative to the legend.

å public void setAxisLocation(AxisLocation location); [1.0.4]

Sets the location of the axis relative to the legend and sends a TitleChangeEvent to all registered
listeners.

å public double getAxisOffset(); [1.0.4]

Returns the offset (in Java2D units) between the color strip and the axis. The default value is
0.0.

å public void setAxisOffset(double offset); [1.0.4]

Sets the offset (in Java2D units) between the color strip and the axis, then sends a TitleChangeEvent

to all registered listeners.

å public double getStripWidth(); [1.0.4]

Returns the width of the color strip in Java2D units. The default value is 15.0.

å public void setStripWidth(double width); [1.0.4]

Sets the width of the color strip in Java2D units and sends a TitleChangeEvent to all registered
listeners.

å public boolean isStripOutlineVisible(); [1.0.4]

Returns a flag that controls whether or not an outline is drawn for the color strip. The default
value is false.

å public void setStripOutlineVisible(boolean visible); [1.0.4]

Sets a flag that controls whether or not an outline is drawn for the color strip and sends a
TitleChangeEvent to all registered listeners.

å public Paint getStripOutlinePaint(); [1.0.4]

Returns the paint used to draw the outline for the color strip (if the outline is visible).

å public void setStripOutlinePaint(Paint paint); [1.0.4]

Sets the paint used to draw the outline for the color strip (if the outline is visible) and sends a
TitleChangeEvent to all registered listeners.

å public Stroke getStripOutlineStroke(); [1.0.4]

Returns the stroke used to draw the outline for the color strip (if the outline is visible).

å public void setStripOutlineStroke(Stroke stroke); [1.0.4]

Sets the stroke used to draw the outline for the color strip (if the outline is visible) and sends
a TitleChangeEvent to all registered listeners.

å public Paint getBackgroundPaint(); [1.0.4]

Returns the background paint for the legend. The default value is null, which means the legend
background is transparent.

å public void setBackgroundPaint(Paint paint); [1.0.4]

Sets the background paint for the legend (null is permitted) and sends a TitleChangeEvent to
all registered listeners.

Other methods are inherited from the Title class.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 572

39.9.4 Other Methods

The following methods are used by JFreeChart when drawing the legend:

å public Size2D arrange(Graphics2D g2, RectangleConstraint constraint); [1.0.4]

Performs a layout on the legend, subject to the supplied constraint.

å public void draw(Graphics2D g2, Rectangle2D area); [1.0.4]

Draws the legend within the specified area.

å public Object draw(Graphics2D g2, Rectangle2D area, Object params); [1.0.4]

Draws the legend within the specified area.

39.9.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.4]

Tests this legend for equality with an arbitrary object.

Instances of this class are Cloneable (also implements PublicCloneable) and Serializable.

39.9.6 Notes

Some points to note:

• several demos (XYBlockChartDemo1-3.java) are included in the JFreeChart demo collection.

See Also
PaintScale, XYBlockRenderer.

39.10 TextTitle

39.10.1 Overview

A chart title that displays a text string (extends Title). Long titles automatically wrap to the next
line, and you can also specify line breaks by inserting a newline character in the title’s text.

39.10.2 Constructors

To create a text title for a chart:

å public TextTitle();

Equivalent to TextTitle("")—see the next constructor.

å public TextTitle(String text);

Creates a chart title using the specified text. By default, the title will be positioned at the
top of the chart, centered horizontally. The font defaults to SansSerif, 12pt bold and the color
defaults to black.

There are other constructors that provide more control over the attributes of the TextTitle.

å public TextTitle(String text, Font font);

Creates a new title with the specified text and font, and default attributes.

å public TextTitle(String text, Font font, Paint paint, RectangleEdge position,

HorizontalAlignment horizontalAlignment, VerticalAlignment verticalAlignment, RectangleInsets

padding);

Creates a new text title with the specified attributes.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 573

39.10.3 General Attributes

This class inherits attributes from the Title class, and adds a number of its own.

To control the title text:

å public String getText();

Returns the text displayed in the title.

å public void setText(String text);

Sets the text for the title and sends a TitleChangeEvent to all registered listeners. The text

string may contain explicit
n characters, which force a line break in the title. If text is null, this method throws an
IllegalArgumentException.

To set the font for the title:

å public Font getFont();

Returns the font used to display the title. The default value is Font("SansSerif", Font.BOLD,

12). This method never returns null.

å public void setFont(Font font);

Sets the font for the title and sends a TitleChangeEvent to all registered listeners. If font is
null, this method throws an IllegalArgumentException.

To set the color of the title:

å public Paint getPaint();

Returns the paint used to display the title text. The default value is Color.black. This method
never returns null.

å public void setPaint(Paint paint);

Sets the paint used to display the title text and sends a TitleChangeEvent to all registered
listeners. If paint is null, this method throws an IllegalArgumentException.

To control the text alignment:

å public HorizontalAlignment getTextAlignment();

Returns the horizontal text alignment. The default value is HorizontalAlignment.CENTER. Note
that this indicates the text alignment within the title’s bounds.

å public void setTextAlignment(HorizontalAlignment alignment);

Sets the alignment of the text within the title bounds, and sends a TitleChangeEvent to all
registered listeners. The alignment argument must be one of:

• HorizontalAlignment.LEFT;

• HorizontalAlignment.CENTER;

• HorizontalAlignment.RIGHT.

To control the background paint for the title:

å public Paint getBackgroundPaint();

Returns the paint used to fill the background area within the title’s bounds. This method can
return null, in which case the title’s background is transparent.

å public void setBackgroundPaint(Paint paint);

Sets the paint used to fill the background area, and sends a TitleChangeEvent to all registered
listeners.

You can specify the (optional) tool tip text for the title:

å public String getToolTipText();

Returns the text that will be displayed as the tool tip for this title. The default value is null

(no tool tip).

å public void setToolTipText(String text);

Sets the text that will be displayed as the tool tip for this title, and sends a TitleChangeEvent

to all registered listeners. The text argument can be null, which means that no tool tip will
be displayed for the title.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 574

Similarly, you can specify a URL for the title (typically used in HTML image maps only):

å public String getURLText();

Returns the URL text for the title. The default value is null.

å public void setURLText(String text);

Sets the URL text for the title and sends a TitleChangeEvent to all registered listeners. The
text argument can be null.

There is a flag that controls whether the title bounds fit the title text or expand to fit any remaining
space:

å public boolean getExpandToFitSpace();

Returns the flag that controls whether or not the title expands to fit the available space. The
default value is false.

å public void setExpandToFitSpace(boolean expand);

Sets the flag that controls whether or not the title bounds expand to match the available space,
and sends a TitleChangeEvent to all registered listeners.

39.10.4 Other Methods

The following method is called by the JFreeChart class to draw the chart title:

å public void draw(Graphics2D g2, Rectangle2D area);

Draws the title onto a graphics device, to occupy the specified area.

There are additional methods inherited from the Title class.

39.10.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this title for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

39.10.6 Notes

Some points to note:

• the title string can contain any characters from the Unicode character set. However, you need
to ensure that the Font that you use to display the title actually supports the characters you
want to display. Most fonts do not support the full range of Unicode characters, but this
website has some information about fonts that you might be able to use:

http://www.ccss.de/slovo/unifonts.htm

• to set a border around the title, use the inherited setFrame() method.

See Also
Title.

39.11 Title

39.11.1 Overview

The base class for all chart titles. Several concrete sub-classes have been implemented, including:
TextTitle, DateTitle, LegendTitle and ImageTitle. All titles inherit margin, border and padding
attributes from the AbstractBlock class.

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 575

39.11.2 Constructors

This is an abstract class. The following constructors are available for subclasses to use:

å protected Title();

Creates a title with default attributes.

å protected Title(RectangleEdge position,

HorizontalAlignment horizontalAlignment, VerticalAlignment verticalAlignment);

Creates a title at the specified position using the given alignments.

å protected Title(RectangleEdge position,

HorizontalAlignment horizontalAlignment, VerticalAlignment verticalAlignment,

RectangleInsets padding);

Creates a new Title with the specified position, alignment and padding. All arguments must
be non-null.

39.11.3 Methods

To control the position of the title:

å public RectangleEdge getPosition();

Returns the position of the title (never null).

å public void setPosition(RectangleEdge position);

Sets the position for the title (null not permitted). Following the change, a TitleChangeEvent

is sent to all registered listeners (including, by default, the JFreeChart object that the title
belongs to).

Within the rectangular area allocated for the title, you can specify the horizontal alignment:

å public void setHorizontalAlignment(HorizontalAlignment alignment);

Sets the horizontal alignment for the title (null not permitted). Following the change, a
TitleChangeEvent is sent to all registered listeners.

Similarly, you can specify the vertical alignment:

å public void setVerticalAlignment(VerticalAlignment alignment);

Sets the vertical alignment for the title (null not permitted). Following the change, a TitleChangeEvent

is sent to all registered listeners.

39.11.4 Drawing Titles

Subclasses should implement the following method to draw themselves within the specified area:

å public abstract void draw(Graphics2D g2, Rectangle2D area);

Draws the title. Subclasses must implement this method.

39.11.5 Event Notification

Most changes to a title will generate a TitleChangeEvent which will be sent to all registered listeners.
By default, the chart that a title belongs to will be set up to receive these change events and typically
you won’t need to register any other listeners. However, this can be done with the following methods:

å public void addChangeListener(TitleChangeListener listener);

Registers a listener to receive change events generated by the title.

å public void removeChangeListener(TitleChangeListener listener);

Deregisters a listener so that it no longer receives change events generated by the title.

Subclasses change send a change event to all registered listeners using the following method:

å protected void notifyListeners(TitleChangeEvent event);

Sends the method to all registered listeners.

There is a flag that can be used to temporarily disable change events generated by the title:

CHAPTER 39. PACKAGE: ORG.JFREE.CHART.TITLE 576

å public boolean getNotify();

Returns the flag that indicates whether or not listeners should be notified when any title
attribute is changed.

å public void setNotify(boolean flag);

Sets the flag that indicates whether or not listeners should be notified when any title attribute
is changed. When this flag is set to true, a change event is generated immediately.

39.11.6 Equals, Cloning and Serialization

To test a title for equality with an arbitrary object:

å public boolean equals(Object obj);

Returns true if this title is equal to the specified object.

All titles should be Cloneable and Serializable, otherwise charts using titles will fail to clone and
serialize.

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the title.

39.11.7 Notes

Some points to note:

• the original version of this class was written by David Berry. I’ve since made a few changes
to the original version, but the idea for allowing a chart to have multiple titles came from
David.

• the JFreeChart class implements the TitleChangeListener interface, and receives notification
whenever a chart title is changed (this, in turn, triggers a ChartChangeEvent which usually
results in the chart being redrawn).

• this class implements Cloneable, which is useful when editing title properties because you can
edit a copy of the original, and then either apply the changes or cancel the changes.

Chapter 40

Package: org.jfree.chart.urls

40.1 Overview

This package contains support for URL generation for HTML image maps. URLs are generated (if
they are required) at the point that a renderer draws the visual representation of a data item. The
renderer queries a URL generator via one of the following interfaces:

• CategoryURLGenerator;

• PieURLGenerator;

• XYURLGenerator;

• XYZURLGenerator;

JFreeChart provides standard implementations for each of these interfaces. In addition, you can
easily write your own implementation and take full control of the URLs that are generated within
your image map.

40.2 CategoryURLGenerator

40.2.1 Overview

A category URL generator is used to generate a URL for each data item in a CategoryPlot. The
generator is associated with the plot’s renderer (an instance of CategoryItemRenderer) and the URLs
are used when you create an HTML image map for a chart image.

40.2.2 Methods

This method returns a URL for a specific data item:

å public String generateURL(CategoryDataset dataset, int series, int category);

Returns a URL for the specified data item. The series is the row index, and the category

is the column index for the dataset. A typical implementation of this interface will use these
arguments to construct an appropriate URL for the data item, but of course some implemen-
tations may choose to ignore these arguments. Note that JFreeChart calls this method during
chart rendering, you won’t normally call it directly yourself.

40.2.3 Notes

Some points to note:

• the StandardCategoryURLGenerator class is the only implementation of this interface provided
in the JFreeChart class library, but you can add your own implementation(s);

577

CHAPTER 40. PACKAGE: ORG.JFREE.CHART.URLS 578

• the ChartUtilities class contains code for writing HTML image maps.

40.3 CustomPieURLGenerator

40.3.1 Overview

A URL generator where the URLs for each pie section are manually specified in advance. This class
implements the PieURLGenerator interface.

40.3.2 Constructors

To create a new generator:

å public CustomPieURLGenerator();

Creates a new generator, initially with no URL entries assigned.

40.3.3 Methods

To get a URL for a pie section:

å public String generateURL(PieDataset dataset, Comparable key, int pieIndex);

Returns a URL from the generator’s lookup table.

å public int getListCount();

Returns the number of items (Map instances) in the URL list (see the addURLs() method). Each
map contains URLs for the sections in one pie chart (for regular pie charts, only one map is
required, but for use with the MultiplePiePlot class multiple maps are supported).

å public int getURLCount(int list);

Returns the number of URLs in the specified map.

å public String getURL(Comparable key, int pieItem);

Returns the URL for a section in the specified pie chart. JFreeChart will call this method
during chart rendering—you won’t normally need to call this method yourself.

å public void addURLs(Map urlMap);

Adds a collection of URLs for one pie chart.1

40.3.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this generator for equality with an arbitrary object.

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the generator.

40.3.5 Notes

Some points to note:

• the API for this class could be filled out a little, particularly in the area of added and removing
maps;

1This method has several limitations. Once you have added a map, you can’t retrieve it. In addition, you
can’t specify the index for the map (that is, which pie chart it applies to if the generator is being used with a
MultiplePiePlot).

CHAPTER 40. PACKAGE: ORG.JFREE.CHART.URLS 579

40.4 CustomXYURLGenerator

40.4.1 Overview

A URL generator that uses custom strings as the URL for each item in an XYDataset. This class
implements the XYURLGenerator interface.

40.5 PieURLGenerator

40.5.1 Overview

An interface defining the API that a caller (typically the PiePlot class) can use to obtain a URL
for a pie section. The resulting URL is used in the creation of HTML image maps.

There are two implementations of this interface provided in JFreeChart:

• StandardPieURLGenerator;

• CustomPieURLGenerator.

You are, of course, free to write your own implementation.

40.5.2 Usage

In the PiePlot class, a URL generator can be assigned to the plot using the setURLGenerator(PieURLGenerator)

method.

40.5.3 Methods

This method returns a URL for a specific data item:

å public String generateURL(PieDataset dataset, Comparable key, int pieIndex);

Returns a URL for the specified data item. The key is the key for the current section within
the dataset, and the pieIndex is used when multiple pie plots are included within one chart
(see the MultiplePiePlot class).

40.5.4 Notes

Some points to note:

• by convention, all classes that implement this interface should be either:

– immutable; or

– implement the PublicCloneable interface.

This provides a mechanism for a referring class to determine whether or not it needs to clone
the generator, and access to the clone() method in the case that the generator is cloneable.

• the ImageMapUtilities class contains methods to help with writing HTML image maps.

40.6 StandardCategoryURLGenerator

40.6.1 Overview

A class that generates a URL for a data item in a CategoryPlot. By default, this generator will
create URLs in the format:

index.html?series=<serieskey> &category=<categorykey>

CHAPTER 40. PACKAGE: ORG.JFREE.CHART.URLS 580

...where <serieskey> and <categorykey> are replaced with values from the dataset. This class imple-
ments the CategoryURLGenerator interface.2

40.6.2 Usage

If you create a chart using the ChartFactory class, you can ask for a default URL generator to be
installed in the renderer just by setting the urls flag (a parameter for most chart creation methods)
to true.

Alternatively, you can create a new generator and register it with the renderer (replacing the existing
generator, if there is one) as follows:

CategoryPlot plot = (CategoryPlot) chart.getPlot();
CategoryItemRenderer renderer = plot.getRenderer();
CategoryURLGenerator generator = new StandardCategoryURLGenerator(

"index.html", "series", "category");
renderer.setItemURLGenerator(generator);

Set the URL generator to null if you do not require URLs to be generated.

40.6.3 Constructors

To create a new generator:

å public StandardCategoryURLGenerator();

Creates a new generator with default values:

• prefix: index.html;

• seriesParameterName: series;

• categoryParameterName: category.

å public StandardCategoryURLGenerator(String prefix);

Creates a new generator with the given prefix and default values for the other attributes:

• seriesParameterName: series;

• categoryParameterName: category.

å public StandardCategoryURLGenerator(String prefix,

String seriesParameterName, String categoryParameterName);

Creates a new generator with the specified attributes.

40.6.4 Methods

The following method is called by the renderer to generator the URL for a single data item in a
chart:

å public String generateURL(CategoryDataset dataset, int series, int category)

Returns a string that will be used as the URL for the specified data item.

40.6.5 Notes

Some points to note:

• this class is the only implementation of the CategoryURLGenerator interface that is provided
by JFreeChart, but you can easily write your own implementation.

2Note that the use of & for the parameter separator is to ensure compliance with XHTML 1.0.

CHAPTER 40. PACKAGE: ORG.JFREE.CHART.URLS 581

40.7 StandardPieURLGenerator

40.7.1 Overview

A default URL generator for use when creating HTML image maps for pie charts. An instance of
this class can generate a URL for each section of a pie chart, in the form:

index.html?category=<sectionkey> &pieIndex=<pieIndex>

...where <sectionkey> and <pieIndex> are replaced with appropriate values. This class implements
the PieURLGenerator interface, and instances of this class are immutable.

40.7.2 Usage

If you create a new pie chart using the ChartFactory class, you can request that a default URL
generator be installed simply by passing true as the value of the urls flag. Alternatively, you can
create a new instance and assign it at any time as follows:

PiePlot plot = (PiePlot) chart.getPlot();

PieURLGenerator generator = new StandardPieURLGenerator();

plot.setURLGenerator(generator);

Set the URL generator to null if you do not require URLs to be generated.

40.7.3 Constructor

To create a new generator:

å public StandardPieURLGenerator();

Equivalent to this("index.html")—see the next constructor.

å public StandardPieURLGenerator(String prefix);

Equivalent to this(prefix, "category")—see the next constructor.

å public StandardPieURLGenerator(String prefix, String categoryParameterName);

Equivalent to this(prefix, categoryParameterName, "pieIndex")—see the next constructor.

å public StandardPieURLGenerator(String prefix, String categoryParameterName,

String indexParameterName);

Creates a new generator with the given attributes.

The default values for unspecified attributes are:

• prefix: index.html;

• categoryParameterName: category;

• indexParameterName: pieIndex.

40.7.4 Methods

To generate a URL for a pie section:

å public String generateURL(PieDataset dataset, Comparable key, int pieIndex);

Returns a string that will be used as the URL for the specified pie section. This method is
called by JFreeChart—you won’t normally need to call it directly.

CHAPTER 40. PACKAGE: ORG.JFREE.CHART.URLS 582

40.7.5 Equals, Cloning and Serialization

This class overrides the equals method:

å public boolean equals(Object obj);

Tests this generator for equality with an arbitrary object. This method returns true if and
only if:

• obj is not null;

• obj is an instance of StandardPieURLGenerator;

• this generator and obj have equal field values.

Instances of this class are Serializable but not Cloneable (cloning is not necessary because instances
of this class are immutable).

40.7.6 Notes

Some points to note:

• the pie index in the URL comes from the getIndex() method in the PiePlot class. Typically
this has a non-zero value only when using the MultiplePiePlot class.

40.8 StandardXYURLGenerator

40.8.1 Overview

A standard URL generator for use with an XYItemRenderer. The generator is used when creating
HTML image maps, and defines a URL for each data item that the renderer draws. This class
implements the XYURLGenerator interface.

40.8.2 Constructors

This class defines three constructors:

å public StandardXYURLGenerator();

Equivalent to StandardXYURLGenerator("index.html")—see the constructor below.

å public StandardXYURLGenerator(String prefix);

Equivalent to StandardXYURLGenerator()—see the constructor below.

å public StandardXYURLGenerator(String prefix, String seriesParameterName,

String itemParameterName);

Creates a new URL generator.

40.8.3 Method

The following method is called by the renderer (to generate a URL for an item in the dataset), you
won’t normally call this method directly:

å public String generateURL(XYDataset dataset, int series, int item);

Returns a URL for an item in the specified dataset.

40.8.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this generator for equality with an arbitrary object. This method returns true if and
only if:

• obj is not null;

CHAPTER 40. PACKAGE: ORG.JFREE.CHART.URLS 583

• obj is an instance of XYURLGenerator;

• obj has the same attributes as this generator.

Instances of this class are Serializable but not Cloneable (cloning isn’t necessary because instances
of this class are immutable).

40.9 StandardXYZURLGenerator

40.9.1 Overview

A URL generator that creates URLs for the items in an XYZDataset.

40.10 TimeSeriesURLGenerator

40.10.1 Overview

A URL generator that creates URLs for the items in an XYDataset. The x-values from the dataset
are evaluated as “milliseconds since midnight 1-Jan-1970” (as for java.util.Date) and converted
to date format.

40.11 URLUtilities

40.11.1 Overview

A utility class for working with URLs. At present, this class provides a single method for encoding
URLs that delegates to different methods in the Java runtime depending on the current runtime
version.

40.11.2 Method

å public static String encode(String s, String encoding);

Delegates to java.net.URLEncoder.encode(s, encoding) if the underlying JRE is version 1.4 or
later, otherwise reverts to the deprecated java.net.URLEncoder.encode(s) method.

40.11.3 Notes

In the future, when JFreeChart support for JDK 1.3.1 is dropped,3 this class will no longer be
required.

40.12 XYURLGenerator

40.12.1 Overview

An XY URL generator is used by a XYItemRenderer to generate URLs for use in HTML image maps.

40.12.2 Methods

This method returns a URL for a specific data item:

å public String generateURL(XYDataset data, int series, int item);

Returns a URL for the specified data item.

3There is no date for this yet.

CHAPTER 40. PACKAGE: ORG.JFREE.CHART.URLS 584

40.12.3 Notes

Some points to note:

• the StandardXYURLGenerator class is the only implementation of this interface provided in the
JFreeChart class library.

• the ChartUtilities class contains methods for writing HTML image maps.

40.13 XYZURLGenerator

40.13.1 Overview

An XYZ URL generator is used by a XYItemRenderer to generate URLs for use in HTML image
maps.

40.13.2 Methods

This method returns a URL for a specific data item:

å public String generateURL(XYDataset data, int series, int item);

Returns a URL for the specified data item.

40.13.3 Notes

Some points to note:

• the StandardXYURLGenerator class is the only implementation of this interface provided in the
JFreeChart class library.

• the ChartUtilities class contains methods for writing HTML image maps.

Chapter 41

Package: org.jfree.chart.util

41.1 Overview

This package contains utility classes used by JFreeChart. These classes might be candidates for a
future release of JCommon, but to ensure that our dependency on JCommon is for version 1.0.0 or
later, we keep this code here for now.

41.2 RelativeDateFormat

41.2.1 Overview

A custom date formatter that shows elapsed time in hours, minutes and seconds (relative to some
predefined point in time). You can use this formatter to format the labels on an axis that shows
elapsed time—see, for example, RelativeDateFormatDemo1.java. This class was first introduced
in JFreeChart 1.0.3.

41.2.2 Usage

The following sample code illustrates the use of this date formatter:

public static void main(String[] args) {
GregorianCalendar c0 = new GregorianCalendar(2006, 10, 1, 0, 0, 0);
GregorianCalendar c1 = new GregorianCalendar(2006, 10, 1, 11, 37, 43);
c1.set(Calendar.MILLISECOND, 123);

System.out.println("Default: ");
RelativeDateFormat rdf = new RelativeDateFormat(c0.getTimeInMillis());
System.out.println(rdf.format(c1.getTime()));
System.out.println();

System.out.println("Hide milliseconds: ");
rdf.setSecondFormatter(new DecimalFormat("0"));
System.out.println(rdf.format(c1.getTime()));
System.out.println();

System.out.println("Show zero day output: ");
rdf.setShowZeroDays(true);
System.out.println(rdf.format(c1.getTime()));
System.out.println();

System.out.println("Alternative suffixes: ");
rdf.setShowZeroDays(false);
rdf.setDaySuffix(":");
rdf.setHourSuffix(":");
rdf.setMinuteSuffix(":");
rdf.setSecondSuffix("");
System.out.println(rdf.format(c1.getTime()));
System.out.println();

}

The output from this code is:

585

CHAPTER 41. PACKAGE: ORG.JFREE.CHART.UTIL 586

Default:

11h37m43.123s

Hide milliseconds:

11h37m43s

Show zero day output:

0d11h37m43s

Alternative suffixes:

11:37:43

41.2.3 Constructors

The following constructors are defined:

å public RelativeDateFormat(); [1.0.3]

Creates a new instance with baseMillis set to zero.

å public RelativeDateFormat(Date time); [1.0.3]

Creates a new instance with the reference point (or baseMillis) taken from the supplied Date

instance.

å public RelativeDateFormat(long baseMillis); [1.0.3]

Creates a new instance with the specified reference point (baseMillis is specified in milliseconds
since 1-Jan-1970, the same encoding used by java.util.Date).

41.2.4 General Attributes

The baseMillis attribute defines the reference point for the elapsed time calculation:

å public long getBaseMillis(); [1.0.3]

Returns the reference point for the elapsed time calculation, expressed in milliseconds since
midnight, 1-Jan-1970. This is typically defined in the constructor.

å public void setBaseMillis(long baseMillis); [1.0.3]

Sets the reference point for the elapsed time calculation.

A flag determines whether or not the formatter displays the number of days if the elapsed time is
less than one day:

å public boolean getShowZeroDays(); [1.0.3]

Returns true if the formatter should display the day field if the elapsed time is less than one
day, and false otherwise. The default is false.

å public void setShowZeroDays(boolean show); [1.0.3]

Sets the flag that determines whether or not the formatter should display the day field if the
elapsed time is less than one day.

To control the text displayed following the day count:

å public String getDaySuffix(); [1.0.3]

Returns the string that is appended to the number of days in the formatted output. The default
value is "d".

å public void setDaySuffix(String suffix); [1.0.3]

Sets the string that is appended to the number of days in the formatted output. This method
throws an IllegalArgumentException if suffix is null (use an empty string for no suffix).

To control the text displayed following the number of hours in the elapsed time:

å public String getHourSuffix(); [1.0.3]

Returns the string that is appended to the number of hours in the formatted output. The
default value is "h".

å public void setHourSuffix(String suffix); [1.0.3]

Sets the string that is appended to the number of hours in the formatted output. This method
throws an IllegalArgumentException if suffix is null (use an empty string for no suffix).

CHAPTER 41. PACKAGE: ORG.JFREE.CHART.UTIL 587

To control the text displayed following the number of minutes in the elapsed time:

å public String getMinuteSuffix(); [1.0.3]

Returns the string that is appended to the number of minutes in the formatted output. The
default value is "m".

å public void setMinuteSuffix(String suffix); [1.0.3]

Sets the string that is appended to the number of days in the formatted output. This method
throws an IllegalArgumentException if suffix is null (use an empty string for no suffix).

To control the text displayed following the number of seconds in the elapsed time:

å public String getSecondSuffix(); [1.0.3]

Returns the string that is appended to the number of seconds in the formatted output. The
default value is "s".

å public void setSecondSuffix(String suffix); [1.0.3]

Sets the string that is appended to the number of seconds in the formatted output. This method
throws an IllegalArgumentException if suffix is null (use an empty string for no suffix).

Since the elapsed seconds can be computed with millisecond precision, it is possible to specify a
NumberFormat instance to control how this value is displayed:

å public void setSecondFormatter(NumberFormat formatter); [1.0.3]

Specifies the number formatter used for the seconds field (remember that date/time values
can be specified with millisecond precision). If formatter is null, this method throws an
IllegalArgumentException.

41.2.5 Formatting and Parsing

The formatting is implemented by the following method:

å public StringBuffer format(Date date, StringBuffer toAppendTo, FieldPosition fieldPosition);

[1.0.3]

Appends the elapsed time between baseMillis and the millisecond represented by Date to the
specified StringBuffer.

Parsing is not supported by this class:

å public Date parse(String source, ParsePosition pos); [1.0.3]

This method always returns null, because parsing is not supported by this formatter.

41.2.6 Equals, Cloning and Serialization

This class overrides the equals method:

å public boolean equals(Object obj); [1.0.3]

Tests this formatter for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

41.2.7 Notes

Some points to note:

• this class cannot be used for parsing dates;

• this class was first introduced in JFreeChart 1.0.3;

• a demo (RelativeDateFormatDemo1.java) is included in the JFreeChart demo collection.

Chapter 42

Package: org.jfree.data

42.1 Introduction

This package contains interfaces and classes for the datasets used by JFreeChart.

A design principle in JFreeChart is that there should be a clear separation between the data (as
represented by the classes in this package) and its presentation (controlled by the plot and renderer
classes defined elsewhere). For this reason, you will not find methods or attributes that relate to
presentation (for example, series colors or line styles) in the dataset classes.

42.2 ComparableObjectItem

42.2.1 Overview

A base class that associates an Object with a Comparable instance. This base class is designed to
be subclassed—the following subclasses are included in JFreeChart:

• OHLCItem;

• XIntervalDataItem;

• YIntervalDataItem;

• XYIntervalDataItem;

Typically, you won’t use any of these classes directly—they will be created by the corresponding
ComparableObjectSeries subclass as required.

This class was first introduced in JFreeChart version 1.0.3.

42.2.2 Constructor

A single constructor is defined:

å public ComparableObjectItem(Comparable x, Object y);

Creates a new instance. If x is null, this constructor throws an IllegalArgumentException. Note
that x should be both immutable and Serializable.

42.2.3 Methods

The following methods are defined:

å protected Comparable getComparable();

Returns the x-value that was passed to the constructor (never null).

588

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 589

å protected Object getObject();

Returns the y-value that was passed to the constructor (possibly null).

å protected void setObject(Object y);

Sets the y-value (null is permitted).

å public int compareTo(Object o1);

Compares this instance to an arbitrary object. This default implementation checks to see if o1

is an instance of ComparableObjectItem, and if so returns the comparison of the Comparable for
this instance versus the Comparable for o1.

42.2.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable (provided that the x and y values passed to
the constructor are Serializable).

See Also
ComparableObjectSeries.

42.3 ComparableObjectSeries

42.3.1 Overview

A series containing zero, one or many items of the form (Comparable, Object). This is a very
general base class that provides a useful base for subclasses to implement special kinds of series and
datasets. Known subclasses include:

• XYIntervalSeries.

This class was first introduced in JFreeChart version 1.0.3.

42.3.2 Constructor

To create a new series:

å public ComparableObjectSeries(Comparable key); [1.0.3]

Equivalent to ComparableObjectSeries(key, true, true)—see the next constructor.

å public ComparableObjectSeries(Comparable key, boolean autoSort,

boolean allowDuplicateXValues); [1.0.3]

Creates a new series. The key is used to uniquely identify the series, and should be both
immutable and Serializable. The autoSort flag controls whether or not the items in the series
are sorted by ascending order of the Comparable x-value. The allowDuplicateXValues method
determines whether two (or more) items in the series can have the same Comparable x-value.

42.3.3 Methods

The following methods are defined:

å public boolean getAutoSort(); [1.0.3]

Returns true if the items in the series are automatically sorted into ascending order by x-value,
and false otherwise.

å public boolean getAllowDuplicateXValues(); [1.0.3]

Returns true if two (or more) items in the series can have the same x-value, and false otherwise.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 590

å public int getItemCount(); [1.0.3]

Returns the number of items in the series.

å public int getMaximumItemCount(); [1.0.3]

Returns the maximum number of items that can be added to the series.

å public void setMaximumItemCount(int maximum); [1.0.3]

Sets the maximum number of items that can be added to the series.

å protected void add(Comparable x, Object y); [1.0.3]

Equivalent to add(x, y, true)—see the next method.

å protected void add(Comparable x, Object y, boolean notify); [1.0.3]

Adds a new (Comparable, Object) data item to the series and, if notify is true, sends a
SeriesChangeEvent to all registered listeners.

å protected void add(ComparableObjectItem item, boolean notify); [1.0.3]

Adds a new items to the series and, if notify is true, sends a SeriesChangeEvent to all registered
listeners.

å public int indexOf(Comparable x); [1.0.3]

Returns the index of an item in the series that has the specified x-value, or -1.

å protected void update(Comparable x, Object y); [1.0.3]

Replaces the y-value for the item with the specified x-value.

å protected void updateByIndex(int index, Object y); [1.0.3]

Replaces the y-value for the item at the specified index.

å protected ComparableObjectItem getDataItem(int index); [1.0.3]

Returns the data item at the specified position in the series.

å protected void delete(int start, int end); [1.0.3]

Deletes all the items in the series from start to end inclusive, and sends a SeriesChangeEvent to
all registered listeners.

å protected void clear(); [1.0.3]

Clears all items from the series and sends a SeriesChangeEvent to all registered listeners.

å protected ComparableObjectItem remove(int index); [1.0.3]

Removes the item at the specified index, sends a SeriesChangeEvent to all registered listeners,
and returns a reference to the removed item.

å public ComparableObjectItem remove(Comparable x); [1.0.3]

Removes the item with the specified x-value, sends a SeriesChangeEvent to all registered listen-
ers, and returns a reference to the removed item.

42.3.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this series for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

42.4 DataUtilities

42.4.1 Overview

This class contains utility methods that relate to general data classes (but not datasets, for which
there is the DatasetUtilities class).

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 591

42.4.2 Methods

To create an array of Number objects from an array of double primitives:

å public static Number[] createNumberArray(double[] data);

Returns an array of Double objects created from the values in the data array (null not permit-
ted).

å public static Number[][] createNumberArray2D(double[][] data);

Returns an array of arrays of Double objects created from the values in the data array. Note that
this structure may be “jagged” (each array within the structure may have a different length).

To calculate the cumulative percentage values from a collection of data values:

å public static KeyedValues getCumulativePercentages(KeyedValues data);

Returns a new collection of data values containing the cumulative percentage values from the
specified data.

See Also
DatasetUtilities.

42.5 DefaultKeyedValue

42.5.1 Overview

A (key, value) data item, where the key is an instance of Comparable and the value is an instance
of Number. For the value, you can use null to represent a missing or unknown value. This class
provides a default implementation of the KeyedValue interface.

42.5.2 Usage

This class is typically used to represent individual data items in a larger collection, such as
DefaultKeyedValues.

42.5.3 Constructor

To create a new instance:

å public DefaultKeyedValue(Comparable key, Number value);

Creates a new data item that associates a value with a key. The key should be an immutable
object such as String. The value can be any Number instance, or null to represent a missing or
unknown value.

42.5.4 Methods

There are methods to access the key and value attributes:

å public Comparable getKey();

Returns the key.

å public Number getValue();

Returns the value (possibly null).

Once a DefaultKeyedValue instance is created, the key can never be changed, but you can update
the value:

å public synchronized void setValue(Number value);

Sets the value for this data item.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 592

42.5.5 Notes

Some points to note:

• cloning is supported, but no deep cloning is performed because it is assumed that both the
key and value are immutable (we know this is true for the value, and assume it to be true for
the key).

• this class is serializable provided that the key is serializable.

42.6 DefaultKeyedValues

42.6.1 Overview

An ordered list of (key, value) data items, where the key is an instance of Comparable1 and the
value is an instance of Number. This class implements the KeyedValues interface.

This class is typically used as internal storage for other classes in JFreeChart—for example, the
DefaultPieDataset class.

42.6.2 Constructor

To create a new instance:

å public DefaultKeyedValues();

Creates a new instance that is initially empty.

42.6.3 Reading Values

To find the number of items in the data structure:

å public int getItemCount();

Returns the number of items in the data structure (possibly 0).

To obtain a list of the keys in the data structure:

å public List getKeys();

Returns a new list containing references to the keys in this data structure. The order of the
keys in the list is significant, because it is possible to fetch keys and values from this data
structure using an integer index (see getKey(int) and getValue(int)). Modifying the content
of the returned list has no effect on the DefaultKeyedValues instance.

To get the key for an item in the data structure:

å public Comparable getKey(int index);

Returns the key (never null) at the specified index. If index is not in the range 0 to getItemCount()

- 1, this method throws an IndexOutOfBoundsException.

To get the index for a key in the data structure:

å public int getIndex(Comparable key);

Returns the index of the specified key, or -1 if the key is not found. If key is null, this method
throws an IllegalArgumentException.

To get the value for an item in the data structure:

å public Number getValue(int index);

Returns the value (possibly null) with the specified index. If index is not in the range 0 to
getItemCount() - 1, this method throws an IndexOutOfBounds exception.

å public Number getValue(Comparable key);

Returns the value (possibly null) associated with the specified key. If there is no item with the
specified key, this method throws an UnknownKeyException. If key is null, this method throws
an IllegalArgumentException.

1You can use String instances as keys, since String implements Comparable.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 593

42.6.4 Adding and Updating Values

To add or update a value in the container:
å public void addValue(Comparable key, double value);

Equivalent to addValue(key, new Double(value))—see below.

å public void addValue(Comparable key, Number value);

Equivalent to setValue(key, value)—see below.

å public void setValue(Comparable key, double value);

Equivalent to setValue(key, new Double(value))—see below.

å public void setValue(Comparable key, Number value);

Adds a new (key, value) data item to the end of the list or, if there is already an item with the
specified key, updates an existing item. If key is null, this method throws an IllegalArgument-

Exception. A null value is permitted, and indicates an unknown or missing data value.

In the preceding methods, the key can be any instance of Comparable—for most purposes, a String is
sufficient. It is recommended that you use immutable objects for keys, although this is not enforced.

42.6.5 Removing Values

To remove an item from the list:
å public void removeValue(int index);

Removes the value with the specified index (which should be in the range 0 to getItemCount()

- 1). If index is outside this range, this method throws an IndexOutBoundsException.

å public void removeValue(Comparable key);

Removes the value with the specified key (if the key is not recognised, this method throws an
UnknownKeyException). If key is null, this method throws an IllegalArgumentException.

To clear all values from the container:
å public void clear(); [1.0.2]

Clears any values from the container, making it empty.

42.6.6 Sorting Items

A couple of utility methods are provided to sort the items in the list by key or by value:
å public void sortByKeys(SortOrder order);

Sorts the items in the list, by key, into the specified order (SortOrder.ASCENDING or
SortOrder.DESCENDING). If order is null, this method throws an IllegalArgumentException.

å public void sortByValues(SortOrder order);

Sorts the items in the list, by value, into the specified order (SortOrder.ASCENDING or
SortOrder.DESCENDING). If order is null, this method throws an IllegalArgumentException.

42.6.7 Equals, Cloning and Serialization

This class overrides the equals() and hashCode() methods:
å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary (possibly null) object. Returns true if and
only if:

• obj is an instance of KeyedValues;

• obj contains the same items in the same order as this list.

å public int hashCode();

Returns a hash code for this instance.

To make a clone:
å public Object clone() throws CloneNotSupportedException;

Returns an independent copy of this instance. A CloneNotSupportedException may be thrown if
you use keys that are not Cloneable.

Instances of this class are serializable.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 594

42.6.8 Notes

Some points to note:

• if you are relying on this data structure being Cloneable and Serializable, you should ensure
that the keys for the data items you add to the structure support cloning and serialization;

• this class provides a default implementation of the KeyedValues interface;

• this class is used in the implementation of the DefaultPieDataset class.

42.7 DefaultKeyedValues2D

42.7.1 Overview

A storage structure for a table of values that are associated with (non-null) keys. This class provides
a default implementation of the KeyedValues2D interface. For general JFreeChart work, you probably
won’t need to use this class directly.

42.7.2 Constructors

This class defines two constructors:

å public DefaultKeyedValues2D();

Equivalent to DefaultKeyedValues2D(false)—see the next constructor.

å public DefaultKeyedValues2D(boolean sortRowKeys);

Creates a new data structure, initially empty. The sortRowKeys controls whether or not the
rows in the table are reordered by ascending order of row keys.

42.7.3 Data Access By Index

To access the data values from the table by index, the following method can be used:

å public Number getValue(int row, int column);

Returns the value (possibly null) at a given cell in the table. If row is not in the range 0

to getRowCount() - 1 this method throws an IndexOutOfBoundsException. A similar check is
performed for the column argument.

The row and column counts can be found with the following methods:

å public int getRowCount();

Returns the number of rows in the table.

å public int getColumnCount();

Returns the number of columns in the table.

42.7.4 Data Access By Keys

Sometimes it is more convenient to access the data values using a pair of keys, one to identify the
row and the other to identify the column:

å public Number getValue(Comparable rowKey, Comparable columnKey);

Returns the value for the specified cell in the table. If there is no cell with the specified keys,
this method throws an UnknownKeyException. If rowKey or columnKey is null, this method throws
an IllegalArgumentException.

To find information about the row keys, and to convert them to and from indices:

å public List getRowKeys();

Returns the list of row keys, in unmodifiable form.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 595

å public Comparable getRowKey(int row);

Returns the key for the specified row—the key is never null. If row is not in the range 0 to
getRowCount() - 1, this method throws an IndexOutOfBoundsException.

å public int getRowIndex(Comparable key);

Returns the index of the row with the specified key, or -1 if no row uses the specified key. If
key is null, this method throws an IllegalArgumentException.

Similarly, the following methods are provided for the column keys:

å public List getColumnKeys();

Returns the list of column keys, in unmodifiable form.

å public Comparable getColumnKey(int column);

Returns the key for the specified column—the key is never null. If column is not in the range
0 to getColumnCount() - 1, this method throws an IndexOutOfBoundsException.

å public int getColumnIndex(Comparable key);

Returns the index of the row with the specified key, or -1 if no row uses the specified key. If
key is null, this method throws an IllegalArgumentException.

42.7.5 Adding and Removing Data

To add a value to the table, or update an existing value:

å public void addValue(Number value, Comparable rowKey, Comparable columnKey);

Equivalent to setValue(value, rowKey, columnKey)—see the next method.

å public void setValue(Number value, Comparable rowKey, Comparable columnKey);

Adds a value to the table, or overwrites an existing value. If rowKey or columnKey is null, this
method throws an IllegalArgumentException.

To remove an item from the table:

å public void removeValue(Comparable rowKey, Comparable columnKey);

Removes an item from the table (if that results in either the row or column holding only null

values, that row or column is removed). If rowKey or columnKey is null, this method throws an
IllegalArgumentException.

To remove a row from the dataset:

å public void removeRow(int row);

Removes the specified row from the dataset. If row is not in the range 0 to getRowCount() - 1,
this method throws an IndexOutOfBoundsException.

å public void removeRow(Comparable rowKey);

Removes the specified row from the dataset. If the table does not contain a row with the
specified key, this method throws an UnknownKeyException. If rowKey is null, this method throws
an IllegalArgumentException.

To remove a column from the dataset:

å public void removeColumn(int column);

Removes the specified column from the dataset. If column is not in the range 0 to getColumnCount()

- 1, this method throws an IndexOutOfBoundsException.

å public void removeColumn(Comparable columnKey);

Removes the specified column from the dataset. If the table does not contain a column with
the specified key, this method throws an UnknownKeyException. If columnKey is null, this method
throws an IllegalArgumentException.

To clear the table completely:

å public void clear();

Clears the table of all data values.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 596

42.7.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this data structure for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

42.7.7 Notes

The DefaultCategoryDataset class uses an instance of this class to store its data.

42.8 DomainInfo

42.8.1 Overview

An interface that provides information about the bounds for a dataset’s domain (x-values). A
dataset should implement this interface if it can provide this information in an efficient way—
otherwise, methods in the DatasetUtilities class will iterate over all values in the dataset to
determine the bounds.

42.8.2 Methods

To get the minimum value in the dataset’s domain:

å public double getDomainLowerBound(boolean includeInterval);

Returns the lower bound in the dataset’s domain (x-values).

To get the maximum value in the dataset’s domain:

å public double getDomainUpperBound(boolean includeInterval);

Returns the upper bound in the dataset’s domain (x-values).

To get the range of values in the dataset’s domain:

å public Range getDomainBounds(boolean includeInterval);

Returns the bounds of the dataset’s domain (x-values).

For all of the above methods, the includeInterval argument is intended for “extended” datasets
that define domain values as intervals (for example, instances of IntervalXYDataset). For these
datasets, the caller may be interested in the bounds with or without including the interval. Regular
datasets can ignore this argument.

42.8.3 Notes

It is not mandatory for a dataset to implement this interface.

See Also
RangeInfo, DatasetUtilities.

42.9 DomainOrder

42.9.1 Overview

An enumeration of the order of the domain values in a dataset—see table 42.1 for a list of the
defined values.
This enumeration is used by the getDomainOrder() method in the XYDataset interface.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 597

ID: Description:

DomainOrder.ASCENDING Ascending order.
DomainOrder.DESCENDING Descending order.
DomainOrder.NONE No order.

Table 42.1: Constants defined by DomainOrder

42.10 KeyedObject

42.10.1 Overview

A simple class that associates an arbitrary object with a key value.

42.10.2 Constructor

To create a new instance:

å public KeyedObject(Comparable key, Object object);

Creates a new (key, value) pair.

42.10.3 Methods

To access the key:

å public Comparable getKey();

Returns the key, as defined via the constructor.

To access the object:

å public Object getObject();

Returns the object (possibly null).

å public void setObject(Object object);

Sets the object (null is permitted).

42.10.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

Instances of this class are cloneable:

å public Object clone() throws CloneNotSupportedException;

Returns a clone of this instance. The key is assumed to be immutable, so the clone references
the same key as this instance. The object is deep-cloned if it implemented the PublicCloneable

interface.

Instances of this class are serializable, provided that both the key and its associated object are
serializable.

See Also
KeyedObjects.

42.11 KeyedObjects

42.11.1 Overview

An ordered list of (Comparable, Object) data items. This class is used by the KeyedObjects2D class.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 598

42.11.2 Constructor

To create a new instance:
å public KeyedObjects();

Creates a new collection, initially empty.

42.11.3 General Methods

To find the number of items in the list:
å public int getItemCount();

Returns the number of (key, value) items in the collection.

To get the key for the item at a specified index in the list:
å public Comparable getKey(int index);

Returns the key at the given position in the list. If index is not in the range 0 to getItemCount()

- 1, this method throws an IndexOutOfBoundsException.

To get the index for the item in the list with the specified key:
å public int getIndex(Comparable key);

Returns the position in the list for the given key, or -1 if the specified key is not present. If key

is null, this method throws an IllegalArgumentException.

To get a list containing the keys for this list:
å public List getKeys();

Returns a list containing all the keys from this list.

To get the object at the specified position in the list:
å public Object getObject(int item);

Returns the object (possibly null) at the given position in the list. If item is not in the range
0 to getItemCount() - 1, this method throws an IndexOutOfBoundsException.

To get the object associated with a key:
å public Object getObject(Comparable key);

Returns the object associated with the specified key. If the specified key is not found, this
method throws an UnknownKeyException.

42.11.4 Adding and Removing

To add an item to the (end of the) list:
å public void addObject(Comparable key, Object object);

Equivalent to setObject(key, object)—see the next method.

å public void setObject(Comparable key, Object object);

Adds a key and its associated object to the list (the object may be null). If the list already
contains an item with the specified key, the object for that key is updated. It is highly rec-
ommended that the key should be an immutable object instance. If key is null, this method
throws an IllegalArgumentException.

To insert an item at a specific position within the list:
å public void insertValue(int position, Comparable key, Object value); [1.0.7]

Inserts an item at the specified position in the list.

To remove an item:
å public void removeValue(int index);

Removes the item at the specified position in the list.

å public void removeValue(Comparable key);

Removes the item with the specified key. If the specified key is not found, this method throws
an UnknownKeyException.

To clear all items from the list:
å public void clear(); [1.0.7]

Clears all items from the list.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 599

42.11.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object o);

Tests this list for equality with an arbitrary object.

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the list.

See Also
KeyedObject, KeyedObjects2D.

42.12 KeyedObjects2D

42.12.1 Overview

A tabular data structure that stores arbitrary objects that are accessible via row and column keys.
This class is used internally by the following classes:

• DefaultBoxAndWhiskerCategoryDataset;

• DefaultStatisticalCategoryDataset.

42.12.2 Constructor

This class defines only the default constructor:

å public KeyedObjects2D();

Creates a new (empty) table of objects.

42.12.3 Data Access By Index

To access the data values from the table by index, the following method can be used:

å public Object getObject(int row, int column);

Returns the object (possibly null) at a given cell in the table. If row is not in the range 0 to
getRowCount() - 1, this method throws an IndexOutOfBoundsException. Likewise for the column

argument.

The row and column counts can be found with the following methods:

å public int getRowCount();

Returns the number of rows in the table.

å public int getColumnCount();

Returns the number of columns in the table.

42.12.4 Data Access By Keys

To access a data item by key values:

å public Object getObject(Comparable rowKey, Comparable columnKey);

Returns the object (possibly null) at a cell in the table. If rowKey or columnKey is null, this
method throws an IllegalArgumentException. If rowKey or columnKey is not recognised, this
method throws an UnknownKeyException.

The row keys:

å public List getRowKeys();

Returns a list of the row keys for this table.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 600

å public Comparable getRowKey(int row);

Returns the key for the specified row in the table.

å public int getRowIndex(Comparable key);

Returns the row index for the specified key.

The column keys:

å public List getColumnKeys();

Returns a list of the column keys for this table.

å public Comparable getColumnKey(int column);

Returns the key for the specified column in the table.

å public int getColumnIndex(Comparable key);

Returns the column index for the specified key.

42.12.5 Adding and Removing Items

To add/remove items from the table:

å public void addObject(Object object, Comparable rowKey, Comparable columnKey);

Equivalent to setObject(object, rowKey, columnKey)—see the next method.

å public void setObject(Object object, Comparable rowKey, Comparable columnKey);

Adds the specified object to the table with the give row and column keys. If rowKey or columnKey
is null, this method throws an IllegalArgumentException.

å public void removeObject(Comparable rowKey, Comparable columnKey);

Removes the object at the specified cell in the table.

To remove an entire row or column from the table:

å public void removeRow(int rowIndex);

Removes an entire row from the table.

å public void removeRow(Comparable rowKey);

Removes an entire row from the table. If rowKey is null, this method throws an IllegalArgumentException.
If rowKey is not recognised, this method throws an UnknownKeyException.

å public void removeColumn(int columnIndex);

Removes an entire column from the table.

å public void removeColumn(Comparable columnKey);

Removes an entire column from the table. If columnKey is null, this method throws an
IllegalArgumentException. If columnKey is not recognised, this method throws an UnknownKeyException.

To clear all the data from this structure:

å public void clear(); [1.0.7]

Clears all data.

42.12.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this table for equality with an arbitrary object.

å public Object clone() throws CloneNotSupportedException;

Returns a clone of this table.

See Also
KeyedObject, KeyedObjects.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 601

42.13 KeyedValue

42.13.1 Overview

A keyed value is a value (Number) that is associated with a key (Comparable).

42.13.2 Methods

This interface extends the Value interface.

To access the key associated with the value:

å public Comparable getKey();

Returns the key associated with the value.

42.13.3 Notes

The DefaultKeyedValue class provides one implementation of this interface.

42.14 KeyedValueComparator

42.14.1 Overview

This class is used to compare two KeyedValue objects, either by key or by value.

42.14.2 Constructor

To create a new instance:

å public KeyedValueComparator(KeyedValueComparatorType type, SortOrder order);

Creates a new comparator. The type specifies whether to sort by keys or by values, and the
order specifies ascending or descending order.

42.14.3 Methods

å public KeyedValueComparatorType getType();

Returns the type of comparator (by key or by value).

å public SortOrder getOrder();

Returns the sort order (SortOrder.ASCENDING or SortOrder.DESCENDING).

å public int compare(Object o1, Object o2);

Compares two objects, which are assumed to be instances of KeyedValue, and returns -1, 0 or 1

to indicate the relative ordering of the two objects.

42.14.4 Notes

This comparator is used by the sortByKeys() and sortByValues() methods in the DefaultKeyedValues
class.

42.15 KeyedValueComparatorType

42.15.1 Overview

Used to represent the two comparison types:

• BY KEY—sorts items by key;

• BY VALUE—sorts items by value.

These constants are used by the KeyedValueComparator class.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 602

42.16 KeyedValues

42.16.1 Overview

A collection of (key, value) data items, where the key is an instance of Comparable and the value is
an instance of Number. This interface extends the Values interface. The DefaultKeyedValues class
provides a default implementation.

42.16.2 Methods

To access the key associated with a value:

å public Comparable getKey(int index);

Returns the key (never null) at the specified index. This method should throw an IndexOutOf-

BoundsException if index is not in the range 0 to getItemCount() - 1.

To convert a key into an item index:

å public int getIndex(Comparable key);

Returns the item index for the specified key, or -1 if no such key is found. This method should
throw an IllegalArgumentException if key is null.

To get a list of all keys in the collection:

å public List getKeys();

Returns an unmodifiable list of the keys in the collection.

To get the value associated with a key:

å public Number getValue(Comparable key);

Returns the value associated with a key.

42.16.3 Notes

Some points to note:

• the (key, value) pairs in the collection have a specific order, since each key is associated with
a zero-based index;

• the DefaultKeyedValues class provides one implementation of this interface.

42.17 KeyedValues2D

42.17.1 Overview

A table of values that can be accessed using a row key and a column key. This interface extends
the Values2D interface.

42.17.2 Methods

To get the key for a row:

å public Comparable getRowKey(int row);

Returns the key associated with a row.

To convert a row key into an index:

å public int getRowIndex(Comparable key);

Returns the row index for the given key.

To get a list of the row keys:

å public List getRowKeys();

Returns a list of the row keys.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 603

To get the key for a column:

å public Comparable getColumnKey(int column);

Returns the key associated with a column.

To convert a column key into an index:

å public int getColumnIndex(Comparable key);

Returns the column index for a given key.

To return a list of column keys:

å public List getColumnKeys();

Returns a list of the column keys.

To get the value associated with a pair of keys:

å public Number getValue(Comparable rowKey, Comparable columnKey);

Returns the value associated with the keys (possibly null.

42.17.3 Notes

The DefaultKeyedValues2D class provides one implementation of this interface.

42.18 KeyToGroupMap

42.18.1 Overview

A utility class that provides a mapping between a set of keys (instances of Comparable) and a set of
groups (also instances of Comparable). A default group is always specified, and any key that is not
explicitly mapped to a group is assumed to be mapped to the default group.

This class is Serializable and implements the Cloneable and PublicCloneable interfaces.

42.18.2 Constructors

To create a new map:

å public KeyToGroupMap(Comparable defaultGroup);

Creates a map with the specified default group (null not permitted). Apart from the default
group, the new map is empty. You can add groups and mappings using the methods documented
below.

There is also a default constructor:

å public KeyToGroupMap();

Creates a map with a default group named “Default Group”.

42.18.3 Methods

To find the group that a key is mapped to:

å public Comparable getGroup(Comparable key);

Returns the group that a key is mapped to. This method never returns null—if the key has
not been explicitly mapped, the default group is returned.

To map a key to a group:

å public void mapKeyToGroup(Comparable key, Comparable group);

Adds a mapping between the specified key and group (null is not permitted for the key, null

for the group clears any existing mapping for the specified key). If the key is already mapped
to a group, the mapping is changed. If the group is not defined within the map, it is added
automatically.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 604

To find out how many groups are represented within the map:

å public int getGroupCount();

Returns the number of groups in the map (this is always at least 1, since there is always a
default group).

To obtain a list of the groups in the map:

å public List getGroups();

Returns a list of the groups in the map. This list always contains at least one group (the default
group). The list itself is independent of the map, so you can alter it without affecting the state
of the map. The default group will always appear first in the list, the remaining groups are in
the order that they were originally added to the map.

All groups in the map are assigned a unique index (the index of the default group is always 0). To
get the index for a group:

å public int getGroupIndex(Comparable group);

Returns the group index (which corresponds to the position within the list returned by the
getGroups() method.

42.18.4 Notes

Some points to note:

• an instance of this class is used by the GroupedStackedBarRenderer class.

42.19 Range

42.19.1 Overview

A class that represents a range of values by recording the lower and upper bounds of the range.
This can be used, for example, to specify the bounds for an axis on a chart.

42.19.2 Constructor

To create a new instance:

å public Range(double lower, double upper);

Creates a new instance with the specified bounds. Note that lower must be less than or equals
to upper. Once created, an instance is immutable—you cannot change the bounds on that
instance.

42.19.3 Methods

This class provides methods to access the bounds, but not to change them. To get the lower bound,
upper bound, or central value for the range:

å public double getLowerBound();

Returns the lower bound for the range.

å public double getUpperBound();

Returns the upper bound for the range.

å public double getCentralValue();

Returns the central value for the range.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 605

42.19.4 Other Methods

To test whether or not a value falls within the range:

å public boolean contains(double value);

Returns true if lowerbound <= value <= upperbound, and false otherwise.

To test whether this range intersects with another range:

å public boolean intersects(double b0, double b1);

Returns true if this range intersects with the specified range, and false otherwise.

å public boolean intersects(Range range); [1.0.9]

Returns true if this range intersects the specified range, and false otherwise.

To “force” a value to fit within a range:

å public double constrain(double value);

Returns the value within the range that is closest to value. This will either be value or one of
the range bounds.

42.19.5 Combining, Shifting and Expanding Ranges

To combine two ranges:

å public static Range combine(Range range1, Range range2);

Returns a new range which encompasses both of the specified ranges.

To create a new range that is based on an existing range but expanded by a certain percentage:

å public static Range expand(Range range, double lowerMargin, double upperMargin);

Creates and returns a new range that is an expanded version of the supplied range. The
specified margins (percentages of the range length) are added to the existing range boundaries
to create the new range.

To shift a range:

å public static Range shift(Range base, double delta);

Creates a new range by adding delta to the lower and upper bounds of this range.

å public static Range shift(Range base, double delta, boolean allowZeroCrossing);

Creates a new range by adding delta to the lower and upper bounds of this range. The
allowZeroCrossing argument controls whether or not the bounds are allowed to cross zero. For
example, you might have a positive range that you want to shift downwards, but without
allowing the bounds to become negative.

å public static Range scale(Range base, double factor); [1.0.9]

Scales the range by multiplying the range bounds by the specified factor. If factor is less than
or equal to zero, this method throws an IllegalArgumentException.

42.19.6 Equals and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Returns true if obj:

• is not null;

• is an instance of Range;

• has upper and lower bounds that are the same as those of this range.

Otherwise returns false.

This class is Serializable but not Cloneable (not required since instances are immutable).

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 606

42.19.7 Notes

Some points to note:

• the DateRange class extends this class to support a date range.

42.20 RangeInfo

42.20.1 Overview

An interface that provides information about the bounds for a dataset’s range (y-values). A dataset
should implement this interface if it can provide this information in an efficient way—otherwise,
methods in the DatasetUtilities class will iterate over all values in the dataset to determine the
bounds.

42.20.2 Methods

To get the minimum value in the dataset’s range:

å public double getRangeLowerBound(boolean includeInterval);

Returns the lower bound for the dataset’s range (in other words, the smallest y-value in the
dataset). If the dataset contains no values, this method should return Double.NaN.

To get the maximum value in the dataset’s range:

å public double getRangeUpperBound(boolean includeInterval);

Returns the upper bound for the dataset’s range (in other words, the largest y-value in the
dataset). If the dataset contains no values, this method should return Double.NaN.

To get the range of values in the dataset’s range:

å public Range getRangeBounds(boolean includeInterval);

Returns the bounds for the dataset’s range. If the dataset contains no values, this method
should return null.

For all of the above methods, the includeInterval argument is intended for “extended” datasets that
define range values as intervals (for example, instances of IntervalXYDataset). For these datasets,
the caller may be interested in the bounds with or without including the interval. Regular datasets
can ignore this argument.

42.20.3 Notes

It is not mandatory for a dataset to implement this interface.

See Also
DomainInfo.

42.21 RangeType

42.21.1 Overview

This class provides an enumeration of range types for a NumberAxis class. The available types are:

• RangeType.FULL (the default for a NumberAxis);

• RangeType.NEGATIVE;

• RangeType.POSITIVE;

This is used to restrict the range of values displayed on a NumberAxis to positive values only, or
negative values only.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 607

42.22 UnknownKeyException

42.22.1 Overview

An exception that indicates that a key that has been used to access a data value is not recognised.
For example, methods in the following classes can throw this exception:

• DefaultPieDataset;

• DefaultCategoryDataset;

• DefaultKeyedValues;

• DefaultKeyedValues2D;

42.23 Value

42.23.1 Overview

An interface for accessing a single value (Number object). By way of an example, the ValueDataset

interface extends this interface, and is used by the ThermometerPlot class.

42.23.2 Methods

The interface defines a single method for accessing the value:

å public Number getValue();

Returns the value (possibly null).

42.23.3 Notes

Some notes:

• the KeyedValue interface extends this interface.

• the DefaultKeyedValue class provides one implementation of this interface.

42.24 Values

42.24.1 Overview

An interface for accessing an ordered list of values.

42.24.2 Methods

To get the number of items in the collection:

å public int getItemCount();

Returns the number of items in the ordered list of values. This may be zero.

To get a value from the list:

å public Number getValue(int index);

Returns the value with the specified index (possibly null). Classes that implement this method
should throw an IndexOutOfBoundsException if index is not in the range 0 to getItemCount() -

1.

CHAPTER 42. PACKAGE: ORG.JFREE.DATA 608

42.24.3 Notes

Some notes:

• the KeyedValues interface extends this interface.

• the DefaultKeyedValues class provides one implementation of this interface.

42.25 Values2D

42.25.1 Overview

An interface for accessing a table of values by row and column index.

42.25.2 Methods

To get the number of rows in the table:

å public int getRowCount();

Returns the row count.

To get the number of columns in the table:

å public int getColumnCount();

Returns the column count.

To get a value from one cell in the table:

å public Number getValue(int row, int column);

Returns a value (possibly null) from a cell in the table.

42.25.3 Notes

Some points to note:

• the KeyedValues2D interface extends this interface.

• the DefaultKeyedValues2D class provides one implementation of this interface.

Chapter 43

Package: org.jfree.data.category

43.1 Introduction

This package contains interfaces and classes for the datasets used (primarily) by JFreeChart’s
CategoryPlot class.

43.2 CategoryDataset

43.2.1 Overview

A category dataset is a table of values that can be accessed using row and column keys. This type
of dataset is most commonly used to create bar charts.

This interface extends the KeyedValues2D and Dataset interfaces.

43.2.2 Methods

This interface adds no additional methods to those defined in the KeyedValues2D and Dataset inter-
faces.

43.2.3 Notes

Some points to note:

• this interface provides the methods required for reading the dataset, not for updating it.
Classes that implement this interface may be “read-only”, or they may provide “write” access.

• the DefaultCategoryDataset class provides a useful implementation of this interface.

• the CategoryToPieDataset class converts one row or column of the dataset into a PieDataset.

• you can read a CategoryDataset from a file (in a prespecified XML format) using the DatasetReader
class.

See Also
CategoryPlot.

43.3 CategoryToPieDataset

43.3.1 Overview

A utility class that presents one row or column of data from a CategoryDataset via the PieDataset

interface.

609

CHAPTER 43. PACKAGE: ORG.JFREE.DATA.CATEGORY 610

43.3.2 Constructor

To create a new instance:

å public CategoryToPieDataset(CategoryDataset source, TableOrder extract, int index);

Creates a new pie dataset based on the source. The extract argument specifies whether the
dataset uses a row or column from the source dataset (use TableOrder.BY ROW or TableOrder.BY COLUMN),
and the index controls which row or column is selected.

43.3.3 Methods

The following methods provide details of the configuration of this dataset (as passed to the con-
structor):

å public CategoryDataset getUnderlyingDataset(); [1.0.2]

Returns a reference to the underlying dataset, which may be null.

å public TableOrder getExtractType(); [1.0.2]

Returns TableOrder.BY COLUMN or TableOrder.BY ROW to indicate how data is extracted from the
underlying dataset (the actual row or column used is determined by the value returned by
getExtractIndex().

å public int getExtractIndex(); [1.0.2]

Returns the row or column index from which to extract data from the underlying dataset.

The following methods are required to implement the PieDataset interface:

å public int getItemCount();

Returns the number of items in the dataset (which may be zero).

å public Number getValue(int index);

Returns the value at the specified index (the value may be null). This method throws an
IndexOutOfBoundsException if index is not in the range from 0 to getItemCount() - 1.

å public Comparable getKey(int index);

Returns the key with the specified index. This method throws an IndexOutOfBoundsException if
index is not in the range from 0 to getItemCount() - 1.

å public int getIndex(Comparable key);

Returns the index of the specified key, or -1 if there is no such key. If key is null, this method
throws an IllegalArgumentException.

å public List getKeys();

Returns an unmodifiable list of keys for the dataset. The list may be empty, but is never null.

å public Number getValue(Comparable key);

Returns the value associated with the specified key, or null if the key is not recognised.1

å public void datasetChanged (DatasetChangeEvent event);

This method receives events from the underlying dataset and responds by firing a new event
with this dataset as the source. You shouldn’t need to call this method directly.

43.3.4 Equals, Cloning and Serialization

This class overrides the equals method. Like other datasets, equality is determined only by the data
values (and keys) and not other characteristics of the dataset implementation:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object. Returns true if and only if:

• obj is an instance of PieDataset;

• obj has the same keys and values (in the same order) as this dataset.

Instances of this class are Cloneable and Serializable.
1Note that null is a possible value for valid keys also—in that case, you can call the getIndex(Comparable)

method to determine whether or not the key exists for the dataset.

CHAPTER 43. PACKAGE: ORG.JFREE.DATA.CATEGORY 611

43.3.5 Notes

This class registers itself with the underlying CategoryDataset to receive change events. Whenever
the underlying dataset is changed, a new DatasetChangeEvent is triggered and sent to all registered
listeners.

43.4 DefaultCategoryDataset

43.4.1 Overview

A dataset that implements the CategoryDataset interface, forming a two-dimensional table of values,
with keys for the row and column headings. The column headings are the “categories” for the
dataset, while the row headings are the series keys. This dataset is commonly used to create bar
charts, but can also be used for other chart types.

43.4.2 Constructors

To create a new dataset:

å public DefaultCategoryDataset();

Creates a new dataset that is initially empty.

43.4.3 Simple Data Access

This dataset is a two-dimensional table, with each cell in the table containing a Number value (or
null). To find out how many rows and columns the dataset/table has:

å public int getRowCount();

Returns the number of rows in the dataset (possibly zero).

å public int getColumnCount();

Returns the number of columns in the dataset (possibly zero).

To retrieve a value from the dataset:

å public Number getValue(int row, int column);

Returns the value from a cell in the dataset—the value may be null. If row is not in the range 0
to getRowCount() - 1, this method throws an IndexOutOfBoundsException (likewise for the column

argument).

43.4.4 Row And Column Keys

Each row and column in the dataset is associated with a key, which is an instance of Comparable

(typically a String). A pair of keys (one row key and one column key) uniquely identifies a cell in
the table. In charts, when a label is required for a row (series) or column (category), the toString()

method for the appropriate key is used.

To fetch a value from the dataset, given the row and column key:

å public Number getValue(Comparable rowKey, Comparable columnKey);

Returns the value from a cell in the dataset—this may be null. If either of the specified keys is
not defined for this dataset, the method throws an UnknownKeyException. If rowKey of columnKey

is null, this method throws an IllegalArgumentException.

The following methods are used to manage the row keys:

å public List getRowKeys();

Returns an ordered and unmodifiable list of the row keys for this dataset.

å public Comparable getRowKey(int row);

Returns the key for the specified row. If row is not in the range 0 to getRowCount() - 1, this
method throws an IndexOutOfBoundsException.

CHAPTER 43. PACKAGE: ORG.JFREE.DATA.CATEGORY 612

å public int getRowIndex(Comparable key);

Returns the row index for the specified key, or -1 if there is no row with the specified key. If
key is null, this method throws an IllegalArgumentException.

Similar methods are provided to manage the column keys:
å public List getColumnKeys();

Returns an ordered and unmodifiable list of the column keys for this dataset.

å public Comparable getColumnKey(int column);

Returns the key for the specified column. If column is not in the range 0 to getColumnCount() -

1, this method throws an IndexOutOfBoundsException.

å public int getColumnIndex(Comparable key);

Returns the column index for the specified key, or -1 if there is no column with the specified
key. If key is null, this method throws an IllegalArgumentException.

43.4.5 Adding and Updating Data

To add a value to the dataset:
å public addValue(Number value, Comparable rowKey, Comparable columnKey)

Adds a value to the dataset then sends a DatasetChangeEvent to all registered listeners. The
value can be null (to indicate missing data). If there is already a value for the given keys, it is
overwritten. If rowKey or columnKey is null, this method throws an IllegalArgumentException.

å public void addValue(double value, Comparable rowKey, Comparable columnKey);

Equivalent to addValue(new Double(value), rowKey, columnKey)—see the previous method.

å public void setValue(Number value, Comparable rowKey, Comparable columnKey);

Equivalent to addValue(Number, Comparable, Comparable)—see above.

å public void setValue(double value, Comparable rowKey, Comparable columnKey);

Equivalent to addValue(double, Comparable, Comparable)—see above.

The following method increments an existing value by the specified amount:
å public void incrementValue(double value, Comparable rowKey, Comparable columnKey);

Adds value to an existing item in the dataset. If the existing value is null, it is treated as
though it were 0.0. If rowKey or columnKey is not defined for this dataset, this method throws
an UnknownKeyException.

43.4.6 Removing Data

To remove a value from the dataset:
å public void removeValue(Comparable rowKey, Comparable columnKey);

Removes the specified value from the dataset and sends a DatasetChangeEvent to all registered
listeners. If rowKey or columnKey is null, this method throws an IllegalArgumentException.

To remove an entire row from the dataset:
å public void removeRow(int rowIndex);

Removes the specified row from the dataset and sends a DatasetChangeEvent to all registered
listeners.

å public void removeRow(Comparable rowKey);

As above.

To remove an entire column from the dataset:
å public void removeColumn(int columnIndex);

Removes the specified column from the dataset and sends a DatasetChangeEvent to all registered
listeners.

å public void removeColumn(Comparable columnKey);

As above.

To remove all data from the dataset:
å public void clear();

Clears all data from the dataset and sends a DatasetChangeEvent to all registered listeners.

CHAPTER 43. PACKAGE: ORG.JFREE.DATA.CATEGORY 613

43.4.7 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object.

Instances of this class are Cloneable2 and Serializable.

43.4.8 Notes

Some points to note:

• the DatasetUtilities class has static methods for creating instances of this class using array
data;

• internally, this class uses an instance of DefaultKeyedValues2D to store its data;

• the DatasetReader class provides a facility for reading a dataset from an XML file.

See Also
CategoryDataset, CategoryPlot.

43.5 DefaultIntervalCategoryDataset

43.5.1 Overview

A default implementation of the IntervalCategoryDataset interface. You can use this dataset with
a CategoryPlot and an IntervalBarRenderer.

43.5.2 Constructors

The following constructors are defined:

å public DefaultIntervalCategoryDataset(double[][] starts, double[][] ends);

Creates a new dataset with the supplied start and end values.

å public DefaultIntervalCategoryDataset(Number[][] starts, Number[][] ends);

Creates a new dataset with the supplied start and end values.

å public DefaultIntervalCategoryDataset(String[] seriesNames, Number[][] starts,

Number[][] ends);

Creates a new dataset with the specified series names, start values and end values. The category
names are automatically generated.

å public DefaultIntervalCategoryDataset(Comparable[] seriesKeys, Comparable[] categoryKeys,

Number[][] starts, Number[][] ends);

Creates a new dataset with the specified series names, category names, start values and end
values.

In all of the constructors, the data values are indexed by series then by category—for example, to
create a dataset with two series and three categories:

double[] starts_S1 = new double[] {0.1, 0.2, 0.3};

double[] starts_S2 = new double[] {0.3, 0.4, 0.5};

double[][] starts = new double[][] {starts_S1, starts_S2};

double[] ends_S1 = new double[] {0.5, 0.6, 0.7};

double[] ends_S2 = new double[] {0.7, 0.8, 0.9};

double[][] ends = new double[][] {ends_S1, ends_S2};

DefaultIntervalCategoryDataset d = new DefaultIntervalCategoryDataset(starts, ends);

2Note that in versions prior to 1.0.5, cloning doesn’t work correctly.

CHAPTER 43. PACKAGE: ORG.JFREE.DATA.CATEGORY 614

43.5.3 Series and Categories

To find the number of series:

å public int getSeriesCount();

Equivalent to getRowCount()—see the next method.

å public int getRowCount();

Returns the number of rows (series) in the dataset.

To convert between series keys and series indices:

å public Comparable getSeriesKey(int series);

Equivalent to getRowKey(series)—see the next method.

å public Comparable getRowKey(int row);

Returns the key for the specified series. If row is not in the range 0 to getRowCount()-1, this
method throws an IllegalArgumentException.

å public int getSeriesIndex(Comparable seriesKey);

Equivalent to getRowIndex(seriesKey)—see the next method.

å public int getRowIndex(Comparable rowKey);

Returns the index of the specified rowKey, or -1 if the key does not belong to the dataset. If
rowKey is null, this method throws an IllegalArgumentException.

To get an ordered list of the series keys for the dataset:

å public List getRowKeys();

Returns an ordered (and unmodifiable) list of the row/series keys for the dataset.

To modify all the series keys:

å public void setSeriesKeys(Comparable[] seriesKeys);

Replaces the existing series keys with the supplied keys. If seriesKeys is null, or seriesKeys.length
does not match the number of series in the dataset, this method throws an IllegalArgumentException.

To find the number of categories (or columns) in the dataset, you can use any of the following
methods:

å public int getCategoryCount();

Returns the number of categories in the dataset. Every series has the same categories.

å public int getColumnCount();

Returns the number of columns in the dataset.

To get the key for a category:

å public Comparable getColumnKey(int column);

Returns the key for the specified column (category).

å public int getColumnIndex(Comparable columnKey);

Returns the index of the specified columnKey, or -1 if the key does not belong to the dataset. If
columnKey is null, this method returns an IllegalArgumentException.

To get a list of category keys:

å public List getColumnKeys();

Returns an ordered and unmodifiable list of the column keys.

To modify all the category keys:

å public void setCategoryKeys(Comparable[] categoryKeys);

Replaces the existing category keys with the supplied keys. If categoryKeys is null, or categoryKeys.length
does not match the number of categories in the dataset, this method throws an IllegalArgumentException.

CHAPTER 43. PACKAGE: ORG.JFREE.DATA.CATEGORY 615

43.5.4 Accessing Data Values

The following methods provide access to the data values:

å public Number getStartValue(Comparable series, Comparable category);

Returns the start value for the specified series and category.

å public Number getStartValue(int series, int category);

Returns the start value for the specified series and category.

å public Number getEndValue(Comparable series, Comparable category);

Returns the end value for the specified series and category.

å public Number getEndValue(int series, int category);

Returns the end value for the specified series and category.

In order to support the CategoryDataset interface, the following methods are implemented:

å public Number getValue(Comparable series, Comparable category);

Returns the value for the specified series and category—in this case, the end value is returned.

å public Number getValue(int series, int category);

Returns the value for the specified series and category—in this case, the end value is returned.

43.5.5 Modifying Data Values

To modify existing values in the dataset:

å public void setStartValue(int series, Comparable category, Number value);

Sets the start value for an existing data item and sends a DatasetChangeEvent to all registered
listeners. This method doesn’t allow the addition of new items.

å public void setEndValue(int series, Comparable category, Number value);

Sets the end value for an existing data item and sends a DatasetChangeEvent to all registered
listeners. This method doesn’t allow the addition of new items.

43.5.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

43.5.7 Notes

Some points to note:

• the equals() and clone() implementations were broken prior to version 1.0.5;

• a demo (IntervalBarChartDemo1.java) is included in the JFreeChart demo collection.

See Also
IntervalCategoryDataset.

CHAPTER 43. PACKAGE: ORG.JFREE.DATA.CATEGORY 616

43.6 IntervalCategoryDataset

43.6.1 Overview

An extension of the CategoryDataset interface that adds methods for returning a start value and
an end value for each item in the dataset.

Like a CategoryDataset, this dataset is conceptually a table of data items where the “categories”
represent columns and the “series” represent rows. The cells within the table contain three items:
the start value, the end value and the value (the final item may be the same as one of the previous
values or it may be different).

The DefaultIntervalCategoryDataset class provides an implementation of this interface.

43.6.2 Interface

In addition to the methods inherited from CategoryDataset, this interface defines several methods
for accessing the starting and ending x-values for each data item.

To get the start value for a data item:

å public Number getStartValue(int series, int category);

Returns the start value for the specified data item.

å public Number getStartValue(Comparable series, Comparable category);

Returns the start value for the specified data item

To get the end value for a data item:

å public Number getEndValue(int series, int category);

Returns the end value for the specified data item.

å public Number getEndValue(Comparable series, Comparable category);

Returns the end value for the specified data item.

Note that all of the above methods can return null to represent a missing or unknown value.

43.6.3 Notes

Some points to note:

• the IntervalBarRenderer class expects to receive data from a dataset that implements this
interface;

• the DefaultIntervalCategoryDataset class provides one implementation of this interface;

See Also
CategoryDataset.

Chapter 44

Package: org.jfree.data.contour

44.1 Introduction

This package contains interfaces and classes for the datasets used by JFreeChart’s ContourPlot class.
All this code is deprecated as of version 1.0.4.

44.2 ContourDataset

44.2.1 Overview

The dataset used by the ContourPlot class. This interface is deprecated as of version 1.0.4.

44.2.2 Methods

This interface defines the following methods in addition to those inherited from the XYZDataset

interface:

å public double getMinZValue();

Returns the minimum z-value.

å public double getMaxZValue();

Returns the maximum z-value.

å public Number[] getXValues();

Returns an array containing all the x-values.

å public Number[] getYValues();

Returns an array containing all the y-values.

å public Number[] getZValues();

Returns an array containing all the z-values.

å public int[] indexX();

Returns the index values.

å public int[] getXIndices();

Returns an int array contain the index into the x values.

å public Range getZValueRange(Range x, Range y);

Returns the maximum z-value for the specified visible region of the plot.

å public boolean isDateAxis(int axisNumber);

Returns true if the values for the specified axis are dates (where axisNumber is defined as 0-x,
1-y, and 2-z).

See Also
DefaultContourDataset.

617

CHAPTER 44. PACKAGE: ORG.JFREE.DATA.CONTOUR 618

44.3 DefaultContourDataset

44.3.1 Overview

A default implementation of the ContourDataset interface. This class is deprecated as of version
1.0.4.

See Also
ContourPlot

44.4 NonGridContourDataset

44.4.1 Overview

A dataset for use with the ContourPlot class. This class is deprecated as of version 1.0.4.

Chapter 45

Package: org.jfree.data.function

45.1 Introduction

This package contains a simple function representation and some classes to represent common func-
tion types. JFreeChart cannot plot functions directly, but you can use the sampleFunction2D()

method in the DatasetUtilities class to create a dataset containing sample values from any
Function2D.

45.2 Function2D

45.2.1 Overview

A simple interface for a 2D function. Implementations of this interface include:

• LineFunction2D;

• NormalDistributionFunction2D;

• PowerFunction2D.

It is a simple matter to implement your own functions.

45.2.2 Methods

The interface defines a single method for obtaining the value of the function for a given input:

å public double getValue(double x);

Returns the value of the function for a given input.

45.2.3 Notes

The DatasetUtilities class provides a method for creating an XYDataset by sampling the values of
a function.

See Also
LineFunction2D, PowerFunction2D.

45.3 LineFunction2D

45.3.1 Overview

A simple function of the form y = a + bx.

619

CHAPTER 45. PACKAGE: ORG.JFREE.DATA.FUNCTION 620

45.3.2 Constructor

To construct a new line function:

å public LineFunction2D(double a, double b);

Creates a new line function with the given coefficients.

45.3.3 Methods

å public double getValue(double x);

Returns the value of the function for a given input.

45.3.4 Notes

Some points to note:

• this class implements the Function2D interface.

• the RegressionDemo1 application provides an example of this class being used.

See Also
PowerFunction2D.

45.4 NormalDistributionFunction2D

45.4.1 Overview

A function that returns values for a normal distribution—see figure 45.1.

Figure 45.1: A chart using samples from a NormalDistributionFunction2D

A demo (NormalDistributionDemo.java) is included in the JFreeChart demo collection.

45.4.2 Constructor

To create a new instance:

å public NormalDistributionFunction2D(double mean, double std);

Creates a new normal distribution function with the given mean and standard deviation.

CHAPTER 45. PACKAGE: ORG.JFREE.DATA.FUNCTION 621

45.4.3 Methods

To get the mean and standard deviation:

å public double getMean();

Returns the mean value for the function (this is set in the constructor and cannot be modified).

å public double getStandardDeviation();

Returns the standard deviation value for the function (this is set in the constructor and cannot
be modified).

To get the function value for a given x value:

å public double getValue(double x);

Returns the value of the normal distribution function for the given x.

45.5 PowerFunction2D

45.5.1 Overview

A function of the form y = axb.

45.5.2 Constructor

To construct a new power function:

å public PowerFunction2D(double a, double b);

Creates a new power function with the given coefficients.

45.5.3 Methods

å public double getValue(double x);

Returns the value of the function for a given input.

45.5.4 Notes

Some points to note:

• this class implements the Function2D interface.

• the RegressionDemo1 application provides an example of this class being used.

See Also
LineFunction2D.

Chapter 46

Package: org.jfree.data.gantt

46.1 Introduction

This package contains classes used to represent the dataset for a simple Gantt chart.

46.2 GanttCategoryDataset

46.2.1 Overview

An extension of the IntervalCategoryDataset interface that is intended for creating simple Gantt
charts.

46.2.2 Methods

This interface adds a range of methods in addition to those it inherits from the IntervalCategoryDataset
interface. These are aimed at supporting subtasks within tasks, and providing information about
the “percentage complete” for individual tasks.

To get the number of subtasks for a given task:

å public int getSubIntervalCount(int row, int column);

Returns the number of subtasks defined for the specified item (possibly 0).

å public int getSubIntervalCount(Comparable rowKey, Comparable columnKey);

Returns the number of subtasks defined for the specified item (possibly 0).

To get the start value (time in milliseconds) for a specific subtask:

å public Number getStartValue(int row, int column, int subinterval);

Returns the start value for a subtask.

å public Number getStartValue(Comparable rowKey, Comparable columnKey, int subinterval);

Returns the start value for a subtask.

To get the end value (time in milliseconds) for a specific subtask:

å public Number getEndValue(int row, int column, int subinterval);

Returns the end value for a subtask.

å public Number getEndValue(Comparable rowKey, Comparable columnKey, int subinterval);

Returns the end value for a subtask.

To get the percentage complete for a given task:

å public Number getPercentComplete(int row, int column);

Returns the percentage complete for the specified task. This method can return null if the
value is unknown.

622

CHAPTER 46. PACKAGE: ORG.JFREE.DATA.GANTT 623

å public Number getPercentComplete(Comparable rowKey, Comparable columnKey);

Returns the percentage complete for the specified task. This method can return null if the
value is unknown.

To get the percentage complete for a subtask:

å public Number getPercentComplete(int row, int column, int subinterval);

Returns the percentage complete for the specified subtask. This method can return null if the
value is unknown.

å public Number getPercentComplete(Comparable rowKey, Comparable columnKey, int subinterval);

Returns the percentage complete for the specified subtask. This method can return null if the
value is unknown.

46.2.3 Notes

Some points to note:

• the GanttRenderer class expects to find a dataset of this type;

• this interface is implemented by the TaskSeriesCollection class;

• demo applications (GanttDemo1-3.java) are included in the JFreeChart demo distribution.

46.3 Task

46.3.1 Overview

A class that represents a task, consisting of:

• a task description;

• a duration (estimated or actual);

• a list of sub-tasks;

In JFreeChart, tasks are used in the construction of Gantt charts. One or more related tasks can be
added to a TaskSeries. In turn, one or more TaskSeries can be added to a TaskSeriesCollection.

46.3.2 Constructors

To create a new task:

å public Task(String description, TimePeriod duration);

Creates a new task with the specified (estimated) duration.

å public Task(String description, Date start, Date end);

Creates a new task with the specified start and end dates.

46.3.3 Methods

To access the task description:

å public String getDescription();

Returns the task description (never null).

å public void setDescription(String description);

Sets the task description (null not permitted).

To access the task duration (actual or expected):

å public TimePeriod getDuration();

Returns the task duration (possibly ¡code¿null¡/code¿).

CHAPTER 46. PACKAGE: ORG.JFREE.DATA.GANTT 624

å public void setDuration(TimePeriod duration);

Sets the task duration (null permitted).

To access the “percentage complete” for the task:

å public Double getPercentComplete();

Returns the percentage complete (possibly null).

å public void setPercentComplete(Double percent);

Sets the percentage complete for the task (null permitted). The value should be between 0.0

and 1.0. For example, 0.75 is seventy-five percent.

å public void setPercentComplete(double percent);

Sets the percentage complete for the task.

46.3.4 Subtasks

A task can define a number of subtasks. To add a subtask:

å public void addSubtask(Task subtask);

Adds a subtask (null not permitted).

To remove a subtask:

å public void removeSubtask(Task subtask);

Removes a subtask.

To find out how many subtasks are defined (if any):

å public int getSubtaskCount();

Returns the subtask count.

To access a particular subtask:

å public Task getSubtask(int index);

Returns a subtask from the list.

46.3.5 Notes

Some points to note:

• this class is Cloneable and Serializable;

• tasks can be added to a TaskSeries.

46.4 TaskSeries

46.4.1 Overview

A task series is a collection of related tasks. You can add one or more TaskSeries objects to a
TaskSeriesCollection to create a dataset that can be used to produce Gantt charts.

46.4.2 Constructor

To create a new task series:

å public TaskSeries(String name);

Creates a new series with the specified name (null not permitted). The series is initially empty
(contains no tasks).

CHAPTER 46. PACKAGE: ORG.JFREE.DATA.GANTT 625

46.4.3 Methods

To add and remove tasks:

å public void add(Task task);

Adds a task to the series and sends a SeriesChangeEvent to all registered listeners.

å public void remove(Task task);

Removes a task from the series and sends a SeriesChangeEvent to all registered listeners.

å public void removeAll();

Removes all tasks from the series and sends a SeriesChangeEvent to all registered listeners.

To find the number of tasks in the series:

å public int getItemCount();

Returns the number of items (tasks) in the series.

To access a particular task:

å public Task get(int index);

Returns a task from the series.

You can obtain a list of the tasks in a series:

å public List getTasks();

Returns an unmodifiable list of the tasks in a series.

46.4.4 Notes

Some points to note:

• the TaskSeriesCollection class is used to create collections of one or more task series.

46.5 TaskSeriesCollection

46.5.1 Overview

A task series collection contains one or more TaskSeries objects, and provides access to the task
information via the GanttCategoryDataset interface. You can use this class as the dataset for a
Gantt chart.

46.5.2 Constructor

To create a new collection:

å public TaskSeriesCollection();

Creates a new collection, initially empty.

46.5.3 Adding and Removing Series

To add a new series:

å public void add(TaskSeries series);

Adds a series to the collection (null not permitted) and sends a DatasetChangeEvent to all
registered listeners.

To remove a series:

å public void remove(TaskSeries series);

Removes a series from the collection and sends a DatasetChangeEvent to all registered listeners.

å public void remove(int series);

Removes a series from the collection and sends a DatasetChangeEvent to all registered listeners.

CHAPTER 46. PACKAGE: ORG.JFREE.DATA.GANTT 626

To remove all series from the collection:
å public void removeAll();

Removes all the series from the collection.

To access a series in the collection:
å public TaskSeries getSeries(Comparable key);

Returns the series with the specified key, or null if there is no such series. This method first
appeared in version 1.0.1.

å public TaskSeries getSeries(int series);

Returns the series with the specified index. This method first appeared in version 1.0.1.

46.5.4 Retrieving Values

To support the use of this class as a dataset, the following methods are used to retrieve values:
å public Number getValue(Comparable rowKey, Comparable columnKey);

Returns the value for the given row (series) and column (task description).

å public Number getValue(int row, int column);

Returns the value for the given row (series) and column (task).

å public Number getStartValue(Comparable rowKey, Comparable columnKey);

Returns the start value for the given row (series) and column (task).

å public Number getStartValue (int row, int column);

Returns the start value for the given row (series) and column (task).

å public Number getEndValue (Comparable rowKey, Comparable columnKey);

Returns the end value for the given row (series) and column (task).

å public Number getEndValue(int row, int column);

Returns the end value for the given row (series) and column (task).

To get the percentage complete:
å public Number getPercentComplete(int row, int column);

Returns the percentage complete for the given row (series) and column (task).

å public Number getPercentComplete(Comparable rowKey, Comparable columnKey);

Returns the percentage complete for the given row (series) and column (task).

46.5.5 Sub-Intervals

To find the number of sub-intervals for a task within a series:
å public int getSubIntervalCount(int row, int column);

Returns the number of sub-intervals (if any) for a task within a series.

å public int getSubIntervalCount(Comparable rowKey, Comparable columnKey);

Returns the number of sub-intervals (if any) for a task within a series.

å public Number getStartValue(int row, int column, int subinterval);

Returns the start value for a particular sub-interval within a task.

å public Number getStartValue(Comparable rowKey, Comparable columnKey, int subinterval);

Returns the start value for a particular sub-interval within a task.

å public Number getEndValue(int row, int column, int subinterval);

Returns the end value for a particular sub-interval within a task.

å public Number getEndValue(Comparable rowKey, Comparable columnKey, int subinterval);

Returns the end value for a particular sub-interval within a task.

To get the percentage complete for a sub-interval:
å public Number getPercentComplete(int row, int column, int subinterval);

Returns the percentage complete for a sub-interval.

å public Number getPercentComplete(Comparable rowKey, Comparable columnKey, int subinterval);

Returns the percentage complete for a sub-interval.

CHAPTER 46. PACKAGE: ORG.JFREE.DATA.GANTT 627

46.5.6 Methods

To get the name of a series in the collection:

å public String getSeriesName(int series);

Returns the name of a series in the collection.

To get the number of series in the collection:

å public int getSeriesCount();

Returns the number of series in the collection.

å public int getRowCount();

Returns the number of series in the collection.

å public List getRowKeys();

Returns a list of the row keys (each series name is used as a row key).

å public int getColumnCount();

The number of “columns” in the collection. This is equal to the number of unique keys (task
descriptions) in all the task series in the collection.

å public List getColumnKeys();

Returns a list of the column keys (an aggregation of all the task descriptions in all the series
within the collection).

å public Comparable getColumnKey(int index);

Returns the column key that corresponds to the given index.

å public int getColumnIndex(Comparable columnKey);

Returns the index that corresponds to the given column key.

å public int getRowIndex(Comparable rowKey);

Returns the index that corresponds to the given row key.

å public Comparable getRowKey(int index);

Returns the row key that corresponds to the given index.

Chapter 47

Package: org.jfree.data.general

47.1 Introduction

This package contains interfaces and classes for the datasets used by JFreeChart.

47.2 AbstractDataset

47.2.1 Overview

A useful base class for implementing the Dataset interface (or extensions). This class provides
a default implementation of the change listener mechanism, which allows the dataset to send a
DatasetChangeEvent to registered listeners every time the dataset is updated.

47.2.2 Constructors

The default constructor:

å protected AbstractDataset();

Allocates storage for the registered change listeners.

47.2.3 Dataset Groups

Datasets can be allocated to a group, but in the current version of JFreeChart the group is not
used. Still, the methods remain:

å public DatasetGroup getGroup();

Returns the group that the dataset belongs to (never null).

å public void setGroup(DatasetGroup group);

Sets the group for the dataset (null not permitted).

47.2.4 Change Listeners

To register a change listener:

å public void addChangeListener(DatasetChangeListener listener);

Registers a change listener with the dataset. The listener will be notified whenever the dataset
changes, via a call to the datasetChanged() method.

To deregister a change listener:

å public void removeChangeListener(DatasetChangeListener listener);

Deregisters a change listener. The listener will be no longer be notified whenever the dataset
changes.

628

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 629

47.2.5 Other Methods

The following utility method can be used to send a change event to all registered listeners:

å protected void fireDatasetChanged();

Sends a DatasetChangeEvent to all registered listeners.

47.2.6 Notes

Some points to note:

• in most cases, JFreeChart will automatically register listeners for you, and update charts
whenever the data changes.

• you can implement a dataset without subclassing AbstractDataset. This class is provided
simply for convenience to save you having to implement your own change listener mechanism.

• if you write your own class that extends AbstractDataset, you need to remember to call
fireDatasetChanged() whenever the data in your class is modified.

See Also
Dataset, DatasetChangeListener, AbstractSeriesDataset.

47.3 AbstractSeriesDataset

47.3.1 Overview

A useful base class for implementing the SeriesDataset interface (or extensions). This class extends
AbstractDataset.

47.3.2 Constructors

This class is never instantiated directly, so the constructor is protected:

å protected AbstractSeriesDataset();

Simply calls the constructor of the superclass.

47.3.3 Methods

Two abstract methods are declared:

å public abstract int getSeriesCount();

Returns the number of series in the dataset—to be implemented by subclasses.

å public abstract Comparable getSeriesKey(int series);

Returns the key for a series in the dataset. When a series label is required for display in a
chart (typically in the chart’s legend) the toString() method is called on the series key. If
series is not in the range 0 to getSeriesCount() - 1, implementing methods should throw an
IndexOutOfBoundsException (preferred) or an IllegalArgumentException (historical).

To get the index of a series from its key:

å public int indexOf(Comparable seriesKey);

Returns the index of the series with the specified key, or -1 if there is no such series in the
dataset. If seriesKey is null, this method returns -1 (a series cannot have a null key).

This method receives series change notifications:

å public void seriesChanged(SeriesChangeEvent event);

The default behaviour provided by this method is to raise a DatasetChangeEvent every time this
method is called.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 630

47.3.4 Notes

This class is provided simply for convenience, you are not required to use it when developing your
own dataset classes. AbstractXYDataset is a subclass.

See Also
Dataset, AbstractXYDataset.

47.4 CombinationDataset

47.4.1 Overview

An interface that defines the methods that should be implemented by a combination dataset.

47.4.2 Notes

This interface is implemented by the CombinedDataset class.

47.5 CombinedDataset

47.5.1 Overview

A dataset that can combine other datasets.

47.5.2 Notes

The combined charts feature, originally developed by Bill Kelemen, has been restructured so that it
is no longer necessary to use this class. However, you can still use this class if you need to construct
a dataset that is the union of existing datasets.

See Also
CombinationDataset.

47.6 Dataset

47.6.1 Overview

The base interface for datasets. Not useful in its own right, this interface is further extended by
PieDataset, CategoryDataset and SeriesDataset.

47.6.2 Methods

This base interface defines two methods for registering change listeners:

å public void addChangeListener(DatasetChangeListener listener);

Registers a change listener with the dataset. The listener will be notified whenever the dataset
changes.

å public void removeChangeListener(DatasetChangeListener listener);

Deregisters a change listener.

47.6.3 Notes

This interface is not intended to be used directly, you should use an extension of this interface such
as PieDataset, CategoryDataset or XYDataset.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 631

47.7 DatasetChangeEvent

47.7.1 Overview

An event that is used to provide information about changes to datasets. In general, any change to
a dataset will trigger a DatasetChangeEvent, which then allows listeners to react to that change. By
default, when a dataset is added to a plot, the plot registers itself as a listener with the dataset,
and will receive notification whenever the dataset is changed.

47.7.2 Constructors

The standard constructor:
å public DatasetChangeEvent(Object source, Dataset dataset);

Creates a new event. Usually the source is the dataset, but this is not guaranteed.

47.7.3 Methods

To get a reference to the Dataset that generated the event:
å public Dataset getDataset();

Returns the dataset which generated the event.

47.7.4 Notes

The current implementation simply indicates that some change has been made to the dataset. In
the future, this class may carry more information about the change.

See Also
DatasetChangeListener.

47.8 DatasetChangeListener

47.8.1 Overview

An interface through which dataset change event notifications are posted. If a class needs to receive
notification of changes to a dataset, then it should implement this interface and register itself with
the dataset.

47.8.2 Methods

The interface defines a single method:
å public void datasetChanged(DatasetChangeEvent event);

Receives notification of a change to a dataset.

47.8.3 Notes

The Plot class implements this interface in order to receive notification of changes to its dataset(s).

See Also
DatasetChangeEvent.

47.9 DatasetGroup

47.9.1 Overview

A dataset group provides a mechanism for grouping related datasets. At present, this is not used.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 632

47.9.2 Constructor

This class has a single constructor:

å public DatasetGroup();

Creates a new group.

47.9.3 Methods

The only method in this class creates a clone of the group:

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the group.

47.9.4 Notes

As mentioned in the overview, this class currently serves no real purpose.

47.10 DatasetUtilities

47.10.1 Overview

A collection of utility methods for working with datasets. Additional methods are provided by the
DataUtilities class.

47.10.2 Creating Datasets

In general, you should create and populate datasets by using the dataset class directly (that is,
create a new instance and use its methods to populate it with data). However, for some special
situations, utility methods have been written to create and populate datasets in specialised ways.
These methods are documented here.

PieDatasets

A PieDataset is equivalent to a CategoryDataset that has only one row or only one column. Some
methods are available to make it easy to create a new PieDataset from one row or column of a
CategoryDataset:

å public static PieDataset createPieDatasetForRow(CategoryDataset dataset,

Comparable rowKey);

Returns a pie dataset created from the values in the specified row of the given dataset.

å public static PieDataset createPieDatasetForRow(CategoryDataset dataset,

int row);

Returns a pie dataset created from the values in the specified row of the given dataset.

å public static PieDataset createPieDatasetForColumn(CategoryDataset dataset,

Comparable columnKey);

Returns a pie dataset created from the values in the specified column of the given dataset.

å public static PieDataset createPieDatasetForColumn(CategoryDataset dataset, int column);

Returns a pie dataset created from the values in the specified column of the given dataset.

CategoryDatasets

Many developers have requested the ability to create charts from data stored in arrays. To make
this easier, the following methods will create a CategoryDataset from array-based data:

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 633

å public static CategoryDataset createCategoryDataset(String rowKeyPrefix, String columnKeyPrefix,

double[][] data);

Creates a category dataset by copying the values in the data array. Row and column keys are
auto-generated using the supplied prefixes, by appending 1, 2, 3, etc. If data is a “jagged”
array, the resulting dataset will contain null values for some items.

å public static CategoryDataset createCategoryDataset(String rowKeyPrefix, String columnKeyPrefix,

Number[][] data);

As for the preceding method, except that data is an array of Number objects.

å public static CategoryDataset createCategoryDataset(Comparable[] rowKeys, Comparable[] columnKeys,

double[][] data);

As for the preceding methods, except that row and column keys are explicitly provided rather
than auto-generated.

å public static CategoryDataset createCategoryDataset(Comparable rowKey, KeyedValues rowData);

Creates a new dataset containing a single row of data.

XYDatasets

To create an XYDataset by sampling values from a Function2D:

å public static XYDataset sampleFunction2D(Function2D f,

double start, double end, int samples, Comparable seriesName);

Creates a new XYDataset by sampling values in a specified range for the Function2D. If f or
seriesName is null, this method throws an IllegalArgumentException. The returned dataset is
currently an instance of XYSeriesCollection containing a single series.

For an example, see Function2DDemo1.java in the JFreeChart demo collection.

47.10.3 PieDataset Methods

To determine if a PieDataset has any data for display:

å public static boolean isEmptyOrNull(PieDataset dataset);

Returns true if the dataset is empty or null, and false otherwise. Empty in this context means
the dataset contains no positive values.

To calculate the total of the values in a PieDataset:

å public static double calculatePieDatasetTotal(PieDataset dataset);

Returns the total of all the positive values in the dataset (negative and null values are ignored).

To reduce the number of items in a PieDataset by consolidating some of the smaller value items:

å public static PieDataset createConsolidatedPieDataset(PieDataset source, Comparable key,

double minimumPercent);

Creates a new pie dataset, based on source, by consolidating all the low value items (that is,
those that represent less than minimumPercent of the total) into a single item with the speci-
fied key. Note that the consolidation only happens if there are at least 2 low value items to
aggregate.

å public static PieDataset createConsolidatedPieDataset(PieDataset source, Comparable key,

double minimumPercent, int minItems);

Creates a new pie dataset, based on source, by consolidating all the low value items (that is,
those that represent less than minimumPercent of the total) into a single item with the specified
key. Note that the consolidation only happens if there are at least minItems low value items to
aggregate.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 634

47.10.4 CategoryDataset Bounds

A CategoryDataset has numerical range values, and this class contains methods for determining the
upper and lower bounds for these values. To get the minimum range value in a dataset:

å public static Number findMinimumRangeValue(CategoryDataset dataset);

Returns the minimum range value for the dataset. If the dataset implements the RangeInfo

interface, then this will be used to obtain the minimum range value. Otherwise, this method
iterates through all of the data.

To get the maximum range value in a dataset:

å public static Number findMaximumRangeValue(CategoryDataset dataset);

Returns the maximum range value for the dataset. If the dataset implements the RangeInfo

interface, then this will be used to obtain the maximum range value. Otherwise, this method
iterates through all of the data.

å public static Range findRangeBounds(CategoryDataset dataset);

Returns the bounds of the range (or Y-) values in the dataset.

å public static Range findRangeBounds(CategoryDataset dataset, boolean includeInterval);

Returns the bounds of the range (or Y-) values in the dataset. If dataset is an instance of
IntervalCategoryDataset, then the includeInterval flag determines whether or not the y-interval
is taken into account for the bounds.

å public static Range iterateCategoryRangeBounds(CategoryDataset dataset, boolean includeInterval);

As for the preceding method, but calculated by iteration.

In some cases, the data from a CategoryDataset is presented in a “stacked” format (for example, in
a stacked bar chart). In these cases, it is necessary to calculate the minimum and maximum of the
category totals (positive and negative values totalled separately). To get the minimum “stacked”
range value in a CategoryDataset:

å public static Number findMinimumStackedRangeValue(CategoryDataset dataset);

Returns the minimum stacked range value in a dataset.

To get the maximum “stacked” range value in a CategoryDataset:

å public static Number findMaximumStackedRangeValue(CategoryDataset dataset);

Returns the maximum stacked range value in a dataset.

å public static Range findStackedRangeBounds(CategoryDataset dataset);

Returns the bounds for the stacked range values.

å public static Range findStackedRangeBounds(CategoryDataset dataset, KeyToGroupMap map);

Returns the bounds for the stacked range values, taking into account the grouping specified by
map.

å public static Range findCumulativeRangeBounds(CategoryDataset dataset);

Returns the cumulative bounds for the specified dataset, or null if dataset contains only null

values. If dataset is null, this method throws an IllegalArgumentException. This method is
currently used by the WaterfallBarRenderer class.

47.10.5 XYDataset Bounds

To get the minimum domain value in a dataset:

å public static Number findMinimumDomainValue(XYDataset dataset);

Returns the minimum domain value for the dataset. If the dataset implements the DomainInfo

interface, then this will be used to obtain the minimum domain value. Otherwise, this method
iterates through all of the data.

To get the maximum domain value in a dataset:

å public static Number findMaximumDomainValue(XYDataset dataset);

Returns the maximum domain value for the dataset. If the dataset implements the DomainInfo

interface, then this will be used to obtain the maximum domain value. Otherwise, this method
iterates through all of the data.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 635

å public static Number findMinimumRangeValue(XYDataset dataset);

Returns the minimum range value for the dataset.

å public static Number findMaximumRangeValue(XYDataset dataset);

Returns the maximum range value for the dataset.

å public static Range findDomainBounds(XYDataset dataset);

Returns the bounds for the domain (or X-) values in the dataset.

å public static Range findDomainBounds(XYDataset dataset, boolean includeInterval);

Returns the bounds for the domain (or X-) values in the dataset. The includeInterval flag
determines whether or not the x-interval is taken into account when determining the bounds
(note that an x-interval is only defined by datasets that implement the extended interface
IntervalXYDataset).

å public static Range iterateDomainBounds(XYDataset dataset);

Returns the bounds for the domain (or X-) values in the dataset, determined by iterating over
all the values in the dataset.

å public static Range iterateDomainBounds(XYDataset dataset, boolean includeInterval);

Returns the bounds for the domain (or X-) values in the dataset, determined by iterating over
all the values in the dataset. The includeInterval flag determines whether or not the x-interval
is taken into account when determining the bounds (note that an x-interval is only defined by
datasets that implement the extended interface IntervalXYDataset).

å public static Range findRangeBounds(XYDataset dataset);

Returns the bounds of the range (Y-) values in the dataset.

å public static Range findRangeBounds(XYDataset dataset, boolean includeInterval);

Returns the bounds of the range (Y-) values in the dataset.

å public static Range iterateXYRangeBounds(XYDataset dataset);

Finds the bounds of the range (Y-) values in the dataset, by iterating through the entire dataset.
It is usually better to call findRangeBounds() since it will check if the range can be calculated
more efficiently via the RangeInfo interface—if not, it calls this method anyway.

å public static Range findStackedRangeBounds(TableXYDataset dataset);

Returns the bounds of the stacked range values in the dataset, assuming a base value (for
stacking) of 0.0.

å public static Range findStackedRangeBounds(TableXYDataset dataset, double base);

Returns the bounds of the stacked range values in the dataset, with the given base value for
stacking.

47.10.6 Other Methods

To calculate the total of all y-values for a given x-value:

å public static double calculateStackTotal(TableXYDataset dataset, int item); [1.0.5]

Returns the sum of all y-values for the data items with the specified index. In a TableXYDataset,
all these items have the same x-value. This total is used by some renderers to convert data
values to percentages.

To check if a dataset contains any non-null values:

å public static boolean isEmptyOrNull(CategoryDataset dataset);

Returns true if the dataset is empty or null, and false otherwise. This requires iterating
through (possibly all of) the values in the dataset.

å public static boolean isEmptyOrNull(XYDataset dataset);

Returns true if the dataset is empty or null, and false otherwise. This requires iterating
through (possibly all of) the values in the dataset.

See Also
DomainInfo, RangeInfo, DataUtilities.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 636

47.11 DefaultKeyedValueDataset

47.11.1 Overview

A dataset that contains a single (key, value) data item. This class implements the KeyedValueDataset
interface.

47.11.2 Usage

This class does not get used by JFreeChart.

47.12 DefaultKeyedValuesDataset

47.12.1 Overview

A dataset that implements the KeyedValuesDataset interface.

47.12.2 Notes

This dataset extends the DefaultPieDataset class without modification—it exists for completeness
sake, to follow the naming pattern established for related classes and interfaces.

47.13 DefaultKeyedValues2DDataset

47.13.1 Overview

A default implementation of the KeyedValues2DDataset interface.

47.14 DefaultPieDataset

47.14.1 Overview

A dataset that records zero, one or many values, each with an associated key. This class provides
a default implementation of the PieDataset interface and can, of course, be used in the creation of
pie charts (refer to the PiePlot class).

47.14.2 Constructors

To create a new pie dataset:

å public DefaultPieDataset();

Creates a new dataset, initially empty.

å public DefaultPieDataset(KeyedValues data);

Creates a new dataset by copying the values (and associated keys) from data. If data is null,
this constructor throws an IllegalArgumentException.

47.14.3 Reading the Dataset

The following methods support reading data values from the dataset:

å public int getItemCount();

Returns the number of items (key-value pairs) in the dataset.

å public List getKeys();

Returns an unmodifiable list of the keys in the dataset. If there are no items in the dataset,
an empty list is returned (rather than null).

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 637

å public Comparable getKey(int item);

Returns the key for the given item index. If item is less than zero, this method throws an
IndexOutOfBoundsException, but if item is greater than getItemCount() - 1, this method returns
null.

å public int getIndex(Comparable key);

Returns the index for the given key, or -1 if the key is not recognised. If key is null, this
method throws an IllegalArgumentException.

To retrieve a value from the dataset:

å public Number getValue(int item);

Returns the value (possibly null) for the given item.

å public Number getValue(Comparable key);

Returns the value associated with a key (possibly null). This method throws an UnknownKeyException

if key is not defined in the dataset, and an IllegalArgumentException if key is null.

47.14.4 Updating the Dataset

To set the value associated with a key:

å public void setValue(Comparable key, Number value);

Sets the value associated with a key (the value can be null). If the key already exists within
the dataset, its value is updated. If the key doesn’t already exist, a new item is added to the
dataset. After the dataset is updated, a DatasetChangeEvent is sent to all registered listeners.

å public void setValue(Comparable key, double value);

As for the preceding method. This is a convenience method that creates a Number instance using
value then calls the other setValue() method.

To remove an item from the dataset:

å public void remove(Comparable key);

Removes the item with the specified key from the dataset and sends a DatasetChangeEvent to
all registered listeners. If there is no item with the specified key, this method does nothing. If
key is null, this method throws an IllegalArgumentException.

To remove all items from the dataset:

å public void clear();

Removes all items from the dataset and sends a DatasetChangeEvent to all registered listeners.
If the dataset is already empty, this method does nothing.

47.14.5 Equals, Cloning and Serialization

To test this dataset for equality with an arbitrary object:

å public boolean equals(Object obj);

Returns true if obj:

• is not null;

• is an instance of PieDataset;

• contains the same keys and values in the same order as this dataset;

...otherwise this method returns false.

This class implements Cloneable (and PublicCloneable), but note that the registered listeners are
not copied across to the clone.

This class is Serializable.

47.14.6 Notes

Some points to note:

• the dataset is permitted to contain null and/or negative values.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 638

See Also
PieDataset, PiePlot.

47.15 DefaultValueDataset

47.15.1 Overview

A dataset that contains a single (possibly null) value. This class provides a default implementation
of the ValueDataset interface and is used in JFreeChart by the MeterPlot and ThermometerPlot

classes.

47.15.2 Constructors

To create a new instance, use one of the following constructors:
å public DefaultValueDataset();

Creates a new instance containing a null value.

å public DefaultValueDataset(double value);

Creates a new instance containing the specified value.

å public DefaultValueDataset(Number value);

Creates a new instance containing the specified value (which may be null).

47.15.3 Methods

To access the single value maintained by the dataset:
å public Number getValue();

Returns the dataset’s value, which may be null.

å public void setValue(Number value);

Sets the dataset’s value (null is permitted) and sends a DatasetChangeEvent to all registered
listeners.

47.15.4 Equals, Cloning and Serialization

To test this dataset for equality with an arbitrary object:
å public boolean equals(Object obj);

Returns true if obj:

• is not null;

• is an instance of ValueDataset;

• contains the same value as this dataset.

...otherwise returns false.

Instances of this class can be cloned (PublicCloneable is implemented), but note that registered
listeners are not copied across to the clone.

This class is Serializable.

See Also
ValueDataset.

47.16 KeyedValueDataset

47.16.1 Overview

A dataset that contains a single (key, value) data item, where the key is an instance of Comparable

and the value is an instance of Number.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 639

47.16.2 Methods

This interface extends the KeyedValue and Dataset interfaces, and adds no additional methods.

47.16.3 Notes

There are currently no charts that specifically require this type of dataset.

47.17 KeyedValuesDataset

47.17.1 Overview

A keyed values dataset is a collection of values where each value is associated with a key. A common
use for this type of dataset is in the creation of pie charts.

47.17.2 Methods

This interface adds no methods to those it inherits from the KeyedValues and Dataset interfaces.

47.18 KeyedValues2DDataset

47.18.1 Overview

This interface is equivalent to the CategoryDataset interface. It has been included for completeness in
so far as it continues the sequence of names KeyedValueDataset, KeyedValuesDataset, KeyedValues2DDataset.

47.19 PieDataset

47.19.1 Overview

A pie dataset is a collection of values where each value is associated with a key. This type of dataset
is most commonly used to create pie charts. As with all the dataset interfaces in JFreeChart, only
data reading (not writing) methods are defined. The DefaultPieDataset class provides a default
implementation of this interface.

47.19.2 Interface Methods

This interface defines the following methods:

å public Comparable getKey(int index);

Returns the key with the specified index. This method should throw an IndexOutOfBoundsException

if the index is not in the range 0 to getItemCount() - 1.

å public int getIndex(Comparable key);

Returns the index of the specified key, or -1 if there is no such key. This method should throw
an IllegalArgumentException if key is null.

å public List getKeys();

Returns an unmodifiable list (never null) of the keys in the dataset.

å public Number getValue(Comparable key);

Returns the value (possibly null) associated with the specified key. This method should throw
an UnknownKeyException if key is not defined in the dataset, and an IllegalArgumentException if
key is null.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 640

47.19.3 Notes

Some points to note:

• the DefaultPieDataset class provides one implementation of this interface.

• the DatasetUtilities class includes some methods for creating a PieDataset by slicing a
CategoryDataset either by row or column.

• you can read a PieDataset from a file (in a prespecified XML format) using the DatasetReader

class.

See Also
CategoryToPieDataset, PiePlot.

47.20 Series

47.20.1 Overview

A useful base class for implementing data series, subclasses include TimeSeries and XYSeries. This
class provides a mechanism for registering change listeners, objects that will receive a message (a
SeriesChangeEvent) every time the series is modified in some way.

47.20.2 Constructor

This (abstract) class has two constructors:

å protected Series(Comparable key);

Creates a new series with the specified key, which should be a unique identifier for the series.
This constructor throws an IllegalArgumentException if key is null. In general, you should
ensure that the toString() method for the key returns something readable, because this form is
often displayed in charts (in the legend, for example). Since String implements the Comparable

interface, it is very common to just use a String for the key.

å protected Series(Comparable key, String description);

Creates a new series with the specified key (identifier) and description. This constructor throws
an IllegalArgumentException if key is null.

These constructors are protected since you do not create a Series directly, but via a subclass.

47.20.3 Methods

Every series has a unique, non-null, identifier:

å public Comparable getKey();

Returns the identifier for the series (never null). Calling toString() on the returned key should
give a readable identifier for the series.

å public void setKey(Comparable key);

Sets the identifier for the series and sends a PropertyChangeEvent (with the property name Key)
to all registered listeners. This method throws an IllegalArgumentException if key is null.

Every series has an optional description:

å public String getDescription();

Returns a description for the series (defaults to null). This is not currently used by JFreeChart.

å public void setDescription(String description);

Sets the description for the series (null is permitted) and sends a PropertyChangeEvent (with
the property name Description) to all registered listeners.

To determine if the series contains any data:

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 641

å public abstract int getItemCount();

Returns the number of data items in the series.

å public boolean isEmpty(); [1.0.7]

Returns true if the series is empty (contains no data), and false otherwise.

47.20.4 Property Change Listeners

A property change listener mechanism is used for the key and description properties (and, poten-
tially, properties defined by subclasses):

å public void addPropertyChangeListener(PropertyChangeListener listener);

Registers a listener to receive property change events from this series.

å public void removePropertyChangeListener(PropertyChangeListener listener);

Deregisters a listener so that it no longer receives property change events from this series.

å protected void firePropertyChange(String property, Object oldValue, Object newValue);

Sends a PropertyChangeEvent with the given name and values to all registered property change
listeners.

47.20.5 Change Listeners

This base class provides a mechanism for notifying listeners of changes to the series content:

å public void fireSeriesChanged();

Sends a SeriesChangeEvent to all registered listeners, but only if getNotify() returns true.
Subclasses should call this method (or otherwise handle event notification) every time the
data in the series is modified (JFreeChart relies on this mechanism for automatically updating
charts).

If you have a lot of changes to make to a series, you may not want a change event to be generated
for every change. The notify flag can be used to enable/disable event notification:

å public boolean getNotify();

Returns true if listeners will be notified of changes to the series, and false otherwise.

å public void setNotify(boolean notify);

Sets the flag that controls whether or not listeners are notified of changes to this series. If notify
is set to true, this method will send a change event to all registered listeners immediately.

To register a change listener (an object that wishes to receive notification whenever the series is
changed):

å public void addChangeListener(SeriesChangeListener listener);

Registers the listener to receive SeriesChangeEvent notifications from this series.

To deregister a change listener:

å public void removeChangeListener(SeriesChangeListener listener);

Deregisters the listener so that it will no longer receive SeriesChangeEvent notifications from
this series..

A utility method is provided for sending a change event to all registered listeners:

å protected void notifyListeners(SeriesChangeEvent event);

Sends event to all registered listeners.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 642

47.20.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this series for equality with an arbitrary object. Returns true if and only if:

• obj is an instance of Series;

• obj has the same key and description as this series.

The listeners registered with a Series are not considered in the equality test.

This class implements Cloneable and Serializable—subclasses need to be cloneable and serializable
so that JFreeChart datasets can be cloned and serialized.

See Also
AbstractSeriesDataset, TimeSeries, XYSeries.

47.21 SeriesChangeEvent

47.21.1 Overview

An event class that is passed to a SeriesChangeListener to notify it concerning a change to a
Series. This is an important event for dataset classes that maintain a collection of series objects—
the dataset needs to know when any of its data series has changed, so that it can forward a
DatasetChangeEvent to its own listeners.

See Also
SeriesChangeListener.

47.22 SeriesChangeListener

47.22.1 Overview

The interface through which series change notifications are posted. Typically a dataset will im-
plement this interface to receive notification of any changes to the individual series in the dataset
(which will normally be passed on as a DatasetChangeEvent).

47.22.2 Methods

This interface defines a single method:

å public void seriesChanged(SeriesChangeEvent event);

Receives notification when a series changes.

47.22.3 Notes

The AbstractSeriesDataset class implements this interface—it will generate a DatasetChangeEvent

every time it receives notification of a SeriesChangeEvent.

47.23 SeriesDataset

47.23.1 Overview

A base interface that defines a dataset containing zero, one or many data series. This interface is
implemented by the AbstractSeriesDataset class.

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 643

47.23.2 Methods

To find out how many series there are in a dataset:

å public int getSeriesCount();

Returns the number of series in the dataset (possibly zero).

To get the identifier for a series:

å public Comparable getSeriesKey(int series);

Returns the key that identifies the series with the specified index (series should be in the range
0 to getSeriesCount() - 1). This method should return a unique and non-null key for each
series. Any instance of Comparable can be used as a series key. For labelling (in a chart legend,
for instance) the toString() method is used to convert the key to a String. Note that String

implements Comparable, so you can use instances of String as the series keys.

Classes that implement this index should throw an IllegalArgumentException if the series

argument is not in the specified range.

To find the index for a series, given its key:

å public int indexOf(Comparable seriesKey);

Returns the index of the series with the specified key, or -1 if there is no such series in the
dataset. For the sake of backwards compatibility, classes that implement this method should
accept a null key. However, a series cannot actually have a null key, so this method will always
return -1 for this input.

47.23.3 Notes

Some points to note:

• this interface is extended by CategoryDataset and XYDataset.

47.24 SeriesException

47.24.1 Overview

A general exception that can be thrown by a Series.

For example, a time series will not allow duplicate time periods—attempting to add a duplicate
time period will throw a SeriesException.

47.25 SubSeriesDataset

A specialised dataset implementation written by Bill Kelemen. To be documented.

47.26 ValueDataset

47.26.1 Overview

This interface specifies the API for a dataset representing a single value (Number object). A default
implementation of this interface is provided by the DefaultValueDataset class.

47.26.2 Methods

This interface includes the following methods (all inherited from the Value and Dataset interfaces):

å public Number getValue();

Returns the value for the dataset (possibly null).

CHAPTER 47. PACKAGE: ORG.JFREE.DATA.GENERAL 644

å public void addChangeListener(DatasetChangeListener listener);

Adds a change listener to the dataset. All listeners will be notified whenever the dataset’s value
changes.

å public void removeChangeListener(DatasetChangeListener listener);

Removes a change listener from the dataset so that it no longer receives notification of updates
to the dataset’s value.

As with all datasets in JFreeChart, you can assign a dataset to a group. This facility is not currently
used by JFreeChart itself:

å public DatasetGroup getGroup();

Returns the group that the dataset belongs to.

å public void setGroup(DatasetGroup group);

Sets the group that the dataset belongs to.

47.26.3 Notes

Some points to note:

• this type of dataset is employed by the MeterPlot and ThermometerPlot classes.

47.27 WaferMapDataset

47.27.1 Overview

A dataset that can be used with the WaferMapPlot class.

Chapter 48

Package: org.jfree.data.io

48.1 Introduction

I/O related classes.

48.2 CSV

48.2.1 Overview

To be documented.

645

Chapter 49

Package: org.jfree.data.jdbc

49.1 Introduction

This package contains interfaces and classes for the datasets used by JFreeChart.

49.2 JDBCCategoryDataset

49.2.1 Overview

A category dataset that reads data from a database via JDBC. The data is cached in memory, and
can be refreshed at any time.

49.2.2 Constructors

You can create an empty dataset that establishes its own connection to the database, ready for
executing a query:

å public JDBCCategoryDataset(String url, String driverName,

String userName, String password);

Creates an empty dataset (no query has been executed yet) and establishes a database connec-
tion.

Alternatively, you can create an empty dataset that will use a pre-existing database connection:

å public JDBCCategoryDataset(Connection con);

Creates an empty dataset (no query has been executed yet) with a pre-existing database con-
nection.

If you want to initialise the data via the constructor, rather than creating an empty dataset:

å public JDBCCategoryDataset(Connection con, String query);

Creates a dataset with a pre-existing database connection and executes the specified query.

49.2.3 Methods

This class implements all the methods in the CategoryDataset interface (by inheriting them from
DefaultCategoryDataset).

To refresh the data in the dataset, you need to execute a query against the database:

å public void executeQuery(String query);

Refreshes the data (which is cached in memory) for the dataset by executing the specified
query. The query can be any valid SQL that returns at least two columns, the first containing
VARCHAR data representing categories, and the remaining columns containing numerical data.

You can re-execute the query at any time.

646

CHAPTER 49. PACKAGE: ORG.JFREE.DATA.JDBC 647

See Also
CategoryDataset, DefaultCategoryDataset.

49.3 JDBCPieDataset

49.3.1 Overview

A pie dataset that reads data from a database via JDBC. The data is cached in memory, and can
be refreshed at any time.

49.3.2 Constructors

You can create an empty dataset that establishes its own connection to the database, ready for
executing a query:

å public JDBCPieDataset(String url, String driverName, String userName,

String password);

Creates an empty dataset (no query has been executed yet) and establishes a database connec-
tion.

Alternatively, you can create an empty dataset that will use a pre-existing database connection:

å public JDBCPieDataset(Connection con);

Creates an empty dataset (no query has been executed yet) with a pre-existing database con-
nection.

If you want to initialise the data via the constructor, rather than creating an empty dataset:

å public JDBCPieDataset(Connection con, String query);

Creates a dataset with a pre-existing database connection and executes the specified query.

49.3.3 Methods

This class implements all the methods in the PieDataset interface (by inheriting them from DefaultPieDataset).

To refresh the data in the dataset, you need to execute a query against the database:

å public void executeQuery(String query);

Refreshes the data (which is cached in memory) for the dataset by executing the specified
query. The query can be any valid SQL that returns two columns, the first containing VARCHAR

data representing categories, and the second containing numerical data.

You can re-execute the query at any time.

See Also
PieDataset, DefaultPieDataset.

49.4 JDBCXYDataset

49.4.1 Overview

An XY dataset that reads data from a database via JDBC. The data is cached in memory, and can
be refreshed at any time.

CHAPTER 49. PACKAGE: ORG.JFREE.DATA.JDBC 648

49.4.2 Constructors

You can create an empty dataset that establishes its own connection to the database, ready for
executing a query:

å public JDBCXYDataset(String url, String driverName, String userName,

String password);

Creates an empty dataset (no query has been executed yet) and establishes a database connec-
tion.

Alternatively, you can create an empty dataset that will use a pre-existing database connection:

å public JDBCXYDataset(Connection con);

Creates an empty dataset (no query has been executed yet) with a pre-existing database con-
nection.

If you want to initialise the data via the constructor, rather than creating an empty dataset:

å public JDBCXYDataset(Connection con, String query);

Creates a dataset with a pre-existing database connection and executes the specified query.

49.4.3 Methods

This class implements all the methods in the XYDataset interface.

To refresh the data in the dataset, you need to execute a query against the database:

å public void executeQuery(String query);

Refreshes the data (which is cached in memory) for the dataset by executing the specified
query. The query can be any valid SQL that returns at least two columns, the first containing
numerical or date data representing x-values, and the remaining column(s) containing numerical
data for each series (one series per column).

You can re-execute the query at any time.

49.4.4 Notes

There is a demo application JDBCXYChartDemo in the JFreeChart demo collection that illustrates the
use of this class.

See Also
XYDataset.

Chapter 50

Package: org.jfree.data.statistics

50.1 Introduction

This package contains interfaces and classes for representing statistical datasets.

50.2 BoxAndWhiskerCalculator

50.2.1 Overview

A utility class for calculating the statistics required for a box-and-whisker plot.

50.2.2 Constructors

This class contains only static methods and, by design, cannot be instantiated.

50.2.3 Methods

To calculate box-and-whisker statistics for a list of values:

å public static BoxAndWhiskerItem calculateBoxAndWhiskerStatistics(List values);

Calculates a set of statistics (mean, median, quartiles Q1 and Q3, plus outliers) for a list of
Number objects.

• if values is null, this method throws a NullPointerException;

• if values contains any null values, this method throws a NullPointerException.

To calculate the first quartile value:

å public static double calculateQ1(List values);

Returns the first quartile boundary for a list of values. This method REQUIRES the list of
values to be in ascending order.

To calculate the third quartile value:

å public static double calculateQ3(List values);

Returns the first quartile boundary for a list of values. This method REQUIRES the list of
values to be in ascending order.

50.2.4 Notes

See also the Statistics class.

649

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 650

50.3 BoxAndWhiskerCategoryDataset

50.3.1 Overview

An interface that extends the CategoryDataset interface and returns the values required for a box-
and-whisker chart. The dataset represents a two-dimensional table, where each cell in the table
contains a complete set of statistics for one box-and-whisker item (a mean, median, quartile bound-
ary values Q1 and Q3, plus information about outliers and farouts).

The DefaultBoxAndWhiskerCategoryDataset provides one implementation of this interface.

50.3.2 Methods

The interface provides a range of methods for reading the values from the dataset. No update
methods are provided, since not every dataset implementation needs to be writeable.

To get the mean for one item in the dataset:

å public Number getMeanValue(int row, int column);

Returns the mean value for an item.

å public Number getMeanValue(Comparable rowKey, Comparable columnKey);

Returns the mean value for an item.

To get the median value for one item in the dataset:

å public Number getMedianValue(int row, int column);

Returns the median value for an item.

å public Number getMedianValue(Comparable rowKey, Comparable columnKey);

Returns the median value for an item.

To get the first quartile boundary value:

å public Number getQ1Value(int row, int column);

Returns the first quartile boundary value.

å public Number getQ1Value(Comparable rowKey, Comparable columnKey);

Returns the first quartile boundary value.

To get the third quartile boundary value:

å public Number getQ3Value(int row, int column);

Returns the third quartile boundary value.

å public Number getQ3Value(Comparable rowKey, Comparable columnKey);

Returns the third quartile boundary value.

To get the minimum regular value (everything lower than this is either an outlier or a farout):

å public Number getMinRegularValue(int row, int column);

Returns the lowest regular value.

å public Number getMinRegularValue(Comparable rowKey, Comparable columnKey);

Returns the lowest regular value.

To get the maximum regular value (everything higher than this is either an outlier or a farout):

å public Number getMaxRegularValue(int row, int column);

Returns the highest regular value.

å public Number getMaxRegularValue(Comparable rowKey, Comparable columnKey);

Returns the highest regular value.

To get the minimum outlier (everything lower than this is a farout value):

å public Number getMinOutlier(int row, int column);

Returns the lowest outlier.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 651

å public Number getMinOutlier(Comparable rowKey, Comparable columnKey);

Returns the lowest outlier.

To get the maximum outlier (everything higher than this is a farout value):

å public Number getMaxOutlier(int row, int column);

Returns the highest outlier.

å public Number getMaxOutlier(Comparable rowKey, Comparable columnKey);

Returns the highest outlier.

To get a list of the outlier (and farout) values for an item in the dataset:

å public List getOutliers(int row, int column);

Returns a list of the outlier (and farout) values.

å public List getOutliers(Comparable rowKey, Comparable columnKey);

Returns a list of the outlier (and farout) values.

50.4 BoxAndWhiskerItem

50.4.1 Overview

An object that records the statistics and values required for an item in a box-and-whisker plot:

• the mean value;

• the median value;

• the first quartile (Q1) boundary value;

• the third quartile (Q3) boundary value;

• the minimum regular value;

• the maximum regular value;

• the minimum outlier value;

• the maximum outlier value;

• a list of outlier values;

Instances of this class are immutable.

50.4.2 Constructors

To create a new instance:

å public BoxAndWhiskerItem(double mean, double median, double q1, double q3,

double minRegularValue, double maxRegularValue, double minOutlier,

double maxOutlier, List outliers); [1.0.7]

Creates a new instance with the specified values.

å public BoxAndWhiskerItem(Number mean, Number median, Number q1, Number q3,

Number minRegularValue, Number maxRegularValue, Number minOutlier,

Number maxOutlier, List outliers);

Creates a new instance with the specified values.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 652

50.4.3 General Methods

To get the data values associated with this item:

å public Number getMean();

Returns the mean value, as specified in the constructor. This may be null.

å public Number getMedian();

Returns the median value, as specified in the constructor. This may be null.

å public Number getQ1();

Returns the Q1 value, as specified in the constructor. This may be null.

å public Number getQ3();

Returns the Q3 value, as specified in the constructor. This may be null.

å public Number getMinRegularValue();

Returns the minimum regular value, as specified in the constructor. This may be null.

å public Number getMaxRegularValue();

Returns the maximum regular value, as specified in the constructor. This may be null.

å public Number getMinOutlier();

Returns the minimum outlier, as specified in the constructor. This may be null.

å public Number getMaxOutlier();

Returns the maximum outlier, as specified in the constructor. This may be null.

å public List getOutliers();

Returns a list of the outliers, as specified in the constructor.

50.4.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this item for equality with an arbitrary object.

Instances of this class are immutable1 and Serializable.

50.4.5 Notes

Some points to note:

• the BoxAndWhiskerCalculator class returns instances of this class from one of its methods;

• the DefaultBoxAndWhiskerXYDataset class uses this class to store individual data items.

50.5 BoxAndWhiskerXYDataset

50.5.1 Overview

An interface that is used to obtain data for a box-and-whisker plot using the XYPlot class. This
interface extends XYDataset.

The DefaultBoxAndWhiskerXYDataset class provides one implementation of this interface.
1Therefore cloning is unnecessary.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 653

50.5.2 Interface Methods

To get the mean value for an item:
å public Number getMeanValue(int series, int item);

Returns the mean value.

To get the median value for an item:
å public Number getMedianValue(int series, int item);

Returns the median value.

To get the first quartile boundary value:
å public Number getQ1Value(int series, int item);

Returns the first quartile boundary value.

To get the third quartile boundary value:
å public Number getQ3Value(int series, int item);

Returns the third quartile boundary value.

To get the minimum regular value:
å public Number getMinRegularValue(int series, int item);

Returns the minimum regular value. Anything lower than this is either an outlier or a farout
value.

To get the maximum regular value:
å public Number getMaxRegularValue(int series, int item);

Returns the maximum regular value. Anything higher than this is either an outlier or a farout
value.

To get the minimum outlier:
å public Number getMinOutlier(int series, int item);

Returns the minimum outlier. Anything lower than this is a farout value.

To get the maximum outlier:
å public Number getMaxOutlier(int series, int item);

Returns the maximum outlier. Anything higher than this is a farout value.

To get a list of the outlier values:
å public List getOutliers(int series, int item);

Returns a list of the outlier (and farout) values for this item.

To get the outlier coefficient:
å public double getOutlierCoefficient();

Returns the outlier coefficient (this is probably redundant).

To get the farout coefficient:
å public double getFaroutCoefficient();

Returns the farout coefficient (this is probably redundant).

50.5.3 Notes

Some points to note:

• the XYBoxAndWhiskerRenderer requires a dataset that implements this interface.

50.6 DefaultBoxAndWhiskerCategoryDataset

50.6.1 Overview

A dataset that can be used to create a box-and-whisker plot using a BoxAndWhiskerRenderer on a
CategoryPlot. This class implements the BoxAndWhiskerCategoryDataset interface.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 654

50.6.2 Constructor

This class defines a single constructor:

å public DefaultBoxAndWhiskerCategoryDataset();

Creates a new dataset, initially empty.

50.6.3 Data Access

To access a data item:

å public BoxAndWhiskerItem getItem(int row, int column);

Returns an item from the dataset.

å public Number getValue(Comparable rowKey, Comparable columnKey);

Equivalent to getMedianValue(rowKey, columnKey)—see below. This method is defined in the
CategoryDataset interface and mapped to the median value.

å public Number getValue(int row, int column);

As above.

å public Number getMeanValue(int row, int column);

Returns the mean value (possibly null) for the item at the specified row and column in the
dataset.

å public Number getMeanValue(Comparable rowKey, Comparable columnKey);

As above.

å public Number getMedianValue(int row, int column);

Returns the median value (possibly null) for the item at the specified row and column in the
dataset.

å public Number getMedianValue(Comparable rowKey, Comparable columnKey);

As above.

å public Number getQ1Value(int row, int column);

Returns the boundary value (possibly null) between the first and second quartiles in the dataset.

å public Number getQ1Value(Comparable rowKey, Comparable columnKey);

As above.

å public Number getQ3Value(int row, int column);

Returns the boundary value (possibly null) between the third and fourth quartiles in the
dataset.

å public Number getQ3Value(Comparable rowKey, Comparable columnKey);

As above.

å public Number getMinRegularValue(int row, int column);

Returns the minimum regular value (possibly null) for the item at the specified row and column
in the dataset.

å public Number getMinRegularValue(Comparable rowKey, Comparable columnKey);

As above.

å public Number getMaxRegularValue(int row, int column);

Returns the maximum regular value (possibly null) for the item at the specified row and column
in the dataset.

å public Number getMaxRegularValue(Comparable rowKey, Comparable columnKey);

As above.

å public Number getMinOutlier(int row, int column);

Returns the minimum outlier value (possibly null) for the item at the specified row and column
in the dataset.

å public Number getMinOutlier(Comparable rowKey, Comparable columnKey);

As above.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 655

å public Number getMaxOutlier(int row, int column);

Returns the maximum outlier value (possibly null) for the item at the specified row and column
in the dataset.

å public Number getMaxOutlier(Comparable rowKey, Comparable columnKey);

As above.

å public List getOutliers(int row, int column);

Returns a list of the outliers for the specified row and column in the dataset.

å public List getOutliers(Comparable rowKey, Comparable columnKey);

As above.

50.6.4 Row and Column Indices

Each row in the dataset contains the data for a series, and each column represents a category.

å public int getRowCount();

Returns the number of rows (series) in the dataset.

å public int getRowIndex(Comparable key);

Returns the index of the specified key.

å public Comparable getRowKey(int row);

Returns the key for the specified row.

å public List getRowKeys();

Returns an unmodifiable list of the row keys.

å public int getColumnCount();

Returns the number of columns (categories) in the dataset.

å public int getColumnIndex(Comparable key);

returns the index of the specified key.

å public Comparable getColumnKey(int column);

Returns the key for the specified column.

å public List getColumnKeys();

Returns an unmodifiable list of the column keys.

50.6.5 Adding and Removing Data

To add an item to the dataset:

å public void add(BoxAndWhiskerItem item, Comparable rowKey, Comparable columnKey);

Adds an item to the dataset using the specified row and column keys and sends a DatasetChangeEvent

to all registered listeners. The row key corresponds to the series and the column key corresponds
to the category.

For convenience, you can create a new item from a list of raw data values:

å public void add(List list, Comparable rowKey, Comparable columnKey);

Adds an item to the dataset that summarises the raw data in the list. Any null or NaN values
in the list are ignored.

To remove an item from the dataset:

å public void remove(Comparable rowKey, Comparable columnKey); [1.0.7]

Removes an item from the dataset and sends a DatasetChangeEvent to all registered listeners.

To remove a series from the dataset:

å public void removeRow(int rowIndex); [1.0.7]

Removes an entire row (series) from the dataset and sends a DatasetChangeEvent to all registered
listeners.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 656

å public void removeRow(Comparable rowKey); [1.0.7]

As above.

To remove a category from the dataset:

å public void removeColumn(int columnIndex); [1.0.7]

Removes an entire column (category) from the dataset and sends a DatasetChangeEvent to all
registered listeners.

å public void removeColumn(Comparable columnKey); [1.0.7]

As above.

To clear all items from the dataset:

å public void clear(); [1.0.7]

Clears all data from the dataset and sends a DatasetChangeEvent to all registered listeners.

50.6.6 Range Bounds

This dataset caches the lower and upper bounds for the data values, and implements the RangeInfo

interface to provide easy access to this information:

å public double getRangeLowerBound(boolean includeInterval);

Returns the lower bound of the data values (excluding outliers) in the dataset. The includeInterval

flag is ignored.

å public double getRangeUpperBound(boolean includeInterval);

Returns the upper bound of the data values (excluding outliers) in the dataset. The includeInterval

flag is ignored.

å public Range getRangeBounds(boolean includeInterval);

Returns the bounds of the data value (excluding outliers) in the dataset. The includeInterval

flag is ignored.

50.6.7 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

50.6.8 Notes

There is a demo (BoxAndWhiskerDemo1.java) included in the JFreeChart demo collection.

50.7 DefaultBoxAndWhiskerXYDataset

50.7.1 Overview

A basic implementation of the BoxAndWhiskerXYDataset interface that records statistics against par-
ticular points in time, for a single series only. This is currently the only implementation included
with JFreeChart.

50.7.2 Constructor

To create a new dataset, initially containing no data:

å public DefaultBoxAndWhiskerXYDataset(Comparable seriesKey);

Creates a new dataset containing an empty series with the specified seriesKey. Although you
can specify null for the series key, this is not recommended.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 657

50.7.3 General Methods

To find general information about the dataset:

å public int getSeriesCount();

Returns the number of series in the dataset—for this implementation, the return value is always
1.

å public Comparable getSeriesKey(int i);

Returns the key for the specified series—since this dataset can only store one series, the method
returns the key specified in the constructor, irrespective of the index value.

å public int getItemCount(int series);

Returns the number of items in the (single) series stored by this dataset. The series argument
is ignored (it’s defined in the interface because most datasets can define multiple series, but
not this one).

The outlier and far-out co-efficients can be set via the following methods:

å public double getOutlierCoefficient();

Returns the outlier co-efficient. The default value is 1.5.

å public void setOutlierCoefficient(double outlierCoefficient);

Sets the outlier co-efficient.

å public double getFaroutCoefficient();

Returns the farout co-efficient. The default value is 2.0.

å public void setFaroutCoefficient(double faroutCoefficient);

Sets the farout co-efficient.

50.7.4 Accessing the Data Values

To access an item from the dataset:

å public BoxAndWhiskerItem getItem(int series, int item);

Returns an item from the dataset. Since this dataset stores one series only, the series index is
ignored.

To access individual values from each data item:

å public Date getXDate(int series, int item);

Returns the x-value (a date/time value) for the specified item. The series index is ignored.

å public Number getX(int series, int item);

Returns the x-value as a Long instance, representing the number of milliseconds since 1-Jan-
1970 (the date/time encoding used by Java’s Date class). Each time this method is called, a
new Long instance is created, so you should avoid this method if possible.

å public Number getY(int series, int item);

Equivalent to getMeanValue(series, item)—see the next method.

å public Number getMeanValue(int series, int item);

Returns the mean value (possibly null) for the specified item. The series index is ignored.

å public Number getMedianValue(int series, int item);

Returns the median value (possibly null) for the specified item. The series index is ignored.

å public Number getQ1Value(int series, int item);

Returns the Q1 value (possibly null) for the specified item. The series index is ignored.

å public Number getQ3Value(int series, int item);

Returns the Q3 value (possibly null) for the specified item. The series index is ignored.

å public Number getMinRegularValue(int series, int item);

Returns the minimum regular value (possibly null) for the specified item. The series index is
ignored.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 658

å public Number getMaxRegularValue(int series, int item);

Returns the maximum regular value (possibly null) for the specified item. The series index is
ignored.

å public Number getMinOutlier(int series, int item);

Returns the minimum outlier (possibly null) for the specified item. The series index is ignored.

å public Number getMaxOutlier(int series, int item);

Returns the maximum outlier (possibly null) for the specified item. The series index is ignored.

å public List getOutliers(int series, int item);

Returns a list of the outliers for the specified item. The series argument is ignored.

50.7.5 Adding Data

To add an item to the dataset:

å public void add(Date date, BoxAndWhiskerItem item);

Adds an item to the dataset for the specified date/time, and sends a DatasetChangeEvent to all
registered listeners. If date or item is null, this method throws an IllegalArgumentException.

Currently there are no methods for removing data items or clearing the dataset.

50.7.6 Range Bounds

For efficiency, this class implements the RangeInfo interface, and caches the appropriate bounding
values:

å public double getRangeLowerBound(boolean includeInterval);

Returns the lower bound of the range values, or Double.NaN.

å public double getRangeUpperBound(boolean includeInterval);

Returns the upper bound of the range values, or Double.NaN.

å public Range getRangeBounds(boolean includeInterval);

Returns the bounds of the range values, or null.

50.7.7 Notes

Some points to note:

• there are currently no methods to remove data from the dataset;

• a demo (XYBoxAndWhiskerDemo1.java) is included in the JFreeChart demo collection, to provide
an example of this class being used.

50.8 DefaultMultiValueCategoryDataset

50.8.1 Overview

A dataset that represents a two-dimensional table where each cell in the table can hold zero, one or
many numerical values. This class implements the MultiValueCategoryDataset interface. This class
was first introduced in JFreeChart version 1.0.7.

50.8.2 Constructor

To create a new dataset:

å public DefaultMultiValueCategoryDataset(); [1.0.7]

Creates a new empty dataset.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 659

50.8.3 Methods

To add data to the dataset:

å public void add(List values, Comparable rowKey, Comparable columnKey); [1.0.7]

Adds the values in the given list to the dataset, replacing any existing values for the specified
row and column. The values are copied from values, with any null and Double.NAN values
in the list being ignored. If values, rowKey or columnKey are null, this method throws an
IllegalArgumentException.

To get a list of values for a cell in the table:

å public List getValues(int row, int column); [1.0.7]

Returns a list containing Number objects belonging to the specified cell. The list is unmodifiable,
and may be empty.

å public List getValues(Comparable rowKey, Comparable columnKey); [1.0.7]

Returns a list containing Number objects belonging to the specified cell. The list is unmodifiable,
and may be empty.

The getValue() methods inherited from the CategoryDataset interface are implemented to return
the mean of the list of values returned by getValues():

å public Number getValue(Comparable row, Comparable column); [1.0.7]

Returns the mean of the values at the specified cell in the dataset.

å public Number getValue(int row, int column); [1.0.7]

Returns the mean of the values at the specified cell in the dataset.

50.8.4 Row and Column Keys

To get information about the rows in the dataset:

å public int getRowCount(); [1.0.7]

Returns the number of rows in the dataset.

å public List getRowKeys(); [1.0.7]

Returns an unmodifiable list of the row keys for this dataset.

å public int getRowIndex(Comparable key); [1.0.7]

Returns the index corresponding to the specified key.

å public Comparable getRowKey(int row); [1.0.7]

Returns the key corresponding to the specified row index.

To get information about the columns in the dataset:

å public int getColumnCount(); [1.0.7]

Returns the number of columns in the dataset.

å public List getColumnKeys(); [1.0.7]

Returns an unmodifiable list of the column keys for this dataset.

å public int getColumnIndex(Comparable key); [1.0.7]

Returns the index corresponding to the specified key.

å public Comparable getColumnKey(int column); [1.0.7]

Returns the key corresponding to the specified column.

50.8.5 Dataset Bounds

This dataset caches the lower and upper bounds for the values in the dataset:

å public double getRangeLowerBound(boolean includeInterval); [1.0.7]

Returns the lower bound for the values in the dataset. The includeInterval argument is ignored
as it doesn’t apply for this dataset.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 660

å public double getRangeUpperBound(boolean includeInterval); [1.0.7]

Returns the upper bound for the values in the dataset. The includeInterval argument is
ignored as it doesn’t apply for this dataset.

å public Range getRangeBounds(boolean includeInterval); [1.0.7]

Returns the bounds for the values in the dataset. The includeInterval argument is ignored as
it doesn’t apply for this dataset.

50.8.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.7]

Tests this dataset for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

50.8.7 Notes

Some points to note:

• there are currently no methods to remove data items from the dataset;

• the row and column keys can be any instance of Comparable, but it is typical to use a String;

• there is a demo (ScatterRendererDemo1.java) included in the JFreeChart demo collection.

See Also:
MultiValueCategoryDataset

50.9 DefaultStatisticalCategoryDataset

50.9.1 Overview

A dataset that stores mean and standard deviation values for each cell in a two dimensional table.
Keys (instances of Comparable) are used to reference the rows and columns in the table. This class
provides a default implementation of the StatisticalCategoryDataset interface.

50.9.2 Constructors

This class has just one constructor:

å public DefaultStatisticalCategoryDataset();

Creates a new instance containing no data.

50.9.3 General Methods

To find the number of rows in the dataset:

å public int getRowCount();

Returns the total number of rows in the dataset.

To find the number of columns in the dataset:

å public int getColumnCount();

Returns the total number of columns in the dataset.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 661

50.9.4 Accessing Data

To access the value at a given cell in the table:

å public Number getValue(int row, int column);

Returns the value at a given cell in the table, which may be null. The value returned is the
same mean value returned by the getMeanValue(int, int) method.

å public Number getValue(Comparable rowKey, Comparable columnKey);

As for the previous method, but using row and column keys rather than indices.

To access the mean value:

å public Number getMeanValue(int row, int column);

Returns the mean value at a given cell in the table, which may be null.

å public Number getMeanValue(Comparable rowKey, Comparable columnKey);

Returns the mean value at a given cell in the table, which may be null.

To access the standard deviation:

å public Number getStdDevValue (int row, int column);

Returns the standard deviation at a given cell in the table, which may be null.

å public Number getStdDevValue(Comparable rowKey, Comparable columnKey);

Returns the standard deviation at a given cell in the table, which may be null.

50.9.5 Adding and Removing Data

To add a mean and standard deviation to the dataset:

å public void add(double mean, double standardDeviation, Comparable rowKey, Comparable columnKey);

Adds the specified mean and standard deviation to a cell in the table.

å public void add(Number mean, Number standardDeviation, Comparable rowKey, Comparable columnKey);

As for the previous method.

To remove a data item from the dataset:

å public void remove(Comparable rowKey, Comparable columnKey); [1.0.7]

Removes an item from the dataset and sends a DatasetChangeEvent to all registered listeners.

To remove an entire row from the dataset:

å public void removeRow(int rowIndex); [1.0.7]

Removes the specified row from the dataset, and sends a DatasetChangeEvent to all registered
listeners.

å public void removeRow(Comparable rowKey); [1.0.7]

Removes the specified row from the dataset, and sends a DatasetChangeEvent to all registered
listeners.

To remove an entire column from the dataset:

å public void removeColumn(int columnIndex); [1.0.7]

Removes the specified column from the dataset, and sends a DatasetChangeEvent to all registered
listeners.

å public void removeColumn(Comparable columnKey); [1.0.7]

Removes the specified column from the dataset, and sends a DatasetChangeEvent to all registered
listeners.

To remove all data from the dataset:

å public void clear(); [1.0.7]

Removes all data from the dataset and sends a DatasetChangeEvent to all registered listeners.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 662

50.9.6 Row and Column Keys

The following methods provide information about the column keys:

å public int getColumnIndex(Comparable key);

Returns the column index for the specified key.

å public Comparable getColumnKey(int column);

Returns the key for the specified column.

å public List getColumnKeys();

Returns a list of the column keys.

The following methods provide information about the row keys:

å public int getRowIndex(Comparable key);

Returns the row index for the specified key.

å public Comparable getRowKey(int row);

Returns the key for the specified row.

å public List getRowKeys();

Returns a list of the row keys.

50.9.7 Other Methods

This dataset implements the RangeInfo interface:

å public Range getRangeBounds(boolean includeInterval);

Returns the range of values for this dataset. If includeInterval is true, the standard deviation
is included in the range.

å public double getRangeLowerBound(boolean includeInterval);

Returns the lower bound of the values for this dataset. If includeInterval is true, the standard
deviation is included in the range.

å public double getRangeUpperBound(boolean includeInterval);

Returns the upper bound of the values for this dataset. If includeInterval is true, the standard
deviation is included in the range.

50.9.8 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

50.9.9 Notes

Some points to note:

• this class is used in a couple of demos in the JFreeChart demo collection—see Statistical-

BarChartDemo1.java and StatisticalLineChartDemo1.java.

See Also
StatisticalCategoryDataset.

50.10 HistogramBin

50.10.1 Overview

This class is used to represent a bin for the HistogramDataset class.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 663

50.10.2 Constructor

To create a new bin:

å public HistogramBin(double startBoundary, double endBoundary);

Creates a new bin with the specified boundary values. If startBoundary is greater than endBoundary,
this method throws an IllegalArgumentException.

50.10.3 Methods

This class defines the following methods:

å public int getCount();

Returns the number of items in the bin.

å public void incrementCount();

Increments the count for the bin.

å public double getStartBoundary();

Returns the start (or lower) boundary for the bin.

å public double getEndBoundary();

Returns the end (or upper) boundary for the bin.

å public double getBinWidth();

Returns the bin width, which is calculated as the difference between the start and end boundary
values.

50.10.4 Equals, Cloning and Serialization

This class overrides the equals(Object) method:

å public boolean equals(Object obj);

Tests this bin for equality with an arbitrary object.

Instances of this class are cloneable and serializable.

50.11 HistogramDataset

50.11.1 Overview

A dataset that can be used with the XYPlot and XYBarRenderer classes to display a histogram. Three
histogram types are supported:

• FREQUENCY – displays the number of items falling into each bin range;

• RELATIVE FREQUENCY – displays the percentage of items falling into each bin range;

• SCALE AREA TO 1 – adjusts the bin values so that the overall area of the histogram is 1.0.

This class has some overlap (in the features it provides) with the SimpleHistogramDataset class.

50.11.2 Constructors

The default constructor creates an empty dataset:

å public HistogramDataset();

Creates an empty dataset with a type of HistogramType.FREQUENCY. You can change the type at
any time by calling the setType() method.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 664

50.11.3 The Histogram Type

To set the type of histogram:

å public HistogramType getType();

Returns the histogram type.

å public void setType(HistogramType type);

Sets the histogram type and sends a DatasetChangeEvent to all registered listeners. If type is
null, this method throws an IllegalArgumentException.

50.11.4 Adding Data to the Dataset

To add raw data to the dataset, allowing the bin range to be determined automatically to fit the
data:

å public void addSeries(String name, double[] values, int bins);

Creates a series within the dataset that summarises the values supplied by allocating them to
the specified number of bins. The bin size is calculated to cover the range of values in the array.

To add raw data to the dataset, using a specified bin range:

å public void addSeries(String name, double[] values, int bins,

double minimum, double maximum);

Creates a series within the dataset the summarises the values supplied by allocating them
to bins. The bin size is calculated so that the specified number of bins covers the range
(minimum, maximum). If name or values is null, or bins is less than 1, this method throws an
IllegalArgumentException.

For both of the above methods, values that fall outside the bin range will be allocated to the first
or last bin, whichever is closer. Values that fall on a bin boundary will be allocated to the higher
bin.

An important point to note is that the dataset stores the frequency values (bin counts) only, and
not the raw data passed to the addSeries() methods.

50.11.5 Accessing the Dataset Values

This dataset works by returning the appropriate bin dimensions via the IntervalXYDataset interface.
Most of the methods listed in this section come from that interface.

All methods that accept a series argument expect a value in the range 0 to getIndex() - 1. If a
value outside that range is supplied, an IndexOutOfBoundsException will be thrown.

To get the number of series in the dataset:

å public int getSeriesCount();

Returns the number of series in the dataset.

To get the key for a series:

å public Comparable getSeriesKey(int series);

Returns the key for the specified series.

To get the number of items in a series:

å public int getItemCount(int series);

Returns the number of items in the specified series.

To get the data values:

å public Number getX(int series, int item);

Returns the x-value for the specified item. This value represents the center of a bin. See
getStartX() and getEndX() for the bin boundaries.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 665

å public Number getY(int series, int item);

Returns the y-value for the specified item. The value returned is derived from the bin count
according to the dataset type.

å public Number getStartX(int series, int item);

Returns the lower bound of the range of x-values for the specified item. This corresponds to
the start of the bin for this item.

å public Number getEndX(int series, int item);

Returns the upper bound of the range of x-values for the specified item. This corresponds to
the end of the bin for this item.

å public Number getStartY(int series, int item);

Returns the same value as getY().

å public Number getEndY(int series, int item);

Returns the same value as getY().

50.11.6 Equals, Cloning and Serialization

This class overrides the equals(Object) method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object. This method returns true if:

• obj is not null;

• obj is an instance of HistogramDataset;2

• both datasets contain the same values.

Instances of this class are Cloneable and Serializable.

50.11.7 Notes

Some points to note:

• a demo (HistogramDemo1.java) is included in the JFreeChart demo collection;

• an alternative implementation that you may find easier to use is SimpleHistogramDataset.

50.12 HistogramType

50.12.1 Overview

An enumeration of the possible histogram types:

• FREQUENCY - a frequency histogram shows the number of data items allocated to each bin;

• RELATIVE FREQUENCY - a relative frequency histogram shows the number of data items allocated
to each bin as a fraction of the total number of items;

• SCALE AREA TO 1 - similar to a relative frequency histogram, except that the values are scaled
so that the overall area represented by the bars is equal to 1.

50.12.2 Usage

These values are normally used in the getType() and setType() methods of the HistogramDataset

class.
2This needs to be reviewed. In other dataset classes, we test equality against interfaces only—it should probably

be the same here.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 666

50.13 MeanAndStandardDeviation

50.13.1 Overview

A simple class that records the mean and standard deviation for some data. The source data is not
known to this class, so the mean and standard deviation values have to be supplied/calculated by
external code. This class is used in the DefaultStatisticalCategoryDataset implementation.

50.13.2 Constructors

To create a new instance:

å public MeanAndStandardDeviation(double mean, double standardDeviation);

Creates a new record with the specified mean and standard deviation.

å public MeanAndStandardDeviation(Number mean, Number standardDeviation);

Creates a new record with the specified mean and standard deviation (null is permitted for
either argument).

50.13.3 General Methods

To access the mean value:

å public Number getMean();

Returns the mean, which may be null.

å public double getMeanValue(); [1.0.7]

Returns the mean as a double primitive. If getMean() returns null, this method returns
Double.NaN.

To access the standard deviation value:

å public Number getStandardDeviation();

Returns the standard deviation, which may be null.

å public double getStandardDeviationValue(); [1.0.7]

Returns the standard deviation as a double primitive. If getStandardDeviation() returns null,
this method returns Double.NaN.

50.13.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this record for equality with an arbitrary object. This method returns true if obj is an
instance of MeanAndStandardDeviation that records the same mean and standard deviation value
as this object.

Instances of this class are Serializable but, by virtue of being immutable, not Cloneable.

50.13.5 Notes

This class is used in the DefaultStatisticalCategoryDataset implementation.

50.14 MultiValueCategoryDataset

50.14.1 Overview

A dataset that represents a two-dimensional table where each cell in the table can hold zero, one
or many numerical values. This interface extends the CategoryDataset interface. This interface was
first introduced in JFreeChart version 1.0.7.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 667

50.14.2 Interface Methods

In addition to the methods defined by CategoryDataset:

å public List getValues(int row, int column); [1.0.7]

Returns a list containing Number objects belonging to the specified cell. The list may be empty.

å public List getValues(Comparable rowKey, Comparable columnKey); [1.0.7]

Returns a list containing Number objects belonging to the specified cell. The list may be empty.

50.14.3 Notes

Some points to note:

• a standard implementation is provided by DefaultMultiValueCategoryDataset;

• the ScatterRenderer class requires a dataset that implements this interface;

• there is a demo (ScatterRendererDemo1.java) included in the JFreeChart demo collection.

50.15 Regression

50.15.1 Overview

This class provides some utility methods for calculating regression co-efficients. Two regression
types are supported:

• ordinary least squares (OLS) regression - fitting a line of the form y = ax + b;

• power regression - fitting a line of the form y = axb.

Figure 50.1 shows an example created using this utility class.

Figure 50.1: A chart displaying a fitted line

50.15.2 Methods

To calculate the OLS regression for an array of data values:

å public static double[] getOLSRegression(double[][] data);

Fits a line of the form y = a + bx to the given data. The x values are read from data[i][0]

and the y values are read from data[i][1]. There must be at least two items in the array. The
result is a new array containing two values, the intercept (a) and the slope (b).

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 668

å public static double[] getOLSRegression(XYDataset dataset, int series);

Fits a line of the form y = a + bx to the specified series in the dataset (which must contain
at least two items). The result is a new array containing two values, the intercept (a) and the
slope (b).

To calculate a power regression for an array of data values:

å public static double[] getPowerRegression(double[][] data);

Performs a power regression on the data. The result is an array containing two values (a and
b) from the equation y = axb.

å public static double[] getPowerRegression(XYDataset dataset, int series);

Performs a power regression on the specified series in the dataset. The result is an array
containing two values (a and b) from the equation y = axb.

50.15.3 Notes

Some points to note:

• no other regression types are supported at present;

• a demo application (RegressionDemo1.java) is included in the JFreeChart demo collection.

50.16 SimpleHistogramBin

50.16.1 Overview

A bin for recording item counts in a SimpleHistogramDataset.

50.16.2 Constructors

There are two constructors:

å public SimpleHistogramBin(double lowerBound, double upperBound);

Creates a new bin representing the given range (inclusive of the bounds).

å public SimpleHistogramBin(double lowerBound, double upperBound, boolean includeLowerBound,

boolean includeUpperBound);

Creates a new bin representing the given range.

50.16.3 Methods

To find the bounds for the bin:

å public double getLowerBound();

Returns the lower bound for the bin range.

å public double getUpperBound();

Returns the upper bound for the bin range.

To access the bin’s item count:

å public int getItemCount();

Returns the item count for the bin.

å public void setItemCount(int count);

Sets the item count for the bin.

To check if a value belongs to a bin:

å public boolean accepts(double value);

Returns true if the given value falls within the bin range, and false otherwise.

To determine if two bins overlap:

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 669

å public boolean overlapsWith(SimpleHistogramBin bin);

Returns true if the given bin overlaps with this bin, and false otherwise.

The following method is used to determine an ordering for a collection of bins:

å public int compareTo(Object obj);

Returns the relative order of this bin compared to some object.

50.16.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests the bin for equality with an arbitrary object.

This class is cloneable and serializable.

50.17 SimpleHistogramDataset

50.17.1 Overview

A dataset that can be used to create a simple histogram. This is an alternative implementation to
the HistogramDataset class.

50.17.2 Constructor

To create a new dataset:

å public SimpleHistogramDataset(Comparable key);

Creates a new dataset, initially empty. The key identifies the series for the dataset—most
datasets allow multiple series, but this one allows only one. If key is null, this constructor
throws an IllegalArgumentException.3

50.17.3 Methods

This dataset can only hold a single data series:

å public int getSeriesCount();

Always returns 1.

å public Comparable getSeriesKey(int series);

Returns the key used for the single data series stored by this dataset. This key is never null.

The adjustForBinSize flag controls whether or not the bin count is divided by the bin size (width)
when returning the y-value for the dataset:

å public boolean getAdjustForBinSize();

Returns true if the bin count is adjusted for the bin size, and false otherwise.

å public void setAdjustForBinSize(boolean adjust);

Sets the flag that controls whether or not the bin count is adjusted for the bin size.

å public DomainOrder getDomainOrder();

Returns DomainOrder.ASCENDING to indicate that the domain values are supplied in ascending
order. Some renderers may use this knowledge to optimise the drawing of charts when only a
subset of the values is visible.

å public int getItemCount(int series);

Returns the number of items in the specified series (note that this dataset can only contain one
series).

3As of version 1.0.7.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 670

å public void addBin(SimpleHistogramBin bin);

Adds a bin to the dataset. You need to ensure that the bin doesn’t overlap any existing bins.

å public void addObservation(double value);

Adds a single observation to the appropriate bin.

å public void addObservation(double value, boolean notify);

Adds a single observation to the dataset, assigning it to the appropriate bin. The notify flag
controls whether or not a DatasetChangeEvent is sent to all registered listeners.

å public void addObservations(double[] values);

Adds all the values to the dataset and then sends a DatasetChangeEvent to all registered listeners.

50.17.4 Dataset Methods

The following methods are specified by the IntervalXYDataset interface:

å public Number getX(int series, int item);

Returns the x-value for an item.

å public double getXValue(int series, int item);

Returns the x-value for an item.

å public Number getY(int series, int item);

Returns the y-value for an item.

å public double getYValue(int series, int item);

Returns the y-value for an item, as a double primitive.

å public Number getStartX(int series, int item);

Returns the start of the x-interval for an item.

å public double getStartXValue(int series, int item);

Returns the start of the x-interval for an item.

å public Number getEndX(int series, int item);

Returns the end value of the x-interval for an item.

å public double getEndXValue(int series, int item);

Returns the end value of the x-interval for an item.

å public Number getStartY(int series, int item);

This method is mapped to the getY() method.

å public double getStartYValue(int series, int item);

This method is mapped to the getYValue() method.

å public Number getEndY(int series, int item);

This method is mapped to the getY() method.

å public double getEndYValue(int series, int item);

This method is mapped to the getYValue() method.

50.17.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object.

This class is Cloneable and Serializable.

50.17.6 Notes

Some points to note:

• a demo (HistogramDemo2.java) showing the use of this dataset is included in the JFreeChart
demo collection.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 671

50.18 StatisticalCategoryDataset

50.18.1 Overview

A statistical category dataset is a table of data where each data item consists of a mean and a
standard deviation (calculated externally on the basis of some other data). This interface is an
extension of the CategoryDataset interface.

This interface is used by the following renderers:

• StatisticalBarRenderer;

• StatisticalLineAndShapeRenderer.

The DefaultStatisticalCategoryDataset class provides a default implementation of this interface.

50.18.2 Interface Methods

This interface extends the CategoryDataset interface, adding four methods.

To get the mean value for an item in the dataset, using row and column indices:

å public Number getMeanValue(int row, int column);

Returns the mean value (possibly null) for one cell in the table.

Alternatively, you can access the same value using the row and column keys:

å public Number getMeanValue(Comparable rowKey, Comparable columnKey);

Returns the mean value (possibly null) for one cell in the table.

To get the standard deviation value for an item in the dataset, using row and column indices:

å public Number getStdDevValue(int row, int column);

Returns the standard deviation (possibly null) for one cell in the table.

As with the mean value, you can also access the standard deviation using the row and column keys:

å public Number getStdDevValue(Comparable rowKey, Comparable columnKey);

Returns the standard deviation (possibly null) for one cell in the table.

50.18.3 Notes

Some points to note:

• JFreeChart includes one implementation of this dataset interface—see the
DefaultStatisticalCategoryDataset class.

50.19 Statistics

50.19.1 Overview

Provides some static utility methods for calculating statistics.

50.19.2 Mean and Median

To calculate the mean of an array of non-null values:

å public static double calculateMean(Number[] values);

Calculates and returns the mean of an array of Number objects. This is equivalent to
calculateMean(values, true)—see below.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 672

å public static double calculateMean(Number[] values, boolean includeNullAndNaN); [1.0.3]

Calculates and returns the mean of an array of values. The includeNullAndNaN flag determines
whether or not null and NaN items are included in the calculation—if either is present in the
array, the end result is always Double.NaN.

• if values is null, this method throws an IllegalArgumentException;

• if values is empty (that is, has zero length), this method returns Double.NaN.

To calculate the mean of a collection of Number objects:

å public static double calculateMean(Collection values);

Returns the mean of a collection of Number objects. This is equivalent to
calculateMean(values, true).

å public static double calculateMean(Collection values, boolean includeNullAndNaN); [1.0.3]

Returns the mean of a collection of Number objects. The includeNullAndNaN flag determines
whether or not null and NaN items are included in the calculation—if either is present, the end
result is Double.NaN.

• if values is null, this method throws an IllegalArgumentException;

• if values is empty, this method returns Double.NaN;

• objects in the collection that are not instances of Number (including null) are ignored.

To calculate the median of a list of Number objects:

å public static double calculateMedian(List values);

Equivalent to calculateMedian(values, true)—see below.

å public static double calculateMedian(List values, boolean copyAndSort);

Returns the median of a list of Number objects. If the list is presented in ascending order by
value, you can set the copyAndSort flag to false, in which case the median is found by examining
the values list directly. Otherwise, the copyAndSort flag must be set to true, which causes the
list of values to be copied and sorted prior to finding the median value.

• if the list contains null values, this method will throw a NullPointerException;

• if the list contains non-null objects that are not Number instances, this method will throw
a ClassCastException.

To calculate the median of a sub-list of Number objects:

å public static double calculateMedian(List values, int start, int end);

Equivalent to calculateMedian(values, start, end, true)—see below.

å public static double calculateMedian(List values, int start, int end, boolean copyAndSort);

Returns the median of the specified sub-list (from start to end inclusive).

50.19.3 Standard Deviation

To calculate the standard deviation of an array of Number objects:

å public static double getStdDev(Number[] data);

Returns the standard deviation of an array of numbers.

• if data is null or zero-length, this method throws an IllegalArgumentException.

50.19.4 Other Methods

To calculate the correlation between two sets of values:

å public static double getCorrelation(Number[] data1, Number[] data2);

Returns the correlation between two sets of numbers.

• if data1 or data2 is null, this method throws an IllegalArgumentException.

CHAPTER 50. PACKAGE: ORG.JFREE.DATA.STATISTICS 673

To calculate a least squares regression line through an array of data:

å public static double[] getLinearFit(Number[] xData, Number[] yData);

Returns the intercept (double[0]) and slope (double[1]) of the linear regression line for the
supplied data points.

• if xData or yData is null, this method throws an IllegalArgumentException.

To calculate the slope of a least squares regression line:

å public static double getSlope(Number[] xData, Number[] yData);

Returns the slope of the linear regression line.

• if xData or yData is null, this method throws an IllegalArgumentException.

å public static double[][] getMovingAverage(Number[] xData, Number[] yData, int period)

Calculates moving average data based on the supplied x- and y-values.

50.19.5 Notes

This class was contributed by Matthew Wright.

Chapter 51

Package: org.jfree.data.time

51.1 Introduction

This package contains interfaces and classes that are used to represent time-based data.

The TimeSeriesCollection class is perhaps the most important class in this package. It is used to
store one or more TimeSeries objects, and provides an implementation of the XYDataset interface.
This allows it to be used as the dataset for an XYPlot).

The TimePeriodValuesCollection class performs a similar role, but allows more general (less regular)
time periods to be used.

51.2 DateRange

51.2.1 Overview

An extension of the Range class that is used to represent a date/time range. In JFreeChart, the
primary use for this class is for specifying the range of values to display on a DateAxis.

51.2.2 Constructors

To create a new date range:

å public DateRange(Date lower, Date upper);

Creates a new date range using the specified lower and upper bounds (do not use null for either
parameter).

51.2.3 Notes

Instances of this class are immutable and Serializable.

51.3 Day

51.3.1 Overview

A regular time period that is one day long. This class is designed to be used with the TimeSeries

class, but could also be used in other situations. Extends RegularTimePeriod.

51.3.2 Usage

A common use for this class is to represent daily data in a time series. For example:

674

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 675

TimeSeries series = new TimeSeries("Daily Data");
series.add(new Day(1, SerialDate.MARCH, 2003), 10.2);
series.add(new Day(3, SerialDate.MARCH, 2003), 17.3);
series.add(new Day(4, SerialDate.MARCH, 2003), 14.6);
series.add(new Day(7, SerialDate.MARCH, 2003), null);

Note that the SerialDate class is defined in the JCommon class library.

51.3.3 Constructor

There are several different ways to create a new Day instance. You can specify the day, month and
year:

å public Day(int day, int month, int year);

Creates a new Day instance. The month argument should be in the range 1 to 12. The year

argument should be in the range 1900 to 9999.

You can create a Day instance based on a SerialDate (defined in the JCommon class library):

å public Day(SerialDate day);

Creates a new Day instance.

You can create a Day instance based on a Date:

å public Day(Date time);

Creates a new Day instance.

Finally, the default constructor creates a Day instance based on the current system date:

å public Day();

Creates a new Day instance for the current system date.

51.3.4 Methods

There are methods to return the year, month and day-of-the-month:

å public int getYear();

Returns the year (in the range 1900 to 9999).

å public int getMonth();

Returns the month (in the range 1 to 12).

å public int getDayOfMonth();

Returns the day-of-the-month (in the range 1 to 31).

There is no method to set these attributes, because this class is immutable.

To return a SerialDate instance that represents the same day as this object:

å public SerialDate getSerialDate();

Returns the day as a SerialDate.

Given a Day object, you can create an instance representing the previous day or the next day:

å public RegularTimePeriod previous();

Returns the previous day, or null if the lower limit of the range is reached.

å public RegularTimePeriod next();

Returns the next day, or null if the upper limit of the range is reached.

To convert a Day object to a String object:

å public String toString();

Returns a string representing the day.

To convert a String object to a Day object:

å public static Day parseDay(String s) throws TimePeriodFormatException;

Parses the string and, if possible, returns a Day object.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 676

51.3.5 Notes

Points to note:

• in the current implementation, the day can be in the range 1-Jan-1900 to 31-Dec-9999.

• the Day class is immutable, a requirement for all RegularTimePeriod subclasses.

51.4 DynamicTimeSeriesCollection

51.4.1 Overview

This class is a specialised form of time series dataset that is intended to be faster than the more
general TimeSeriesCollection class. You can use this dataset when you have one or more series
containing time series data, all with the same regular date values, and when you need to drop older
data as newer data is added.

The underlying data structures used by this dataset are array-based, so updating the dataset is
relatively fast.

51.4.2 Constructors

To create a new dataset:

å public DynamicTimeSeriesCollection(int nSeries, int nMoments);

Creates a new dataset with the specified number of series. Each series will contain nMoments

observations. By default the x-values are measured using milliseconds.

å public DynamicTimeSeriesCollection(int nSeries, int nMoments, TimeZone zone);

Creates a new dataset with the specified number of series. Each series will contain nMoments

observations, measured at regular millisecond intervals in the specified time zone.

å public DynamicTimeSeriesCollection(int nSeries, int nMoments,

RegularTimePeriod timeSample);

Creates a new dataset with the specified number of series. Each series will contain nMoments

observations, measured at regular intervals of the specified time period.

å public DynamicTimeSeriesCollection(int nSeries, int nMoments,

RegularTimePeriod timeSample, TimeZone zone);

Creates a new dataset with the specified number of series. Each series will contain nMoments

observations, measured at regular intervals of the specified time period.

After the dataset is created, call the setTimeBase() method to initialise the x-values for the dataset.1

51.4.3 Methods

To initialise the x-values for the dataset:

å public synchronized long setTimeBase(RegularTimePeriod start);

Initialises the x-values (which are shared by all series in the dataset). The x-values are stored in
an array (the length was specified as nMoments in the constructor) beginning with the specified
start value, and incrementing the time period for each subsequent x-value.

The x-values are represented by time periods, but the dataset interface requires a single point in
time to be returned as the x-value. These methods allow you to control whether the first, last or
middle point in the time period is returned for the x-value:

å public TimePeriodAnchor getXPosition();

Returns the position within each time period that is used as the x-value.

1It would probably make sense to refactor the class so that the x-values are initialised in the constructor.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 677

å public void setXPosition(TimePeriodAnchor position);

Sets the position within each time period that is used as the x-value.

To add a complete series to the dataset:

å public void addSeries(float[] values, int seriesIndex,

String seriesName);

Adds/overwrites a set of y-values for the specified series. The x-values are as previously defined
by the constructor and the setTimeBase() method.

To set the name for a series:

å public void setSeriesName(int seriesIndex, String name);

Sets the name for a series.

To add a value to the dataset:

å public void addValue(int seriesIndex, int index, float value);

Adds a value to the specified series.

To find out the number of series in the dataset:

å public int getSeriesCount();

Returns the number of series in the dataset.

To find out the number of items within a series:

å public int getItemCount(int series);

Returns the number of items in the specified series. For this dataset, all series have the same
number of items (specified as nMoments in the constructor).

To “advance” the time:

å public synchronized RegularTimePeriod advanceTime();

This method drops the oldest observation for all series and adds a new (zero) observation for
the latest time period. Call this method before adding new data values.

Internally, the observations for all series are stored in a fixed-length array. To allow for older data
to be “dropped” as newer data is added, two indices point to the oldest and newest items in the
array:

å public int getOldestIndex();

Returns the index of the oldest item.

å public int getNewestIndex();

Returns the index of the newest item.

To get the oldest and newest time periods:

å public RegularTimePeriod getOldestTime();

Returns the oldest time period.

å public RegularTimePeriod getNewestTime();

Returns the newest time period.

To add a new value for each series:

å public void appendData(float[] newData);

Updates the latest observation for each series in the dataset. This will overwrite the previous
observation—you should call the advanceTime() method first if you want to drop an older
observation to make room for a newer observation.

To add data at a particular index:

å public void appendData(float[] newData, int insertionIndex, int refresh);

Adds one new item for each series in the dataset, and the specified index position.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 678

51.4.4 Notes

Some points to note:

• this dataset does not handle negative y-values (it could be implemented, but the original
author of the class did not require it).

51.5 FixedMillisecond

51.5.1 Overview

A regular time period that is one millisecond in length. This class uses the same encoding convention
as java.util.Date. Unlike the other regular time period classes, FixedMillisecond is fixed in real
time. This class is designed to be used with the TimeSeries class, but could also be used in other
situations. Extends RegularTimePeriod.

51.5.2 Constructors

To create a new FixedMillisecond:
å public FixedMillisecond(long millisecond);

Creates a new FixedMillisecond instance. The millisecond argument uses the same encoding
as java.util.Date.

You can construct a a FixedMillisecond instance based on a java.util.Date instance:
å public FixedMillisecond(Date time);

Creates a new FixedMillisecond instance representing the same millisecond as the time argu-
ment.

A default constructor is provided, which creates a FixedMillisecond instance based on the current
system time:

å public FixedMillisecond();

Creates a new FixedMillisecond instance based on the current system time.

51.5.3 Methods

Given a FixedMillisecond object, you can create an instance representing the previous millisecond:
å public RegularTimePeriod previous();

Returns the previous millisecond, or null if the lower limit of the range is reached.

...and the next millisecond:
å public RegularTimePeriod next();

Returns the next millisecond, or null if the upper limit of the range is reached.

51.5.4 Notes

Some points to note:

• this class is just a wrapper for the java.util.Date class, to allow it to be used as a RegularTimePeriod;

• the FixedMillisecond class is immutable. This is a requirement for all RegularTimePeriod

subclasses.

51.6 Hour

51.6.1 Overview

A regular time period one hour in length. This class is designed to be used with the TimeSeries

class, but could also be used in other situations. Extends RegularTimePeriod.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 679

51.6.2 Usage

A common use for this class is to represent hourly data in a time series. For example:

TimeSeries series = new TimeSeries("Hourly Data", Hour.class);
Day today = new Day();
series.add(new Hour(3, today), 734.4);
series.add(new Hour(4, today), 453.2);
series.add(new Hour(7, today), 500.2);
series.add(new Hour(8, today), null);
series.add(new Hour(12, today), 734.4);

Note that the hours in the TimeSeries do not have to be consecutive.

51.6.3 Constructor

There are several ways to create a new Hour instance. You can specify the hour and day:

å public Hour(int hour, Day day);

Creates a new Hour instance. The hour argument should be in the range 0 to 23.

Alternatively, you can supply a java.util.Date:

å public Hour(Date time);

Creates a new Hour instance. The default time zone is used to decode the Date.

A default constructor is provided:

å public Hour();

Creates a new Hour instance based on the current system time.

51.6.4 Methods

To access the hour and day:

å public int getHour();

Returns the hour (in the range 0 to 23).

å public Day getDay();

Returns the day.

There is no method to set the hour or the day, because this class is immutable.

Given a Hour object, you can create an instance representing the previous hour:

å public RegularTimePeriod previous();

Returns the previous hour, or null if the lower limit of the range is reached.

...or the next hour:

å public RegularTimePeriod next();

Returns the next hour, or null if the upper limit of the range is reached.

51.6.5 Notes

The Hour class is immutable. This is a requirement for all RegularTimePeriod subclasses.

51.7 Millisecond

51.7.1 Overview

A regular time period one millisecond in length. This class is designed to be used with the TimeSeries

class, but could also be used in other situations. Extends RegularTimePeriod.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 680

51.7.2 Constructors

To construct a Millisecond instance:
å public Millisecond(int millisecond, Second second);

Creates a new Millisecond instance. The millisecond argument should be in the range 0 to
999.

To construct a Millisecond instance based on a java.util.Date:
å public Millisecond(Date date);

Creates a new Millisecond instance.

A default constructor is provided:
å public Millisecond();

Creates a new Millisecond instance based on the current system time.

51.7.3 Methods

To access the millisecond:
å public int getMillisecond();

Returns the second (in the range 0 to 999).

To access the Second:
å public Second getSecond();

Returns the Second.

There is no method to set the millisecond or the second, because this class is immutable.

Given a Millisecond object, you can create an instance representing the previous millisecond:
å public RegularTimePeriod previous();

Returns the previous millisecond, or null if the lower limit of the range is reached.

...or the next:
å public RegularTimePeriod next();

Returns the next millisecond, or null if the upper limit of the range is reached.

51.7.4 Notes

The Millisecond class is immutable. This is a requirement for all RegularTimePeriod subclasses.

51.8 Minute

51.8.1 Overview

A regular time period one minute in length. This class is designed to be used with the TimeSeries

class, but could also be used in other situations.

51.8.2 Constructors

There are several ways to create new instances of this class. You can specify the minute and hour:
å public Minute(int minute, Hour hour);

Creates a new Minute instance. The minute argument should be in the range 0 to 59.

Alternatively, you can supply a java.util.Date:
å public Minute(Date time);

Creates a new Minute instance based on the supplied date/time.

A default constructor is provided:
å public Minute();

Creates a new Minute instance, based on the current system time.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 681

51.8.3 Methods

To access the minute and hour:

å public int getMinute();

Returns the minute (in the range 0 to 59).

å public Hour getHour();

Returns the hour.

There is no method to set the minute or the day, because this class is immutable.

Given a Minute object, you can create an instance representing the previous minute:

å public RegularTimePeriod previous();

Returns the previous minute, or null if the lower limit of the range is reached.

...or the next:

å public RegularTimePeriod next();

Returns the next minute, or null if the upper limit of the range is reached.

51.8.4 Notes

The Minute class is immutable. This is a requirement for all RegularTimePeriod subclasses.

51.9 Month

51.9.1 Overview

A time period representing a month in a particular year. This class is designed to be used with the
TimeSeries class, but could be used in other contexts as well. Extends RegularTimePeriod.

51.9.2 Constructors

There are several ways to create new instances of this class. You can specify the month and year:

å public Month(int month, Year year);

Creates a new Month instance. The month argument should be in the range 1 to 12.

å public Month(int month, int year);

Creates a new Month instance. The month argument should be in the range 1 to 12. The year
argument should be in the range 1900 to 9999.

Alternatively, you can specify a java.util.Date:

å public Month(Date time);

Creates a new Month instance.

A default constructor is provided:

å public Month();

Creates a new Month instance, based on the current system time.

51.9.3 Methods

To access the month and year:

å public int getMonth();

Returns the month (in the range 1 to 12).

å public Year getYear();

Returns the year.

å public int getYearValue();

Returns the year as an int.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 682

There is no method to set the month or the year, because this class is immutable.

Given a Month object, you can create an instance representing the previous month:

å public RegularTimePeriod previous();

Returns the previous month, or null if the lower limit of the range is reached.

...or the next month:

å public RegularTimePeriod next();

Returns the next month, or null if the upper limit of the range is reached.

To convert a Month object to a String object:

å public String toString();

Returns a string representing the month.

51.9.4 Notes

Points to note:

• the year can be in the range 1900 to 9999.

• this class is immutable. This is a requirement for all RegularTimePeriod subclasses.

51.10 MovingAverage

51.10.1 Overview

A utility class for calculating a moving average for a data series (usually a TimeSeries). Moving
averages are most commonly used in the analysis of stock prices or other financial data.

51.10.2 An Example

An example is perhaps the best way to illustrate how moving averages are calculated. A sample
dataset containing daily data and a corresponding three-day moving average is presented in Table
51.1.

Date: Value: 3 Day Moving Average:

11-Aug-2003 11.2 -
13-Aug-2003 13.8 -
17-Aug-2003 14.1 14.100
18-Aug-2003 12.7 13.400
19-Aug-2003 16.5 14.433
20-Aug-2003 15.6 14.933
25-Aug-2003 19.8 19.800
27-Aug-2003 10.7 15.250
28-Aug-2003 14.3 12.500

Table 51.1: A sample moving average

The code to calculate this moving average is:

TimeSeries series = new TimeSeries("Series 1", Day.class);
series.add(new Day(11, SerialDate.AUGUST, 2003), 11.2);
series.add(new Day(13, SerialDate.AUGUST, 2003), 13.8);
series.add(new Day(17, SerialDate.AUGUST, 2003), 14.1);
series.add(new Day(18, SerialDate.AUGUST, 2003), 12.7);
series.add(new Day(19, SerialDate.AUGUST, 2003), 16.5);
series.add(new Day(20, SerialDate.AUGUST, 2003), 15.6);
series.add(new Day(25, SerialDate.AUGUST, 2003), 19.8);
series.add(new Day(27, SerialDate.AUGUST, 2003), 10.7);
series.add(new Day(28, SerialDate.AUGUST, 2003), 14.3);

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 683

TimeSeries mavg = MovingAverage.createMovingAverage(
source, "Moving Average", 3, 3

);

In this example, we have chosen to skip the average calculation for the first three days (11, 12 and
13 August) of the time series (note that there are only two observations in this three day period for
the example series). For each of the other dates, an average value is calculated by taking the three
days up to and including the particular date. For example, for 19 August, the values for 17, 18 and
19 August are averaged to give a value of 14.433:

[14.1 + 12.7 + 16.5] / 3 = 43.3 / 3 = 14.433

Similarly, the value for 25 August is the average of the values for 23, 24 and 25 August—but in this
case no values are available for 23 or 24 August, so only the value from 25 August is used.

51.10.3 Methods

To calculate a moving average for a time series:
å public static TimeSeries createMovingAverage(TimeSeries source, String name, int periodCount,

int skip);

Creates a new series containing moving average values based on the source series. The new se-
ries will be called name. The periodCount specifies the number of periods over which the average
is calculated, and skip controls the initial number of periods for which no average is calculated
(usually 0 or periodCount - 1).

To calculate a moving average for each time series in a collection:
å public static TimeSeriesCollection createMovingAverage(

TimeSeriesCollection source, String suffix, int periodCount, int skip)

Returns a new collection containing a moving average time series for each series in the source
collection. The names of the moving average series are derived by appending the specified suffix
to the source series name.

An alternative means of calculating a moving average is to count back a fixed number of points,
irrespective of the “age” of each point:

å public static TimeSeries createPointMovingAverage(TimeSeries source, String name, int pointCount)

Creates a new series containing moving average values based on the source series.

51.10.4 Notes

The MovingAverageDemo1 class in the JFreeChart demo collection provides one example of how to
use this class.

51.11 Quarter

51.11.1 Overview

A calendar quarter—this class extends RegularTimePeriod.

51.11.2 Usage

A common use for this class is representing quarterly data in a time series:
TimeSeries series = new TimeSeries("Quarterly Data", Quarter.class);
series.add(new Quarter(1, 2001), 500.2);
series.add(new Quarter(2, 2001), 694.1);
series.add(new Quarter(3, 2001), 734.4);
series.add(new Quarter(4, 2001), 453.2);
series.add(new Quarter(1, 2002), 500.2);
series.add(new Quarter(2, 2002), null);
series.add(new Quarter(3, 2002), 734.4);
series.add(new Quarter(4, 2002), 453.2);

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 684

51.11.3 Constructor

There are several ways to create a new Quarter instance. You can specify the quarter and year:

å public Quarter(int quarter, Year year);

Creates a new Quarter instance. The quarter argument should be in the range 1 to 4.

å public Quarter(int quarter, int year);

Creates a new Quarter instance.

Alternatively, you can supply a java.util.Date:

å public Quarter(Date time);

Creates a new Quarter instance.

A default constructor is provided:

å public Quarter();

Creates a new Quarter instance based on the current system time.

51.11.4 Methods

To access the quarter and year:

å public int getQuarter();

Returns the quarter (in the range 1 to 4).

å public Year getYear();

Returns the year.

There is no method to set the quarter or the year, because this class is immutable.

Given a Quarter object, you can create an instance representing the previous or next quarter:

å public RegularTimePeriod previous();

Returns the previous quarter, or null if the lower limit of the range is reached.

å public RegularTimePeriod next();

Returns the next quarter, or null if the upper limit of the range is reached.

To convert a Quarter object to a String object:

å public String toString();

Returns a string representing the quarter.

51.11.5 Notes

Points to note:

• the year can be in the range 1900 to 9999.

• this class is immutable. This is a requirement for all RegularTimePeriod subclasses.

51.12 RegularTimePeriod

51.12.1 Overview

An abstract class that represents a time period that occurs at some regular interval. A number of
concrete subclasses have been implemented: Year, Quarter, Month, Week, Day, Hour, Minute, Second,
Millisecond and FixedMillisecond.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 685

51.12.2 Time Zones

The time periods represented by this class and its subclasses typically “float” with respect to any
specific time zone. For example, if you define a Day object to represent 1-Apr-2002, then that is
the day it represents no matter where you are in the world. Of course, against a real time line,
1-Apr-2002 in (say) New Zealand is not the same as 1-Apr-2002 in (say) France. But sometimes
you want to treat them as if they were the same, and that is what this class does.2

51.12.3 Conversion To/From Date Objects

Occasionally you may want to convert a RegularTimePeriod object into an instance of java.util.Date.
The latter class represents a precise moment in real time (as the number of milliseconds since Jan-
uary 1, 1970, 00:00:00.000 GMT), so to do the conversion you have to “peg” the RegularTimePeriod

instance to a particular time zone.

The getStart() and getEnd() methods provide this facility, using the default timezone. In addition,
there are other methods to return the first, last and middle milliseconds for the time period, using
the default time zone, a user supplied timezone, or a Calendar with the timezone preset.

51.12.4 Methods

Given a RegularTimePeriod instance, you can create another instance representing the previous or
next time period:

å public abstract RegularTimePeriod previous();

Returns the previous time period, or null if the current time period is the first in the supported
range.

å public abstract RegularTimePeriod next();

Returns the next time period, or null if the current time period is the last in the supported
range.

To assist in converting the time period to a java.util.Date object, the following methods peg the
time period to a particular time zone and return the first and last millisecond of the time period
(using the same encoding convention as java.util.Date):

å public long getFirstMillisecond();

Returns the first millisecond of the time period, evaluated using the default timezone.

å public long getFirstMillisecond(TimeZone zone);

Returns the first millisecond of the time period, evaluated using a particular timezone.

å public abstract long getFirstMillisecond(Calendar calendar);

Returns the first millisecond of the time period, evaluated using the supplied calendar (which
incorporates a timezone).

å public long getMiddleMillisecond();

Returns the middle millisecond of the time period, evaluated using the default timezone.

å public long getMiddleMillisecond(TimeZone zone);

Returns the middle millisecond of the time period, evaluated using a particular timezone.

å public long getMiddleMillisecond(Calendar calendar);

Returns the middle millisecond of the time period, evaluated using the supplied calendar (which
incorporates a timezone).

å public long getLastMillisecond();

The last millisecond of the time period, evaluated using the default timezone.

å public long getLastMillisecond(TimeZone zone);

Returns the last millisecond of the time period, evaluated using a particular timezone.

2For example, an accountant might be adding up sales for all the subsidiaries of a multinational company. Sales
on 1-Apr-2002 in New Zealand are added to sales on 1-Apr-2002 in France, even though the real time periods are
offset from one another.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 686

å public abstract long getLastMillisecond(Calendar calendar);

Returns the last millisecond of the time period, evaluated using the supplied calendar (which
incorporates a timezone).

51.12.5 Notes

Points to note:

• this class and its subclasses can be used with the TimeSeries class.

• all RegularTimePeriod subclasses are required to be immutable.

• known subclasses include: Year, Quarter, Month, Week, Day, Hour, Minute, Second, Millisecond
and FixedMillisecond.

51.13 Second

51.13.1 Overview

A regular time period that is one second long. This class is designed to be used with the TimeSeries

class, but could also be used in other situations. Extends RegularTimePeriod.

51.13.2 Constructors

There are several ways to create new instances of this class. You can specify the minute and second:

å public Second(int second, Minute minute);

Creates a new Second instance. The second argument should be in the range 0 to 59.

Alternatively, you can supply a java.util.Date:

å public Second(Date date);

Creates a new Second instance.

A default constructor is provided:

å public Second();

Creates a new Second instance based on the current system time.

51.13.3 Methods

To access the second and minute:

å public int getSecond();

Returns the second (in the range 0 to 59).

å public Minute getMinute();

Returns the minute.

There is no method to set the second or the minute, because this class is immutable.

Given a Second object, you can create an instance representing the previous second or the next
second:

å public RegularTimePeriod previous();

Returns the previous second, or null if the lower limit of the range is reached.

å public TimePeriod next();

Returns the next second, or null if the upper limit of the range is reached.

51.13.4 Notes

The Second class is immutable. This is a requirement for all RegularTimePeriod subclasses.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 687

51.14 SimpleTimePeriod

51.14.1 Overview

This class represents a fixed period of time with millisecond precision (implements the TimePeriod

interface).

51.14.2 Constructor

To create a new instance:

å public SimpleTimePeriod(Date start, Date end);

Creates a new time period with the specified start and end.

51.14.3 Methods

To return the start and end dates:

å public Date getStart();

Returns the start date (or time) for the period.

å public Date getEnd();

Returns the end date (or time) for the period.

To test for equality with an arbitrary object:

å public boolean equals(Object obj);

Tests whether this time period is equal to an arbitrary object. This method will return true if
obj is an instance of TimePeriod that has the same start and end date/time values.

51.14.4 Notes

Some points to note:

• instances of this class are immutable;

• implements the Serializable interface;

51.15 TimePeriod

51.15.1 Overview

A period of time defined by two java.util.Date instances representing the start and end of the time
period. This interface is implemented by:

• the SimpleTimePeriod class;

• the RegularTimePeriod base class and all its subclasses.

51.15.2 Methods

To get the start and end of the time period:

å public Date getStart();

Returns the start of the time period.

å public Date getEnd();

Returns the end of the time period.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 688

51.15.3 Notes

If you write your own class that implements this interface, you are advised to:

• ensure that instances of your class are immutable—this means that dataset classes that use
your class can only be modified or updated in ways that they are aware of (so that the
appropriate change events are generated);

• ensure that instances of your class are serializable—otherwise your datasets might not be
serializable.

See Also:
TimePeriodValue.

51.16 TimePeriodAnchor

51.16.1 Overview

An enumeration of the three possible time period anchor positions:

• START - the start of the time period;

• MIDDLE - the middle of the time period;

• END - the end of the time period.

These are used by the TimeSeriesCollection and TimePeriodValuesCollection classes to determine
how x-values are derived from the underlying time periods when these classes are used as XYDataset

instances.

51.17 TimePeriodFormatException

51.17.1 Overview

An exception that can be thrown by the methods used to convert time periods to strings, and vice
versa.

51.18 TimePeriodValue

51.18.1 Overview

An object that represents a time period with an associated value, used to represent each item in a
TimePeriodValues collection.

51.18.2 Constructors

To create a new TimePeriodValue object:

å public TimePeriodValue(TimePeriod period, Number value);

Creates a new data item that associates a value (null permitted) with a period. The period

argument should not be null.

For convenience, you can also use the following constructor:

å public TimePeriodValue(TimePeriod period, double value);

Creates a new data item that associates a value with a period. The period argument should
not be null.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 689

51.18.3 Methods

There are methods for accessing the period and value attributes. You can update the value but
not the period (this allows other classes to maintain a collection of TimePeriodValue objects in some
order that is based on the period, without the risk of that order being compromised by a change
to a particular item):

å public TimePeriod getPeriod();

Returns the time period for this item, which should not be null.

å public Number getValue();

Returns the value for this item. This may be null.

å public void setValue(Number value);

Sets the value for this item (null is permitted, and represents an unknown value).

51.18.4 Equals, Cloning and Serialization

To test this object for equality with an arbitrary object:

å public boolean equals(Object obj);

Returns true if this instance is equal to obj, and false otherwise.

Instances of this class are cloneable, on the assumption that the TimePeriod instance is immutable.
Similarly, instances of this class are serializable, provided that the TimePeriod instance is serializable.

51.19 TimePeriodValues

51.19.1 Overview

A structure containing zero, one or many TimePeriodValue objects. The time periods are arbitrary,
can overlap, and are maintained in the order they are added to this instance. This class is used to
represent one data series in a TimePeriodValuesCollection.

This class is similar to the TimeSeries class, but it allows arbitrary time periods to be defined,
rather than the more regular time periods required by the TimeSeries class. Use this class when
you need less structure and more flexibility.

51.19.2 Constructors

To create a new instance:

å public TimePeriodValues(String name);

Creates a new instance, initially empty, with the specified name.

å public TimePeriodValues(String name, String domain, String range);

Creates a new instance, initially empty, with the specified name, domain description and range
description.

51.19.3 Domain and Range Descriptions

This class allows text descriptions for the domain and range to be specified. These are not used
anywhere within JFreeChart, but are available for your application to use:

å public String getDomainDescription();

Returns a description for the domain values (that is, the time periods). This method can return
null. The default value is ‘‘Time’’.

å public void setDomainDescription(String description);

Sets the description for the domain values (that is, the time periods). The description may be
null. This method fires a PropertyChangeEvent with the property name Domain.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 690

å public String getRangeDescription();

Returns a description for the range values (that is, the y-values). This method can return null.
The default value is ‘‘Value’’.

å public void setRangeDescription(String description);

Sets the description for the range values. This method fires a PropertyChangeEvent with the
property name Range.

51.19.4 Data Access Methods

The following methods can be used to access the data items defined in this structure:

å public int getItemCount();

Returns the number of data items in the series.

å public TimePeriodValue getDataItem(int index);

Returns the data item at the specified index. If index is not in the range 0 to getItemCount()

- 1, this method throws an exception.

å public TimePeriod getTimePeriod(int index);

Returns the time period at the specified index. If index is not in the range 0 to getItemCount()

- 1, this method throws an exception. Note that if you want both the time period and the
associated value, you should call getDataItem(int).

å public Number getValue(int index);

Returns the value at the specified index. If index is not in the range 0 to getItemCount() - 1,
this method throws an exception.

å public void add(TimePeriodValue item);

Adds an item to the end of this series and sends a SeriesChangeEvent to all registered listeners.
If item is null, this method throws an IllegalArgumentException.

å public void add(TimePeriod period, double value);

Adds an observation as the last item in the series and sends a SeriesChangeEvent to all registered
listeners. If period is null, this method throws an IllegalArgumentException.

å public void add(TimePeriod period, Number value);

Adds an observation as the last item in the series and sends a SeriesChangeEvent to all registered
listeners. If period is null, this method throws an IllegalArgumentException.

å public void update(int index, Number value);

Updates the item with the specified index—the time period is not changed, but the associated
value is replaced by the specified value (which may be null.

å public void delete(int start, int end);

Deletes all the items between the specified indices.

å public TimePeriodValues createCopy(int start, int end) throws CloneNotSupportedException;

Returns an independent copy of the items between the specified indices.

51.19.5 Equals, Cloning and Serialization

This class overrides the equals method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

To support the general cloning and serialization of charts and their datasets, this class is both
cloneable and serializable.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 691

51.19.6 Other Methods

The following methods provide information about the items in the dataset with the minimum and
maximum x-values. It is something of an implementation detail that these are public—you most
likely won’t need to use these methods:

å public int getMinStartIndex();

Returns the index of the item with the time period that starts earliest in time.

å public int getMaxStartIndex();

Returns the index of the item with the time period that starts latest in time.

å public int getMinMiddleIndex();

Returns the index of the item with the time period with the earliest mid-point.

å public int getMaxMiddleIndex();

Returns the index of the item with the time period with the latest mid-point.

å public int getMinEndIndex();

Returns the index of the item with the time period that finishes earliest in time.

å public int getMaxEndIndex();

Returns the index of the item with the time period that finishes latest in time.

51.20 TimePeriodValuesCollection

51.20.1 Overview

A collection of TimePeriodValues objects—this class implements the XYDataset interface (and, fur-
thermore, the IntervalXYDataset interface). This class provides a more flexible (but less structured)
alternative to the TimeSeriesCollection class. This class extends AbstractIntervalXYDataset.

51.20.2 Usage

The TimePeriodValuesDemo1 application, included in the JFreeChart demo collection, provides an
example of how to use this class.

51.20.3 Constructors

To create a new, empty collection:

å public TimePeriodValuesCollection();

Creates a new empty collection. After creation, you can add TimePeriodValues objects using
the addSeries() method.

å public TimePeriodValuesCollection(TimePeriodValues series);

Creates a new collection containing a single series (you can add more series later, if you need
to). If series is null, it is ignored.

51.20.4 General Methods

To find the number of series in the dataset:

å public int getSeriesCount();

Returns the number of series in the collection.

To obtain the key for a series:

å public Comparable getSeriesKey(int series);

Returns a series key. Calling the toString() method on this key should give a human-readable
name for the series (it is used, by default, in the chart’s legend).

To obtain the data for one series:

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 692

å public TimePeriodValues getSeries(int series);

Returns a series containing zero, one or many TimePeriodValue instances.

To add a series to the dataset:
å public void addSeries(TimePeriodValues series);

Adds a series to the dataset, and sends a DatasetChangeEvent to all registered listeners. If series
is null, this method throws an IllegalArgumentException.

To remove a series from the dataset:
å public void removeSeries(TimePeriodValues series);

Removes the series from the dataset and sends a DatasetChangeEvent to all registered listeners.
If series is null, this method throws an IllegalArgumentException.

å public void removeSeries(int index);

Removes a series from the dataset and sends a DatasetChangeEvent to all registered listeners.

å public int getItemCount(int series);

Returns the number of data items in the specified series.

51.20.5 Alignment of X-Values

Some renderers (for example, the XYLineAndShapeRenderer) will require a single x-value to plot each
data item, even though the data value applies to a range of x-values defined by a TimePeriod. To
resolve these cases, the dataset defines an anchor that determines which point within a time period
is used to represent the x-value for that data item:

å public TimePeriodAnchor getXPosition();

Returns the x-value anchor point for this dataset. This method never returns null. The default
value is TimePeriodAnchor.MIDDLE.

å public void setXPosition(TimePeriodAnchor position);

Sets the x-value anchor point for this dataset. If position is null, this method throws an
IllegalArgumentException.

51.20.6 Other Methods

To get the x-values from the dataset:
å public Number getX(int series, int item);

Returns the x-value for the specified item within the given series.

å public Number getStartX(int series, int item);

Returns the start x-value for the specified item within the given series.

å public Number getEndX(int series, int item);

Returns the end x-value for the specified item within the given series.

å public Number getY(int series, int item);

Returns the y-value for the specified item within the given series.

å public Number getStartY(int series, int item);

Returns the start y-value for the specified item within the given series.

å public Number getEndY(int series, int item);

Returns the end y-value for the specified item within the given series.

51.20.7 DomainInfo Methods

This class implements the DomainInfo interface, with the following methods:
å public double getDomainLowerBound(boolean includeInterval);

Returns the lower bound of the range of x-values in the dataset.

å public double getDomainUpperBound(boolean includeInterval);

Returns the upper bound of the range of x-values in the dataset.

å public Range getDomainBounds(boolean includeInterval);

Returns the range of x-values in the dataset.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 693

51.20.8 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object.

51.20.9 Notes

Some points to note:

• this class implements the DomainInfo interface;

• a demo (TimePeriodValuesDemo1.java) is included in the JFreeChart demo collection.

See Also:
TimePeriodValues.

51.21 TimeSeries

51.21.1 Overview

A time series is a data structure that associates numeric values with particular time periods. In
other words, a collection of data values in the form (timeperiod, value). The time periods are
represented by subclasses of RegularTimePeriod, including Year, Quarter, Month, Week, Day, Hour,
Minute, Second, Millisecond and FixedMillisecond. The values are represented by the Number class.
The value null can be used to indicate missing or unknown values.

51.21.2 Usage

A time series may contain zero, one or many time periods with associated data values. You can
assign a null value to a time period, and you can skip time periods completely. You cannot add
duplicate time periods to a time series. Different subclasses of RegularTimePeriod cannot be mixed
within one time series.

Here is an example showing how to create a series with quarterly data:

TimeSeries series = new TimeSeries("Quarterly Data", Quarter.class);
series.add(new Quarter(1, 2001), 500.2);
series.add(new Quarter(2, 2001), 694.1);
series.add(new Quarter(3, 2001), 734.4);
series.add(new Quarter(4, 2001), 453.2);
series.add(new Quarter(1, 2002), 500.2);
series.add(new Quarter(2, 2002), null);
series.add(new Quarter(3, 2002), 734.4);
series.add(new Quarter(4, 2002), 453.2);

One or more TimeSeries objects can be aggregated to form a dataset for a chart using the TimeSeriesCollection
class.

A demo application (TimeSeriesDemo1.java) is included in the JFreeChart demo collection.

51.21.3 Constructors

To create a named time series containing no data:

å public TimeSeries(String name);

Creates an empty time series for daily data (that is, one value per day). The supplied name is
used as the series key.

To create a time series for a frequency other than daily, use this constructor:

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 694

å public TimeSeries(String name, Class timePeriodClass);

Creates an empty time series. The caller specifies the time period by specifying the class of the
RegularTimePeriod subclass (for example, Month.class).

The final constructor allows you to specify descriptions for the domain and range of the data:

å public TimeSeries(String name, String domain, String range, Class timePeriodClass);

Creates an empty time series. The caller specifies the time period, plus strings describing the
domain and range.

51.21.4 Attributes

Each instance of TimeSeries has the following attributes:

Attribute: Description:

key The series key (inherited from Series). The toString() form of the
key is often displayed in the legend for a chart.

domainDescription A description of the time period domain (for example, “Quarter”).
The default is “Time”.

rangeDescription A description of the value range (for example, “Price”). The default
is “Value”.

maximumItemCount The maximum number of items that the series will record. Once this
limit is reached, the oldest observation is dropped whenever a new
observation is added.

historyCount The number of time periods defining a “window” for the data. Start-
ing with the latest observation, the window extends back for this num-
ber of time periods. Any data older than the window is discarded.

51.21.5 General Methods

To find the class of time period recorded by this series:

å public Class getTimePeriodClass();

Returns the class of RegularTimePeriod stored by this time series. This is specified in the
constructor, and is used to ensure consistency among the items stored in the series.

To access the domain and range descriptions:

å public String getDomainDescription();

Returns a general description for the domain values (that is, the time periods). This may be
null.

å public void setDomainDescription(String description);

Sets the general description for the domain values and sends a PropertyChangeEvent (with the
property name Domain) to all registered listeners.

å public String getRangeDescription();

Returns a general description for the range values (that is, the y-values). This may be null.

å public void setRangeDescription(String description);

Sets the general description for the range values and sends a PropertyChangeEvent (with the
property name Range) to all registered listeners.

51.21.6 Data Retrieval Methods

To find out how many data items are in a series:

å public int getItemCount()

Returns the number of data items in the series (possibly zero).

To get a list of the items in the dataset:

å public List getItems();

Returns an unmodifiable list of the items in the dataset—the items in the list are instances
of TimeSeriesDataItem. NOTE: in fact, the items themselves can be modified, so this method is
poorly implemented. If you do modify any item directly, no event notification will happen, and
other objects that monitor changes to the time series may end up in a bad state.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 695

å public Number getValue(int index);

Returns the value (possibly null) at the specified index in the series. This method throws an
IndexOutOfBoundsException if index is not in the range 0 to getItemCount() - 1.

å public Number getValue(RegularTimePeriod period);

Returns the value (which may be null) for the specified period, or null if there is no suchperiod.
Note: to determine whether or not period is defined for the series, use the getIndex(Regular-

TimePeriod) method.

To retrieve an item from the time series:

å public TimeSeriesDataItem getDataItem(RegularTimePeriod period)

Returns the data item for the specified time period, or null if there is no such item. This
method throws an IllegalArgumentException if period is null.

å public TimeSeriesDataItem getDataItem(int index)

Returns the data item with the specified index (zero-based). This method throws an IndexOutOf-

BoundsException if index is not in the range 0 to getItemCount() - 1.

å public RegularTimePeriod getTimePeriod(int index);

Returns the time period at the specified index in the series. This method throws an IndexOutOf-

BoundsException if index is not in the range 0 to getItemCount() - 1.

å public int getIndex(RegularTimePeriod period);

Returns the index of the item in the series that corresponds to the specified period. If no item
with the specified period is found in the series, this method returns a negative index (-n-1
where n is the index of the position that the specified period would occupy). This method
throws an IllegalArgumentException if period is null.

51.21.7 Adding/Updating Items

There are a range of methods for adding/updating items in the time series. Each modification to
the series will typically send a SeriesChangeEvent to all registered listeners, except when:

• an add or update method with a notify parameter is used, and false is passed in;

• a previous call to setNotify has set the notify flag to null.

To add a value to a time series:

å public void add(RegularTimePeriod period, double value);

Adds a new item to the time series and sends a SeriesChangeEvent to all registered listeners
(unless event notification has been disabled).

å public void add(RegularTimePeriod period, double value, boolean notify);

Adds a new item to the time series and, if requested, sends a SeriesChangeEvent to all registered
listeners.

å public void add(RegularTimePeriod period, Number value);

Adds a new value (null permitted) to the time series and sends a SeriesChangeEvent to all
registered listeners. This method throws a SeriesException if the time period is not unique
within the series.

å public void add(RegularTimePeriod period, Number value, boolean notify);

Adds a new value (null permitted) to the time series and, if requested, sends a SeriesChangeEvent

to all registered listeners. This method throws a SeriesException if the time period is not unique
within the series.

å public void add(TimeSeriesDataItem item);

Adds the specified item to the time series and sends a SeriesChangeEvent to all registered
listeners.

å public void add(TimeSeriesDataItem item, boolean notify);

Adds the specified item to the time series and, if requested, sends a SeriesChangeEvent to all
registered listeners.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 696

To modify the value of an existing item:

å public void update(RegularTimePeriod period, Number value);

Modifies the value of an existing item in the time series and sends a SeriesChangeEvent to all
registered listeners.

å public void update(int index, Number value);

Modifies the value of an existing item in the time series and sends a SeriesChangeEvent to all
registered listeners.

Often you want to set the value for a time period without being concerned about whether or not
there is an existing value in the time series—the following methods can be used for that case:

å public TimeSeriesDataItem addOrUpdate(RegularTimePeriod period, double value);

Adds a new item or updates an existing item, as appropriate, and sends a SeriesChangeEvent

to all registered listeners.

å public TimeSeriesDataItem addOrUpdate(RegularTimePeriod period, Number value);

Adds a new item or updates an existing item, as appropriate, and sends a SeriesChangeEvent

to all registered listeners.

The following method allows you to add all the values from one series to this series:

å public TimeSeries addAndOrUpdate(TimeSeries series);

Adds all the values from series to this time series and sends a SeriesChangeEvent to all registered
listeners. This method returns a new series containing just the overwritten items from this series
(useful for implementing undo actions).

51.21.8 Removing Items

To remove an item from a series:

å public void delete(RegularTimePeriod period);

Deletes the item with the specified period and sends a SeriesChangeEvent to all registered
listeners. If there is no item for the period, this method does nothing. If period is null, this
method throws an IllegalArgumentException.

To remove a range of items from a series:

å public void delete(int start, int end);

Deletes the data items in the specified index range (inclusive) and then sends a SeriesChangeEvent

to all registered listeners. This method will throw an IllegalArgumentException if end is less
than start.

To remove all items from a series:

å public void clear();

Clears all items from the series and sends a SeriesChangeEvent to all registered listeners. If the
series doesn’t contain any items to begin with, this method does nothing.

51.21.9 Copying Subsets

To copy a subset of the data items from this series into a new series:

å public TimeSeries createCopy(int start, int end) throws CloneNotSupportedException;

Creates a new time series that is a copy of this time series, but containing only the items in the
specified index range. This method throws an IllegalArgumentException if start < 0 or end <

start. If this time series is empty, the start and end arguments are ignored, and this method
returns a clone of this (empty) series.

å public TimeSeries createCopy(RegularTimePeriod start, RegularTimePeriod end)

throws CloneNotSupportedException;

Creates a new time series that is a copy of this time series, but containing only the items from
start to end inclusive. This method throws an IllegalArgumentException if either argument is
null, or if start is after end.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 697

51.21.10 Discarding Old Data Items

You can create a time series that automatically discards “old” data items whenever new items are
added. There are two attributes, maximumItemCount and maximumItemAge, that can be used to achieve
this (in slightly different ways).

The maximumItemCount attribute fixes the maximum number of items that the series can hold—if a
new item is added such that the series contains more than maximumItemCount items, the oldest item
in the series is discarded (permanently):

å public int getMaximumItemCount();

Returns the maximum number of items that can be held in the series. If a new item is added
to the series such that the maximum item count will be exceeded, then the oldest item in the
series is discarded. The default value is Integer.MAX VALUE (which, for practical purposes, means
“no limit”).

å public void setMaximumItemCount(int maximum);

Sets the maximum number of items that will be retained by the series. If the series already
contains more than maximum items, the oldest items are discarded until the series contains exactly
maximum items, and a SeriesChangeEvent is sent to registered listeners. If maximum is negative, an
IllegalArgumentException is thrown.

The maximumItemAge attribute fixes the maximum age of the items that the series can hold. Recall
that a TimeSeries instance stores its data items using a particular subclass of RegularTimePeriod

(Year, Month, Day, Hour, and so on—see the getTimePeriodClass() method). The maximum age of
the items in a time series is specified in terms of the number (maximumItemAge) of the particular
time period used by the series.

For example, suppose that you have a time series containing monthly data, and you want to auto-
matically discard any items that are more than one year old. To do this, set the maximumItemAge to
12, and the time series will discard any data item that is more that 12 months older than the most
recent item in the series:

å public int getMaximumItemAge();

Returns the maximum age of items in the series (measured as a number of time periods relative
to the most recent item in the series). The default value is Integer.MAX VALUE (unless you change
this, no items will be removed due to their age).

å public void setMaximumItemAge(int periods);

Sets the maximumItemAge attribute, which specifies the maximum age of data items in the series
(in terms of the RegularTimePeriod type used by this series). Whenever a new data value is
added, any data items that are older than the limit specified by maximumItemAge are automati-
cally discarded.

å public void removeAgedItems(boolean notify);

Removes any items in the time series that exceed the maximum item age (see getMaximumItemAge()),
relative to the most recent item in the series. If notify is true, a SeriesChangeEvent is sent to
all registered listeners.

å public void removeAgedItems(long latest, boolean notify);

Removes any items in the time series that exceed the maximum item age, relative to latest

(specified in milliseconds since 1-Jan-1970). If notify is true, a SeriesChangeEvent is sent to all
registered listeners.

51.21.11 Utility Methods

The following utility methods are provided for convenience (none of these methods is used internally
by JFreeChart):

å public RegularTimePeriod getNextTimePeriod();

Returns the time period following the last time period in the series. For example, this could
be used by a time series editor to add a new item at the end of the series.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 698

å public Collection getTimePeriods();

Returns a (new) collection containing references to all the time periods in this time series.

å public Collection getTimePeriodsUniqueToOtherSeries(TimeSeries series);

Returns a (new) collection containing all the time periods in series that are NOT present in
this series.

51.21.12 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object object);

Tests this time series for equality with an arbitrary object.

To clone the time series:

å public Object clone() throws CloneNotSupportedException;

Returns a clone of this time series.

51.21.13 Notes

Some points to note:

• you can calculate the moving average of a time series using the MovingAverage utility class;

See Also
TimePeriod, TimeSeriesCollection.

51.22 TimeSeriesCollection

51.22.1 Overview

A collection of TimeSeries objects that can be used as the dataset for a time series chart (this class
implements the XYDataset and IntervalXYDataset interfaces).

51.22.2 Usage

A demo (TimeSeriesDemo.java) is included in the JFreeChart demo collection.

51.22.3 Constructors

To create an empty time series collection:

å public TimeSeriesCollection();

Creates a new (empty) collection that is pegged to the default TimeZone.

å public TimeSeriesCollection(TimeZone zone);

Creates a new (empty) collection that is pegged to the specified TimeZone. If zone is null, the
default time zone is used.

To create a collection containing a single time series (more can be added later):

å public TimeSeriesCollection(TimeSeries series);

Creates a new collection, containing the specified series, that is pegged to the default TimeZone.
If series is null, the collection will be empty.

å public TimeSeriesCollection(TimeSeries series, TimeZone zone);

Creates a new collection, containing the specified series, that is pegged to the specified time
zone. If series is null, the collection will be empty. If zone is null, the default time zone is
used.

Once a collection has been constructed, you are free to add any number of additional time series to
the collection.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 699

51.22.4 Adding and Removing Series

You can add additional TimeSeries objects to the collection, or remove existing series from the
collection, at any time—a DatasetChangeEvent will be fired for each update.

To add a series to the collection:

å public void addSeries(TimeSeries series);

Adds the series to the collection and sends a DatasetChangeEvent to all registered listeners.

To remove a series from the collection:

å public void removeSeries(TimeSeries series);

Removes a series from the collection and sends a DatasetChangeEvent to all registered listeners.

å public void removeSeries(int index);

Removes a series from the collection and sends a DatasetChangeEvent to all registered listeners.

To remove all series from the dataset:

å public void removeAllSeries();

Removes all series from the dataset.

51.22.5 Fetching X and Y Values

This class implements the XYDataset interface, so it needs to provide methods for accessing X and
Y values.

To get the x-value for an item within a series:

å public Number getX(int series, int item);

Returns the x-value for an item within a series. The value returned is the number of milliseconds
since 1 January 1970, 00:00:00 GMT.

å public double getXValue(int series, int item);

Returns the x-value for an item within a series. The value returned is the number of milliseconds
since 1 January 1970, 00:00:00 GMT.

Each x-value must be derived from the RegularTimePeriod for the item in the specified series. Several
factors control the conversion of the time period to a fixed point in time. The first is the time zone
for the TimeSeriesCollection—this can be specified in the constructor. The second is the anchor
point, which controls whether the x-value is positioned at the start, middle or end of the time
period:

å public TimePeriodAnchor getXPosition();

Returns the anchor position used to derive the x-value for a time period within a series.

å public void setXPosition(TimePeriodAnchor anchor);

Sets the anchor point (START, MIDDLE, or END) within each time period that is used as the x-value
for a data item.

To get the y-value for an item within a series:

å public Number getY(int series, int item);

Returns the y-value for an item within a series—this may be null.

51.22.6 The Range of X Values

To find the range of x-values contained in the collection:

å public Range getDomainRange();

Returns the range of values in the domain for this dataset.

å public Number getMinimumDomainValue();

Returns the minimum domain value (or x-value).

å public Number getMaximumDomainValue();

Returns the maximum domain value (or x-value).

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 700

Given that this class implements the IntervalXYDataset interface, which can specify an interval for
each x-value, we need to be careful about how the range of x-values is determined. The domainIs-
PointsInTime flag controls the treatment of time periods in the collection when the overall range
of values is being calculated. There are two possibilities:

• consider each time period as a single point, which is the case when the collection is being used
as an XYDataset;

• consider each time period as a range of values, which is the case when the collection is being
used as an IntervalXYDataset.

If the domainIsPointsInTime flag is set to true (the default), the former treatment is applied, and
if it is set to false the latter treatment is applied.

å public boolean getDomainIsPointsInTime();

Returns a flag that indicates whether the domain values are considered to be points in time,
or intervals.

å public void setDomainIsPointsInTime(boolean flag);

Sets the flag that controls whether the domain values are considered to be points in time or
intervals, then sends a DatasetChangeEvent to all registered listeners. This impacts the result
returned by the getDomainRange() method.

51.22.7 Other Methods

To find out how many TimeSeries objects are in the collection:

å public int getSeriesCount();

Returns the number of time series objects in the collection.

To get a list of all the series in the collection:

å public List getSeries();

Returns an unmodifiable list of the series within the collection.

To get a reference to a particular series:

å public TimeSeries getSeries(int series);

Returns a reference to a series in the collection.

å public TimeSeries getSeries(String name);

Returns a reference to the named series.

To get the name of a series:

å public String getSeriesName(int series);

Returns the name of a series in the collection. This method is provided for convenience.

To get the number of items in a series:

å public int getItemCount(int series);

Returns the number of items in a series. This method is implemented as a requirement of the
XYDataset interface.

The DomainInfo interface requires the following method, which returns the overall range of x-values
contained in the collection:

å public Range getDomainRange();

Returns the overall range of x-values contained in the collection. The result is affected by the
current setting of the domainIsPointsInTime attribute—see section ?? for details.

To get the indices of the time periods that surround a specific millisecond:

å public int[] getSurroundingItems(int series, long milliseconds);

Returns an array containing two indices for the time periods that surround the specified time.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 701

51.22.8 Equality, Cloning and Serialization

This class is Serializable but not Cloneable.

To test for equality:

å public boolean equals(Object obj);

Tests the collection for equality with an arbitrary object.

Two collections are considered equal when:

• both collections contain the same number of TimeSeries objects;

• each TimeSeries object is equal to the corresponding series in the other collection;

• the other attributes of the collection are the same.

51.22.9 Notes

Points to note:

• this class extends AbstractSeriesDataset to provide some of the basic series information.

• this class implements the XYDataset and IntervalXYDataset interfaces.

51.23 TimeSeriesDataItem

51.23.1 Overview

This class associates a Number with a RegularTimePeriod, and is used by the TimeSeries class to
record individual data items.

51.23.2 Usage

You won’t normally use this class directly—the TimeSeries class will create instances as required.

51.23.3 Constructors

To create a new item:

å public TimeSeriesDataItem(RegularTimePeriod period, Number value);

Creates a new item that associates the specified period and value. You can use null to represent
a missing or unknown value, but null is not permitted for the period argument.

å public TimeSeriesDataItem(RegularTimePeriod period, double value);

Creates a new item that associates the specified period and value.

51.23.4 Methods

To get the time period for the item:

å public RegularTimePeriod getPeriod();

Returns the period for the item (the period is immutable and never null.)

To get/set the value for the item:

å public Number getValue();

Returns the value for the item (or null to represent a missing or unknown value).

å public void setValue(final Number value);

Sets the value for the item (use null to represent a missing or unknown value).

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 702

51.23.5 Notes

This class has a number of important features:

• the class implements the Comparable interface, allowing data items to be sorted into time order
using standard Java API calls;

• the time period element is immutable, so that when a collection of objects is held in sorted
order, the sorted property cannot inadvertently be broken;

• the class implements the Cloneable interface, so that instances of this class can be easily
cloned;

• the class implements the Serializable interface.

51.24 TimeSeriesTableModel

An initial attempt to display a time series in a JTable.

51.25 TimeTableXYDataset

51.25.1 Overview

A dataset that represent a table of values where each column represents a series. Each row contains
the values (possibly null) that correspond to a particular time period (represented by any subclass
of RegularTimePeriod). This class implements the TableXYDataset interface and so is useful for
creating stacked area and bar charts with time-based data.

51.25.2 Constructors

The following constructors are available:

å public TimeTableXYDataset();

Creates a new (empty) dataset that uses the default TimeZone and Locale.

å public TimeTableXYDataset(TimeZone zone);

Creates a new (empty) dataset that uses the specified TimeZone and the default Locale. Passing
null for the zone argument is not permitted.

å public TimeTableXYDataset(TimeZone zone, Locale locale);

Creates a new (empty) dataset that uses the specified TimeZone and Locale. Passing null is not
permitted for either argument.

51.25.3 Adding and Removing Data

To add a data item:

å public void add(RegularTimePeriod period, double y, String seriesName);

Adds a value corresponding to the specified time period for a particular series (if there is an
existing value, it is overwritten). A DatasetChangeEvent is sent to all registered listeners.

å public void add(RegularTimePeriod period, Number y, String seriesName, boolean notify);

Adds a value (null permitted) corresponding to the specified time period for a particular series
(if there is an existing value, it is overwritten). If notify is true, a DatasetChangeEvent is sent
to all registered listeners.

To remove a data item:

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 703

å public void remove(RegularTimePeriod period, String seriesName);

Removes the data item for the specified period and seriesName. If there are no other items
for the series, the series will be removed from the dataset. If there are no other items for the
specified time period, it will be removed from the dataset (thus shrinking the overall size of the
table).

å public void remove(RegularTimePeriod period, String seriesName, boolean notify);

Removes the data item for the specified period and seriesName. If there are no other items
for the series, the series will be removed from the dataset. If there are no other items for the
specified time period, it will be removed from the dataset (thus shrinking the overall size of the
table). If notify is true, a DatasetChangeEvent is sent to all registered listeners.

To clear all data from the dataset:

å public void clear(); [1.0.7]

Clears all data from the dataset (if it is not already empty) and sends a DatasetChangeEvent to
all registered listeners.

51.25.4 Methods

For determining an appropriate axis range, JFreeChart needs to determine the minimum and maxi-
mum domain values (or x-values) in the dataset. This can vary slightly depending on whether each
x-value is evaluated as a “point in time” or a “period of time” (the range will be slightly larger if
each x-value covers a period of time rather than a single point in time). You can set a flag in the
dataset to determine the behaviour:

å public boolean getDomainIsPointsInTime();

Returns a flag that determines whether the domain values are “points in time” or “periods of
time”.

å public void setDomainIsPointsInTime(boolean flag);

Sets a flag that determines whether the domain values are “points in time” or “periods of time”.

The x-values are represented by time periods. The actual x-value can be the start, middle or end
of the time period:

å public TimePeriodAnchor getXPosition();

Returns the anchor point within each time period that determines the x-value for that time
period.

å public void setXPosition(TimePeriodAnchor anchor);

Sets the anchor point (start, middle or end) within each time period that determines the x-value
for that time period.

å public int getItemCount();

Returns the number of items in each series (recall that the TableXYDataset interface requires
that all series share the same x-values, which means that all series have the same number of
items).

å public int getItemCount(int series);

This method is required by the XYDataset interface—for this dataset, it returns the same value
as getItemCount().

å public int getSeriesCount();

Returns the number of series in the dataset.

å public String getSeriesName(int series);

Returns the name of a series.

å public Number getX(int series, int item);

Returns the x-value for an item within a series. For this dataset, the value will be represented
in milliseconds since 1-Jan-1970.

å public Number getStartX(int series, int item);

Returns the start value of the x-interval for an item within a series.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 704

å public Number getEndX(int series, int item);

Returns the end value of the x-interval for an item within a series.

å public Number getY(int series, int item);

Returns the y-value for an item within a series.

å public Number getStartY(int series, int item);

Returns the start value of the y-interval for an item within a series.

å public Number getEndY(int series, int item);

Returns the end value of the y-interval for an item within a series.

å public Number getMinimumDomainValue();

Returns the lowest x-value in the dataset.

å public Number getMaximumDomainValue();

Returns the highest x-value in the dataset.

å public Range getDomainRange();

Returns a range for the x-values in the dataset.

51.25.5 Notes

Some points to note:

• a demo application (StackedXYBarChartDemo2.java) is included in the JFreeChart demo col-
lection.

See Also:
StackedXYAreaRenderer, StackedXYBarRenderer, TableXYDataset.

51.26 Week

51.26.1 Overview

A subclass of RegularTimePeriod that represents one week in a particular year. This class is designed
to be used with the TimeSeries class, but (hopefully) is general enough to be used in other situations.

As far as possible, this class tries to follow the same definition of a “week” as used by Java’s Calendar
class. The weeks are numbered from 1 to 53 with:

• week 1 of a given year often begins during December of the previous year, but always ends in
January of the given year;

• week 53 is often not required, in which case it is considered to have zero length.

Different locales make different assumptions about the first day of the week, and these differences
are taken into account when mapping a Week instance to the time line.

51.26.2 Constructors

To construct a Week instance:
å public Week(int week, Year year);

Creates a new Week instance. The week argument should be in the range 1 to 53.

å public Week(int week, int year);

Creates a new Week instance.

To construct a Week instance based on a java.util.Date:
å public Week(Date time);

Creates a new Week instance.

å public Week();

Creates a new Week instance based on the current system time.

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 705

51.26.3 Methods

To access the week:

å public int getWeek();

Returns the week (in the range 1 to 53).

To access the year:

å public Year getYear();

Returns the year.

There is no method to set the week or the year, because this class is immutable.

Given a Week object, you can create an instance representing the previous week or the next week:

å public RegularTimePeriod previous();

Returns the previous week, or null if the lower limit of the range is reached.

å public RegularTimePeriod next();

Returns the next week, or null if the upper limit of the range is reached.

To convert a Week object to a String object:

å public String toString();

Returns a string representing the week.

51.26.4 Notes

In the current implementation, the year can be in the range 1900 to 9999.

The Week class is immutable. This is a requirement for all RegularTimePeriod subclasses.

See Also:
Year.

51.27 Year

51.27.1 Overview

A class that represents a calendar year (for example, “2003”). This class extends RegularTimePeriod.

51.27.2 Usage

A typical use for this class is for creating TimeSeries objects for annual data. For example:

TimeSeries t1 = new TimeSeries("Series 1", "Year", "Value", Year.class);
t1.add(new Year(1990), new Double(50.1));
t1.add(new Year(1991), new Double(12.3));
t1.add(new Year(1992), new Double(23.9));
t1.add(new Year(1993), new Double(83.4));
t1.add(new Year(1994), new Double(-34.7));
t1.add(new Year(1995), new Double(76.5));
t1.add(new Year(1996), new Double(10.0));
t1.add(new Year(1997), new Double(-14.7));
t1.add(new Year(1998), new Double(43.9));
t1.add(new Year(1999), new Double(49.6));
t1.add(new Year(2000), new Double(37.2));
t1.add(new Year(2001), new Double(17.1));

CHAPTER 51. PACKAGE: ORG.JFREE.DATA.TIME 706

51.27.3 Constructors

To create a new year:

å public Year(int year);

Creates a new Year instance. The year argument should be in the range 1900 to 9999.

To construct a Year instance based on a java.util.Date:

å public Year(Date time);

Creates a new Year instance.

A default constructor is provided:

å public Year();

Creates a new Year instance based on the current system time.

51.27.4 Methods

To access the year:

å public int getYear();

Returns the year.

There is no method to set the year, because this class is immutable.

Given a Year object, you can create an instance representing the previous year:

å public RegularTimePeriod previous();

Returns the previous year, or null if the lower limit of the range is reached.

...or the next:

å public RegularTimePeriod next();

Returns the next year, or null if the upper limit of the range is reached.

To convert a Year object to a String object:

å public String toString();

Returns a string representing the year.

To convert a String object to a Year object:

å public static Year parseYear(String s) throws TimePeriodFormatException;

Parses the string and, if possible, returns a Year object.

51.27.5 Notes

Some points to note:

• in the current implementation, the year can be in the range 1900 to 9999.

• the Year class is immutable—this is a requirement for all RegularTimePeriod subclasses.

Chapter 52

Package: org.jfree.data.time.ohlc

52.1 Introduction

This package contains a collection of classes that provide a dataset that implements the OHLCDataset

interface. This dataset is typically used to represent data from financial markets—the open and
close values refer to the opening and closing prices for a trading session, while the high and low
values refer to the highest and lowest trading prices during the session.

This package was first introduced in JFreeChart version 1.0.4.

52.2 OHLC

52.2.1 Overview

A simple class that records the four values requires by the OHLCItem class. You shouldn’t need to
use this class directly.

This class was first introduced in JFreeChart version 1.0.4.

52.2.2 Constructor

To create a new instance:

å public OHLC(double open, double high, double low, double close); [1.0.4]

Creates a new instance with the specified data values.

52.2.3 Methods

The following methods provide access to the values supplied to the constructor:

å public double getOpen(); [1.0.4]

Returns the open value.

å public double getClose(); [1.0.4]

Returns the close value.

å public double getHigh(); [1.0.4]

Returns the high value.

å public double getLow(); [1.0.4]

Returns the low value.

707

CHAPTER 52. PACKAGE: ORG.JFREE.DATA.TIME.OHLC 708

52.2.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.4]

Tests this instance for equality with an arbitrary object.

Instances of this class are Serializable but not Cloneable (cloning is pointless, because instances
are immutable).

52.2.5 Notes

This class performs no validation of the data values (for example, it doesn’t check that the low
value is less than or equal to the high value).

52.3 OHLCItem

52.3.1 Overview

A data item that can be stored in an OHLCSeries. This class extends ComparableObjectItem.

This class was first introduced in JFreeChart version 1.0.4.

52.3.2 Constructor

This class defines a single constructor:

å public OHLCItem(RegularTimePeriod period, double open, double high, double low, double close);

[1.0.4]

Creates a new instance with the specified values.

52.3.3 Methods

The following methods provide access to the attributes specified in the constructor:

å public RegularTimePeriod getPeriod(); [1.0.4]

Returns the time period for the data values.

å public double getYValue(); [1.0.4]

Returns getCloseValue().

å public double getOpenValue(); [1.0.4]

Returns the open value.

å public double getHighValue(); [1.0.4]

Returns the high value.

å public double getLowValue(); [1.0.4]

Returns the low value.

å public double getCloseValue(); [1.0.4]

Returns the close value.

52.3.4 Notes

Some points to note:

• this class is used by the OHLCSeries class, you should need to use this class directly in your
own code;

• internally, this class makes use of the OHLC class.

CHAPTER 52. PACKAGE: ORG.JFREE.DATA.TIME.OHLC 709

52.4 OHLCSeries

52.4.1 Overview

An OHLCSeries represents an ordered list of items where each item records four values (open, high,
low and close) against a time period. One or more instances of this class can be added to an
OHLCSeriesCollection to create a dataset for a chart.

This class was first introduced in JFreeChart version 1.0.4.

52.4.2 Constructor

This class defines a single constructor:

å public OHLCSeries(Comparable key); [1.0.4]

Creates a new empty series with the specified key (which must not be null). The key (often a
String) is used to identify the series.

52.4.3 Methods

In addition to the methods inherited from ComparableObjectSeries:

å public RegularTimePeriod getPeriod(int index); [1.0.4]

Returns the time period for the specified item in the series. If index is not in the range 0 to
getItemCount(), this method throws an IndexOutOfBoundsException.

å public ComparableObjectItem getDataItem(int index); [1.0.4]

Returns the data record for the specified item in the series. This will be an instance of OHLCItem.
If index is not in the range 0 to getItemCount(), this method throws an IndexOutOfBoundsException.

å public void add(RegularTimePeriod period, double open, double high, double low,

double close); [1.0.4]

Adds a new item to the series and sends a SeriesChangeEvent to all registered listeners. Attempt-
ing to add an item for a period that already exists in the series will cause a SeriesException.
All the data items in the series should use the same class of period, adding a different type of
period will cause an IllegalArgumentException.

52.4.4 Equals, Cloning and Serialization

The inherited equals() method is sufficient to distinguish differences between two instances of this
class. Instances of this class are Cloneable and Serializable.

52.4.5 Notes

This class is a subclass of ComparableObjectSeries.

See Also:
OHLCSeriesCollection.

52.5 OHLCSeriesCollection

52.5.1 Overview

An OHLCSeriesCollection contains zero, one, or many OHLCSeries instances, and presents this data
via the OHLCDataset interface. In other words, this class is a dataset that can be used to create
charts that require open-high-low-close data (this kind of data is usually related to financial markets
trading).

This class was first introduced in JFreeChart version 1.0.4.

CHAPTER 52. PACKAGE: ORG.JFREE.DATA.TIME.OHLC 710

52.5.2 Constructor

This class defines a single constructor:
å public OHLCSeriesCollection(); [1.0.4]

Creates a new empty collection.

52.5.3 Methods

To add a series:
å public void addSeries(OHLCSeries series); [1.0.4]

Adds the specified series to the collection. If series is null, this method throws an IllegalArgumentException.
Note that this method will allow you to add a series with a key that is not unique within the
collection, but you should avoid doing this.

To get the number of series in the collection:
å public int getSeriesCount(); [1.0.4]

Returns the number of series in the collection.

å public Comparable getSeriesKey(int series); [1.0.4]

Returns the key for a series in the collection.

å public int getItemCount(int series); [1.0.4]

Returns the number of items in a series.

å public OHLCSeries getSeries(int series); [1.0.4]

Returns a series from the collection.

å protected synchronized long getX(RegularTimePeriod period); [1.0.4]

Returns the millisecond value for the specified period.

å public double getXValue(int series, int item); [1.0.4]

Returns the x-value for an item in a series.

å public double getOpenValue(int series, int item); [1.0.4]

Returns the open value for an item in a series.

å public double getHighValue(int series, int item); [1.0.4]

Returns the high value for an item in a series.

å public double getLowValue(int series, int item); [1.0.4]

Returns the low value for an item in a series.

å public double getCloseValue(int series, int item); [1.0.4]

Returns the close value for an item in a series.

å public double getVolumeValue(int series, int item); [1.0.4]

Returns Double.NaN, because this dataset does not store any trading volume information.

The following methods are equivalent to the above, but return Number instances instead of double

primitives. Each call to these methods allocates a new object instance, so you should avoid using
these methods if possible:

å public Number getX(int series, int item); [1.0.4]

Returns the x-value for an item in a series.

å public Number getY(int series, int item); [1.0.4]

Returns the y-value (same as the close value) for an item in a series.

å public Number getOpen(int series, int item); [1.0.4]

Returns the open value for an item in a series.

å public Number getClose(int series, int item); [1.0.4]

Returns the close value for an item in a series.

å public Number getHigh(int series, int item); [1.0.4]

Returns the high value for an item in a series.

å public Number getLow(int series, int item); [1.0.4]

Returns the low value for an item in a series.

å public Number getVolume(int series, int item); [1.0.4]

Returns null as this dataset does not store volume data.

CHAPTER 52. PACKAGE: ORG.JFREE.DATA.TIME.OHLC 711

52.5.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.4]

Tests this dataset for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

52.5.5 Notes

This dataset does not store trading volume information.

See Also:
DefaultHighLowDataset, DefaultOHLCDataset.

Chapter 53

Package: org.jfree.data.xml

53.1 Introduction

This package contains interfaces and classes that provide basic support for reading datasets from
XML files. In the current release, there is support for PieDataset and CategoryDataset. It is
intended that other dataset types will be supported in the future.

53.2 Usage

In normal usage, you will access the facilities provided by this package via methods in the DatasetReader
class. The following examples are provided in the JFreeChart demo collection:

• XMLBarChartDemo.java

• XMLPieChartDemo.java

53.3 CategoryDatasetHandler

53.3.1 Overview

A SAX handler that creates a CategoryDataset by processing the elements in an XML document.

53.3.2 Usage

In most cases, you won’t need to use this class directly. Instead, use the DatasetReader class. For
an example, see the XMLBarChartDemo included in the JFreeChart demo collection.

53.3.3 XML Format

The format supported by the handler is illustrated by the following example:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Sample data for JFreeChart. -->

<CategoryDataset>

<Series name = "Series 1">
<Item>

<Key>Category 1</Key>
<Value>15.4</Value>

</Item>
<Item>

<Key>Category 2</Key>
<Value>12.7</Value>

712

CHAPTER 53. PACKAGE: ORG.JFREE.DATA.XML 713

</Item>
<Item>

<Key>Category 3</Key>
<Value>5.7</Value>

</Item>
<Item>

<Key>Category 4</Key>
<Value>9.1</Value>

</Item>
</Series>

<Series name = "Series 2">
<Item>

<Key>Category 1</Key>
<Value>45.4</Value>

</Item>
<Item>

<Key>Category 2</Key>
<Value>73.7</Value>

</Item>
<Item>

<Key>Category 3</Key>
<Value>23.7</Value>

</Item>
<Item>

<Key>Category 4</Key>
<Value>19.4</Value>

</Item>
</Series>

</CategoryDataset>

The <CategoryDataset> element can contain any number of <Series> elements, and each <Series>

element can contain any number of <Item> elements.

53.3.4 Notes

This class delegates work to the CategorySeriesHandler class.

53.4 CategorySeriesHandler

53.4.1 Overview

A SAX handler that reads a <Series> sub-element within a category dataset XML file. Work is
delegated to this class by the CategoryDatasetHandler class.

53.5 DatasetReader

53.5.1 Overview

This class contains utility methods for reading datasets from XML files. In the current release,
support is included for PieDataset and CategoryDataset.

53.5.2 Usage

Two applications (XMLPieChartDemo and XMLBarChartDemo) that demonstrate how to use this class
are included in the JFreeChart demo collection.

53.6 DatasetTags

53.6.1 Overview

An interface that defines constants for the literal text used in the element tags within the XML
documents.

CHAPTER 53. PACKAGE: ORG.JFREE.DATA.XML 714

Attribute: Value:

PIEDATASET TAG PieDataset

CATEGORYDATASET TAG CategoryDataset

SERIES TAG Series

ITEM TAG Item

KEY TAG Key

VALUE TAG Value

Table 53.1: Attributes for the DatasetTags interface

53.7 ItemHandler

53.7.1 Overview

A SAX handler that reads a key/value pair.

53.7.2 Usage

You should not need to use this class directly. Work is delegated to this handler by the PieDatasetHandler
class.

53.7.3 Notes

This class delegates some work to the KeyHandler class.

53.8 KeyHandler

53.8.1 Overview

A SAX handler that reads a key element from an XML file.

53.8.2 Usage

You should not need to use this class directly. Work is delegated to this class by the ItemHandler

class.

53.8.3 Notes

A key can be any instance of Comparable, but the handler always uses the String class to represent
keys.

53.9 PieDatasetHandler

53.9.1 Overview

A SAX handler for reading a PieDataset from an XML file.

53.9.2 Usage

In most cases, you won’t need to use this class directly. Instead, use the DatasetReader class. For
an example, see the XMLPieChartDemo application included in the JFreeChart demo collection.

CHAPTER 53. PACKAGE: ORG.JFREE.DATA.XML 715

53.9.3 XML Format

The format supported by the handler is illustrated by the following example:

<?xml version="1.0" encoding="UTF-8"?>

<!-- A sample pie dataset for JFreeChart. -->

<PieDataset>
<Item>

<Key>Java</Key>
<Value>15.4</Value>

</Item>
<Item>

<Key>C++</Key>
<Value>12.7</Value>

</Item>
<Item>

<Key>PHP</Key>
<Value>5.7</Value>

</Item>
<Item>

<Key>Python</Key>
<Value>9.1</Value>

</Item>
</PieDataset>

The <PieDataset> element can contain any number of <Item> elements.

53.9.4 Notes

This class delegates some work to the ItemHandler class.

53.10 RootHandler

53.10.1 Overview

The base handler class that provides support for a “sub-handler stack”. While processing an XML
element, a handler can push a sub-handler onto the stack and delegate work to it (usually the
processing of a sub-element). When the sub-handler is finished its work, it gets popped from the
stack, and the original handler resumes control. In this way, nested elements within the XML file
can be processed by different classes.

53.11 ValueHandler

53.11.1 Overview

A SAX handler that processes numerical values.

Chapter 54

Package: org.jfree.data.xy

54.1 Introduction

This package contains the XYDataset interface, extensions and implementing classes. These are used
to supply data to the XYItemRenderer instances that are managed by the XYPlot class.

54.2 AbstractIntervalXYDataset

54.2.1 Overview

A base class that can be used to implement an IntervalXYDataset (extends AbstractXYDataset).

54.2.2 Methods

This class implements methods that return double primitives for the start and end values of the x
and y-intervals:

å public double getStartXValue(int series, int item);

Returns the start value for the x-interval.

å public double getEndXValue(int series, int item);

Returns the end value for the x-interval.

å public double getStartYValue(int series, int item);

Returns the start value for the y-interval.

å public double getEndYValue(int series, int item);

Returns the end value for the y-interval.

The above methods rely on the corresponding methods that return Number objects being implemented—
see the IntervalXYDataset interface for details.

54.3 AbstractXYDataset

54.3.1 Overview

A base class that can be used to implement an XYDataset. This provides default implementations
of the accessor methods that return double primitives. In dataset implementations where the data
is actually stored using primitives, it is highly recommended that you override these methods to
fetch those primitive values directly (to avoid the creation of temporary Number object instances).

716

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 717

54.3.2 Methods

This class implements methods that return double primitives for the x and y values:

å public double getXValue(int series, int item);

Returns the x-value. This method relies on the getX() method being implemented.

å public double getYValue(int series, int item);

Returns the y-value. If the value is missing or unknown, this method will return Double.NaN.

The above methods rely on the getX() and getY() methods being implemented—see the XYDataset

interface for details.

See Also
AbstractIntervalXYDataset, AbstractXYZDataset.

54.4 AbstractXYZDataset

54.4.1 Overview

An abstract base class that can be used to implement the XYZDataset interface. This class extends
AbstractXYDataset to provide a default implementation of the getZValue() method.

54.4.2 Methods

This class implements a method that returns a double primitive for the z value:

å public double getZValue(int series, int item);

Returns the z-value. This method relies on the getZ() method to access the z-value.

54.5 CategoryTableXYDataset

54.5.1 Overview

A dataset that implements the TableXYDataset interface, so that it can be used with the StackedXYAreaRenderer
and StackedXYBarRenderer classes.

54.5.2 Constructor

To create a new dataset:

å public CategoryTableXYDataset();

Creates a new dataset.

54.5.3 Adding and Removing Data

When adding and removing data, bear in mind that all series must share the same set of x-values
(this is required by the TableXYDataset interface). When you add a new x-value to one series, the
same x-value is implicitly added to all the other series (with a null y-value).

To add an item to a series:

å public void add(double x, double y, String seriesName);

Adds a new item for the specified series and sends a DatasetChangeEvent to all registered listen-
ers.

å public void add(Number x, Number y, String seriesName, boolean notify);

Adds a new item for the specified series and, if requested, sends a DatasetChangeEvent to all
registered listeners.

To remove an item:

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 718

å public void remove(double x, String seriesName);

Removes the item with the specified x-value from a series and sends a DatasetChangeEvent to
all registered listeners.

å public void remove(Number x, String seriesName, boolean notify);

Removes the item with the specified x-value from a series and, if requested, sends a DatasetChangeEvent

to all registered listeners.

54.5.4 Accessing the Data Values

To access the data values:

å public Number getX(int series, int item);

Returns the x-value for an item in a series.

å public Number getY(int series, int item);

Returns the y-value for an item in a series (this may be null).

54.5.5 X-Intervals

This dataset can derive an x-interval about the x-value, in order to support the requirements of the
IntervalXYDataset interface:

å public Number getStartX(int series, int item);

Returns the start value of the x-interval for an item in a series.

å public Number getEndX(int series, int item);

Returns the end value of the x-interval for an item in a series.

No y-interval is defined, so the following methods return the same value as getY():

å public Number getStartY(int series, int item);

Returns the same value as getY().

å public Number getEndY(int series, int item);

Returns the same value as getY().

To control the x-interval width, the following methods are provided:

å public double getIntervalPositionFactor();

Returns the interval position factor, which controls how the x-interval is positioned relative to
the x-value.

å public void setIntervalPositionFactor(double d);

Sets the interval position factor. This is a number between 0.0 and 1.0, where 0.5 means the
x-interval is centered over the x-value.

å public double getIntervalWidth();

Returns the interval width. The default value is 1.0.

å public void setIntervalWidth(double d);

Sets the interval width.

å public boolean isAutoWidth();

Returns the flag the controls whether the interval width is automatically calculated.

å public void setAutoWidth(boolean b);

Sets the flag that controls whether the interval width is automatically calculated.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 719

54.5.6 Other Methods

Other methods include:

å public int getSeriesCount();

Returns the number of series in the dataset.

å public String getSeriesName(int series);

Returns the name of a series.

å public int getItemCount();

Returns the number of items for each series in the dataset.

å public int getItemCount(int series);

Returns the number of items for a specific series. Since the TableXYDataset interface re-
quires all the series to have the same number of items, this method returns the same value
as getItemCount().

å public Range getDomainRange();

Returns the range of x-values represented by the dataset. This takes into account the interval
width.

å public Number getMaximumDomainValue();

Returns the maximum x-value in the dataset.

å public Number getMinimumDomainValue();

Returns the minimum x-value in the dataset.

See Also
TableXYDataset.

54.6 DefaultHighLowDataset

54.6.1 Overview

A dataset that stores a single series consisting of open-high-low-close pricing data (typical trading
data in financial markets). This dataset implements the OHLCDataset interface. The dataset is read-
only, once it is created you cannot update the values.

You should also look at the DefaultOHLCDataset class, which performs a very similar role using a
slightly different approach.

54.6.2 Constructors

To create a new instance:

å public DefaultHighLowDataset(Comparable seriesKey, Date[] date,

double[] high, double[] low, double[] open, double[] close, double[] volume);

Creates a new dataset with a single series containing the values specified in the supplied ar-
rays. None of the arguments should be null, and all the arrays should have the same length.
Internally, the dataset will store the supplied values as Number object instances.

54.6.3 General Methods

This dataset implements the methods required by the OHLCDataset interface. Note that the series
index argument in all methods is ignored, because this dataset always contains exactly one series.

å public int getSeriesCount();

Returns 1, because this dataset always contains exactly one series.

å public Comparable getSeriesKey(int series);

Returns the series key (never null). The series argument is ignored.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 720

å public int getItemCount(int series);

Returns the number of items in the series. The series argument is ignored.

å public Number getX(int series, int item);

Returns the x-value for the specified item. The series argument is ignored. Note that this
method creates a new Long instance every time it is called. You can avoid creating a new object
instance by calling the (inherited) getXValue(int, int) method instead.

å public Date getXDate(int series, int item);

Returns the x-value for the specified item, as a Date (which is how the value is stored internally).
The series argument is ignored.

å public Number getY(int series, int item);

Equivalent to getClose(int, int)—see below.

å public Number getHigh(int series, int item);

Returns the high price for the specified item. The series argument is ignored.

å public double getHighValue(int series, int item);

Returns the high price for the specified item, as a double. The series argument is ignored.

å public Number getLow(int series, int item);

Returns the low price for the specified item. The series argument is ignored.

å public double getLowValue(int series, int item);

Returns the low price for the specified item, as a double. The series argument is ignored.

å public Number getOpen(int series, int item);

Returns the opening price for the specified item. The series argument is ignored.

å public double getOpenValue(int series, int item);

Returns the opening price for the specified item, as a double. The series argument is ignored.

å public Number getClose(int series, int item);

Returns the closing price for the specified item. The series argument is ignored.

å public double getCloseValue(int series, int item);

Returns the closing price for the specified item, as a double. The series argument is ignored.

å public Number getVolume(int series, int item);

Returns the volume for the specified item. The series argument is ignored.

å public double getVolumeValue(int series, int item);

Returns the volume for the specified item, as a double. The series argument is ignored.

å public static Number[] createNumberArray(double[] data);

A utility method that converts an array of double primitives to an array of Number instances.
This is used in the constructor to convert the supplied arrays. If data is null, this method
throws a NullPointerException.

54.6.4 Equals, Cloning and Serialization

This class does not provide an override of the equals(Object) method (but should—it will be done
for 1.0.4). Instances of this class are Cloneable1 and Serializable.

54.7 DefaultIntervalXYDataset

54.7.1 Overview

A dataset that implements the IntervalXYDataset interface, using primitive (double) arrays for the
data storage. This class allows you to add arbitrary data, but doesn’t (currently) provide any
facilities for updating or removing data.

This class was first introduced in JFreeChart version 1.0.3.
1The dataset is immutable, so cloning isn’t really necessary.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 721

54.7.2 Constructors

To create a new instance:

å public DefaultIntervalXYDataset(); [1.0.3]

Creates a new dataset, initially empty. Use the addSeries() method to populate the dataset.

54.7.3 General Methods

The following methods provide basic information about the series in the dataset:

å public int getSeriesCount(); [1.0.3]

Returns the number of series in the dataset.

å public Comparable getSeriesKey(int series); [1.0.3]

Returns the key for a series in the dataset.

å public int getItemCount(int series); [1.0.3]

Returns the number of items in a series.

54.7.4 Accessing Dataset Values

This dataset stores its data using arrays of double primitives, so if possible you should use the
accessor methods that return double primitives in preference to the methods that return Number

instances:

å public double getXValue(int series, int item); [1.0.3]

Returns the x-value for an item in the specified series, as a double.

å public double getYValue(int series, int item); [1.0.3]

Returns the y-value for an item in the specified series, as a double.

å public double getStartXValue(int series, int item); [1.0.3]

Returns the starting x-value for an item in the specified series, as a double.

å public double getEndXValue(int series, int item); [1.0.3]

Returns the ending x-value for an item in the specified series, as a double.

å public double getStartYValue(int series, int item); [1.0.3]

Returns the starting y-value for an item in the specified series, as a double.

å public double getEndYValue(int series, int item); [1.0.3]

Returns the ending y-value for an item in the specified series, as a double.

A set of corresponding methods returns the data values as Number objects. All these methods create
a new Number instance each time they are called, so you should avoid calling them if possible.

å public Number getX(int series, int item); [1.0.3]

Returns the value from getXValue(int, int), wrapped in a new Double instance.

å public Number getY(int series, int item); [1.0.3]

Returns the value from getYValue(int, int), wrapped in a new Double instance.

å public Number getStartX(int series, int item); [1.0.3]

Returns the value from getStartXValue(int, int), wrapped in a new Double instance.

å public Number getEndX(int series, int item); [1.0.3]

Returns the value from getEndXValue(int, int), wrapped in a new Double instance.

å public Number getStartY(int series, int item); [1.0.3]

Returns the value from getStartYValue(int, int), wrapped in a new Double instance.

å public Number getEndY(int series, int item); [1.0.3]

Returns the value from getEndYValue(int, int), wrapped in a new Double instance.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 722

54.7.5 Adding Data

To add data to the dataset:

å public void addSeries(Comparable seriesKey, double[][] data); [1.0.3]

Adds a new series to the dataset. You should use a seriesKey that is immutable and Serializable,
otherwise the dataset will not support cloning and serialization.

The data array should contain six sub-arrays, of equal length:

• data[0] contains the x-values;

• data[1] contains the starting values of the x-intervals;

• data[2] contains the ending values of the x-intervals;

• data[3] contains the y-values;

• data[4] contains the starting values of the y-intervals;

• data[5] contains the ending values of the y-intervals.

The format of the data[][] array in the addSeries() method is best illustrated by an example. The
following code (copied from XYBarChartDemo6.java) creates a new dataset containing a single series
with four data items:

DefaultIntervalXYDataset dataset = new DefaultIntervalXYDataset();

double[] x = {1.0, 2.0, 3.0, 4.0};
double[] startx = {0.9, 1.8, 2.7, 3.6};
double[] endx = {1.1, 2.2, 3.3, 4.4};
double[] y = {1.0, 2.0, 3.0, 4.0};
double[] starty = {0.9, 1.8, 2.7, 3.6};
double[] endy = {1.1, 2.2, 3.3, 4.4};
double[][] data = new double[][] {x, startx, endx, y, starty, endy};
dataset.addSeries("Series 1", data);

Currently, no methods are provided to remove or modify a series in the dataset.

54.7.6 Equals, Cloning and Serialization

This dataset overrides the equals(Object) method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object.

Instances of this class are Cloneable2 and Serializable.

54.7.7 Notes

Some points to note:

• a demo (XYBarChartDemo6.java) is included in the JFreeChart demo collection;

• an alternative dataset implementation is provided by the XYIntervalSeries and XYIntervalSeriesCollection

classes.

See Also
IntervalXYDataset.
2Cloning is broken in 1.0.3 but should be working in 1.0.4.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 723

54.8 DefaultOHLCDataset

54.8.1 Overview

A dataset that stores a single series consisting of open-high-low-close pricing data (typical trading
data in financial markets). This dataset implements the OHLCDataset interface. The dataset is
read-only, once it is created you cannot update the values.

Two alternative implementation of the OHLCDataset interface are:

• DefaultHighLowDataset;

• OHLCSeriesCollection.

54.8.2 Constructors

To create a new dataset:

å public DefaultOHLCDataset(String name, OHLCDataItem[] data);

Creates a new dataset. The dataset has one series with the specified name and data items. The
items should be in date order (or you should call the sortDataByDate() method immediately
after creating the dataset).

54.8.3 Methods

This dataset implements the methods required by the OHLCDataset interface. Note that the series
index argument in all methods is ignored, because this dataset always contains exactly one series.

To get the series key:

å public Comparable getSeriesKey(int series);

Returns the name of the specified series. Since this dataset only supports one series, the same
name is returned irrespective of the series argument.

A range of methods provide access to the data values for each item in the dataset:

å public Number getX(int series, int item);

Returns the x-value for the specified item as a Long. The series argument is ignored.

å public Date getXDate(int series, int item);

Returns the x-value for the specified item as a Date. The series argument is ignored.

å public Number getY(int series, int item);

Returns the closing price for the specified item. The series argument is ignored.

å public Number getHigh(int series, int item);

Returns the high value for the specified item. The series argument is ignored.

å public double getHighValue(int series, int item);

Returns the high value for the specified item as a double. The series argument is ignored.

å public Number getLow(int series, int item);

Returns the low value for the specified item. The series argument is ignored.

å public double getLowValue(int series, int item);

Returns the low value for the specified item as a double. The series argument is ignored.

å public Number getOpen(int series, int item);

Returns the open value for the specified item. The series argument is ignored.

å public double getOpenValue(int series, int item);

Returns the open value for the specified item as a double. The series argument is ignored.

å public Number getClose(int series, int item);

Returns the close value for the specified item. The series argument is ignored.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 724

å public double getCloseValue(int series, int item);

Returns the close value for the specified item as a double. The series argument is ignored.

å public Number getVolume(int series, int item);

Returns the volume value for the specified item. The series argument is ignored.

å public double getVolumeValue(int series, int item);

Returns the volume value for the specified item as a double. The series argument is ignored.

To sort the data items into date order:

å public void sortDataByDate();

Sorts the array of data items into ascending order by date.

54.8.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

See Also
DefaultHighLowDataset, OHLCDataset, OHLCSeriesCollection.

54.9 DefaultTableXYDataset

54.9.1 Overview

An implementation of the XYDataset interface where all series share a common set of x-values. This
dataset implements TableXYDataset and so can be used to create stacked area charts.

54.9.2 Constructor

To create a new dataset:

å public DefaultTableXYDataset();

Creates a new empty dataset with autoPrune set to false (see the next constructor).

å public DefaultTableXYDataset(boolean autoPrune);

Creates a new empty dataset. The autoPrune flag controls whether or not x-values are auto-
matically removed when they have no corresponding y-values.

54.9.3 Accessing Series

The dataset stores zero, one or many series of data items. Each series is represented by an XYSeries.
The following methods provide access to the series in the dataset:

å public int getSeriesCount();

Returns the number of series contained within this dataset.

å public XYSeries getSeries(int series);

Returns a series from the dataset.

å public Comparable getSeriesKey(int series);

Returns the key for the specified series.

å public int getItemCount(int series);

Returns the number of items in the specified series. Note that this dataset ensures that all
series share the same set of x-values, so all series have the same number of items.

å public int getItemCount();

Returns the number of items in each series (this dataset ensures that all series have the same
number of items).

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 725

54.9.4 Accessing Data Values

To access particular values from the dataset:

å public Number getX(int series, int item);

Returns the x-value for an item in a particular series.

å public Number getStartX(int series, int item);

Returns the start of the x-interval for an item in a particular series.

å public Number getEndX(int series, int item);

Returns the end of the x-interval for an item in a particular series.

å public Number getY(int series, int index);

Returns the y-value (possibly null) for an item in a particular series.

å public Number getStartY(int series, int item);

Returns the start of the y-interval for an item in a particular series. Since no y-interval is
defined, this method always returns the y-value.

å public Number getEndY(int series, int item);

Returns the end of the y-interval for an item in a particular series. Since no y-interval is defined,
this method always returns the y-value.

54.9.5 Adding and Removing Data

The following methods can be used to add and remove series from the dataset:

å public void addSeries(XYSeries series);

Adds a series to the dataset and sends a DatasetChangeEvent to all registered listeners.

å public void removeAllSeries();

Removes all series from the dataset and sends a DatasetChangeEvent to all registered listeners.

å public void removeSeries(XYSeries series);

Removes a series from the dataset and sends a DatasetChangeEvent to all registered listeners.

å public void removeSeries(int series);

Removes a series from the dataset and sends a DatasetChangeEvent to all registered listeners.

å public void removeAllValuesForX(Number x);

Removes the item in each series that corresponds to the specified x-value, and sends a DatasetChangeEvent

to all registered listeners.

å public void prune();

Removes any x-values from the dataset that have no corresponding y-values.

å public void updateXPoints();

Refreshes the cached list of x-points.

54.9.6 Domain Intervals

This dataset has methods that enable you to control the “manufacture” of x-intervals for the
specified x-values. This enables the dataset to be used to create bar charts, for instance.

å public boolean isAutoWidth();

Returns the flag that indicates whether the interval width is automatically calculated.

å public void setAutoWidth(boolean b);

Sets the flag that controls whether the interval width is automatically calculated.

å public double getIntervalWidth();

Returns the x-interval width.

å public void setIntervalWidth(double d);

Sets the x-interval width.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 726

å public double getIntervalPositionFactor();

Returns the interval position factor.

å public void setIntervalPositionFactor(double d);

Sets the interval position factor. This is a value between 0.0 and 1.0 that controls how the
x-interval is positioned around the x-value. 0.0 means the x-value is at the left end of the
interval, 0.5 means that the x-value is centered within the interval and 1.0 means that the
x-value is at the right end of the interval.

54.9.7 Other Methods

Other methods include:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object.

å public int hashCode();

Returns a hash code for the dataset.

å public Range getDomainRange();

Returns the range of values in the domain (taking into account the x-interval).

å public Number getMaximumDomainValue();

Returns the maximum domain value (taking into account the x-interval).

å public Number getMinimumDomainValue();

Returns the minimum domain value (taking into account the x-interval).

To find the state of the autoPrune flag:

å public boolean isAutoPrune();

Returns a flag that controls whether or not x-values are automatically removed when they have
no corresponding y-values. This flag is set in the constructor and cannot be altered.

å public void seriesChanged(SeriesChangeEvent event);

This method receives events that signal when a series contained within the dataset has changed.
You shouldn’t need to call this method directly.

54.9.8 Notes

Some points to note:

• for data where the x-values are dates, consider using the TimeTableXYDataset class;

• a demo (StackedXYBarChartDemo1.java) is included in the JFreeChart demo collection.

See Also
TableXYDataset.

54.10 DefaultWindDataset

54.10.1 Overview

A default implementation of the WindDataset interface. This dataset can be used with an XYPlot

and a WindItemRenderer to create a wind chart.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 727

54.10.2 Constructors

This class has several constructors—the format of the data[][][] argument is discussed at the end
of this section.

å public DefaultWindDataset(Object[][][] data);

Creates a new dataset containing the specified data. Series names will be generated automati-
cally. If data is null, this method throws a NullPointerException.

å public DefaultWindDataset(String[] seriesNames, Object[][][] data);

Creates a new dataset containing the specified data. If data is null, this method throws a
NullPointerException.

å public DefaultWindDataset(List seriesKeys, Object[][][] data);

Creates a new dataset containing the specified data. If data is null, this method throws a
NullPointerException.

The default constructor creates a new empty dataset—but since there are currently no methods for
adding data to an existing dataset, it isn’t especially useful:

å public DefaultWindDataset();

Creates a new (empty) dataset. Since there are currently no methods for adding data to an
existing dataset, you probably should use a different constructor.

The data[][][] Argument

Multi-dimensional arrays can be difficult to use, but unfortunately this class provides no other
method of adding data to the dataset. To create a data array for the constructors above, bear in
mind that the array is indexed by series, then item, then data value. Each item has three values,
as follows:

• data[series][item][0] – this is the x-value, which can be either a Date or a Number;

• data[series][item][1] – this is the wind direction, and should be a Number in the range 0 to
12;

• data[series][item][2] – this is the wind force, and should be a Number in the range 0 to 12.

The following code creates a data array containing one series, and illustrates the structure of the
array:

Object[] item1 = new Object[] {date1, new Integer(6), new Integer(2)};
Object[] item2 = new Object[] {date2, new Integer(2), new Integer(8)};
Object[] item3 = new Object[] {date3, new Integer(4), new Integer(7)};
Object[] item4 = new Object[] {date4, new Integer(1), new Integer(4)};
Object[] item5 = new Object[] {date5, new Integer(9), new Integer(12)};

Object[][] series1 = new Object[][] {item1, item2, item3, item4, item5};

Object[][][] data = new Object[][][] {series1};

DefaultWindDataset dataset = new DefaultWindDataset(data);

See the code in WindChartDemo1.java for a similar example.

54.10.3 Methods

To find the number of series in the dataset:

å public int getSeriesCount();

Returns the number of series in the dataset.

To find the number of items within a series:

å public int getItemCount(int series);

Returns the number of items within a series. This method throws an IllegalArgumentException

if series is not in the range 0 to getSeriesCount() - 1.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 728

To get the key for a series:

å public Comparable getSeriesKey(int series);

Returns the key for a series. The key’s toString() method is used to create a label for the
series. This method throws an IllegalArgumentException if series is not in the range 0 to
getSeriesCount() - 1.

To access the values from the dataset:

å public Number getX(int series, int item);

Returns the x-value for an item within a series. Since the wind observations are typically time-
based, this method will normally return a number encoded as “milliseconds since 1-Jan-1970”
(the encoding used by Java’s Date class).

å public Number getY(int series, int item);

This method is mapped to the getWindForce() method, and is implemented only because it is
required by the XYDataset interface. It is not used by the WindItemRenderer.

å public Number getWindDirection(int series, int item);

Returns the wind direction, a number in the range 0 to 12 (corresponding to the numbers on a
upside-down clock face).3

å public Number getWindForce(int series, int item);

Returns the wind force, on the Beaufort scale (a number in the range 0 to 12.

The following utility method is used by one of the constructors:4

å public static List seriesNameListFromDataArray(Object[][] data);

Returns a list containing data.length series names, in the form Series 1, Series 2, ..., Series N

(where N is data.length - 1). This method is used to automatically generate series names for
the constructor that doesn’t have series names explicitly defined.

54.10.4 Notes

Some points to note:

• although the dataset supports multiple series, the WindItemRenderer seems designed for just a
single series;

• a demo (WindChartDemo1.java) is included in the JFreeChart demo collection.

54.11 DefaultXYDataset

54.11.1 Overview

An implementation of the XYDataset interface where the data is stored in double[] arrays, which is
more compact relative to alternatives that store data using Number instances.

This class was first introduced in JFreeChart version 1.0.2.

54.11.2 Constructor

To create a new dataset:

å public DefaultXYDataset(); [1.0.2]

Creates a new dataset that is initially empty. Use the addSeries() method to add data items
to the dataset.

3I don’t know if this is standard for wind charts, or if the original contributed code contains a bug.
4It should not have been a public method, but it made it into the 1.0.0 API so it remains public.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 729

54.11.3 Accessing Series

The dataset stores zero, one or many series of data items. Each series is represented by a double[][]

array. The following methods provide access to the series in the dataset:

å public int getSeriesCount(); [1.0.2]

Returns the number of series contained within this dataset.

å public Comparable getSeriesKey(int series); [1.0.2]

Returns the key for the specified series (where series is in the range 0 to getSeriesCount() -

1). This method throws an IllegalArgumentException if series is not within the required range.

å public int indexOf(Comparable seriesKey); [1.0.2]

Returns the index of the specified series, or -1 if there is no such series. If seriesKey is null,
this method returns -1 (because no series can have a null key.

å public int getItemCount(int series); [1.0.2]

Returns the number of items in the specified series.

54.11.4 Accessing Data Values

To find the order of the data items:

å public DomainOrder getDomainOrder(); [1.0.2]

Returns DomainOrder.NONE, because this dataset makes no guarantees about the order of the
x-values in the dataset.

To access particular values from the dataset:

å public double getXValue(int series, int item); [1.0.2]

Returns the x-value for an item within a series. If series is not in the range 0 to getSeriesCount()

- 1, this method will throw an ArrayIndexOutOfBoundsException. Similarly, the same exception
type is thrown if item is not in the range 0 to getItemCount(series) - 1.

å public Number getX(int series, int item); [1.0.2]

Returns the x-value for an item within a series. A new Double instance is created each time
this method is called, so it is better to call getXValue() if at all possible.

å public double getYValue(int series, int item); [1.0.2]

Returns the y-value for an item within a series. If series is not in the range 0 to getSeriesCount()

- 1, this method will throw an ArrayIndexOutOfBoundsException. Similarly, the same exception
type is thrown if item is not in the range 0 to getItemCount(series) - 1.

å public Number getY(int series, int item); [1.0.2]

Returns the y-value for an item within a series. A new Double instance is created each time
this method is called, so it is better to call getYValue() if at all possible.

54.11.5 Adding and Removing Data

The following methods can be used to add and remove series from the dataset:

å public void addSeries(Comparable seriesKey, double[][] data); [1.0.2]

Adds a data series to the dataset (or overwrites an old series if there is already one with the
specified key). The seriesKey should be an immutable object that is cloneable and serializ-
able (for example, a String instance), otherwise the dataset will no longer be cloneable and
serializable.

The data array should contain two subarrays, one containing the x-values (data[0]) and the
other containing the y-values (data[1]). The XYSeries class has a toArray() method that creates
an array in the required format.

å public void removeSeries(Comparable seriesKey); [1.0.2]

Removes the series with the specified key.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 730

54.11.6 Equals, Cloning and Serialization

This class overrides the equals(Object) method:

å public boolean equals(Object obj); [1.0.2]

Tests this DefaultXYDataset for equality with an arbitrary object, returning true if and only if:

• obj is not null;

• obj is an instance of DefaultXYDataset;

• both datasets have the same number of series, each containing exactly the same values.

Instances of this class are Cloneable:

å public Object clone() throws CloneNotSupportedException; [1.0.2]

Returns an independent copy of this dataset. The CloneNotSupportedException will only be
thrown if the dataset contains a series key that is not cloneable.

Instances of this class are Serializable (provided that you use series keys that are serializable).

54.11.7 Notes

Some points to note:

• this class was introduced in JFreeChart version 1.0.2;

• a couple of demos (DefaultXYDatasetDemo1-2.java) are included in the JFreeChart demo col-
lection;

• an alternative implementation of the XYDataset interface is provided by the XYSeriesCollection
class.

54.12 DefaultXYZDataset

54.12.1 Overview

A default implementation of the XYZDataset interface. This class was first introduced in JFreeChart
1.0.2.

54.12.2 Constructor

To create a new dataset:

å public DefaultXYZDataset(); [1.0.2]

Creates a new dataset, initially empty.

54.12.3 Methods

To find the number of series in the dataset:

å public int getSeriesCount(); [1.0.2]

Returns the number of series in the dataset.

To get the key for a series:

å public Comparable getSeriesKey(int series); [1.0.2]

Returns the key for the specified series. This method throws an IllegalArgumentException if
series is not in the range 0 to getSeriesCount() - 1.

å public int indexOf(Comparable seriesKey); [1.0.2]

Returns the index of the specified series key, or -1 if there is no series in the dataset with the
given key.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 731

å public DomainOrder getDomainOrder(); [1.0.2]

Returns DomainOrder.NONE to indicate that the x-values are not guaranteed to be in any partic-
ular order.

å public int getItemCount(int series); [1.0.2]

Returns the number of items in the specified series. This method throws an IllegalArgumentException

if series is not in the range 0 to getSeriesCount() - 1.

To get the data values:

å public double getXValue(int series, int item); [1.0.2]

Returns the x-value for an item in the specified series. This method throws an ArrayIndexOutOfBounds

exception if series or item is outside the range of available data items.

å public double getYValue(int series, int item); [1.0.2]

Returns the y-value for an item in the specified series. This method throws an ArrayIndexOutOfBounds

exception if series or item is outside the range of available data items.

å public double getZValue(int series, int item); [1.0.2]

Returns the z-value for an item in the specified series. This method throws an ArrayIndexOutOfBounds

exception if series or item is outside the range of available data items.

Equivalent methods (required by the XYZDataset) interface that return Number objects rather than
double primitives are:5

å public Number getX(int series, int item); [1.0.2]

Returns the x-value for an item in the specified series. This creates a new Double instance every
time it is called, so use getXValue() if possible. This method throws an ArrayIndexOutOfBounds

exception if series or item is outside the range of available data items.

å public Number getY(int series, int item); [1.0.2]

Returns the y-value for an item in the specified series. This creates a new Double instance every
time it is called, so use getYValue() if possible. This method throws an ArrayIndexOutOfBounds

exception if series or item is outside the range of available data items.

å public Number getZ(int series, int item); [1.0.2]

Returns the z-value for an item in the specified series. This creates a new Double instance every
time it is called, so use getZValue() if possible. This method throws an ArrayIndexOutOfBounds

exception if series or item is outside the range of available data items.

54.12.4 Adding and Removing Series

To add a series:

å public void addSeries(Comparable seriesKey, double[][] data); [1.0.2]

Adds a new series to the dataset. If there is an existing series with the specified key, it will be
replaced.

Removing a series:

å public void removeSeries(Comparable seriesKey); [1.0.2]

Removes the series with the specified key.

54.12.5 Equals, Cloning and Serialization

This class overrides the equals(Object) method:

å public boolean equals(Object obj); [1.0.2]

Tests this dataset for equality with an arbitrary object, returning true if and only if:

• obj is not null;

• obj is an instance of DefaultXYZDataset;

• both datasets contain identical series in the same order.

Instances of this class are cloneable and serializable.
5Each call to these methods creates a new Number instance, so you should avoid these methods if possible.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 732

54.13 IntervalXYDataset

54.13.1 Overview

A dataset that returns an interval for each of the x and y dimensions. This interface extends the
XYDataset interface. General classes that implement this interface are:

• DefaultIntervalXYDataset;

• XYIntervalSeriesCollection.

More specialised implementations of the interface include:

• HistogramDataset;

• SimpleHistogramDataset;

• TimePeriodValuesCollection;

• TimeSeriesCollection;

• TimeTableXYDataset;

• XYBarDataset.

Renderers that make use of the additional data points provided by this dataset include:

• DeviationRenderer;

• XYBarRenderer;

• XYErrorRenderer.

54.13.2 Interface Methods

To get the start value of the x-interval:
å public double getStartXValue(int series, int item);

Returns the start value of the x-interval for an item within a series.

To get the end value of the x-interval:
å public double getEndXValue(int series, int item);

Returns the end value of the x-interval for an item within a series.

To get the start value of the y-interval:
å public double getStartYValue(int series, int item);

Returns the start value of the y-interval for an item within a series.

To get the end value of the y-interval:
å public double getEndYValue(int series, int item);

Returns the end value of the y-interval for an item within a series.

Similar methods that return Number objects rather than double primitives are also provided. In
general, you should only call these alternate methods when you know the underlying dataset actually
stores the data as Number instances, otherwise a new Number may be allocated for each call:

å public Number getStartX(int series, int item);

Returns the start value of the x-interval for an item within a series.

å public Number getEndX(int series, int item);

Returns the end value of the x-interval for an item within a series.

å public Number getStartY(int series, int item);

Returns the start value of the y-interval for an item within a series.

å public Number getEndY(int series, int item);

Returns the end value of the y-interval for an item within a series.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 733

See Also:
XYDataset, IntervalXYZDataset.

54.14 IntervalXYDelegate

54.14.1 Overview

This class contains the logic required to “manufacture” intervals around the x-values in an XYDataset,
enabling a regular XYDataset to be extended to an IntervalXYDataset.

54.14.2 Usage

This class is used internally by the JFreeChart Class Library. In general, you won’t need to use
this class directly.

54.14.3 Constructors

To create a new delegate:

å public IntervalXYDelegate(XYDataset dataset);

Creates a new delegate with autoWidth set to true.

å public IntervalXYDelegate(XYDataset dataset, boolean autoWidth);

Creates a new delegate that determines the x-intervals for the given dataset. The autoWidth

flag controls whether or not the interval width is automatically calculated. For the automatic
calculation, the width is set to the distance between the two closest x-values in the dataset.

54.14.4 Methods

The autoWidth flag controls whether or not the widths of the x-intervals returned by this class are
automatically calculated. The default is true, which results in the x-interval size being equal to the
gap between the nearest two x-values in the dataset:

å public boolean isAutoWidth();

Returns the autoWidth flag.

å public void setAutoWidth(boolean b);

Sets the autoWidth flag.

If autoWidth is false, then the interval width is controlled by the intervalWidth setting:

å public double getIntervalWidth();

Returns the interval width.

å public void setIntervalWidth(double w);

Sets the interval width (must be positive).

The intervalPositionFactor controls the positioning of the x-interval about its x-value. The default
is 0.5 which centers the interval about the x-value:

å public double getIntervalPositionFactor();

Returns the intervalPositionFactor.

å public void setIntervalPositionFactor(double d);

Sets the intervalPositionFactor. This is a value between 0.0 and 1.0 where 0.5 is centred.

å public Number getStartX(int series, int item);

Returns the start value for the x-interval of the specified item.

å public Number getEndX(int series, int item);

Returns the end value for the x-interval of the specified item.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 734

å public double getDomainLowerBound(boolean includeInterval);

Returns the lower bound of the range of x-values. The includeInterval flag determines whether
or not the x-interval is taken into account when finding the lower bound.

å public double getDomainUpperBound(boolean includeInterval);

Returns the upper bound of the range of x-values. The includeInterval flag determines whether
or not the x-interval is taken into account when finding the upper bound.

å public Range getDomainBounds(boolean includeInterval);

Returns the range of x-values. The includeInterval flag determines whether or not the x-
interval is taken into account when finding the range.

54.14.5 Other Methods

å public void itemAdded(int series, int item);

Updates the automatic width when an item is added (it seems this method is only called from
the CategoryTableXYDataset class).

å public void itemRemoved(double x);

Updates the automatic width when an item is removed (it seems this method is only called
from the CategoryTableXYDataset class).

å public void seriesAdded(int series);

Updates the width calculation when a series is added—called by the XYSeriesCollection class.

å public void seriesRemoved();

Updates the width calculation when a series is removed—called by the XYSeriesCollection and
DefaultTableXYDataset classes.

54.14.6 Equals, Cloning and Serialization

To test this delegate for equality with an arbitrary object:
å public boolean equals(Object obj);

Tests the delegate for equality with obj.

å public Object clone() throws CloneNotSupportedException;

Returns a clone of the delegate.

54.14.7 Notes

The class is used by the CategoryTableXYDataset, DefaultTableXYDataset, and XYSeriesCollection

classes.

54.15 IntervalXYZDataset

54.15.1 Overview

An extension of the XYZDataset interface, analogous to the IntervalXYDataset extension of the
XYDataset interface.

54.15.2 Notes

There are no classes that implement this interface at present.

54.16 MatrixSeries

54.16.1 Overview

A MatrixSeries represents a set of (x, y, z) values as a 2 by 2 matrix of z-values (the x and y
values are derived from the column and row indices from the matrix). This class is used with the
MatrixSeriesCollection class.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 735

54.16.2 Constructors

To create a new instance:
å public MatrixSeries(String name, int rows, int columns);

Creates a new matrix with the specified number of rows and columns. All the values in the
matrix are initialised to zero.

54.16.3 Methods

In addition to the methods inherited from the Series class, the following are methods are defined:
å public int getItemCount();

Returns the number of items in the matrix (the number of rows times the number of columns).

å public int getColumnsCount();

Returns the number of columns in the matrix, as defined at construction time.

å public int getRowCount();

Returns the number of rows in the matrix, as defined at construction time.

å public Number getItem(int itemIndex);

Returns the z-value at the specified index. Note that this method creates a new Double instance
every time it is called. Another way to get the z-value is to call get(int, int).

å public int getItemColumn(int itemIndex);

Returns the column index for a given item index.

å public int getItemRow(int itemIndex);

Returns the row index for a given item index.

å public double get(int i, int j);

Returns the z-value at the given position in the matrix.

å public void update(int i, int j, double mij);

Updates the z-value at the given position in the matrix, and sends a SeriesChangeEvent to all
registered listeners.6

å public void zeroAll();

Resets all values in the matrix to zero, and sends a SeriesChangeEvent to all registered listeners.

54.16.4 Equals, Cloning and Serialization

This class overrides the equals method:
å public boolean equals(Object obj);

Tests this matrix for equality with an arbitrary object.

Instances of this class are Cloneable and Serializable.

54.17 MatrixSeriesCollection

54.17.1 Overview

An XYZDataset that is constructed from a collection of MatrixSeries instances.

54.17.2 Constructors

To create a new collection:
å public MatrixSeriesCollection();

Creates a new instance that is empty (contains no MatrixSeries instances).

å public MatrixSeriesCollection(MatrixSeries series);

Creates a new instance containing the specified MatrixSeries. If series is null, the collection
is initialized as an empty series.

6Often, the only listener is a MatrixSeriesCollection that this MatrixSeries has been added to.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 736

54.17.3 General Methods

In addition to the methods defined in AbstractXYZDataset, this class defines:

å public int getSeriesCount();

Returns the number of series in the dataset.

å public int getItemCount(int seriesIndex);

Returns the number of items in the specified series.

To access the matrix that represents a series:

å public MatrixSeries getSeries(int seriesIndex);

Returns the matrix that represents the values for a series.

å public Comparable getSeriesKey(int seriesIndex);

Returns the key (or name) for a series.

To access the data values for an item:

å public Number getX(int seriesIndex, int itemIndex);

Returns the x-value for an item in a series.

å public Number getY(int seriesIndex, int itemIndex);

Returns the y-value for an item in a series.

å public Number getZ(int seriesIndex, int itemIndex);

Returns the z-value for an item in a series.

54.17.4 Adding and Removing Series

Each series in the collection is represented by a two dimensional matrix (an instance of MatrixSeries).

å public void addSeries(MatrixSeries series);

Adds a series to the collection and sends a DatasetChangeEvent to all registered listeners.

å public void removeSeries(MatrixSeries series);

Removes a series from the dataset and sends a DatasetChangeEvent to all registered listeners.

å public void removeSeries(int seriesIndex);

Removes a series from the dataset and sends a DatasetChangeEvent to all registered listeners.

å public void removeAllSeries();

Removes all series from the dataset and sends a DatasetChangeEvent to all registered listeners.

54.17.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

å public int hashCode();

Returns a hash code for this instance.

54.18 NormalizedMatrixSeries

54.18.1 Overview

An extension of MatrixSeries where the matrix values are returned as normalised values (that is,
they are divided by the sum of all the values in the matrix).

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 737

54.18.2 Constructor

To create a new instance:

å public NormalizedMatrixSeries(String name, int rows, int columns);

Creates a new matrix with the specified number of rows and columns, with all values initially
zero.

54.18.3 General Methods

å public double getScaleFactor();

Returns the scale factor. The default value is 1.0.

å public void setScaleFactor(double factor);

Sets the scale factor.

å public Number getItem(int itemIndex);

Returns the value in the matrix with the specified index. The value is normalised (divided by
the sum of all matrix values) and then scaled.

å public void update(int i, int j, double mij);

Updates an item in the matrix, adjusting the sum of all data items accordingly.

å public void zeroAll();

Clears all items in that matrix to zero.

54.19 OHLCDataItem

54.19.1 Overview

A data item that associates several values (typically related to the trading of a financial security)
with a Date:

• open value - the opening value at the start of the day’s trading;

• high value - the highest value during the day’s trading;

• low value - the lowest value during the day’s trading;

• close value - the closing value at the end of the day’s trading;

• volume - the trading volume (number of securities traded);

This class implements the Comparable interface to define a natural ordering (by date) for a collection
of items.

54.19.2 Constructor

To create a new instance:

å public OHLCDataItem(Date date, double open, double high, double low, double close, double

volume);

Creates a new data item that associates the specified values with a particular date.

54.19.3 Methods

To access the attributes for this data item:

å public Date getDate();

Returns the date that the values are associated with.

å public Number getOpen();

Returns the opening price for the day’s trading.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 738

å public Number getHigh();

Returns the highest price for the day’s trading.

å public Number getLow();

Returns the lowest price for the day’s trading.

å public Number getClose();

Returns the closing price for the day’s trading.

å public Number getVolume();

Returns the number of securities bought/sold during the day’s trading.

The following method is implemented as required by the Comparable interface, and determines a
natural ordering (by date) for a collection of data items:

å public int compareTo(Object object);

Compares this data item to an arbitrary object, returning -1, 0 or +1 according to the relative
order of the two objects.

See Also
OHLCDataset.

54.20 OHLCDataset

54.20.1 Overview

A dataset that supplies data in the form of open-high-low-close items. These typically relate to
trading data (prices or rates) in financial markets: the open and close values represent the prices at
the opening and closing of the trading period, while the high and low values represent the highest
and lowest price during the trading period.

Another value returned by this dataset is the volume. This represents the volume of trading, and is
usually the number of units of the commodity traded during a period. If this data is not available,
null is returned.

This interface is an extension of the XYDataset interface.

54.20.2 Interface Methods

In addition to the methods inherited from XYDataset, this interface defines:

å public double getHighValue(int series, int item);

Returns the high value for an item in a series.

å public double getLowValue(int series, int item);

Returns the low value for an item in a series.

å public double getOpenValue(int series, int item);

Returns the open value for an item in a series.

å public double getCloseValue(int series, int item);

Returns the close value for an item in a series.

å public double getVolumeValue(int series, int item);

Returns the trading volume for an item in a series, or Double.NaN if no trading volume is
recorded.

The same values can be obtained from methods that return Number objects rather that double

primitives—in some cases, the underlying dataset may create a new Number instance for every call
to one of these methods, so if possible try to avoid using these methods unless you know that the
dataset does in fact store the data in object form:

å public Number getHigh(int series, int item);

Returns the high value for an item within a series.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 739

å public Number getLow(int series, int item);

Returns the low value for an item within a series.

å public Number getOpen(int series, int item);

Returns the open value for an item within a series.

å public Number getClose(int series, int item);

Returns the close value for an item within a series.

å public Number getVolume(int series, int item);

Returns the volume value for an item within a series, or null if no volume is recorded.

54.20.3 Notes

Some points to note:

• this interface is implemented by several classes:

– DefaultHighLowDataset;

– DefaultOHLCDataset;

– OHLCSeriesCollection.

• this dataset is used by the CandlestickRenderer and HighLowRenderer classes.

See Also
XYDataset.

54.21 TableXYDataset

54.21.1 Overview

This interface is an extension of the XYDataset interface. By implementing this interface, a dataset
is declaring that all series share a common set of x-values—this is required by renderers that “stack”
values (for example, the StackedXYAreaRenderer). Classes that implement this interface include:

• DefaultTableXYDataset;

• CategoryTableXYDataset;

• TimeTableXYDataset.

54.21.2 Interface Methods

This interface adds a single method:

å public int getItemCount();

Returns the number of items in each series (all series must have the same number of items).

54.22 Vector

54.22.1 Overview

A vector in 2D space, used as a building block for the VectorSeriesCollection dataset. Instances
of this class are immutable.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 740

54.22.2 Constructor

To construct an instance:

å public Vector(double x, double y);

Creates a new vector.

54.22.3 Methods

å public double getX();

Returns the x-component for the vector.

å public double getY();

Returns the y-component for the vector.

54.22.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this vector for equality with an arbitrary object.

Instances of this class are immutable (so cloning is unnecessary) and Serializable.

54.22.5 Notes

This class is commonly used with the VectorSeriesCollection dataset.

54.23 VectorDataItem

54.23.1 Overview

A data item that records data in the form (x, y, dx, dy). This class is intended for internal use by
the VectorSeries class—you shouldn’t need to use it directly.

54.23.2 Constructor

To construct an instance:

å public VectorDataItem(double x, double y, double deltaX, double deltaY);

Creates a new instance with the specified data values.

54.23.3 Methods

The following methods provide access to the data values stored by this class:

å public double getXValue();

Returns the x-value.

å public double getYValue();

Returns the y-value.

å public double getVectorX();

Returns the vector x-value.

å public double getVectorY();

Returns the vector y-value.

54.23.4 Equals, Cloning and Serialization

The equals() method from the super class is functional.

Instances of this class are Cloneable and Serializable.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 741

54.23.5 Notes

This class is intended for use by the VectorSeries class.

54.24 VectorSeries

54.24.1 Overview

A series containing zero, one or many vectors fixed at specific (x, y) points in 2D space. A
VectorSeries is commonly added to a VectorSeriesCollection to form a dataset that can be used
to create vector plots (see the VectorRenderer class). Every series has an identifier known as the
series key. This class extends the ComparableObjectSeries class.

54.24.2 Constructors

To create a new instance:
å public VectorSeries(Comparable key);

Equivalent to VectorSeries(key, false, true)—see the next constructor.

å public VectorSeries(Comparable key, boolean autoSort, boolean allowDuplicateXValues);

Creates a new series with the specified key. Initially, the series contains no data. The autoSort

and allowDuplicateXValues are attributes of the super class which aren’t all that useful to this
class—typically you should just use the default values as specified in the previous constructor.

54.24.3 Adding and Removing Data Items

To add a new data item to a series:
å public void add(double x, double y, double deltaX, double deltaY);

Adds the specified data item to the series and sends a SeriesChangeEvent to all registered
listeners.

å public ComparableObjectItem remove(int index);

Removes the data item at the specified index in the series. If index is not in the range 0 to
getItemCount() - 1, this method throws an IllegalArgumentException.

å public void clear();

Clears all items from the series and sends a SeriesChangeEvent to all registered listeners.

54.24.4 Data Access

To access the data values in the series:
å public double getXValue(int index);

Returns the x-value for an item in the series. If index is not in the range 0 to getItemCount()

- 1, this method throws an IllegalArgumentException.

å public double getYValue(int index);

Returns the y-value for an item in the series. If index is not in the range 0 to getItemCount()

- 1, this method throws an IllegalArgumentException.

å public double getVectorXValue(int index);

Returns the vector x-value for an item in the series. If index is not in the range 0 to
getItemCount() - 1, this method throws an IllegalArgumentException.

å public double getVectorYValue(int index);

Returns the vector y-value for an item in the series. If index is not in the range 0 to
getItemCount() - 1, this method throws an IllegalArgumentException.

The data items in the series are stored as instances of VectorXYDataItem—to make these accessible
to the VectorSeriesCollection class, the following method override is provided:

å public ComparableObjectItem getDataItem(int index);

Returns a data item from the series. You shouldn’t normally need to call this method directly.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 742

54.24.5 Equals, Cloning and Serialization

The inherited equals() method is sufficient to distinguish between instances.

Instances of this class are Cloneable and Serializable.

54.24.6 Notes

Some points to note:

• the core behaviour provided by the ComparableObjectSeries class is important to the imple-
mentation of this class;

• when a series is added to a VectorSeriesCollection, the collection registers as a series lis-
tener, and any change to the series is picked up by the series collection and reported via a
DatasetChangeEvent.

54.25 VectorSeriesCollection

54.25.1 Overview

A dataset that implements the VectorXYDataset interface, by storing data in the form of zero, one
or many VectorSeries objects.

54.25.2 Constructors

This class defines a single constructor:

å public VectorSeriesCollection();

Creates a new dataset, initially containing no data.

54.25.3 Series Information

This dataset can contain zero, one or many data series (instances of VectorSeries). To determine
how many series the dataset contains:

å public int getSeriesCount();

Returns the number of series in the dataset.

To obtain a reference to a particular series:

å public VectorSeries getSeries(int series);

Returns one series from the dataset. If series is not in the range 0 to getSeriesCount() - 1,
this method throws an IllegalArgumentException.

To get the key that identifies a series:

å public Comparable getSeriesKey(int series);

Returns the key for the specified series. If series is not in the range 0 to getSeriesCount() -

1, this method throws an IllegalArgumentException.

To find the number of data items within a series:

å public int getItemCount(int series);

Returns the number of items in the specified series. If series is not in the range 0 to
getSeriesCount() - 1, this method throws an IllegalArgumentException.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 743

54.25.4 Adding and Removing Series

To add a series:

å public void addSeries(VectorSeries series);

Adds the specified series to the dataset. If series is null, this method throws an Illegal-

ArgumentException.

To remove a series:

å public boolean removeSeries(VectorSeries series);

Removes a series from the dataset and sends a DatasetChangeEvent to all registered listeners.
If the specified series does not belong in the dataset, this method returns false. If series is
null, this method throws an IllegalArgumentException.

å public void removeAllSeries();

Removes all series from the dataset and sends a DatasetChangeEvent to all registered listeners.

54.25.5 Data Access

The following methods provide access to the data values stored by the dataset:

å public double getXValue(int series, int item);

Returns the x-value for an item in a series.

å public double getYValue(int series, int item);

Returns the y-value for an item in a series.

å public double getVectorXValue(int series, int item);

Returns the x-component of the vector for an item in a series.

å public double getVectorYValue(int series, int item);

Returns the y-component of the vector for an item in a series.

The same data can be obtained in object form:

å public Vector getVector(int series, int item);

Returns the vector for an item in a series. This method returns the actual vector stored in the
underlying data structure (that is, no new Vector instance is created).

å public Number getX(int series, int item);

Returns the x-value for an item in a series. This method creates a new Double instance every
time it is called—if possible, use the getXValue() method instead.

å public Number getY(int series, int item);

Returns the y-value for an item in a series This method creates a new Double instance every
time it is called—if possible, use the getYValue() method instead.

54.25.6 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object. This method returns true if:

• obj is an instance of VectorSeriesCollection;

• obj contains the same data values as this dataset.

Instances of this class are Cloneable and Serializable.

54.25.7 Notes

Some points to note:

• a demo (VectorPlotDemo1.java) is included in the JFreeChart demo collection.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 744

See Also
VectorSeries, VectorXYDataset.

54.26 VectorXYDataset

54.26.1 Overview

A dataset interface used by the VectorRenderer class. This interface is an extension of the XYDataset

interface.

54.26.2 Interface Methods

The following methods are defined by this interface, in addition to those defined in the XYDataset

interface:

å public double getVectorXValue(int series, int item);

Returns the vector’s x-component for an item within the specified series.

å public double getVectorYValue(int series, int item);

Returns the vector’s y-component for an item within the specified series.

å public Vector getVector(int series, int item);

Returns the vector for an item within the specified series. This method can return null.
In some cases, classes that implement this method may need to construct a new Vector in-
stance each time this method is called so, if possible, you should use the getVectorXValue() and
getVectorYValue() methods in preference to this method.

54.26.3 Notes

Some points to note:

• the VectorSeriesCollection class implements this interface.

54.27 WindDataset

54.27.1 Overview

A specialised dataset interface that represents observations (through time) of the wind direction
and force. This dataset extends XYDataset and is used by the WindItemRenderer class.

54.27.2 Methods

This interface adds the following methods to those inherited from the XYDataset interface:

å public Number getWindDirection(int series, int item);

Returns the wind direction. This should be a value in the range 0 to 12, corresponding to the
positions on an upside-down clock face.7

å public Number getWindForce(int series, int item);

Returns the wind force. This should be a value in the range 0 to 12, defined by the Beaufort
scale (see http://en.wikipedia.org/wiki/Beaufort scale).

54.27.3 Notes

Some points to note:

• this interface is implemented by DefaultWindDataset;

• a demo (WindChartDemo1.java) is included in the JFreeChart demo collection.
7I don’t know if this is the standard for wind charts, or a bug in the original code contribution.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 745

54.28 XisSymbolic

54.28.1 Overview

An interface that can be implemented by an XYDataset in order to link the (integer) x-values with
symbols.

54.28.2 Methods

The following methods are defined by the interface:

å public String[] getXSymbolicValues();

Returns an array of symbols to associate with (integral) data values.

å public String getXSymbolicValue(int series, int item);

Returns the symbolic x-value for an item within a series.

å public String getXSymbolicValue(Integer val);

Returns the symbolic x-value associated with a specific integer value.

54.28.3 Notes

None of the standard datasets implement this interface.

54.29 XYBarDataset

54.29.1 Overview

A dataset wrapper class that can convert any XYDataset into an IntervalXYDataset (so that the
dataset can be used with renderers that require this extended interface, such as the XYBarRenderer

class). This class extends AbstractIntervalXYDataset.

54.29.2 Constructor

To create a new dataset wrapper:

å public XYBarDataset(XYDataset underlying, double barWidth);

Creates a wrapper for the underlying dataset, effectively converting it into an IntervalXYDataset.

54.29.3 Methods

To access the underlying dataset:

å public XYDataset getUnderlyingDataset(); [1.0.4]

Returns the underlying dataset (never null) that was set in the constructor.

To access the bar width:

å public double getBarWidth(); [1.0.4]

Returns the bar width. The starting and ending x-values for this dataset are computed by
fetching the x-value for the underlying dataset, then adding/subtracting half the bar width.

å public void setBarWidth(double barWidth); [1.0.4]

Sets the bar width and sends a DatasetChangeEvent to all registered listeners.

This dataset registers itself as a listener on the underlying dataset, and receives change events via
the following method:

å public void datasetChanged(DatasetChangeEvent event);

Receives a change event from the underlying dataset. The dataset responds by raising its own
change event.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 746

54.29.4 Dataset Methods

The following methods are implemented to support the IntervalXYDataset interface:

å public int getSeriesCount();

Returns the number of series in the underlying dataset.

å public Comparable getSeriesKey(int series);

Returns the key for the specified series. If series is not in the range 0 to getSeriesCount(), this
method throws an exception.

å public int getItemCount(int series);

Returns the number of items in the specified series. If series is not in the range 0 to
getSeriesCount(), this method throws an exception.

The following methods returns the data values as double primitives:

å public double getXValue(int series, int item);

Returns the x-value for an item in a series—this is obtained from the underlying dataset.

å public double getYValue(int series, int item);

Returns the y-value for an item in a series—this is obtained from the underlying dataset.

å public double getStartXValue(int series, int item);

Returns the start value in the interval about the x-value—this is computed by subtracting half
the barWidth from the x-value obtained from the underlying dataset.

å public double getEndXValue(int series, int item);

Returns the end value in the interval about the x-value—this is computed by adding half the
barWidth to the x-value obtained from the underlying dataset.

å public double getStartYValue(int series, int item);

Returns the same result as getYValue(series, item).

å public double getEndYValue(int series, int item);

Returns the same result as getYValue(series, item).

The following methods return the data values as Number instances:

å public Number getX(int series, int item);

Returns the x-value for an item in a series—this is obtained from the underlying dataset.

å public Number getY(int series, int item);

Returns the y-value for an item in a series—this is obtained from the underlying dataset..

å public Number getStartX(int series, int item);

Returns the start value in the interval about the x-value—this is computed by subtracting half
the barWidth from the x-value obtained from the underlying dataset.

å public Number getEndX(int series, int item);

Returns the end value in the interval about the x-value—this is computed by adding half the
barWidth to the x-value obtained from the underlying dataset.

å public Number getStartY(int series, int item);

Returns the same result as getY(series, item).

å public Number getEndY(int series, int item);

Returns the same result as getY(series, item).

54.29.5 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this dataset for equality with an arbitrary object. This method returns true if and only
if:

• obj is not null;

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 747

• obj is an instance of XYBarDataset;

• this dataset has the same barWidth and an underlying dataset that is equal to the corre-
sponding attributes in obj.

Instances of this class are Cloneable and Serializable. Note that the underlying dataset is only
deep-cloned if it implements the PublicCloneable interface.

54.29.6 Notes

Some points to note:

• a demo (XYBarChartDemo4.java) is included in the JFreeChart demo collection.

54.30 XYCoordinate

54.30.1 Overview

Represents a point (x, y) in 2D space.

54.30.2 Constructors

To create a new instance:

å public XYCoordinate();

Equivalent to XYCoordinate(0.0, 0.0)—see the next constructor.

å public XYCoordinate(double x, double y);

Creates a new instance for the specified (x, y) coordinate.

54.30.3 Methods

To retrieve the coordinate values:

å public double getX();

Returns the x-value.

å public double getY();

Returns the y-value.

This class implements Comparable:

å public int compareTo(Object obj);

Returns an integer that can be used to sort coordinates.

The toString() method is overridden for debugging purposes:

å public String toString();

Returns a string representing this instance—useful for debugging.

54.30.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this coordinate for equality with an arbitrary object.

54.30.5 Notes

This class is used internally by the VectorDataItem class.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 748

54.31 XYDataItem

54.31.1 Overview

This class represents a pair (x, y) of Number objects. The x-value should always be defined, but the
y-value can be set to null to represent a missing or unknown value.

54.31.2 Constructors

To create a new data item:

å public XYDataItem(Number x, Number y);

Creates a new data item. A null y-value is permitted (to represent a missing or unknown
value).

å public XYDataItem(double x, double y);

Creates a new data item.

54.31.3 Methods

To access the x and y values:

å public Number getX();

Returns the x-value (never null).

å public double getXValue(); [1.0.9]

Returns the x-value as a double primitive.

å public Number getY();

Returns the y-value (possibly null).

å public double getYValue(); [1.0.9]

Returns the y-value as a double primitive. If the y-value is null, this method returns Double.NaN.

To set the y-value:

å public void setY(Number y);

Sets the y-value (null is permitted). Note that there is no corresponding method to set the
x-value.

54.31.4 Notes

Some notes:

• this class implements the Comparable interface, and implements ordering by x-values.

• this class parallels the TimeSeriesDataItem class.

54.32 XYDataset

54.32.1 Overview

An interface that defines a collection of data in the form of (x, y) values. The dataset can consist of
zero, one or many data series. This interface extends SeriesDataset. The (x, y) values in one series
are completely independent of the (x, y) value in any other series in the dataset (that is, x-values
are not “shared” between series).

This is the standard dataset used by the XYPlot class, with concrete implementations provided by:

• XYSeriesCollection;

• TimeSeriesCollection.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 749

Extensions of this interface include:

• IntervalXYDataset;

• OHLCDataset;

• XYZDataset;

• TableXYDataset.

54.32.2 Number Objects vs Primitives

For a long time, XYDataset used only Number objects to represent data values. From version 0.9.19
onwards, additional methods that return the x and y values as double primitives have been added.
These are not replacements for the existing methods, but are intended to allow for more efficient
dataset implementations for specific requirements (such as large datasets for scientific data).

A number of developers have asked “why not just use double primitives exclusively?”. The main
reasons for having the dataset interface support Number objects are:

• it allows null to be used to indicate an unknown or missing data value;

• the use of Java’s collection classes as the storage for datasets requires Number objects to be
used anyway;

• objects can be more conveniently displayed using standard Java components such as Swing’s
JTable.

Wherever possible, JFreeChart will call the methods that return the double primitives. This makes
it possible to implement a dataset with primitives only (which is more space efficient for large
datasets), and construct Number objects only when the non-primitive methods are called.

54.32.3 Domain Order

The “domain order” refers to the order of the x-values in the dataset. If it is known that the
x-values are ordered (in, say, ascending order) a renderer might be able to speed up the drawing
process. The following method provides a hint about the order of the x-values in the dataset:

å public DomainOrder getDomainOrder();

Returns the order of items (by x-value) in the dataset, which must be one of:

• DomainOrder.NONE - the items in the dataset are stored in no particular order;

• DomainOrder.ASCENDING - the items in the dataset are guaranteed to be stored in ascending
order of x-values;

• DomainOrder.DESCENDING - the items in the dataset are guaranteed to be stored in descend-
ing order of x-values.

This field might be used by some renderers to speed up chart drawing in cases where the
renderer can assume that the data values are ordered.

54.32.4 Other Methods

This interface inherits methods from SeriesDataset.

To get the number of items in a series:

å public int getItemCount(int series);

Returns the number of data items in a series. The series argument should be in the range 0 to
getSeriesCount() - 1. Classes that implement this interface should throw an IllegalArgument-

Exception if series is not within the specified range.

To get the x-value for an item within a series:

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 750

å public double getXValue(int series, int item);

Returns the x-value for an item within a series.

å public Number getX(int series, int item);

Returns the x-value for an item within a series (never null). Some implementations will create
a new Number instance every time this method is called, so it is usually more efficient to call
getXValue(series, item) instead.

For both of the methods above, the series argument must be in the range 0 to getSeriesCount()

- 1 and the item argument must be in the range 0 to getItemCount(series) - 1. If the arguments
are not within the specified range, a runtime exception must be thrown. For the sake of effi-
ciency (these methods get called a lot), the type of runtime exception thrown is up to the imple-
menting class (it is typically an ArrayIndexOutOfBoundsException or an IllegalArgumentException).

To get the y-value for an item within a series:
å public double getYValue(int series, int item);

Returns the y-value for am item within a series. If this method returns Double.NaN, there are
two possibilities: the value is missing/unknown (equivalent to null) or the value really is “not
a number”. The only way to distinguish these cases (if you need to) is to check the value
returned by the getYValue() method to see if it is null.

å public Number getY(int series, int item);

Returns the y-value for an item within a series (possibly null, which indicates a missing or
unknown value).

As for the corresponding x-value methods, for both of the methods above, the series argu-
ment must be in the range 0 to getSeriesCount() - 1 and the item argument must be in the
range 0 to getItemCount(series) - 1. If the arguments are not within the specified range, a
runtime exception must be thrown. For the sake of efficiency (these methods get called a
lot), the type of runtime exception thrown is up to the implementing class (it is typically an
ArrayIndexOutOfBoundsException or an IllegalArgumentException).

54.32.5 Notes

Some points to note:

• this interface extends the SeriesDataset interface;

• the interface allows null y-values (to represent missing data) but does not allow null x-values.8

See Also:
SeriesDataset, IntervalXYDataset.

54.33 XYDatasetTableModel

54.33.1 Overview

A simple wrapper for a TableXYDataset that creates a read-only implementation of Swing’s TableModel
interface.

54.33.2 Constructors

The default constructor creates an empty table model:
å public XYDatasetTableModel();

Creates an empty table model. If you use this constructor, you can use the setModel() method
to add a dataset later.

To create a new table model:
å XYDatasetTableModel(TableXYDataset dataset);

Creates a new table model for the specified dataset (null permitted).

8I could not think of a use-case that required null x-values.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 751

54.33.3 Usage

If you look in the source code for this class, there is a main() method (commented out) that shows
the usage for this class.

54.33.4 Methods

To set the dataset to be presented as a TableModel:
å public void setModel(TableXYDataset dataset);

Sets the underlying dataset for the table model (null permitted). This class will register itself
as a listener for the supplied dataset, so that changes to the dataset can be passed on as
corresponding table model change events.

The following method receives notification of changes to the underlying dataset, allowing the
TableModel to forward appropriate change events:

å public void datasetChanged(DatasetChangeEvent datasetChangeEvent);

This method will be called by the underlying dataset whenever it is changed—you shouldn’t
need to call this method directly.

54.33.5 TableModel Methods

The following methods are implemented in support of the TableModel interface: To get the row

count:
å public int getRowCount();

Returns the row count. This has been implemented as the number of items in the first series,
even though other series may have a different number of items.

To get the column count:
å public int getColumnCount();

Returns the column count, which is equal to the number of series in the dataset plus 1 (the
first column is used to display x-values, the remaining columns the y-values for each series.

To get the column name:
å public String getColumnName(int column);

Returns the name of a column.

To get a value for the table:
å public Object getValueAt(int row, int column);

Returns the value.

The table model is “read only”:

å public boolean isCellEditable(int row, int column);

Returns false.

You cannot update the dataset via the TableModel interface:
å public void setValueAt(Object value, int row, int column);

Does nothing, since there is no general way to update the underlying dataset.

54.34 XYInterval

54.34.1 Overview

A data record used by the XYIntervalDataItem class to record an x-interval, plus the associated y-
value and y-interval. You should not need to use this class directly. This class was first introduced
in JFreeChart version 1.0.3.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 752

54.34.2 Constructors

To create a new instance:

å public XYInterval(double xLow, double xHigh, double y, double yLow, double yHigh); [1.0.3]

Creates a new instance with the specified values. No validation is performed on the interval
values.

54.34.3 Methods

The following accessor methods are provided (you should never need to use these directly):

å public double getXLow(); [1.0.3]

Returns the lower bound of the x-interval, as supplied to the constructor.

å public double getXHigh(); [1.0.3]

Returns the upper bound of the x-interval, as supplied to the constructor.

å public double getY(); [1.0.3]

Returns the y-value, as supplied to the constructor.

å public double getYLow(); [1.0.3]

Returns the lower bound of the y-interval, as supplied to the constructor.

å public double getYHigh(); [1.0.3]

Returns the upper bound of the y-interval, as supplied to the constructor.

54.34.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this record for equality with an arbitrary object. This methods returns true if and only
if:

• obj is not null;

• obj is an instance of XYInterval;

• obj has the same data values as this instance.

Instances of this class are Serializable. Cloning is unnecessary, because instances of this class are
immutable.

54.34.5 Notes

This class is intended for internal use by the XYIntervalDataItem class.

54.35 XYIntervalDataItem

54.35.1 Overview

A data item used by the XYIntervalSeries class. In general, you won’t need to use this class directly.
This class was first introduced in JFreeChart 1.0.3.

54.35.2 Constructors

To create a new instance:

å public XYIntervalDataItem(double x, double xLow, double xHigh, double y, double yLow, double

yHigh); [1.0.3]

Creates a new instance with the specified attributes defining an (x, y) point plus intervals
around the x and y values. No validation is performed on the supplied values.

In general, you don’t need to create instances of this class directly, the XYIntervalSeries class will
take care of that.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 753

54.35.3 Methods

å public Double getX(); [1.0.3]

Returns the x-value, which is stored internally as a Double.

å public double getXLowValue(); [1.0.3]

Returns the lower bound of the x-interval, as supplied to the constructor.

å public double getXHighValue(); [1.0.3]

Returns the upper bound of the x-interval, as supplied to the constructor.

å public double getYValue(); [1.0.3]

Returns the y-value, as supplied to the constructor.

å public double getYLowValue(); [1.0.3]

Returns the lower bound of the y-interval, as supplied to the constructor.

å public double getYHighValue(); [1.0.3]

Returns the upper bound of the y-interval, as supplied to the constructor.

54.35.4 Equals, Cloning and Serialization

The inherited equals() implementation can distinguish between instances of this class.

Instances of this class are Cloneable and Serializable.

54.35.5 Notes

It shouldn’t be necessary to use this class directly—instead, rely on the API provided by the
XYIntervalSeries class.

54.36 XYIntervalSeries

54.36.1 Overview

A series containing zero, one or many data items in the form (x, xLow, xHigh, y, yLow, yHigh).
Typically you will add one or more series instances to an XYIntervalSeriesCollection to use as a
dataset (for charts that require an IntervalXYDataset).

This class was first introduced in JFreeChart version 1.0.3.

54.36.2 Constructors

Two constructors are defined:

å public XYIntervalSeries(Comparable key); [1.0.3]

Equivalent to XYIntervalSeries(key, true, true)—see the next constructor.

å public XYIntervalSeries(Comparable key, boolean autoSort,

boolean allowDuplicateXValues); [1.0.3]

Creates a new series, initially empty. The key should be non-null, immutable and Serializable

(so that series instances can be cloned and/or serialized correctly). The autoSort flag determines
whether or not the items added to the series are automatically sorted (by ascending x-value).
The allowDuplicateXValues flag controls whether or not two (or more) items in the series are
permitted to have the same x-value.

54.36.3 Methods

This class inherits many methods from the ComparableObjectSeries class. In addition, the following
methods are defined:

å public Number getX(int index); [1.0.3]

Returns the x-value for an item in the series.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 754

å public double getXLowValue(int index); [1.0.5]

Returns the lower bound of the x-interval for an item in the series.

å public double getXHighValue(int index); [1.0.5]

Returns the upper bound of the x-interval for an item in the series.

å public double getYValue(int index); [1.0.3]

Returns the y-value for an item in the series.

å public double getYLowValue(int index); [1.0.5]

Returns the lower bound of the y-interval for an item in the series.

å public double getYHighValue(int index); [1.0.5]

Returns the upper bound of the y-interval for an item in the series.

To add a new item to the series:

å public void add(double x, double xLow, double xHigh, double y, double yLow,

double yHigh); [1.0.3]

Adds a data item to the series.

You can remove items using the inherited remove() method.

The following method is used by JFreeChart to access items from the series:

å public ComparableObjectItem getDataItem(int index); [1.0.3]

Returns a data item from the series. This method will return an instance of YIntervalDataItem,
and is intended for internal use only.

54.36.4 Notes

Some missing methods were added in version 1.0.5.

See Also:
XYIntervalSeriesCollection.

54.37 XYIntervalSeriesCollection

54.37.1 Overview

A dataset that implements the IntervalXYDataset interface. This class was first introduced in
JFreeChart version 1.0.3.

54.37.2 Constructors

To create a new empty dataset:

å public XYIntervalSeriesCollection(); [1.0.3]

Creates a new dataset, initially empty.

54.37.3 Methods

To fetch a series from the collection:

å public XYIntervalSeries getSeries(int series); [1.0.3]

Returns a series from the dataset. If series is not in the range from 0 to getSeriesCount(), this
method throws an IllegalArgumentException.

To add a series to the collection:

å public void addSeries(XYIntervalSeries series); [1.0.3]

Adds a series to the dataset and sends a DatasetChangeEvent to all registered listeners.

To find out how many series are stored in the collection:

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 755

å public int getSeriesCount(); [1.0.3]

Returns the number of series in this dataset.

To get the key (unique identifier) for a series:

å public Comparable getSeriesKey(int series); [1.0.3]

Returns the key that identifies a series in the collection.

å public int getItemCount(int series); [1.0.3]

Returns the number of items in a given series.

To access the data values for an item in a series:

å public Number getX(int series, int item); [1.0.3]

Returns the x-value for an item within a series.

å public double getStartXValue(int series, int item); [1.0.3]

Returns the lower bound of the x-interval for an item within a series.

å public double getEndXValue(int series, int item); [1.0.3]

Returns the upper bound of the x-interval for an item within a series.

å public double getYValue(int series, int item); [1.0.3]

Returns the y-value for an item within a series.

å public double getStartYValue(int series, int item); [1.0.3]

Returns the lower bound of the y-interval for an item within a series.

å public double getEndYValue(int series, int item); [1.0.3]

Returns the upper bound of the y-interval for an item within a series.

The following methods return the data values as Number objects, but you should avoid calling them
because they allocate a new object every time they are called:

å public Number getY(int series, int item); [1.0.3]

Returns the y-value for an item within a series.

å public Number getStartX(int series, int item); [1.0.3]

Returns the lower bound of the x-interval for an item within a series.

å public Number getEndX(int series, int item); [1.0.3]

Returns the upper bound of the x-interval for an item within a series.

å public Number getStartY(int series, int item); [1.0.3]

Returns the lower bound of the y-interval for an item within a series.

å public Number getEndY(int series, int item); [1.0.3]

Returns the upper bound of the y-interval for an item within a series.

54.37.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.3]

Tests this dataset for equality with an arbitrary object. This method returns true if and only
if:

• obj is not null;

• obj is an instance of XYIntervalSeriesCollection;

• obj contains series that exactly match the series in this dataset.

Instances of this class are Cloneable9 and Serializable.
9Cloning is broken in version 1.0.4, but should be working from version 1.0.5 onwards.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 756

54.37.5 Notes

Some points to note:

• see the IntervalXYDataset documentation for a list of renderers that can use this dataset;

• a demo (XYErrorRendererDemo1.java) is included in the JFreeChart demo collection.

54.38 XYSeries

54.38.1 Overview

A series containing zero, one or many (x, y) data items (extends Series). Each item is represented
by an instance of XYDataItem and stored in a list (sorted in ascending order of x-values, by default).
XYSeries will allow duplicate x-values, unless a flag is set in the constructor to prevent duplicates.

You can create a dataset (XYDataset) from one or more series objects by adding them to an
XYSeriesCollection class.

54.38.2 Usage

In the following example, two series are created, populated and added to a collection that can be
used as the dataset for a chart:

XYSeries series1 = new XYSeries("Series 1");
series1.add(1.0, 3.3);
series1.add(2.0, 4.4);
series1.add(3.0, 1.7);
XYSeries series2 = new XYSeries("Series 2");
series2.add(1.0, 7.3);
series2.add(2.0, 6.8);
series2.add(3.0, 9.6);
series2.add(4.0, 5.6);
XYSeriesCollection dataset = new XYSeriesCollection();
dataset.addSeries(series1);
dataset.addSeries(series2);

54.38.3 Constructors

To construct a new XYSeries, use one of the following constructors:

å public XYSeries(Comparable key);

Creates a new (empty) series with the specified name. By default, the data items will be sorted
in ascending order of x-values as they are added to the series, and duplicate x-values will be
permitted.

To construct a series with control over sorting and whether or not duplicate x-values are permitted:

å public XYSeries(Comparable key, boolean autoSort);

Creates a new (empty) series with the specified name. The autoSort flag controls whether or
not data items will be sorted by ascending x-value as they are added to the series. Duplicate
x-values will be permitted.

å public XYSeries(Comparable key, boolean autoSort, boolean allowDuplicateXValues);

Creates a new series (initially empty) with the specified name. Flags are set that determine
whether the data items are sorted by x-value, and whether duplicate x-values will be allowed
or disallowed, as specified.

The series key is used to identify the series—it can be any instance of Comparable, but is typically
a String. For all of these constructors, if key is null, an IllegalArgumentException is thrown.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 757

54.38.4 Flags

The autoSort and allowDuplicateXValues flags can only be set via the constructors. There are no
methods to set these flags after a series is created, but you can use the following methods to find
out the flag settings:

å public boolean getAutoSort();

Returns a flag that indicates whether or not the items in the series are sorted (into ascending
order by x-value) automatically.

å public boolean getAllowDuplicateXValues();

Returns a flag that indicates whether or not duplicate x-values are permitted within the series.

54.38.5 Adding and Removing Items

A range of methods are provided for adding and removing data items. In most cases, a SeriesChangeEvent

will be sent to all registered listeners, although some methods provide a notify flag that allows you
to control this:

å public void add(double x, double y);

Adds a new data item to the series and sends a change event to all registered listeners.

å public void add(double x, double y, boolean notify);

Adds a new data item to the series and, if requested, sends a change event to all registered
listeners.

å public void add(Number x, Number y);

Adds a new data item to the series and sends a change event to all registered listeners.

å public void add(Number x, Number y, boolean notify);

Adds a new data item to the series and, if requested, sends a change event to all registered
listeners.

In the following two methods, an odd combination of parameters is used. This is to support the
addition of null y-values in a sequence of calls to the previous two methods:

å public void add(double x, Number y);

Adds a new data item to the series and sends a change event to all registered listeners.

å public void add(double x, Number y, boolean notify);

Adds a new data item to the series and, if requested, sends a change event to all registered
listeners.

Two further methods allow you to add the item as a single object:

å public void add(XYDataItem item);

Adds an item to the series and sends a change event to all registered listeners.

å public void add(XYDataItem item, boolean notify);

Adds an item to the series and, if requested, sends a change event to all registered listeners.

To remove an item:

å public XYDataItem remove(int index);

Removes an item and sends a SeriesChangeEvent to all registered listeners.

å public XYDataItem remove(Number x);

Removes an item and sends a SeriesChangeEvent to all registered listeners.

To delete a range of values:

å public void delete(int start, int end);

Deletes a range of values from the series and sends a change event to all registered listeners.

To clear all values from the series:

å public void clear();

Clears all values from the series and sends a change event to all registered listeners.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 758

54.38.6 The Maximum Item Count

In rare circumstances, you might wish to limit the number of items that can be retained within a
series. You can set a limit, and when the item limit is reached, adding a new item to the series will
cause the FIRST item in the series to be removed:

å public int getMaximumItemCount();

Returns the maximum number of items that will be retained within the series.

å public void setMaximumItemCount(int maximum);

Sets the maximum number of items that will be retained within the series. When you add a
new item, if it would cause the series to exceed the maximum number of items then the FIRST
item in the series is removed.

54.38.7 Other Methods

To find out how many items are contained in a series:

å public int getItemCount();

Returns the number of items in the series.

To obtain a list of the items in the dataset:

å public List getItems();

Returns an unmodifiable list of the items in the series. Note that the list is unmodifiable,
but you can still change the y-values for the individual data items in the list—this is not the
recommended way to change data in the series, because no notification of the change occurs.

To update an existing data value:

å public void update(int item, Number y);

Changes the value of one item in the series. The item is a zero-based index.

å public void update(Number x, Number y);

Updates the y-value that is associated with x (which must already exist in the series, otherwise
a SeriesException is thrown).

å public void addOrUpdate(Number x, Number y);

Adds a new item or updates an existing item (depending on whether or not there is already an
item in the series with the given x-value). Note that null is allowed for y, but not for x.

To access a data item:

å public XYDataItem getDataItem(int index);

Returns an item from the series.

å public Number getX(int index);

Returns the x-value for an item.

å public Number getY(int index);

Returns the y-value for an item.

å public int indexOf(Number x);

Returns the index of an item that has the specified x-value.

A utility method is provided to copy the series data into an array in the format required by the
addSeries() method in the DefaultXYDataset class:

å public double[][] toArray(); [1.0.4]

Returns an array structure containing the data values from the series. If result is the return
value from this method, then:

• result[0] is an array containing the x-values for the series, so that result[0][index]

returns an x-value from the series;

• result[1] is an array containing the y-values for the series, so that result[1][index]

returns a y-value from the series.

The length of the two sub-arrays is equal to the number of items in this series.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 759

54.38.8 Equality, Cloning and Serialization

This class overrides the equals() method:
å public boolean equals(Object obj);

Tests this series for equality with obj. An object is equal to this series if and only if:

• it is an instance of XYSeries;

• it has the same attributes as this series;

• it contains the same data items as this series.

Instances of this class are Cloneable and Serializable.

54.38.9 Notes

Some points to note:

• this class extends Series, so you can register change listeners with the series;

See Also:
XYSeriesCollection.

54.39 XYSeriesCollection

54.39.1 Overview

A collection of XYSeries objects. This class implements both the XYDataset and IntervalXYDataset

interfaces, so can be used as the dataset for a wide range of charts.

54.39.2 Constructors

To construct a series collection:
å public XYSeriesCollection();

Creates a new empty collection.

å public XYSeriesCollection(XYSeries series);

Creates a new collection containing a single series. If series is null, it is ignored. Additional
series can be added later, if required.

54.39.3 Usage

Several demos (XYSeriesDemo1-3.java) are included in the JFreeChart demo collection.

54.39.4 Adding and Removing Series

To add a series to the collection:
å public void addSeries(XYSeries series);

Adds a series to the collection and sends a DatasetChangeEvent to all registered listeners.

To remove a series from the collection:
å public void removeSeries(int series);

Removes the specified series from the collection and sends a DatasetChangeEvent to all registered
listeners.

å public void removeSeries(XYSeries series);

Removes the specified series from the collection and sends a DatasetChangeEvent to all registered
listeners.

To remove all series from the collection:
å public void removeAllSeries();

Removes all series from the collection.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 760

54.39.5 Using as an IntervalXYDataset

This class implements the IntervalXYDataset interface, which means you can (for example) use the
collection as a dataset to create a bar chart (using the XYPlot and XYBarRenderer classes). The
underlying data items are just points, so it is necessary to “manufacture” an x-interval for each
item. The width of this interval defaults to 1.0, but can be specified with the following method:

å public void setIntervalWidth(double width);

Sets the width of the x-interval and sends a DatasetChangeEvent to all registered listeners.

Given a data item at (2.0, 3.75), the default x-interval will be extend from 1.5 to 2.5 (that is,
an interval of width 1.0 centered about the x-value of 2.0). You might want to change where the
interval falls about the actual x-value—you can use the following method:

å public void setIntervalPositionFactor(double factor);

Sets the interval position factor, a value between 0.0 and 1.0 (the default is 0.5, which centers
the interval about the x-value).

54.39.6 Other Methods

To find out how many series are held in the collection:

å public int getSeriesCount();

Returns the number of series in the collection.

To get a list of all series in the collection:

å public List getSeries();

Returns an unmodifiable list of the series in the collection.

To access a particular series:

å public XYSeries getSeries(int series);

Returns a series from the collection. The series argument is a zero-based index.

å public XYSeries getSeries(Comparable key); [1.0.9]

Returns a series from the collection.

To get the key for a series:

å public Comparable getSeriesKey(int series);

Returns the name of the specified series. The series argument should be in the range 0 to
getSeriesCount() - 1, otherwise an IllegalArgumentException is thrown.

To get the number of items in a series:

å public int getItemCount(int series);

Returns the number of items in the specified series. The series argument should be in the
range 0 to getSeriesCount() - 1, otherwise an IllegalArgumentException is thrown.

To get the x-value for an item within a series:

å public Number getX(int series, int item);

Returns the value of the specified item.

To get the starting value of the x-interval for an item within a series:

å public Number getStartX(int series, int item);

Returns the starting value of the x-interval for the specified item.

To get the ending value of the x-interval for an item within a series:

å public Number getEndX(int series, int item);

Returns the ending value of the x-interval for the specified item.

To get the y-value for an item within a series:

å public Number getY(int series, int item);

Returns the value of the specified item.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 761

54.39.7 Notes

Some points to note:

• if the x-values in your dataset are time or date based, consider using the TimeSeriesCollection

class instead;

• in JFreeChart 1.0.2, a new DefaultXYDataset class has been introduced which stores data
in double[] arrays. This class allows more compact data storage, but is not as flexible as
XYSeriesCollection.

54.40 XYZDataset

54.40.1 Overview

An interface that defines a collection of data items in the form of (x, y, z) values. This is a natural
extension of the XYDataset interface.

54.40.2 Methods

This interface adds two methods for accessing the z-value:

å public Number getZ(int series, int item);

Returns the z-value, which may be null. Some datasets (not all) will create a new Number object
each time this method is called—if you want to avoid this, use the getZValue() method instead.

å public double getZValue(int series, int item);

Returns the z-value. A return value of Double.NaN indicates (a) a missing or unknown value, or
(b) a value that is “not a number”. If you want to distinguish between these cases, you need
to call the getZ() method and look at the result.

54.40.3 Notes

Some points to note:

• the DefaultXYZDataset class implements this interface;

• JFreeChart doesn’t have support for three dimensional charts yet, but this interface is still
used by the XYBubbleRenderer and XYBlockRenderer classes.

54.41 YInterval

54.41.1 Overview

A data record used by the YIntervalDataItem class to record a y-value and y-interval. You should
not need to use this class directly. This class was first introduced in JFreeChart version 1.0.3.

54.41.2 Constructors

To create a new instance:

å public YInterval(double y, double yLow, double yHigh); [1.0.3]

Creates a new instance with the specified values. No validation is performed on the interval
values.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 762

54.41.3 Methods

The following accessor methods are provided (you should never need to use these directly):
å public double getY(); [1.0.3]

Returns the y-value, as supplied to the constructor.

å public double getYLow(); [1.0.3]

Returns the lower bound of the y-interval, as supplied to the constructor.

å public double getYHigh(); [1.0.3]

Returns the upper bound of the y-interval, as supplied to the constructor.

54.41.4 Equals, Cloning and Serialization

This class overrides the equals() method:
å public boolean equals(Object obj);

Tests this record for equality with an arbitrary object. This methods returns true if and only
if:

• obj is not null;

• obj is an instance of YInterval;

• obj has the same data values as this instance.

Instances of this class are Serializable. Cloning is unnecessary, because instances of this class are
immutable.

54.41.5 Notes

This class is intended for internal use by the YIntervalDataItem class.

54.42 YIntervalDataItem

54.42.1 Overview

A data item used by the YIntervalSeries class. In general, you won’t need to use this class directly.
This class was first introduced in JFreeChart 1.0.3.

54.42.2 Constructors

To create a new instance:
å public YIntervalDataItem(double x, double y, double yLow, double yHigh); [1.0.3]

Creates a new instance with the specified attributes defining an (x, y) point plus intervals
around the x and y values. No validation is performed on the supplied values.

In general, you don’t need to create instances of this class directly, the YIntervalSeries class will
take care of that.

54.42.3 Methods

The following accessor methods are defined:
å public Double getX(); [1.0.3]

Returns the x-value, which is stored internally as a Double.

å public double getYValue(); [1.0.3]

Returns the y-value, as supplied to the constructor.

å public double getYLowValue(); [1.0.3]

Returns the lower bound of the y-interval, as supplied to the constructor.

å public double getYHighValue(); [1.0.3]

Returns the upper bound of the y-interval, as supplied to the constructor.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 763

54.42.4 Equals, Cloning and Serialization

The inherited equals() implementation can distinguish between instances of this class.

Instances of this class are Cloneable and Serializable.

54.42.5 Notes

It shouldn’t be necessary to use this class directly—instead, rely on the API provided by the
YIntervalSeries class.

54.43 YIntervalSeries

54.43.1 Overview

A series containing zero, one or many data items in the form (x, y, yLow, yHigh)—that is, an
interval is defined for the y-values, but not the x-values. Typically you will add one or more
series instances to an YIntervalSeriesCollection to use as a dataset (for charts that require an
IntervalXYDataset). This class was first introduced in JFreeChart version 1.0.3.

54.43.2 Constructors

Two constructors are defined:

å public YIntervalSeries(Comparable key); [1.0.3]

Equivalent to YIntervalSeries(key, true, true)—see the next constructor.

å public YIntervalSeries(Comparable key, boolean autoSort, boolean allowDuplicateXValues);

[1.0.3]

Creates a new series, initially empty. The key should be non-null, immutable and Serializable

(so that series instances can be cloned and/or serialized correctly). The autoSort flag deter-
mines whether or not the items added to the series are automatically sorted (by ascending
x-value). The allowDuplicateXValues flag controls whether or not two (or more) items in the
series are permitted to have the same x-value.

54.43.3 Methods

This class inherits many methods from the ComparableObjectSeries class. In addition, the following
methods are defined:

å public Number getX(int index); [1.0.3]

Returns the x-value for an item in the series.

å public double getYValue(int index); [1.0.3]

Returns the y-value for an item in the series.

å public double getYLowValue(int index); [1.0.5]

Returns the lower bound of the y-interval for an item in the series.

å public double getYHighValue(int index); [1.0.5]

Returns the upper bound of the y-interval for an item in the series.

To add a new item to the series:

å public void add(double x, double y, double yLow, double yHigh); [1.0.3]

Adds a data item to the series.

You can remove items using the inherited remove() method.

The following method is used by JFreeChart to access items from the series:

å public ComparableObjectItem getDataItem(int index); [1.0.3]

Returns a data item from the series. This method will return an instance of YIntervalDataItem,
and is intended for internal use only.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 764

54.43.4 Notes

Some points to note:

• some missing methods were added in version 1.0.5;

• there are some demos (DeviationRendererDemo1.java and YIntervalChartDemo1.java) that use
this class included in the JFreeChart demo collection.

See Also:
YIntervalSeriesCollection.

54.44 YIntervalSeriesCollection

54.44.1 Overview

A dataset that implements the IntervalXYDataset interface, with an interval for the y-values but
not the x-values. This class was first introduced in JFreeChart version 1.0.3.

54.44.2 Constructors

To create a new empty dataset:

å public YIntervalSeriesCollection(); [1.0.3]

Creates a new dataset, initially empty.

54.44.3 Methods

To fetch a series from the collection:

å public YIntervalSeries getSeries(int series); [1.0.3]

Returns a series from the dataset. If series is not in the range from 0 to getSeriesCount(), this
method throws an IllegalArgumentException.

To add a series to the collection:

å public void addSeries(YIntervalSeries series); [1.0.3]

Adds a series to the dataset and sends a DatasetChangeEvent to all registered listeners.

To find out how many series are stored in the collection:

å public int getSeriesCount(); [1.0.3]

Returns the number of series in this dataset.

To get the key (unique identifier) for a series:

å public Comparable getSeriesKey(int series); [1.0.3]

Returns the key that identifies a series in the collection.

å public int getItemCount(int series); [1.0.3]

Returns the number of items in a given series.

To access the data values for an item in a series:

å public Number getX(int series, int item); [1.0.3]

Returns the x-value for an item within a series.

å public double getYValue(int series, int item); [1.0.3]

Returns the y-value for an item within a series.

å public double getStartYValue(int series, int item); [1.0.3]

Returns the lower bound of the y-interval for an item within a series.

å public double getEndYValue(int series, int item); [1.0.3]

Returns the upper bound of the y-interval for an item within a series.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 765

The following methods return the data values as Number objects, but you should avoid calling them
because they allocate a new object every time they are called:

å public Number getY(int series, int item); [1.0.3]

Returns the y-value for an item within a series.

å public Number getStartX(int series, int item);

Returns the same as getX(series, item), as this dataset does not record an interval about the
x-values.

å public Number getEndX(int series, int item);

Returns the same as getX(series, ite,), as this dataset does not record an interval about the
x-values.

å public Number getStartY(int series, int item); [1.0.3]

Returns the lower bound of the y-interval for an item within a series.

å public Number getEndY(int series, int item); [1.0.3]

Returns the upper bound of the y-interval for an item within a series.

54.44.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj); [1.0.3]

Tests this dataset for equality with an arbitrary object. This method returns true if and only
if:

• obj is not null;

• obj is an instance of YIntervalSeriesCollection;

• obj contains series that exactly match the series in this dataset.

Instances of this class are Cloneable10 and Serializable.

54.44.5 Notes

Some points to note:

• see the IntervalXYDataset documentation for a list of renderers that can use this dataset;

• a demo (XYErrorRendererDemo1.java) is included in the JFreeChart demo collection.

54.45 YisSymbolic

54.45.1 Overview

An interface that can be implemented by an XYDataset in order to link the (integer) y-values with
symbols.

54.45.2 Methods

The following methods are defined by the interface:

å public String[] getYSymbolicValues();

Returns an array of symbols to associate with (integral) data values.

å public String getYSymbolicValue(int series, int item);

Returns the symbolic y-value for an item within a series.

å public String getYSymbolicValue(Integer val);

Returns the symbolic y-value associated with a specific integer value.

10Cloning is broken in version 1.0.4, but should be working from version 1.0.5 onwards.

CHAPTER 54. PACKAGE: ORG.JFREE.DATA.XY 766

54.45.3 Notes

None of the standard datasets implement this interface.

Appendix A

Migration

A.1 Introduction

This section includes notes on migrating to JFreeChart 1.0.9 from earlier versions of the library. In
principle, all releases in the version 1.0.x series are backwards compatible with earlier releases in
the series. If you experience any trouble migrating up through versions in the 1.0.x series, please
report the problems so that they can be fixed and/or documented in this section.

A.2 1.0.8 to 1.0.9

Overview

This release contains an important security fix in the code that generates HTML image maps—if
you are using HTML image maps, you are strongly encouraged to upgrade to this release. For more
information about the security issue, please refer to the following report:

http://www.rapid7.com/advisories/R7-0031.jsp

In other respects, this release should be a straight-forward upgrade from JFreeChart 1.0.8.

New Methods

New methods in this release:

• HashUtilities – new methods for computing hash codes for BooleanList, PaintList and
StrokeList;

• ImageMapUtilities – added htmlEscape() method;

• IntervalMarker – added a new constructor;

• Range – added intersects(Range) and scale() methods;

• XYDataItem – added getXValue() and getYValue() methods;

• XYPlot – added setFixedDomainAxisSpace() and setFixedRangeAxisSpace() methods;

• XYSeriesCollection – added getSeries(Comparable) method.

767

APPENDIX A. MIGRATION 768

A.3 1.0.7 to 1.0.8

Overview

This release should be a straight-forward upgrade from 1.0.7. Some changes have been made to
the PiePlot class to fix bugs in the layout of the labels...if your application displays pie charts,
you should check them. In particular, if you set custom values for the interiorGap, labelGap,
labelLinkMargin or maximumLabelWidth attributes, you may find that these result in more white
space around the chart than previously. The reason is that bugs in the labelling code resulted in
the specified dimensions being halved.

New Methods

New methods in this release:

• DialPointer.Pointer – added fillPaint and outlinePaint attributes;

• StandardDialScale – added accessor methods for bounds and minor tick stroke attributes;

• StatisticalBarRenderer – added get/setErrorIndicatorStroke() methods;

Deprecations

In this release, the following deprecations have been made:

• StandardXYItemRenderer – deprecated the shapesFilled override attribute. You should avoid
using this override flag, which will be removed in a future release, and simply rely on the
per-series and default settings;

A.4 1.0.6 to 1.0.7

Overview

This release should be a straight-forward upgrade from 1.0.6, with the majority of changes being
additions to the API. There is, however, one non-compatible API change to the Zoomable interface
which now has several new methods.

New Classes

New classes in this release include:

• a new package org.jfree.chart.plot.dial.*, containing the DialPlot class and related classes
that were previously in the experimental source tree;

• a new LogAxis class (previously in experimental) that provides an alternative to the existing
LogarithmicAxis class;

• a new PlotUtilities class;

• the TickType class defines tokens to represent major and minor ticks;

New Methods

New methods include:

• CategoryAxis – added getCategorySeriesMiddle() method which is used to offset items in
different series within a category;

• CategoryPlot – added getRangeAxisIndex(), zoomDomainAxes() and zoomRangeAxes() methods;

APPENDIX A. MIGRATION 769

• ChartPanel – added a defaultSaveAsDirectory attribute with accessor methods;

• FastScatterPlot – added new zooming methods;

• LineAndShapeRenderer – added useSeriesOffset and itemMargin attributes;

• NumberTick – a new constructor that allows the tick type to be specified;

• NumberTickUnit – added a new constructor to set the minorTickCount attribute;

• PiePlot – new attributes/methods to support simple labelling as an alternative;

• PolarPlot – added new zooming methods;

• StandardPieSectionLabelGenerator – added new constructors that accept a Locale argument;

• StandardPieToolTipGenerator – added new constructors that accept a Locale argument;

• SymbolAxis – added a new alternateGridBandPaint attribute with accessor methods;

• TickUnit – added a minorTickCount attribute and a new constructor to set the value of this
attribute;

• ThermometerPlot – added new zooming methods;

• XYPlot – added new zooming methods;

Deprecations

The following deprecations have been made:

• LineAndShapeRenderer – the linesVisible, shapesVisible and shapesFilled override attributes
have been deprecated. You should just use the per-series and base (default) settings;

• ThermometerPlot – various constants for the thermometer dimensions have been deprecated
and replaced by variable attributes;

• Week – deprecated a constructor;

• XYLineAndShapeRenderer – the linesVisible, shapesVisible and shapesFilled override at-
tributes have been deprecated. You should just use the per-series and base (default) settings;

A.5 1.0.5 to 1.0.6

In version 1.0.6, some method additions in the DrawingSupplier interface (related to the fill paint
attribute) may cause trouble for developers that use their own custom drawing supplier implemen-
tation. These methods have been added to the DefaultDrawingSupplier implementation.

A large number of deprecations have been made in the CategoryItemRenderer and XYItemRenderer

interfaces, and the AbstractRenderer class. The override flags for most renderer attributes have
been deprecated as they are essentially redundant.

The following classes have new methods:

• AbstractRenderer – new “lookup” methods for core attributes, that refer to new “auto-
populate” flags to determine whether or not to use the current drawing supplier to auto-
populate the per-series settings;

• CategoryItemEntity – various new methods for addition of rowKey and columnKey attributes;

• DefaultKeyedValues – new insertValues() methods;

APPENDIX A. MIGRATION 770

• DefaultPieDataset – new insertValues() methods;

• LegendItemEntity – added get/setDataset() and get/setSeriesKey() methods;

• LookupPaintScale – a new add() method that takes a double primitive;

• PiePlot – new methods to get/set the pie label distributor;

• Plot – new drawBackground() method to handle GradientPaint, and new outlineVisible flag
with associated accessor methods;

• QuarterDateFormat – added new GREEK QUARTERS field;

• SimpleHistogramDataset – new clearObservations() and removeAllBins() methods;

• TimeSeriesCollection – new indexOf() method;

• XYSeriesCollection – new indexOf() method.

New classes in this release:

• AbstractPieLabelDistributor – a new base class for a plugin object used by the PiePlot class
to distribute labels;

• HexNumberFormat – a new custom number formatter;

• URLUtilities – a utility class that provides access (via reflection) to the URLEncoder.encode(String,
String) method introduced in JDK1.4, while maintaining JFreeChart’s support for JDK1.3.1.

The VectorRenderer and associated dataset classes have been moved from the experimental tree
into the main JFreeChart API.

A.6 1.0.4 to 1.0.5

New classes in this release:

• BlockFrame – a new interface for borders that can be assigned to any AbstractBlock;

• DeviationRenderer – a new renderer for the XYPlot class.

• LineBorder – a new border class.

The following classes have new methods:

• AbstractBlock – added get/setFrame() methods;

• AbstractCategoryItemRenderer – added createState() protected method;

• CategoryPlot – added setDomainAxisLocation() variant;

• CandlestickRenderer – added getDrawVolume();

• ColorBlock – added getPaint();

• DatasetUtilities – added calculateStackTotal();

• StackedXYBarRenderer – added get/setRenderAsPercentages() methods;

• ValueAxis – added get/setDefaultAutoRange() methods;

• XYIntervalSeries – added getXLowValue(), getXHighValue(), getYLowValue() and getYHighValue();

• XYPlot – added setDomainAxisLocation() and setRangeAxisLocation() variants;

APPENDIX A. MIGRATION 771

• YIntervalSeries – added getYLowValue() and getYHighValue() methods.

Other changes include:

• BlockBorder implements the new BlockFrame interface;

Deprecations include:

• AbstractBlock – deprecated the get/setBorder() methods, use the new get/setFrame() meth-
ods instead. This change has been made to allow for new border types without having to
subclass BlockBorder.

A.7 1.0.3 to 1.0.4

There are some significant additions to the API in this release, as well as a number of deprecations.
However, it is not expected that these changes will break existing code, and the upgrade from 1.0.3
to 1.0.4 should be straight forward.

New classes in this release:

• GrayPaintScale – a PaintScale implementation that returns shades of gray for values in a
range;

• LookupPaintScale – a PaintScale implementation based on a lookup table;

• OHLC – a data record for an open-high-low-close item;

• OHLCItem – represents one item in a OHLCSeries;

• OHLCSeries – a series of open-high-low-close observations;

• OHLCSeriesCollection – a new dataset implementation for creating open-high-low-close style
charts;

• PaintScale – an interface that defines the API for converting values in a range into a corre-
sponding Paint instance;

• PaintScaleLegend – a chart legend that displays the range of colors for a PaintScale;

• XYBlockRenderer – a new renderer for the XYPlot class;

Other additions to the API include:

• AbstractXYItemLabelGenerator: added a new constructor;

• ChartFactory: added createBoxAndWhiskerChart() method;

• DateAxis: added get/setTimeZone() methods;

• LegendItem: added fillPaintTransformer attribute, plus accessor methods;

• PiePlot: added legendLabelURLGenerator attribute, plus accessor methods;

• StandardXYItemLabelGenerator: added a new constructor;

• StandardXYToolTipGenerator: added a new constructor;

• XYBarDataset: added getUnderlyingDataset() method, and get/setBarWidth() methods;

• XYDifferenceRenderer: added roundXCoordinates attribute, plus accessor methods;

• XYImageAnnotation: added anchor attribute and several new methods;

APPENDIX A. MIGRATION 772

• XYSeries: added toArray() method.

Deprecations include:

• all the classes relating to the ContourPlot class have been deprecated in this release—for this
type of chart, use the XYPlot class and XYBlockRenderer instead. The deprecated classes/interfaces
are:

– ClipPath;

– ColorBar;

– ColorPalette;

– ContourDataset;

– ContourPlot;

– ContourPlotUtilities;

– ContourValuePlot;

– DefaultContourDataset;

– GreyPalette;

– NonGridContourDataset;

– PaletteChooserPanel;

– PaletteSample;

– RainbowPalette.

A.8 1.0.2 to 1.0.3

The following new classes have been added in this release:

• DefaultIntervalXYDataset – a new dataset implementation;

• MarkerChangeEvent – a new event class;

• MarkerChangeListener – a new listener interface;

• XIntervalSeriesCollection – a new dataset implementation;

• XYErrorRenderer – a new renderer;

• XYIntervalSeriesCollection – a new dataset implementation;

• YIntervalSeriesCollection – a new dataset implementation;

The following classes have new methods:

• AreaRenderer – new equals() override;

• ChartPanel – added new public method doEditChartProperties();

• CrosshairState – several new methods have been added;

• LegendItemBlockContainer – added support for tooltips and URLs;

• RingPlot – added methods to get/set the depth of the ring;

• StackedAreaRenderer – added a flag to allow the renderer to display values as percentages;

The following have been deprecated:

APPENDIX A. MIGRATION 773

• JDBCXYDataset – the methods getLegendItemCount() and getLegendItemLabels() have been depre-
cated;

• PiePlot – attributes that relate to pie sections are now stored with the section key rather
than the section index, to allow for reordering of the underlying dataset. Most methods that
specify a section index are now replaced by corresponding methods that specify a section key.

Other notes:

• in previous versions of JFreeChart, the rendering of domain and range markers was incomplete—
the alpha transparency of the marker was ignored, as were the outline paint and stroke. This
has been fixed, and may change the appearance of charts that use markers.

A.9 1.0.1 to 1.0.2

This version should be a drop-in replacement for 1.0.1. The following is a summary of the API
additions and deprecations:

• DrawableLegendItem – this class has been deprecated as it is not used anywhere by JFreeChart;

• CategoryToPieDataset – methods have been added for accessing the underlying dataset;

• DefaultXYDataset – a new implementation of the XYDataset interface;

• DefaultXYZDataset – a new implementation of the XYZDataset interface;

• LegendItemBlockContainer – a new class used internally by JFreeChart;

• MultiplePiePlot – new fields aggregatedItemsKey and aggregatedItemsPaint, plus accessor
methods;

• SpiderWebPlot – added new fields toolTipGenerator and urlGenerator, plus accessor methods;

• StackedBarRenderer3D – added a new flag (renderAsPercentages), plus accessor methods, that
controls whether the data items are displayed as values or percentages. Two new constructors
are also added.

• XYPolygonAnnotation – added new accessor methods:

– getPolygonCoordinates();

– getFillPaint();

– getOutlineStroke();

– getOutlinePaint().

Other changes include:

• in the PiePlot class, the default section label format has changed to simply display the section
key (and not the value any longer). If you want to change the format of the labels, see section
33.27.11.

A.10 1.0.0 to 1.0.1

Some minor adjustments have been made to the API:

• BarRenderer – introduced a new flag (includeBaseInRange), with corresponding accessor meth-
ods, to control whether or not the base value (typically zero, but user-definable) is included
in the value range calculated by the renderer;

APPENDIX A. MIGRATION 774

• LevelRenderer – for consistency with method names in other renderers, deprecated the getMax-

ItemWidth() method and added a new method getMaximumItemWidth(). Likewise for setMax-

ItemWidth() and setMaximumItemWidth();

• Range – added a new method expandToInclude(Range, double) for convenience;

• TaskSeriesCollection – added new methods getSeries(int) and getSeries(Comparable). With-
out these, it is not possible to retrieve a TaskSeries that has been added to the collection.

• TimeSeriesCollection – the domainIsPointsInTime flag has been deprecated, because it is
redundant. If you get a deprecation warning for code that sets this flag, you should be able
to simply remove the code;

• XYSeries – the update(int, Number) method has been deprecated and replaced by the oth-
erwise equivalent method updateByIndex(int, Number). This is to avoid confusion with the
other update() method in this class;

A.11 0.9.x to 1.0.0

Prior to version 1.0.0 being released (on 2-Dec-2005), the API was clearly marked as being subject to
change. The changes up to version 1.0.0 are not documented. Try searching the forum at jfree.org
for hints.

Appendix B

JCommon

B.1 Introduction

JFreeChart makes use of classes in the JCommon class library. The JCommon runtime jar file is
included in the JFreeChart distribution. If you require the source code and/or documentation, you
can download these from:

http://www.jfree.org/jcommon/

Selected JCommon classes are documented here because they are used extensively within JFreeChart.
For further information, refer to the JCommon Javadoc API documentation.

B.2 Align

B.2.1 Overview

This class is used to align a rectangle with another rectangle (the “reference frame”). Alignment
codes are defined that control how the alignment is performed.

Code: Description:

Align.CENTER Centers the rectangle within (or over) the reference frame.
Align.TOP Aligns the top edge of the rectangle with the top edge of the reference frame.
Align.BOTTOM Aligns the bottom edge of the rectangle with the bottom edge of the reference

frame.
Align.LEFT Aligns the left edge of the rectangle with the left edge of the reference frame.
Align.RIGHT Aligns the right edge of the rectangle with the right edge of the reference

frame.

Table B.1: Alignment codes

B.2.2 Methods

This class defines a single (static) method:

å public static void align(Rectangle2D rect, Rectangle2D frame, int align);

Aligns the rect with the frame according to the specified alignment code. An exception will be
thrown if either rect or frame is null.

775

APPENDIX B. JCOMMON 776

B.3 GradientPaintTransformer

B.3.1 Overview

An interface that provides a method for transforming the fixed points of a GradientPaint instance
to match some arbitrary shape. For example, in a bar chart, you will typically want the gradient
paint to cover the length of each bar. JFreeChart classes that make use of this interface include:

• BarRenderer – see section 36.4.6;

• XYBarRenderer – see section 37.16.4;

• IntervalMarker – see section 33.20.5.

B.3.2 Interface Methods

This interface defines a single method:

å public GradientPaint transform(GradientPaint paint, Shape target);

Returns a GradientPaint that has been transformed in some way to match the target shape.
Classes that implement this method will typically return a new GradientPaint instance each
time this method is called. Callers should ensure that both paint and target are not null.

B.3.3 Notes

JCommon provides the StandardGradientPaintTransformer class, which implements this interface.

B.4 GradientPaintTransformType

B.4.1 Overview

An enumeration used by the StandardGradientPaintTransformer class:

• HORIZONTAL – a horizontal gradient with color 1 on the left and color 2 on the right;

• VERTICAL – a vertical gradient with color 1 at the top and color 2 at the bottom;

• CENTER HORIZONTAL – a cyclic gradient with color 1 in the middle and color 0 at the left and
right edges;

• CENTER VERTICAL – a cyclic gradient with color 1 in the middle and color 0 at the top and
bottom edges.

B.4.2 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object.

Instances of this class are Serializable but not Cloneable (the predefined instances are immutable).

B.5 PublicCloneable

B.5.1 Overview

An interface for objects with a clone() method. This is used in JFreeChart to “look behind” an
interface to see if the class implementing the interface can be cloned.

APPENDIX B. JCOMMON 777

B.5.2 Methods

This interface declares a single method:

å public Object clone() throws CloneNotSupportedException;

Creates a clone of the object.

B.6 RectangleAnchor

B.6.1 Overview

This class defines an enumeration of nine common anchor points within a rectangle—see figure B.1.

TOP_RIGHTTOP

BOTTOM BOTTOM_RIGHTBOTTOM_LEFT

CENTER

TOP_LEFT

LEFT RIGHT

Figure B.1: Rectangle anchor points

The tokens defined to represent these points are listed in table B.2.

ID: Description:

RectangleAnchor.TOP The midpoint of the rectangle’s top edge.
RectangleAnchor.BOTTOM The midpoint of the rectangle’s bottom edge.
RectangleAnchor.LEFT The midpoint of the rectangle’s left edge.
RectangleAnchor.RIGHT The midpoint of the rectangle’s right edge.
RectangleAnchor.TOP LEFT The top-left corner of the rectangle.
RectangleAnchor.TOP RIGHT The top-right corner of the rectangle.
RectangleAnchor.BOTTOM LEFT The bottom-left corner of the rectangle.
RectangleAnchor.BOTTOM RIGHT The bottom-right corner of the rectangle.
RectangleAnchor.CENTER The center of the rectangle.

Table B.2: Constants defined by RectangleAnchor

B.7 RectangleEdge

B.7.1 Overview

This class defines an enumeration of the four edges of a rectangle—the elements are listed in table
B.3. It is used to specify the location of objects (for example, axes in a plot) relative to a rectangle.

B.8 RectangleInsets

B.8.1 Overview

This class is used to specify left, right, top and bottom insets relative to an arbitrary rectangle.
The space can be specified in absolute terms (points, or 1/72 inch) or relative terms (a percentage
of the height or width of the rectangle).

APPENDIX B. JCOMMON 778

ID: Description:

RectangleEdge.TOP The top edge.
RectangleEdge.BOTTOM The bottom edge.
RectangleEdge.LEFT The left edge.
RectangleEdge.RIGHT The right edge.

Table B.3: Constants defined by RectangleEdge

B.8.2 Constructor

To create a new instance:

å public RectangleInsets(double top, double left, double bottom, double right);

Creates a new instance with the given insets as absolute units.

å public RectangleInsets(UnitType unitType, double top, double left,

double bottom, double right);

Creates a new instance with the given insets. The values are interpreted as points (1/72 inch)
for absolute spacing, or percentages for relative spacing.

B.8.3 Accessor Methods

The following methods provide access to the attributes of an instance:

å public UnitType getUnitType();

Returns the unit type (relative or absolute) for the insets.

å public double getTop();

Returns the top insets value—this may be a relative or absolute value, depending on the unit
type (see getUnitType()).

å public double getBottom();

Returns the bottom insets value—this may be a relative or absolute value, depending on the
unit type (see getUnitType()).

å public double getLeft();

Returns the left insets value—this may be a relative or absolute value, depending on the unit
type (see getUnitType()).

å public double getRight();

Returns the right insets value—this may be a relative or absolute value, depending on the unit
type (see getUnitType()).

B.8.4 Calculation Methods

These methods are used to apply the insets to areas in various ways:

å public Rectangle2D createAdjustedRectangle(Rectangle2D base,

LengthAdjustmentType horizontal, LengthAdjustmentType vertical);

A general method that contracts or expands the width and height of the base area, as requested.

å public Rectangle2D createInsetRectangle(Rectangle2D base);

Applies the insets to base and returns a (smaller) rectangle.

å public Rectangle2D createInsetRectangle(Rectangle2D base,

boolean horizontal, boolean vertical);

Applies the insets (as requested) to base and returns a (smaller) rectangle.

å public Rectangle2D createOutsetRectangle(Rectangle2D base);

Applies the insets to base and returns a (larger) rectangle. This method works as the inverse
to createInsetRectangle().

å public Rectangle2D createOutsetRectangle(Rectangle2D base,

boolean horizontal, boolean vertical);

Applies the insets (as requested) to base and returns a (smaller) rectangle.

APPENDIX B. JCOMMON 779

å public double calculateTopInset(final double height);

Returns the top “inset” amount calculated relative to the given height.

å public double calculateTopOutset(final double height);

Returns the top “outset” amount calculated relative to the given height.

å public double calculateBottomInset(final double height);

Returns the bottom “inset” amount calculated relative to the given height.

å public double calculateBottomOutset(final double height);

Returns the bottom “outset” amount calculated relative to the given height.

å public double calculateLeftInset(final double width);

Returns the left “inset” amount calculated relative to the given width.

å public double calculateLeftOutset(final double width);

Returns the left “outset” amount calculated relative to the given width.

å public double calculateRightInset(final double width);

Returns the right “inset” amount calculated relative to the given width.

å public double calculateRightOutset(final double width);

Returns the right “outset” amount calculated relative to the given width.

å public double trimWidth(double width);

Returns width minus the left and right insets.

å public double trimHeight(double height);

Returns height minus the top and bottom insets.

å public void trim(Rectangle2D area);

Trims the insets from the given area. Note that this overwrites the contents of area.

å public double extendWidth(double width);

Returns width plus the left and right “outsets”. This method provides the inverse operation to
trimWidth().

å public double extendHeight(double height);

Returns the height plus the top and bottom “outsets”. This method provides the inverse
operation to trimHeight().

B.8.5 Equality, Cloning and Serialization

This class overrides equals():

å public boolean equals(Object obj);

Tests this instance for equality with an arbitrary object. Returns true if and only if:

• the obj is an instance of RectangleInsets;

• both objects have the same insets and unit types.

To get a hash code for an instance:
å public int hashCode();

Returns a hash code for this instance.

This class is cloneable and serializable.

B.9 StandardGradientPaintTransformer

B.9.1 Overview

A standard transformer used to fit a GradientPaint (with fixed anchor points) to some arbitrary
shape (in fact, the transformation is relative to the bounding rectangle of the specified shape). The
transformation in fact returns a new GradientPaint instance with modified anchor points.

A demo (GradientPaintTransformerDemo1.java) shows the effects that can be achieved with this
transformer—see figure B.2.

APPENDIX B. JCOMMON 780

Figure B.2: Output from GradientPaintTransformerDemo1.java

B.9.2 Constructors

This class defines two constructors:

å public StandardGradientPaintTransformer();

Equivalent to StandardGradientPaintTransformer(GradientPaintTransformType.VERTICAL)—see the
next constructor.

å public StandardGradientPaintTransformer(GradientPaintTransformType type);

Creates a transformer with the specified type. If type is null, this constructor throws an
IllegalArgumentException.

B.9.3 Methods

To determine the transform type:

å public GradientPaintTransformType getType(); [1.0.10]

Returns the transform type (never null) which is specified via the constructors (instances of
this class are immutable, so there is no method to change the type).

To transform a gradient paint instance to match an arbitrary shape:

å public GradientPaint transform(GradientPaint paint, Shape target);

Returns a new GradientPaint instance that fits the bounding rectangle of the specified target,
according to the transform type:

• HORIZONTAL – the transformed gradient positions color 1 at the left and color 2 at the right;

• VERTICAL – a vertical gradient with color 1 at the top of the bounding box and color 2 at
the bottom;

• CENTER HORIZONTAL – a cyclic horizontal gradient with color 1 in the middle of the bounding
box and color 2 at the left and right edges;

• CENTER VERTICAL – a cyclic vertical gradient with color 1 in the middle of the bounding
box and color 2 at the top and bottom edges.

If paint or target is null, this method will throw a NullPointerException.

APPENDIX B. JCOMMON 781

B.9.4 Equals, Cloning and Serialization

This class overrides the equals() method:

å public boolean equals(Object obj);

Tests this transformer for equality with an arbitrary object (which may be null).

Instances of this class are Cloneable1 and Serializable.

See Also
GradientPaintTransformer.

B.10 TextAnchor

B.10.1 Overview

This class defines an enumeration of the anchor points relative to the bounds of a text string (see
table B.4). It is used to specify an anchor point for text alignment and rotation.

ID: Description:

TextAnchor.TOP LEFT The top left corner.
TextAnchor.TOP CENTER The center point on the top edge.
TextAnchor.TOP RIGHT The top right corner.
TextAnchor.CENTER LEFT The center point on the left edge.
TextAnchor.CENTER The center point of the text.
TextAnchor.CENTER RIGHT The center point on the right edge.
TextAnchor.HALF ASCENT LEFT The half ascent point on the left edge.
TextAnchor.HALF ASCENT CENTER The center point along the half ascent line.
TextAnchor.HALF ASCENT RIGHT The half ascent point on the right edge.
TextAnchor.BASELINE LEFT The baseline point on the left edge.
TextAnchor.BASELINE CENTER The center point along the half ascent line.
TextAnchor.BASELINE RIGHT The baseline point on the right edge.
TextAnchor.BOTTOM LEFT The bottom left corner.
TextAnchor.BOTTOM CENTER The center point on the bottom edge.
TextAnchor.BOTTOM RIGHT The bottom right corner.

Table B.4: Constants defined by TextAnchor

B.10.2 Notes

To see how these anchor values affect the alignment of text, try running the demo application
included with JCommon:

org.jfree.demo.DrawStringDemo

B.11 UnitType

B.11.1 Overview

This class defines tokens to indicate “relative” or “absolute” measurement units—see table B.5.
These tokens are used by the RectangleInsets class.

1This is not strictly necessary, since instances of this class are immutable.

APPENDIX B. JCOMMON 782

ID: Description:

UnitType.ABSOLUTE Absolute units.
UnitType.RELATIVE Relative units.

Table B.5: Constants defined by UnitType

Appendix C

Configuring IDEs for JFreeChart

C.1 Introduction

There are a number of IDEs (integrated development environments) that developers use when
working on Java programs. In this section, I describe how to configure some popular IDEs to use
JFreeChart.1 Specifically, I’ll cover:

• Eclipse (version 3.2);

• NetBeans (version 5.5);

In the future I’ll add configuration descriptions for other IDEs.2

C.2 Eclipse

C.2.1 Overview

Eclipse is a free IDE originally developed by IBM, but now managed by the Eclipse Foundation:

http://www.eclipse.org/

In Eclipse, third party libraries are configured as “user libraries”. In this section, I’ll describe how to
set up JFreeChart and JCommon as user libraries in Eclipse 3.2. This makes it straightforward to in-
clude JFreeChart and JCommon as dependencies in your application(s), with Eclipse automatically
handling features like code-completion, Javadoc popups, stepping through the JFreeChart/JCommon
sources during debugging, and more.

C.2.2 Configuration Steps

To begin with, you need to download the JFreeChart and JCommon distributions, unpack them on
your local machine, and generate the API documentation. The following steps are necessary:

1. Download the latest version of the JCommon class library:

http://www.jfree.org/jcommon/

1Notes that this section is concerned with using JFreeChart as a library. If you intend to modify the JFreeChart
sources, you’ll want to configure JFreeChart as a project within your IDE.

2At least those I can get access to.

783

APPENDIX C. CONFIGURING IDES FOR JFREECHART 784

...and unpack it to a directory on your computer (almost anywhere is fine).

2. From the ant subdirectory of the just-unpacked JCommon, run ant javadoc to gen-
erate the Javadocs locally. If you are unfamiliar with Ant, you can skip this step, but
then Eclipse won’t be able to show you the Javadoc popups for JCommon.

3. Download the latest version of the JFreeChart class library:

http://www.jfree.org/jfreechart/

...and unpack it to a directory on your computer (again, almost anywhere is fine).

4. From the ant subdirectory of the just-unpacked JFreeChart, run ant javadoc to
generate the Javadocs locally. As with step 2, you can skip this step, but then you’ll be
missing the API documentation.

Now, launch Eclipse, and carry out the following steps to configure JFreeChart and JCommon as
user libraries:

5. In Eclipse, select Preferences... from the Window menu, then choose the Java ->

Build Path -> User Libraries node in the tree—you should see the dialog shown in
figure C.1.

Figure C.1: Eclipse User Libraries Dialog.

6. Click on the New... button and enter JCommon 1.0.12 as the name for a new user
library.

7. Ensure that the JCommon 1.0.12 item is selected in the list, then click the Add JARs...

button and select the jcommon-1.0.12.jar file from the JCommon directory created back
in step 1.

8. Double-click the item that says “Source attachment: (None)”, then click the External
folder... button, then select the source directory for JCommon.

9. Double-click the item that says “Javadoc location: (None)”, then click the Browse...
button, then select the javadoc directory from JCommon (see step 2).

10. Click on the New... button and enter JFreeChart 1.0.7 as the name for a new user
library.

APPENDIX C. CONFIGURING IDES FOR JFREECHART 785

11. Ensure that the JFreeChart 1.0.7 item is selected in the list, then click on the Add

JARs... button and select the jfreechart-1.0.7.jar file from the JFreeChart directory
(see step 3).

12. Double-click the item that says “Source attachment: (None)”, then click the External
folder... button, then select the source directory for JFreeChart.

13. Double-click the item that says “Javadoc location: (None)”, then click the Browse...
button, then select the javadoc directory from JFreeChart (see step 4).

At this point, you have completed the configuration of the user libraries—you should have something
that looks like figure C.2.

Figure C.2: The Configured User Libraries.

The next section shows how to create a new project in Eclipse that depends on these libraries.

C.2.3 Creating an Eclipse Project that uses JFreeChart

Now that JFreeChart and JCommon are configured as user libraries, it is straightforward to develop
an application that uses these libraries:

1. In Eclipse, select New -> Project... from the File menu, select Java Project from
the list and click the Next button.

2. Enter MyAppThatUsesJFreeChart as the project name and click the Finish button.

3. Right-click on the project in the Package Explorer then select Properties from the
pop-up menu. In the properties window—see figure C.3—click on the Add Library...

button and select both the JCommon and JFreeChart libraries. Click OK.

4. Create a new source file (First.java) in the project, and copy and paste the following
small application:

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartFrame;

import org.jfree.chart.JFreeChart;

import org.jfree.data.general.DefaultPieDataset;

/**

APPENDIX C. CONFIGURING IDES FOR JFREECHART 786

Figure C.3: The completed libraries.

* A simple introduction to using JFreeChart. This demo is described in the

* JFreeChart Developer Guide.

*/

public class First {

/**

* The starting point for the demo.

*

* @param args ignored.

*/

public static void main(String[] args) {

// create a dataset...

DefaultPieDataset data = new DefaultPieDataset();

data.setValue("Category 1", 43.2);

data.setValue("Category 2", 27.9);

data.setValue("Category 3", 79.5);

// create a chart...

JFreeChart chart = ChartFactory.createPieChart(

"Sample Pie Chart",

data,

true, // legend?

true, // tooltips?

false // URLs?

);

// create and display a frame...

ChartFrame frame = new ChartFrame("First", chart);

frame.pack();

frame.setVisible(true);

}

}

5. Compile and run the application. Notice how you can browse the JFreeChart/JCommon
source files and step through the code while debugging.

That’s all there is to it!

APPENDIX C. CONFIGURING IDES FOR JFREECHART 787

C.3 NetBeans

C.3.1 Overview

NetBeans is a free IDE developed by Sun Microsystems:

http://www.netbeans.org/

In NetBeans, third party libraries are configured using the “Library Manager”. In this section,
I’ll describe how to set up JFreeChart and JCommon within the Library Manager in NetBeans
version 5.5. This makes it straightforward to include JFreeChart and JCommon as dependencies in
your application(s), with NetBeans automatically handling features like code completion, Javadoc
popups, stepping through the JFreeChart/JCommon sources during debugging, and more.

C.3.2 Configuration Steps

To begin with, you need to download the JFreeChart and JCommon distributions, unpack them on
your local machine, and generate the API documentation. The following steps are necessary:

1. Download the latest version of the JCommon class library:

http://www.jfree.org/jcommon/

...and unpack it to a directory on your computer (almost anywhere is fine).

2. From the ant subdirectory of the just-unpacked JCommon, run ant javadoc to gen-
erate the Javadocs locally. If you are unfamiliar with Ant, you can skip this step, but
then NetBeans won’t be able to show you the Javadoc popups for JCommon.

3. Download the latest version of the JFreeChart class library:

http://www.jfree.org/jfreechart/

...and unpack it to a directory on your computer (again, almost anywhere is fine).

4. From the ant subdirectory of the just-unpacked JFreeChart, run ant javadoc to
generate the Javadocs locally. As with step 2, you can skip this step, but then you’ll be
missing the API documentation.

Now, launch NetBeans, and carry out the following steps to configure JFreeChart and JCommon
as user libraries:

5. In NetBeans, select the Library Manager item from the Tools menu—you should see
the dialog shown in figure C.4.

6. Click on the New Library... button and enter JCommon-1.0.12 as the library name.

7. With the Classpath tab selected, click on the Add JAR/Folder... button and select
the jcommon-1.0.12.jar file from the JCommon directory created back in step 1.

8. With the Sources tab selected, click on the Add JAR/Folder... button and select the
source directory for JCommon.

9. With the Javadoc tab selected, click on the Add ZIP/Folder... button and select the
javadoc directory for JCommon (refer to step 2).

10. Click on the New Library... button and enter JFreeChart-1.0.7 as the library name.

11. With the Classpath tab selected, click on the Add JAR/Folder... button and select
the jfreechart-1.0.7.jar file from the JFreeChart directory created back in step 3.

APPENDIX C. CONFIGURING IDES FOR JFREECHART 788

Figure C.4: The Library Manager.

12. With the Sources tab selected, click on the Add JAR/Folder... button and select
the source directory for JFreeChart.

13. With the Javadoc tab selected, click on the Add ZIP/Folder... button and select
the javadoc directory for JFreeChart (refer to step 4).

At this point, you have complete the configuration of the libraries. The next section shows how to
create a new project in NetBeans that depends on these libraries.

C.3.3 Creating a NetBeans Project that uses JFreeChart

Now that JFreeChart and JCommon are configured as libraries in NetBeans, it is straightforward
to develop an application that uses these libraries:

1. In NetBeans, select New Project... from the File menu, select General/Java Application,
and click the Next button.

2. Enter MyAppThatUsesJFreeChart as the project name, and click the Finish button.

3. In the Projects pane, you’ll see a Libraries node in the project. Right-click on this
node, select Add Library... and select the JFreeChart and JCommon libraries.

4. NetBeans has already created a Main.java source file—copy and paste the following
code into the main method of this source file:

public static void main(String[] args) {

// create a dataset...

DefaultPieDataset data = new DefaultPieDataset();

data.setValue("Category 1", 43.2);

data.setValue("Category 2", 27.9);

data.setValue("Category 3", 79.5);

// create a chart...

JFreeChart chart = ChartFactory.createPieChart(

"Sample Pie Chart",

data,

true, // legend?

true, // tooltips?

false // URLs?

);

APPENDIX C. CONFIGURING IDES FOR JFREECHART 789

// create and display a frame...

ChartFrame frame = new ChartFrame("First", chart);

frame.pack();

frame.setVisible(true);

}

5. Select Fix Imports from the Source menu, then compile and run the application.
Notice how you can browse the JFreeChart/JCommon source files and step through the
code while debugging.

That’s all there is to it!

Appendix D

The GNU Lesser General Public
Licence

D.1 Introduction

JFreeChart is licensed under the terms of the GNU Lesser General Public Licence (LGPL). The
full text of this licence is reproduced in this appendix. You should read and understand this licence
before using JFreeChart in your own projects.

If you are not familiar with the idea of free software, you can find out more at the Free Software
Foundation’s web site:

http://www.fsf.org

Please send e-mail to david.gilbert@object-refinery.com if you have any questions about the
licensing of JFreeChart (but please read section D.3 first).

D.2 The Licence

The following licence has been used for the distribution of the JFreeChart class library:

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public
License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public Licenses are intended to guarantee your freedom to share and change free software–to make sure the
software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software packages–typically
libraries–of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest
you first think carefully about whether this license or the ordinary General Public License is the better strategy to
use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if
you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces
of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you
to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
library or if you modify it.

790

APPENDIX D. THE GNU LESSER GENERAL PUBLIC LICENCE 791

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the
rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other
code with the library, you must provide complete object files to the recipients, so that they can relink them with the
library after making changes to the library and recompiling it. And you must show them these terms so they know
their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which
gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the
library is modified by someone else and passed on, the recipients should know that what they have is not the original
version, so that the original author’s reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that
a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent
holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the
full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license,
the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary
General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library, the combination of the two is
legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore
permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License
permits more lax criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does Less to protect the user’s freedom than the
ordinary General Public License. It also provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries.
However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library,
so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A
more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is
little to gain by limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of people to use
a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many
more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure that the user of a
program that is linked with the Library has the freedom and the wherewithal to run that program using a modified
version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the
difference between a “work based on the library” and a “work that uses the library”. The former contains code
derived from the library, whereas the latter must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed by the
copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public
License (also called “this License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with
application programs (which use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A
“work based on the Library” means either the Library or any derivative work under copyright law: that is to say, a
work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightfor-
wardly into another language. (Hereinafter, translation is included without limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete
source code means all the source code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running a program using the Library is not restricted, and output from such a program is covered
only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and distribute a copy of this License along with the Library.

APPENDIX D. THE GNU LESSER GENERAL PUBLIC LICENCE 792

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

* a) The modified work must itself be a software library.

* b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of
any change.

* c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this
License.

* d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application
program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a
good faith effort to ensure that, in the event an application does not supply such function or table, the facility still
operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent
of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this
function must be optional: if the application does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from
the Library, and can be reasonably considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on
the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given
copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the
ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License
applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent
access to copy the source code from the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library
by being compiled or linked with it, is called a “work that uses the Library”. Such a work, in isolation, is not a
derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the
Library (because it contains portions of the Library), rather than a “work that uses the library”. The executable is
therefore covered by this License. Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code
for the work may be a derivative work of the Library even though the source code is not. Whether this is true is
especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold
for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and
small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether
it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms
of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly
with the Library itself.

APPENDIX D. THE GNU LESSER GENERAL PUBLIC LICENCE 793

6. As an exception to the Sections above, you may also combine or link a “work that uses the Library” with the
Library to produce a work containing portions of the Library, and distribute that work under terms of your choice,
provided that the terms permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and
its use are covered by this License. You must supply a copy of this License. If the work during execution displays
copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing
the user to the copy of this License. Also, you must do one of these things:

* a) Accompany the work with the complete corresponding machine-readable source code for the Library including
whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work
is an executable linked with the Library, with the complete machine-readable “work that uses the Library”, as object
code and/or source code, so that the user can modify the Library and then relink to produce a modified executable
containing the modified Library. (It is understood that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application to use the modified definitions.)

* b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1)
uses at run time a copy of the library already present on the user’s computer system, rather than copying library
functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs
one, as long as the modified version is interface-compatible with the version that the work was made with.

* c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

* d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to
copy the above specified materials from the same place.

* e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs
needed for reproducing the executable from it. However, as a special exception, the materials to be distributed
need not include anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not
normally accompany the operating system. Such a contradiction means you cannot use both them and the Library
together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library together with
other library facilities not covered by this License, and distribute such a combined library, provided that the separate
distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided
that you do these two things:

* a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any
other library facilities. This must be distributed under the terms of the Sections above.

* b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify,

sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library),
you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or
modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives
a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and
conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a
consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free
redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest

APPENDIX D. THE GNU LESSER GENERAL PUBLIC LICENCE 794

validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system which is implemented by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not
thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which
applies to it and “any later version”, you have the option of following the terms and conditions either of that version
or of any later version published by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LI-
BRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend making
it free software that everyone can redistribute and change. You can do so by permitting redistribution under these
terms (or, alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms of

the GNU Lesser General Public License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library;

if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA

02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copyright
disclaimer” for the library, if necessary. Here is a sample; alter the names:

APPENDIX D. THE GNU LESSER GENERAL PUBLIC LICENCE 795

Yoyodyne, Inc., hereby disclaims all copyright interest in the library ‘Frob’ (a library for

tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

APPENDIX D. THE GNU LESSER GENERAL PUBLIC LICENCE 796

D.3 Frequently Asked Questions

D.3.1 Introduction

Some of the most frequently asked questions about JFreeChart concern the licence. I’ve published
this FAQ to help developers understand my choice of licence for JFreeChart. If anything is unclear,
or technically incorrect, please e-mail me (david.gilbert@object-refinery.com) and I will try
to improve the text.

D.3.2 Questions and Answers

1. “Can I incorporate JFreeChart into a proprietary (closed-source) application?”

Yes, the GNU Lesser General Public Licence (LGPL) is specifically designed to allow this.

2. “Do I have to pay a licence fee to use JFreeChart?”

No, JFreeChart is free software. You are not required to pay a fee to use JFreeChart. All that
we ask is that you comply with the terms of the licence, which (for most developers) is not very
difficult.

If you want to make a financial contribution to the JFreeChart project, you can buy a copy of the
JFreeChart Developer Guide from Object Refinery Limited. This is appreciated, but not required.

3. “If I use JFreeChart, do I have to release the source code for my application under the terms of
the LGPL?”

No, you can choose whatever licence you wish for your software. But when you distribute your
application, you must include the complete source code for JFreeChart—including any changes you
make to it—under the terms of the LGPL. Your users end up with the same rights in relation to
JFreeChart as you have been granted under the LGPL.

4. “My users will never look at the source code, and if they did, they wouldn’t know what to do with
it...why do I have to give it to them?”

The important point is that your users have access to the source code—whether or not they choose
to use it is up to them. Bear in mind that non-technical users can make use of the source code by
hiring someone else to work on it for them.

5. “What are the steps I must follow to release software that incorporates JFreeChart?”

The steps are listed in the licence (see section 6 especially). The most important things are:

• include a notice in your software that it uses the JFreeChart class library, and that the library
is covered by the LGPL;

• include a copy of the LGPL so your users understand that JFreeChart is distributed WITH-
OUT WARRANTY, and the rights that they have under the licence;

• include the complete source code for the version of the library that you are distributing (or a
written offer to supply it on demand);

6. “I want to display the JFreeChart copyright notice, what form should it take?”

Try this:

This software incorporates JFreeChart, (C)opyright 2000-2007 by Object Refinery Lim-
ited and Contributors.

7. “The LGPL is unnecessarily complicated!”

OK, that’s not a question, but the point has been raised by a few developers.

APPENDIX D. THE GNU LESSER GENERAL PUBLIC LICENCE 797

Yes, the LGPL is complicated, but only out of necessity. The complexity is mostly related to the
difficulty of defining (in precise legal terms) the relationship between a free software library and a
proprietary application that uses the library.

A useful first step towards understanding the LGPL is to read the GNU General Public Licence
(GPL). It is a much simpler licence, because it does not allow free software to be combined with
non-free (or proprietary) software. The LGPL is a superset of the GPL (you are free to switch from
the LGPL to the GPL at any time), but slightly more “relaxed” in that it allows you to combine
free and non-free software.

A final note, some of the terminology in the LGPL is easier to understand if you keep in mind that
the licence was originally developed with statically-linked C programs in mind. Ensuring that it is
possible to relink a modified free library with a non-free application, adds significant complexity to
the licence. For Java libraries, where code is dynamically linked, modifying and rebuilding a free
library for use with a non-free application needn’t be such a big issue, particularly if the free library
resides in its own jar file.

8. “Who developed the licence?”

The licence was developed by the Free Software Foundation and has been adopted by many thou-
sands of free software projects. You can find out more information at the Free Software Foundation
website:

http://www.fsf.org

The Free Software Foundation performs important work, please consider supporting them finan-
cially.

9. “Have you considered releasing JFreeChart under a different licence, such as an “Apache-style”
licence?”

Yes, a range of licences was considered for JFreeChart, but now that the choice has been made
there are no plans to change the licence in the future.

A publication by Bruce Perens was especially helpful in comparing the available licences:

http://www.oreilly.com/catalog/opensources/book/perens.html

In the end, the LGPL was chosen because it is the closest fit in terms of my goals for JFreeChart.
It is not a perfect licence, but there is nothing else that comes close (except the GPL) in terms of
protecting the freedom of JFreeChart for everyone to use. Also, the LGPL is very widely used, and
many developers are already familiar with its requirements.

Some other open source licences (for example the Apache Software Licence) allow open source soft-
ware to be packaged and redistributed without source code. These licences offer more convenience
to developers (especially in large companies) than the LGPL, but they allow a path from open
source software to closed source software, which is not something I want to allow for JFreeChart.

Index

AbstractBlock, 231
AbstractCategoryItemLabelGenerator, 274
AbstractCategoryItemRenderer, 447
AbstractDataset, 628
AbstractDialLayer, 395
AbstractIntervalXYDataset, 716
AbstractPieItemLabelGenerator, 275
AbstractRenderer, 421
AbstractSeriesDataset, 629
AbstractXYAnnotation, 155
AbstractXYDataset, 716
AbstractXYItemLabelGenerator, 276
AbstractXYItemRenderer, 500
AbstractXYZDataset, 717
acknowledgements, 18
Acrobat PDF, 103
adding chart change listeners, 149
Align, 775
annotations, 155

XYPlot, 391
anti-aliasing, 69
applets, 114
ArcDialFrame, 397
area charts

StackedXYAreaRenderer, 513
XYAreaRenderer, 523

AreaRenderer, 451
AreaRendererEndType, 440
Arrangement, 233
Axis, 177
axis

display integers only, 209
Axis label rotation, 179
axis labels

as percentages, 209
AxisChangeEvent, 263
AxisChangeListener, 263
AxisCollection, 182
AxisLocation, 182
AxisSpace, 183
AxisState, 183

background image, 68
bar

outline, 454, 526
bar charts

CategoryPlot, 452
XYBarRenderer, 525
XYPlot, 525

BarRenderer, 452
BarRenderer3D, 457
Batik, 111
Block, 234
BlockBorder, 234
BlockContainer, 235
BlockFrame, 237
BlockParams, 237
BlockResult, 237
border, 67

for plots, 357
BorderArrangement, 238
box and whisker chart

dataset, 653
BoxAndWhiskerCalculator, 649
BoxAndWhiskerCategoryDataset, 650
BoxAndWhiskerItem, 651
BoxAndWhiskerRenderer, 459
BoxAndWhiskerToolTipGenerator, 278
BoxAndWhiskerXYDataset, 652
BoxAndWhiskerXYToolTipGenerator, 278
bubble charts, 530

candle-stick chart
CandlestickRenderer, 505

CandlestickRenderer, 505
catcode.com, 142
category axis

margins, 185
multi-line category labels, 186

category labels, 186
rotate 90 degrees, 186

CategoryAnchor, 184
CategoryAnnotation, 157
CategoryAxis, 184
CategoryAxis3D, 189
CategoryDataset, 609
CategoryItemEntity, 256
CategoryItemLabelGenerator, 278
CategoryItemRenderer, 460
CategoryItemRendererState, 470
CategoryLabelPosition, 190
CategoryLabelPositions, 191

798

INDEX 799

CategoryLabelWidthType, 191
CategoryLineAnnotation, 157
CategoryMarker, 304
CategoryPlot, 306
CategoryPlot

item rendering order, 308
CategoryPointerAnnotation, 159
CategorySeriesLabelGenerator, 279
CategoryStepRenderer, 471
CategoryTableXYDataset, 717
CategoryTextAnnotation, 161
CategoryTick, 192
CategoryToolTipGenerator, 279
CategoryToPieDataset, 609
CenterArrangement, 238
Cewolf, 129
chart

background color, 68
background image, 68
border, 67
subtitles, 68
title, 67

chart border, 149
chart change listeners, 149
chart entities, 256
ChartChangeEvent, 264
ChartChangeEventType, 264
ChartChangeListener, 265
ChartColor, 131
ChartDeleter, 560
ChartEntity, 258
ChartFactory, 131
ChartFrame, 134
ChartMouseEvent, 135
ChartMouseListener, 136
ChartPanel, 136
ChartProgressEvent, 265
ChartProgressListener, 266
ChartRenderingInfo, 141
ChartUtilities, 142
ClipPath, 144
ClusteredXYBarRenderer, 508
ColorBar, 192
ColorBlock, 238
ColumnArrangement, 239
CombinationDataset, 630
combined charts, 94
CombinedDataset, 630
CombinedDomainCategoryPlot, 312
CombinedDomainXYPlot, 313
CombinedRangeCategoryPlot, 315
CombinedRangeXYPlot, 316
comments and suggestions, 18
ComparableObjectItem, 588

ComparableObjectSeries, 589
CompassFormat, 192
CompassPlot, 317
compiling JFreeChart, 36
CompositeTitle, 562
ContourDataset, 617
ContourEntity, 258
ContourPlot, 320
ContourPlotUtilities, 321
ContourToolTipGenerator, 280
ContourValuePlot, 321
contributors, 18
CrosshairState, 321
CSV, 645
CustomXYToolTipGenerator, 280
CyclicNumberAxis, 193
CyclicXYItemRenderer, 509

Dataset, 630
dataset rendering order

XYPlot, 385
DatasetChangeEvent, 631
DatasetChangeListener, 631
DatasetGroup, 631
DatasetRenderingOrder, 321
DatasetUtilities, 632
DataUtilities, 590
DateAxis, 194

rotate tick labels, 229
DateRange, 674
DateTick, 198
DateTickMarkPosition, 198
DateTickUnit, 199
DateTitle, 563
Day, 674
DefaultBoxAndWhiskerCategoryDataset, 653
DefaultBoxAndWhiskerXYDataset, 656
DefaultCategoryDataset, 611
DefaultCategoryItemRenderer, 473
DefaultContourDataset, 618
DefaultDrawingSupplier, 322
DefaultHighLowDataset, 719
DefaultIntervalCategoryDataset, 613
DefaultIntervalXYDataset, 720
DefaultKeyedValue, 591
DefaultKeyedValueDataset, 636
DefaultKeyedValues, 592
DefaultKeyedValues2D, 594
DefaultKeyedValues2DDataset, 636
DefaultKeyedValuesDataset, 636
DefaultMultiValueCategoryDataset, 658
DefaultOHLCDataset, 723
DefaultPieDataset, 636
DefaultPolarItemRenderer, 440
DefaultStatisticalCategoryDataset, 660

INDEX 800

DefaultTableXYDataset, 724
DefaultValueDataset, 638
DefaultWindDataset, 726
DefaultXYDataset, 728
DefaultXYItemRenderer, 510
demo

running, 35
DeviationRenderer, 510
DialBackground, 398
DialCap, 399
DialFrame, 401
DialLayer, 401
DialLayerChangeEvent, 402
DialLayerChangeListener, 403
DialPlot, 403
DialPointer, 406
DialPointer.Pin, 407
DialPointer.Pointer, 408
DialScale, 409
DialShape, 323
DialTextAnnotation, 410
DialValueIndicator, 411
disabling chart change events, 149
DisplayChart, 560
distribution

contents, 35
domain axis, 177
DomainInfo, 596
DomainOrder, 596
download, 34
DrawableLegendItem, 144
DrawingSupplier, 324
dynamic charts, 72
DynamicTimeSeriesCollection, 676

Eclipse, 783
Effect3D, 144
EmptyBlock, 240
EncoderUtil, 251
entities, 256
EntityBlockParams, 240
EntityBlockResult, 240
EntityCollection, 259
events, 263
exporting charts

to JPEG, 143
to PDF, 103
to PNG, 142
to SVG, 111

ExtendedCategoryAxis, 200

FastScatterPlot, 325
features, 16
FixedMillisecond, 678
FlowArrangement, 240

Free Software Foundation, 790
Function2D, 619

GanttCategoryDataset, 622
GanttRenderer, 473
GradientPaintTransformer, 776
GradientPaintTransformType, 776
GrayPaintScale, 441
GridArrangement, 241
gridlines

XYPlot, 387
GroupedStackedBarRenderer, 474

HashUtilities, 145
headless Java, 129
HighLowItemLabelGenerator, 280
HighLowRenderer, 512
HistogramBin, 662
HistogramDataset, 663
HistogramType, 665
home page, 17
Hour, 678
HTML image map, 143

IDE configuration, 36
image loading, 129
image maps, 143, 270
ImageEncoder, 253
ImageEncoderFactory, 252
ImageFormat, 253
ImageMapUtilities, 270
images

JPEG format, 143
PNG format, 142

ImageTitle, 564
IntervalBarRenderer, 475
IntervalCategoryDataset, 616
IntervalCategoryItemLabelGenerator, 281
IntervalCategoryToolTipGenerator, 282
IntervalMarker, 328
IntervalXYDataset, 732
IntervalXYDelegate, 733
IntervalXYZDataset, 734
item labels, 79

XYItemRenderer, 542
ItemLabelAnchor, 282
ItemLabelPosition, 283
iText, 103

PDF, 103

Javadoc, 36
JDBCCategoryDataset, 646
JDBCPieDataset, 647
JDBCXYDataset, 647
JFreeChart, 145

INDEX 801

JFreeChart
applets, 114
license, 790
overview and features, 16
sample charts, 19
servlets, 118

JPEG
exporting charts to, 143

JSP, 129

KeyedObject, 597
KeyedObjects, 597
KeyedObjects2D, 599
KeyedValue, 601
KeyedValueComparator, 601
KeyedValueComparatorType, 601
KeyedValueDataset, 638
KeyedValues, 602
KeyedValues2D, 602
KeyedValues2DDataset, 639
KeyedValuesDataset, 639
KeyPointPNGEncoderAdapter, 253
KeyToGroupMap, 603

LabelBlock, 241
LayeredBarRenderer, 476
legend

font, 569
positioning, 568

LegendGraphic, 564
LegendItem, 150
LegendItemBlockContainer, 566
LegendItemCollection, 152
LegendItemEntity, 259
LegendItemSource, 153
LegendRenderingOrder, 154
LegendTitle, 567
LengthConstraintType, 243
LevelRenderer, 477
LGPL, 790
license, 790

frequently asked questions, 796
line chart

LineAndShapeRenderer, 479
LineRenderer3D, 483
XYLineAndShapeRenderer, 548

LineAndShapeRenderer, 479
linear regression, 667
LineBorder, 243
LineFunction2D, 619
LineRenderer3D, 483
logarithmic scale

LogAxis, 200
LogarithmicAxis, 203
LogAxis, 200

LookupPaintScale, 442

mapping datasets to axes
XYPlot, 387

Marker, 330
MarkerAxisBand, 204
MarkerChangeEvent, 266
MarkerChangeListener, 267
MatrixSeries, 734
MatrixSeriesCollection, 735
MeanAndStandardDeviation, 666
MeterInterval, 334
MeterPlot, 335
migration, 767
Millisecond, 679
MinMaxCategoryRenderer, 485
Minute, 680
ModuloAxis, 205
Month, 681
MonthDateFormat, 206
MovingAverage, 682
MultiplePiePlot, 339
MultipleXYSeriesLabelGenerator, 284
MultiValueCategoryDataset, 666

NetBeans, 787
NonGridContourDataset, 618
NormalDistributionFunction2D, 620
NormalizedMatrixSeries, 736
NotOutlierException, 443
NumberAxis, 207

display integers only, 209
rotate tick labels, 229

NumberAxis3D, 211
NumberTick, 212
NumberTickUnit, 213

OHLC, 707
OHLCDataItem, 737
OHLCDataset, 738
OHLCItem, 708
OHLCSeries, 709
OHLCSeriesCollection, 709
Outlier, 443
OutlierList, 444
OutlierListCollection, 444
overriding the tick label format, 209

PaintScale, 444
PaintScaleLegend, 570
PDF, 103
PeriodAxis, 214
PeriodAxisLabelInfo, 216
pie chart

DefaultPieDataset, 636

INDEX 802

PiePlot3D, 354
PiePlot, 342
dataset interface, 639
exploded sections, 348
section labels, 348
shadow effect, 347

PieDataset, 639
PieLabelDistributor, 342
PieLabelRecord, 342
PiePlot, 342

border, 345
PiePlot3D, 354
PiePlotState, 356
PieSectionEntity, 260
PieSectionLabelGenerator, 285
PieToolTipGenerator, 286
Plot, 356

background, 358
background image, 358
border, 357
drawing supplier, 359
legend items, 360

PlotChangeEvent, 267
PlotChangeListener, 268
PlotOrientation, 361
PlotRenderingInfo, 361
PlotState, 363
PlotUtilities, 363
PNG, 142
PolarChartPanel, 154
PolarItemRenderer, 445
PolarPlot, 363
power regression, 667
PowerFunction2D, 621
PublicCloneable, 776

Quarter, 683
QuarterDateFormat, 218

Range, 604
range axis, 177
RangeInfo, 606
RangeType, 606
real time charts, 73
RectangleAnchor, 777
RectangleConstraint, 244
RectangleEdge, 777
RectangleInsets, 777
Regression, 667
RegularTimePeriod, 684
RelativeDateFormat, 585
renderer

shape attributes, 541
RendererChangeEvent, 268
RendererChangeListener, 268

RendererState, 446
rendering hints, 69
rendering order

CategoryPlot, 308
RingPlot, 368

sample charts, 19
scatter plot

XYDotRenderer, 534
ScatterRenderer, 487
Second, 686
SegmentedTimeline, 218
Series, 640
SeriesChangeEvent, 642
SeriesChangeListener, 642
SeriesDataset, 642
SeriesException, 643
SeriesRenderingOrder, 370
servlets, 118

deploying, 127
ServletUtilities, 560
SimpleDialFrame, 414
SimpleHistogramBin, 668
SimpleHistogramDataset, 669
SimpleTimePeriod, 687
SpiderWebPlot, 370
spline curves, 554
stacked bars

showing percentages, 491
StackedAreaRenderer, 490
StackedBarRenderer, 490
StackedBarRenderer3D, 492
StackedXYAreaRenderer, 513
StackedXYAreaRenderer2, 515
StackedXYBarRenderer, 516
StandardCategoryItemLabelGenerator, 286
StandardCategorySeriesLabelGenerator, 287
StandardCategoryToolTipGenerator, 288
StandardContourToolTipGenerator, 289
StandardDialRange, 415
StandardDialScale, 417
StandardEntityCollection, 260
StandardGradientPaintTransformer, 779
StandardPieSectionLabelGenerator, 289
StandardPieToolTipGenerator, 291
StandardTickUnitSource, 219
StandardXYItemLabelGenerator, 292
StandardXYItemRenderer, 518
StandardXYSeriesLabelGenerator, 293
StandardXYToolTipGenerator, 294
StandardXYZToolTipGenerator, 295
StatisticalBarRenderer, 494
StatisticalCategoryDataset, 671
StatisticalLineAndShapeRenderer, 495
Statistics, 671

INDEX 803

step charts, 556
SubCategoryAxis, 220
subtitles, 68
SunJPEGEncoderAdapter, 254
SunPNGEncoderAdapter, 255
suppressing chart change events, 149
SVG, 111
SymbolAxis, 221
SymbolicXYItemLabelGenerator, 296

TableXYDataset, 739
Task, 623
TaskSeries, 624
TaskSeriesCollection, 625
TextAnchor, 781
TextAnnotation, 162
TextTitle, 572
thermometer plot

dataset, 376
general attributes, 376
subranges, 379
value label, 377

ThermometerPlot, 375
Tick, 223
TickLabelEntity, 261
TickType, 223
TickUnit, 223
TickUnits, 224
TickUnitSource, 225
time series

tool tips, 294
Timeline, 225
TimePeriod, 687
TimePeriodAnchor, 688
TimePeriodFormatException, 688
TimePeriodValue, 688
TimePeriodValues, 689
TimePeriodValuesCollection, 691
TimeSeries, 693
TimeSeriesCollection, 698
TimeSeriesDataItem, 701
TimeSeriesTableModel, 702
TimeTableXYDataset, 702
Title, 574
title, 67
TitleChangeEvent, 269
TitleChangeListener, 269
tool tips

time series, 294
tooltips, 77

pie charts, 77

Unicode, 108
UnitType, 781
UnknownKeyException, 607

unpacking the JFreeChart distribution, 34
upgrading versions, 767

Value, 607
ValueAxis, 226

rotate tick labels, 229
ValueAxisPlot, 382
ValueDataset, 643
ValueMarker, 382
Values, 607
Values2D, 608
ValueTick, 229
Vector, 739
VectorDataItem, 740
VectorRenderer, 521
VectorSeries, 741
VectorSeriesCollection, 742
VectorXYDataset, 744

WaferMapDataset, 644
WaferMapPlot, 383
WaferMapRenderer, 446
WaterfallBarRenderer, 497
Week, 704
WindDataset, 744
WindItemRenderer, 523

X11, 129
XisSymbolic, 745
XYAnnotation, 164
XYAnnotationEntity, 262
XYAreaRenderer, 523
XYBarDataset, 730, 745
XYBarRenderer, 525
XYBlockRenderer, 527
XYBoxAndWhiskerRenderer, 529
XYBoxAnnotation, 165
XYBubbleRenderer, 530
XYCoordinate, 747
XYDataItem, 748
XYDataset, 748
XYDatasetTableModel, 750
XYDifferenceRenderer, 532
XYDotRenderer, 534
XYDrawableAnnotation, 166
XYErrorRenderer, 535
XYImageAnnotation, 167
XYInterval, 751
XYIntervalDataItem, 752
XYIntervalSeries, 753
XYIntervalSeriesCollection, 754
XYItemEntity, 262
XYItemLabelGenerator, 296
XYItemRenderer, 537
XYItemRendererState, 547

INDEX 804

XYLineAndShapeRenderer, 548
XYLineAnnotation, 168
XYPlot, 383

zero base line, 389
XYPointerAnnotation, 169
XYPolygonAnnotation, 171
XYSeries, 756
XYSeriesCollection, 759
XYSeriesLabelGenerator, 296
XYShapeAnnotation, 173
XYSplineRenderer, 554
XYStepAreaRenderer, 557
XYStepRenderer, 556
XYTextAnnotation, 174
XYToolTipGenerator, 297
XYZDataset, 761
XYZToolTipGenerator, 297

Year, 705
YInterval, 761
YIntervalDataItem, 762
YIntervalRenderer, 558
YIntervalSeries, 763
YIntervalSeriesCollection, 764
YisSymbolic, 765

Zoomable, 393

	Introduction
	What is JFreeChart?
	This Document
	Acknowledgements
	Comments and Suggestions

	Sample Charts
	Introduction
	Pie Charts
	Bar Charts
	Line Chart
	XY Plots
	Time Series Charts
	Histograms
	Area Charts
	Difference Chart
	Step Chart
	Gantt Chart
	Multiple Axis Charts
	Combined and Overlaid Charts
	Future Development

	Downloading and Installing JFreeChart
	Introduction
	Download
	Unpacking the Files
	Running the Demonstration Applications
	Configuring JFreeChart for use in IDEs
	Compiling the Source
	Generating the Javadoc Documentation

	Using JFreeChart
	Overview
	Creating Your First Chart

	Pie Charts
	Introduction
	Creating a Simple Pie Chart
	Section Colours
	Section Outlines
	Null, Zero and Negative Values
	Section and Legend Labels
	Exploded Sections
	3D Pie Charts
	Multiple Pie Charts

	Bar Charts
	Introduction
	A Bar Chart
	The ChartFactory Class
	Simple Chart Customisation
	Customising the Renderer

	Line Charts
	Introduction
	A Line Chart Based On A Category Dataset
	A Line Chart Based On An XYDataset

	Time Series Charts
	Introduction
	Time Series Charts

	Customising Charts
	Introduction
	Chart Attributes
	Plot Attributes
	Axis Attributes

	Dynamic Charts
	Overview
	Background
	The Demo Application

	Tooltips
	Overview
	Generating Tool Tips
	Collecting Tool Tips
	Displaying Tool Tips
	Disabling Tool Tips
	Customising Tool Tips

	Item Labels
	Introduction
	Displaying Item Labels
	Item Label Appearance
	Item Label Positioning
	Customising the Item Label Text
	Example 1 - Values Above a Threshold
	Example 2 - Displaying Percentages

	Multiple Axes and Datasets
	Introduction
	An Example
	Hints and Tips

	Combined Charts
	Introduction
	Combined Domain Category Plot
	Combined Range Category Plot
	Combined Domain XY Plot
	Combined Range XY Plot

	Datasets and JDBC
	Introduction
	About JDBC
	Sample Data
	PostgreSQL
	The JDBC Driver
	The Demo Applications

	Exporting Charts to Acrobat PDF
	Introduction
	What is Acrobat PDF?
	iText
	Graphics2D
	Getting Started
	The Application
	Viewing the PDF File
	Unicode Characters

	Exporting Charts to SVG Format
	Introduction
	Background
	A Sample Application

	Applets
	Introduction
	Issues
	A Sample Applet

	Servlets
	Introduction
	A Simple Servlet
	Compiling the Servlet
	Deploying the Servlet
	Embedding Charts in HTML Pages
	Supporting Files
	Deploying Servlets

	Miscellaneous
	Introduction
	X11 / Headless Java
	Java Server Pages
	Loading Images

	Packages
	Overview

	Package: org.jfree.chart
	Overview
	ChartColor
	ChartFactory
	ChartFrame
	ChartMouseEvent
	ChartMouseListener
	ChartPanel
	ChartRenderingInfo
	ChartUtilities
	ClipPath
	DrawableLegendItem
	Effect3D
	HashUtilities
	JFreeChart
	LegendItem
	LegendItemCollection
	LegendItemSource
	LegendRenderingOrder
	PolarChartPanel

	Package: org.jfree.chart.annotations
	Overview
	AbstractXYAnnotation
	CategoryAnnotation
	CategoryLineAnnotation
	CategoryPointerAnnotation
	CategoryTextAnnotation
	TextAnnotation
	XYAnnotation
	XYBoxAnnotation
	XYDrawableAnnotation
	XYImageAnnotation
	XYLineAnnotation
	XYPointerAnnotation
	XYPolygonAnnotation
	XYShapeAnnotation
	XYTextAnnotation

	Package: org.jfree.chart.axis
	Overview
	Axis
	AxisCollection
	AxisLocation
	AxisSpace
	AxisState
	CategoryAnchor
	CategoryAxis
	CategoryAxis3D
	CategoryLabelPosition
	CategoryLabelPositions
	CategoryLabelWidthType
	CategoryTick
	ColorBar
	CompassFormat
	CyclicNumberAxis
	DateAxis
	DateTickMarkPosition
	DateTick
	DateTickUnit
	ExtendedCategoryAxis
	LogAxis
	LogarithmicAxis
	MarkerAxisBand
	ModuloAxis
	MonthDateFormat
	NumberAxis
	NumberAxis3D
	NumberTick
	NumberTickUnit
	PeriodAxis
	PeriodAxisLabelInfo
	QuarterDateFormat
	SegmentedTimeline
	StandardTickUnitSource
	SubCategoryAxis
	SymbolAxis
	Tick
	TickType
	TickUnit
	TickUnits
	TickUnitSource
	Timeline
	ValueAxis
	ValueTick

	Package: org.jfree.chart.block
	Introduction
	AbstractBlock
	Arrangement
	Block
	BlockBorder
	BlockContainer
	BlockFrame
	BlockParams
	BlockResult
	BorderArrangement
	CenterArrangement
	ColorBlock
	ColumnArrangement
	EmptyBlock
	EntityBlockParams
	EntityBlockResult
	FlowArrangement
	GridArrangement
	LabelBlock
	LengthConstraintType
	LineBorder
	RectangleConstraint

	Package: org.jfree.chart.editor
	Introduction
	ChartEditor
	ChartEditorFactory
	ChartEditorManager
	DefaultAxisEditor
	DefaultChartEditor
	DefaultChartEditorFactory
	DefaultColorBarEditor
	DefaultNumberAxisEditor
	DefaultPlotEditor
	DefaultTitleEditor
	PaletteChooserPanel
	PaletteSample

	Package: org.jfree.chart.encoders
	Introduction
	EncoderUtil
	ImageEncoderFactory
	ImageEncoder
	ImageFormat
	KeyPointPNGEncoderAdapter
	SunJPEGEncoderAdapter
	SunPNGEncoderAdapter

	Package: org.jfree.chart.entity
	Introduction
	Background
	CategoryItemEntity
	ChartEntity
	ContourEntity
	EntityCollection
	LegendItemEntity
	PieSectionEntity
	StandardEntityCollection
	TickLabelEntity
	XYAnnotationEntity
	XYItemEntity

	Package: org.jfree.chart.event
	Introduction
	AxisChangeEvent
	AxisChangeListener
	ChartChangeEvent
	ChartChangeEventType
	ChartChangeListener
	ChartProgressEvent
	ChartProgressListener
	MarkerChangeEvent
	MarkerChangeListener
	PlotChangeEvent
	PlotChangeListener
	RendererChangeEvent
	RendererChangeListener
	TitleChangeEvent
	TitleChangeListener

	Package: org.jfree.chart.imagemap
	Overview
	DynamicDriveToolTipTagFragmentGenerator
	ImageMapUtilities
	OverLIBToolTipTagFragmentGenerator
	StandardToolTipTagFragmentGenerator
	StandardURLTagFragmentGenerator
	ToolTipTagFragmentGenerator
	URLTagFragmentGenerator

	Package: org.jfree.chart.labels
	Introduction
	AbstractCategoryItemLabelGenerator
	AbstractPieItemLabelGenerator
	AbstractXYItemLabelGenerator
	BoxAndWhiskerToolTipGenerator
	BoxAndWhiskerXYToolTipGenerator
	CategoryItemLabelGenerator
	CategorySeriesLabelGenerator
	CategoryToolTipGenerator
	ContourToolTipGenerator
	CustomXYToolTipGenerator
	HighLowItemLabelGenerator
	IntervalCategoryItemLabelGenerator
	IntervalCategoryToolTipGenerator
	ItemLabelAnchor
	ItemLabelPosition
	MultipleXYSeriesLabelGenerator
	PieSectionLabelGenerator
	PieToolTipGenerator
	StandardCategoryItemLabelGenerator
	StandardCategorySeriesLabelGenerator
	StandardCategoryToolTipGenerator
	StandardContourToolTipGenerator
	StandardPieSectionLabelGenerator
	StandardPieToolTipGenerator
	StandardXYItemLabelGenerator
	StandardXYSeriesLabelGenerator
	StandardXYToolTipGenerator
	StandardXYZToolTipGenerator
	SymbolicXYItemLabelGenerator
	XYItemLabelGenerator
	XYSeriesLabelGenerator
	XYToolTipGenerator
	XYZToolTipGenerator

	Package: org.jfree.chart.needle
	Overview
	ArrowNeedle
	LineNeedle
	LongNeedle
	MeterNeedle
	PinNeedle
	PlumNeedle
	PointerNeedle
	ShipNeedle
	WindNeedle

	Package: org.jfree.chart.plot
	Overview
	CategoryMarker
	CategoryPlot
	ColorPalette
	CombinedDomainCategoryPlot
	CombinedDomainXYPlot
	CombinedRangeCategoryPlot
	CombinedRangeXYPlot
	CompassPlot
	ContourPlot
	ContourPlotUtilities
	ContourValuePlot
	CrosshairState
	DatasetRenderingOrder
	DefaultDrawingSupplier
	DialShape
	DrawingSupplier
	FastScatterPlot
	GreyPalette
	IntervalMarker
	Marker
	MeterInterval
	MeterPlot
	MultiplePiePlot
	PieLabelDistributor
	PieLabelRecord
	PiePlot
	PiePlot3D
	PiePlotState
	Plot
	PlotOrientation
	PlotRenderingInfo
	PlotState
	PlotUtilities
	PolarPlot
	RainbowPalette
	RingPlot
	SeriesRenderingOrder
	SpiderWebPlot
	ThermometerPlot
	ValueAxisPlot
	ValueMarker
	WaferMapPlot
	XYPlot
	Zoomable

	Package: org.jfree.chart.plot.dial
	Overview
	AbstractDialLayer
	ArcDialFrame
	DialBackground
	DialCap
	DialFrame
	DialLayer
	DialLayerChangeEvent
	DialLayerChangeListener
	DialPlot
	DialPointer
	DialPointer.Pin
	DialPointer.Pointer
	DialScale
	DialTextAnnotation
	DialValueIndicator
	SimpleDialFrame
	StandardDialRange
	StandardDialScale

	Package: org.jfree.chart.renderer
	Overview
	AbstractRenderer
	AreaRendererEndType
	DefaultPolarItemRenderer
	GrayPaintScale
	LookupPaintScale
	NotOutlierException
	Outlier
	OutlierList
	OutlierListCollection
	PaintScale
	PolarItemRenderer
	RendererState
	WaferMapRenderer

	Package: org.jfree.chart.renderer.category
	Overview
	AbstractCategoryItemRenderer
	AreaRenderer
	BarRenderer
	BarRenderer3D
	BoxAndWhiskerRenderer
	CategoryItemRenderer
	CategoryItemRendererState
	CategoryStepRenderer
	DefaultCategoryItemRenderer
	GanttRenderer
	GroupedStackedBarRenderer
	IntervalBarRenderer
	LayeredBarRenderer
	LevelRenderer
	LineAndShapeRenderer
	LineRenderer3D
	MinMaxCategoryRenderer
	ScatterRenderer
	StackedAreaRenderer
	StackedBarRenderer
	StackedBarRenderer3D
	StatisticalBarRenderer
	StatisticalLineAndShapeRenderer
	WaterfallBarRenderer

	Package: org.jfree.chart.renderer.xy
	Overview
	AbstractXYItemRenderer
	CandlestickRenderer
	ClusteredXYBarRenderer
	CyclicXYItemRenderer
	DefaultXYItemRenderer
	DeviationRenderer
	HighLowRenderer
	StackedXYAreaRenderer
	StackedXYAreaRenderer2
	StackedXYBarRenderer
	StandardXYItemRenderer
	VectorRenderer
	WindItemRenderer
	XYAreaRenderer
	XYBarRenderer
	XYBlockRenderer
	XYBoxAndWhiskerRenderer
	XYBubbleRenderer
	XYDifferenceRenderer
	XYDotRenderer
	XYErrorRenderer
	XYItemRenderer
	XYItemRendererState
	XYLineAndShapeRenderer
	XYSplineRenderer
	XYStepRenderer
	XYStepAreaRenderer
	YIntervalRenderer

	Package: org.jfree.chart.servlet
	Overview
	ChartDeleter
	DisplayChart
	ServletUtilities

	Package: org.jfree.chart.title
	Overview
	Events
	CompositeTitle
	DateTitle
	ImageTitle
	LegendGraphic
	LegendItemBlockContainer
	LegendTitle
	PaintScaleLegend
	TextTitle
	Title

	Package: org.jfree.chart.urls
	Overview
	CategoryURLGenerator
	CustomPieURLGenerator
	CustomXYURLGenerator
	PieURLGenerator
	StandardCategoryURLGenerator
	StandardPieURLGenerator
	StandardXYURLGenerator
	StandardXYZURLGenerator
	TimeSeriesURLGenerator
	URLUtilities
	XYURLGenerator
	XYZURLGenerator

	Package: org.jfree.chart.util
	Overview
	RelativeDateFormat

	Package: org.jfree.data
	Introduction
	ComparableObjectItem
	ComparableObjectSeries
	DataUtilities
	DefaultKeyedValue
	DefaultKeyedValues
	DefaultKeyedValues2D
	DomainInfo
	DomainOrder
	KeyedObject
	KeyedObjects
	KeyedObjects2D
	KeyedValue
	KeyedValueComparator
	KeyedValueComparatorType
	KeyedValues
	KeyedValues2D
	KeyToGroupMap
	Range
	RangeInfo
	RangeType
	UnknownKeyException
	Value
	Values
	Values2D

	Package: org.jfree.data.category
	Introduction
	CategoryDataset
	CategoryToPieDataset
	DefaultCategoryDataset
	DefaultIntervalCategoryDataset
	IntervalCategoryDataset

	Package: org.jfree.data.contour
	Introduction
	ContourDataset
	DefaultContourDataset
	NonGridContourDataset

	Package: org.jfree.data.function
	Introduction
	Function2D
	LineFunction2D
	NormalDistributionFunction2D
	PowerFunction2D

	Package: org.jfree.data.gantt
	Introduction
	GanttCategoryDataset
	Task
	TaskSeries
	TaskSeriesCollection

	Package: org.jfree.data.general
	Introduction
	AbstractDataset
	AbstractSeriesDataset
	CombinationDataset
	CombinedDataset
	Dataset
	DatasetChangeEvent
	DatasetChangeListener
	DatasetGroup
	DatasetUtilities
	DefaultKeyedValueDataset
	DefaultKeyedValuesDataset
	DefaultKeyedValues2DDataset
	DefaultPieDataset
	DefaultValueDataset
	KeyedValueDataset
	KeyedValuesDataset
	KeyedValues2DDataset
	PieDataset
	Series
	SeriesChangeEvent
	SeriesChangeListener
	SeriesDataset
	SeriesException
	SubSeriesDataset
	ValueDataset
	WaferMapDataset

	Package: org.jfree.data.io
	Introduction
	CSV

	Package: org.jfree.data.jdbc
	Introduction
	JDBCCategoryDataset
	JDBCPieDataset
	JDBCXYDataset

	Package: org.jfree.data.statistics
	Introduction
	BoxAndWhiskerCalculator
	BoxAndWhiskerCategoryDataset
	BoxAndWhiskerItem
	BoxAndWhiskerXYDataset
	DefaultBoxAndWhiskerCategoryDataset
	DefaultBoxAndWhiskerXYDataset
	DefaultMultiValueCategoryDataset
	DefaultStatisticalCategoryDataset
	HistogramBin
	HistogramDataset
	HistogramType
	MeanAndStandardDeviation
	MultiValueCategoryDataset
	Regression
	SimpleHistogramBin
	SimpleHistogramDataset
	StatisticalCategoryDataset
	Statistics

	Package: org.jfree.data.time
	Introduction
	DateRange
	Day
	DynamicTimeSeriesCollection
	FixedMillisecond
	Hour
	Millisecond
	Minute
	Month
	MovingAverage
	Quarter
	RegularTimePeriod
	Second
	SimpleTimePeriod
	TimePeriod
	TimePeriodAnchor
	TimePeriodFormatException
	TimePeriodValue
	TimePeriodValues
	TimePeriodValuesCollection
	TimeSeries
	TimeSeriesCollection
	TimeSeriesDataItem
	TimeSeriesTableModel
	TimeTableXYDataset
	Week
	Year

	Package: org.jfree.data.time.ohlc
	Introduction
	OHLC
	OHLCItem
	OHLCSeries
	OHLCSeriesCollection

	Package: org.jfree.data.xml
	Introduction
	Usage
	CategoryDatasetHandler
	CategorySeriesHandler
	DatasetReader
	DatasetTags
	ItemHandler
	KeyHandler
	PieDatasetHandler
	RootHandler
	ValueHandler

	Package: org.jfree.data.xy
	Introduction
	AbstractIntervalXYDataset
	AbstractXYDataset
	AbstractXYZDataset
	CategoryTableXYDataset
	DefaultHighLowDataset
	DefaultIntervalXYDataset
	DefaultOHLCDataset
	DefaultTableXYDataset
	DefaultWindDataset
	DefaultXYDataset
	DefaultXYZDataset
	IntervalXYDataset
	IntervalXYDelegate
	IntervalXYZDataset
	MatrixSeries
	MatrixSeriesCollection
	NormalizedMatrixSeries
	OHLCDataItem
	OHLCDataset
	TableXYDataset
	Vector
	VectorDataItem
	VectorSeries
	VectorSeriesCollection
	VectorXYDataset
	WindDataset
	XisSymbolic
	XYBarDataset
	XYCoordinate
	XYDataItem
	XYDataset
	XYDatasetTableModel
	XYInterval
	XYIntervalDataItem
	XYIntervalSeries
	XYIntervalSeriesCollection
	XYSeries
	XYSeriesCollection
	XYZDataset
	YInterval
	YIntervalDataItem
	YIntervalSeries
	YIntervalSeriesCollection
	YisSymbolic

	Migration
	Introduction
	1.0.8 to 1.0.9
	1.0.7 to 1.0.8
	1.0.6 to 1.0.7
	1.0.5 to 1.0.6
	1.0.4 to 1.0.5
	1.0.3 to 1.0.4
	1.0.2 to 1.0.3
	1.0.1 to 1.0.2
	1.0.0 to 1.0.1
	0.9.x to 1.0.0

	JCommon
	Introduction
	Align
	GradientPaintTransformer
	GradientPaintTransformType
	PublicCloneable
	RectangleAnchor
	RectangleEdge
	RectangleInsets
	StandardGradientPaintTransformer
	TextAnchor
	UnitType

	Configuring IDEs for JFreeChart
	Introduction
	Eclipse
	NetBeans

	The GNU Lesser General Public Licence
	Introduction
	The Licence
	Frequently Asked Questions

