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Methods for analyzing the qmino-acid sequenc'e of a protein
for the purposes of predicting its three-dimensional struc-
ture were systematically analyzed using knowledge engi-
neering techniques. The resulting entities (data) and relations
(processing methods and constraints) have been represented
within a generalized dependency network consisting of 29
nodes and over 100 links. It is argued that such a repre-
sentstion meets the requirements of knowledge-based sys-
tems in molecular biology. This network is used as the
architecture for a prototype knowledge-based system that
simulates logically the processes used in protein structure
p r e diction. Althou gh dev e l op e d sp e c ific al ly fo r ap p l i c at i on s
in protein structure prediction, the network architecture
provides a strategy for tackling, the general problem of or-
chestrating and integrating the diverse sources ofknowledge
that are characteristic of many areas of science.
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A long-term goal of molecular biology is the prediction of
protein function from protein sequence. It is generally agreed
that an important aspect of this function prediction is struc-
ture prediction. Techniques for protein structure prediction
fall into two classes: (l) methods aiming to predict from
sequence information alone using theoretical models such
as molecular dynamics and energy minimization; and (2)
empirical methods, which attempt to combine sequence data
with other potentially relevant information such as the known
structure of a homologous protein. Of the methods that
combine information with the protein sequence in predicting
tertiary structure, the most successful developments have
been in the field of protein model building.r Recent devel-
opments have sought to automate aspects of this proce-
dure.2'3 Although prediction based on model building from
a homologous 3D structure is likely to yield the most reliable
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structures, below 307o sequence identity it is essential to
seek other (biophysical/biochemical) evidence for the model-
built structure. Furthermore, since model building tech-
niques demand knowledge of the 3D structure of a homol-
ogous protein, they go only some way to redressing the
information gap between the number of known sequences
and structures. Both to corroborate model-built structures
and to predict the structures of proteins whose sequence
identity with a known 3D structure falls below 30%, there
is a longer-term need to investigate methods to systemati-
cally automate the use of diverse data in prediction.

In this paper we introduce the concept of knowledge-
based systems as a method for coherently integrating data
analysis techniques relevant to protein structure prediction.
A study is then described that utilizes techniques from
knowledge engineeringa ' to analyze the problem of protein
structure prediction. The relative merits of flowcharts and
networks as knowledge-based architectures are discussed.
A prototype system based upon a network model that can
assist scientists in the analysis and interpretation of protein
sequence and other data is described and the general prob-
lems of building large systems that integrate diverse knowl-
edge are discussed.

KNOWLEDGE ENGINEERING

Knowledge engineering is the process of specifying the de-
scriptive and strategic knowledge necessary to perform a
task,5 usually derived from human experts or textual doc-
umentation. Techniques for predicting protein structures on
the basis of model building are well documented.2'r In this
study, we sought to produce a broader characterization of
knowledge (both descriptive and strategic) relevant to pre-
dicting protein structure from sequence by extending the
focus beyond the analysis of model-built predictions to pub-
lished papers that predicted protein structure without explicit
use of an homologous protein of known structure. The set
of papers analyzed predicted the structure of interferon,6
interleukin-2,t human growth hormone (henceforth HGH),8
a subunit oftryptophan synthase,e' ro human epidermal growth
factor receptor,tr and cation transporting ATPases.12 These
papers typically employed the protein sequence in conjunc-
tion with biophysical/biochemical data, and other infor-
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mation derived from known 3D structures (e.g., methods
of secondary structure prediction, known folding and pack-
ing constraints, techniques of sequence alignment) to arrive
at a plausible tertiary structure prediction.

Analysis of the prediction papers involved identifying the
logical organization of analyses, experiments, and argu-
ments presented (typically the order in which journal papers
are presented). In general, the strategy employed by most
sets of authors involved attempting to produce the most
consistent interpretation of the broadest lange of data. The
analysis of one prediction paper appears in Table l. Details
of some other papers appear in the appendixes.

In general, the sequence of events presented in published
papers can be more of a post hoc rationalization than a
chronological description. However, from the perspective
of constructing a knowledge-based system, it is the logical
manner in which information is combined to produce the
"argument" for the proposed structure that is important
rather than the chronology of the information processing.

Knowledge-based systems
In contrast to traditional computer software, knowledge-
based systems can be characterized by the separation and
explicit representation of descriptive knowledge ( facts, as-
sumptions, and hypotheses) and strategic knowledge (how
to use the descriptive knowledge to solve problems), com-
bined by logical inference (see Rawlings et al.rr). Under
this characterizationthe model-building programs described
by Sutcliffe et al.2'r are not knowledge-based systems. The
separation of descriptive and strategic knowledge makes
knowledge-based systems flexible, modular, transparent,
and robust, and allows reasoning about high-level relation-
ships and control. For the scientific community, the use-
fulness of knowledge-based support systems comes from
the following:

l. The opportunity to integrate diverse sources of infor-
mation that are relevant to a problem

2. The ability tobe exhaustive in determining the rami-
fications of hypotheses and inferences

3. Neutrality in terms of the way in which hypotheses are
assessed

4. Research coordination, by reduction of memory load
and maintenance of sources and justification for each
inference and hypothesis

5. Experimentationwithhypotheses and lines of reasoning
6. Consistency and truth maintenance of sets of facts and

hypotheses

These are all essential in any scientific task involving a wide
range ofheterogeneous data or knowledge, especially when
there is uncertainty. An illustration of the importance of
consistency maintenance in protein structure prediction is
provided by Hurle et al.e who assigned the a subunit of
tryptophan synthase to the al p structural class because its
CD spectra and secondary structure composition were most
consistent with a reference al p banel structure. Subse-
quently, however, the barrel structure (later corroborated
by x-ray data) was inconsistently rejected in favor of an alB
sheet topology. In this prediction, the inconsistency is clear.
In general, however, inconsistencies can be difficult to spot
within a large quantity of experimental, analytic, and con-
lectural data. A knowledge-based approach to the orches-

tration of protein sequence analysis is beneficial because
inconsistencies become formally identifiable through their
declarative rcpresentation.

Knowledge representation for protein sequence
analysis and structure prediction
To successfully integrate knowledge, databases, existing
software, and data (biochemical, biophysical, etc.) in a
knowledge-based application in a field such as molecular
biology, which is both diverse and rapidly changing, a for-
mal architecture is required.

Flowcharts To date, the most practical description of the
processes and decisions involved in the analysis of sequence
data for predicting the structure of a protein by model build-
ing is Taylor's flowchart of "possible paths to follow in the
prediction of structure" (Figure l),'a although other stra-
tegic models have also been proposed.rs In Figure I, rec-
tangular boxes correspond to processes (such as database
search, secondary structure prediction, hydropathy profil-
ing, alignment, and model building), diamonds are decision
points, and arrows indicate flow of control. Rawlings has
demonstrated how this strategic model can be represented
as a set of rules in the knowledge representation language,
PROPS2.t6 18 However, although Taylor's flowchart pio-
vides one plausible strategy for predicting protein structure
with certain types of information, we argue that flowcharts
cannot be considered as the basis for a general knowledge-
based architecture for protein sequence analysis and stn]c-
ture prediction.

By definition, flowcharts embody a model of control in
which the order of process execution is specified through
parameters assessed by decision points. This is appropriate
for the formal specification of algorithms, but is antithetic
to a practical knowledge-based architecture that might assist
protein sequence analysis and structure prediction for the
following reasons:

I . Many of the processes involved (e.g. , hydropathy anal-
ysis and secondary structure prediction) are potentially
and meaningfully applicable at many stages in the pre_
diction process. So, for example, in contrast to Figure
l, there are clearly many contexts in which hydropathy
analysis might be usefully applied before secondary
structure prediction (e.g., to assist in the identification
of transmembrane regions).

2. Flowcharts demand the enumeration of all potential
outcomes with strategic implications from each process
and the most appropriate course ofaction for each case.
As the number of processes in the system increases this
becomes impractical, a difficulty encountered by the
authors du^ring initial attempts to expand the scope of
Figure l . re

3. Practically, flowcharts do not facilitate incremental ex-
tension because of the requirement to revise existing
and perhaps complex dependencies.

4. Flowcharts cannot be used intelligently unless the avail-
able information concords with that expected by the
flowchart. For example, a flowchart that expects the
user to have one protein sequence and no other data
may be irrelevant when a large set of biochemical and
biophysical data or a family of aligned sequences are
already available.
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F'igure I. Possible paths in the prediction of protein stru(-ture (Ref. 1l)

A practical knowledge-based architecture for protein struc-
ture prediction should therefore satisfy the following re-
quirements:

o Tractabiliry,. That it is tractable to coherently represent
large amounts of diverse knowledge within the same
framework.

o Flexibility. That strategic knowledge is separated from
descriptive knowledge to permit a less constrained rep-
resentation of the temporal relationships among the rel-
evant entities (objects/data) and processes to allow
flexibility, user intervention, and experimentation in
control regimes.

o Modulariry'. That the representation be sufficiently mod-
ular to permit incremental extension. These requirements
are more fully met by networks than flowcharts.

Networks A network is a set of nodes and links that
represent entities and relations. The particular network de-
scribed here draws some inspiration from blackboard models
of problem solving,2o.2r.22 which have been employed on
problems analogous to protein structure prediction, such as
speech recognition,23 and in areas of biology, such as inter-
pretation of 2D NMR data2a and low-resolution electron
density maps.25'26 The differences between network repre-

sentations and flowcharts such as Fieure 1 are summarized
below:

c Representation. ln networks, nodes represent entities
and links represent processes, whereas in flowcharts nodes
represent processes or decision points and links represent
the flow of control.

o Modulariry. The local nature of dependencies between
nodes and links in networks makes networks more mod-
ular than flowcharts and therefore better suited to in-
cremental development.

o Initiation Whereas flowcharts have defined start and
end points, no such constraint exists for networks, with
the implication that the user is able to start with any
collection of knowledge.

c Knowledge. Whereas flowcharts are built around stra-
tegic knowledge, networks are primarily descriptive, but
permit the superimposition of strategic knowledge. This
separation of strategic and descriptive knowledge per-
mits the specification of control regimes of arbitrary
complexity and/or generality and simultaneously allows
flexibility in the order in which processes are executed.
Therefore, any high-level strategy (e.g., as embodied in
Figure l) can be superimposed on a network.
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o Functionali4r. Network models can be used as the basis
of many decision support functions such as browsing
and critiquing user plans,27 while flowcharts models are
limited to giving strategic advice for a limited set of
situations.

Networks therefore have the tractability, flexibility, and
modularity required for a practical knowledge-based archi-
tecture for protein sequence analysis and structure predic-
tion.

THE KNOWLEDGE BASE
Analysis of prediction papers revealed many information
sources in addition to those in Fisure l. These included

Table 1. Summary of analysis of stages in the prediction
of structure of HGH

Stage Description

Initial information: Protein sequence, CD spectra,
S-S bridges, Protein ID, Functional Class,
Secondary structure composition from CD.

The structural class was predicted from the
secondary structure composition suggested by
CD. This was 45-5OVo a and no B structure
so the protein was assigned to the all-a
structural class.

Secondary structure prediction was performed
using (a) Cohen turn prediction (all-a), (b)
hydrophobic "diamonds" to suggest helix
positions, (c) "delimit" methods to suggest
the ends of helical regions. One unique
secondary structure was carried forward
consisting of four core helices which
accounted for 80-857o of the secondary
structure expected from CD.

The Cohen helix packing algorithm was applied
to the secondary structure elements and gave
543 different folds (tertiary structures for the 4
core helices).

Constraints from S-S bridge connectivities were
introduced, specifically {Cysrr, Cys16.} and
{Cytrrr, Cyst*n} leading to a reduced list of
folds of 186.

Further constraints added were that the structure
should have a low surface area to volume ratio
and that long loop excursions werc not
normally allowed. This led to 67 remaining
folds.

Structural class specific folding constraints
applied were that only right-handed 4-helical
bundles had been previously observed in x-ray
structures. This constraint cut the list to 5
similar structures.

Consistency check against crystal structure. Not
consistent because the observed structure
actually has a long loop extension and is a
left-handed four helical bundle. The constraints
applied at stages 6 and 7 were too limiting.

information from biochemical and biophysical assays such
as proteolytic cleavagero (Appendix l), chemical cross-
linkingto (Appendix l), mutagenesis dataro (Appendix l),
NMR data, circular dichroism spectra8'e (Appendix 2), and
disulfide linkages (Table l). These analyses also highlighted
the importance of topological reasoning, functional argu-
mentation,r2 and significant pattems, regions, and residues.

The network model that represents the various types of
knowledge and data is presented in Figures 2 and3. Figure
2 shows the complete set of entities and knowledge iden-
tified during knowledge engineering. Figure 3 is a subgraph
of Figure 2 that pertains to the prediction of the 3D structure
of HGH (Table I ). In these figures, nodes represent entities
and links (arcs) represent relations between entities, which
are either processes (the application of software, knowledge-
based inference, biochemical/biophysical assays) or con-
straints (requirements for consistency).

Entities

The entities in Figure 2 canbe grouped informally into five
categories (Table 2). These are biological substance, struc-
tural description, classifications and identifiers, results of
biophysical and biochemical assays, and results of database
queries, sequence analyses, and other software. This group-
ing is informal since it is the links rather than the nodes
that correspond to processes, and values for many entities
can be derived by different processes. For example, se-
quence composition can be derived from knowledge of a
protein sequence, or by biochemical analysis ofthe purified
protein.

Some nodes in Figure 2 (Sequence Profiles and Secondary
Structure) are used to represent structured sets of entities
(single, multiple, aligned, and consensus) reflecting whether
the analysis has produced single, multiple, or aligned se-
quences or the consensus ofan alignment. The node labeled
Results of Mutagenesis Experiments represents biochemical
and biophysical information that is potentially relevant to
protein structure prediction (e.g., tritium trapping experi-
ments), not represented by any other node. Finally, under
Sequence Profiles are grouped allthe22228 different protein
sequence profiles. Figure 2 is presented to reflect the breadth
of information that may be accommodated by the network
architecture, but is not intended to be a complete empirical
description.

Finally, although some of the knowledge sources iden-
tified in Figure 2 have been implemented as software or are
trivial to implement, many are major areas of research in
their own right (e.g., crystallography, interpreting CD spec-
tra, and using 2D NMR distance constraints to predict ter-
tiary structure). Our aim in using the abstract representation
scheme is not to trivialize these areas of research, but to
provide a conceptualization of how they may be formally
integrated with other knowledge applicable to protein struc-
ture prediction and sequence analysis.

Relations

There are two kinds of relations (links) between the entities
shown in Figures 2 and 3: constraints (thinner lines), which
are consistency requirements between entities, and minimal
preconditions (thicker lines), which are associated with pro-
cesses that relate entities.Source. Reference 8
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Figure 2. Network diagram showing minimaL preconditions and constraints among various entities employed in protein
structure prediction

Minimsl preconditions A is a minimal precondition for
B if, under some circumstances, there is a process that can
be used to derive an hypothesis for B from A. For example,
similar sequences are a minimal precondition for an align-
ment. This is a minimal precondition because other infor-
mation (additional preconditions) may need to hold simul-
taneously for the process that relates the associated entities
to be applicable. For example, to derive a protein sequence

lenorern l-- I lloll'll, | *1 :ifiii?ilJ I

/m-
JzHt-*{ffi.ry=

\ f"r-;;l / b'-*-',-^,|
l L r \ K A c E  I  l c l - A s s

ffi
| """ ''z' co'*'ai'nr 

-)

Figure 3. Subnetwork of Figure 2 relevant to the prediction
of HGH

from a eukaryotic DNA sequence the positions of exon-intron
junctions must be known. Less trivially. predicting struc-
tural class from sequence composition or sec-
ondary structure composition assumes that the protein of
interest has only one domain or that all domains have the
same structural class (unlike papain, for example). Minimal
preconditions and additional preconditions are individually
necessary conditions for the execution of processes, and
therefore the conjunction of the set of a minimal and ad-
ditional preconditions are a sufficient condition. Additional
preconditions are not shown in Figures 2 and 3.

In general, if A is a minimal precondition for B, then B
also constrains A. For example, since DNA sequence is a
minimal precondition for protein sequence, knowledge of a
protein sequence constrains the possible DNA sequences
that could code for that protein.

Finally, when the minimal and additional preconditions
for the process connecting two entities are all true, it is
possible to execute that process. However, there is no guar-
antee that execution will generate a value for the target entity
from the source entity. This is because success (e . g. , finding
> l57o similarity in a similarity scan) depends on contextual
factors (such as whether there is a sequence with this degree
of similarity in the database).

Constraints In contrast to minimal preconditions, which
relate to processes connecting entities, constraints are con-
sistency requirements between entities. A constrains B if the
information contained in A limits the range of possible val-
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Table 2. Entities represented in Figure 2"

Biological substance

Biological source Substance
DNA Substance
Protein Substance

Structural description
DNA sequence seq BASES
Protein sequence seq AMINO ACIDS
Secondary structure seq SECONDARY STRUCTURE

ASSIGNMENTS
Topology Set {qualitative sequence, orientation

and adjacency relations) (super
secondary structure is a subset of
topology)

Tertiary structure xyz coordinates
Quaternary Structure 4,2 coordinates of quaternary

complex
Classifications and identifiers

DNA ID Name or database ID
Protein ID Name or database ID
Functional classification Set {substrate/cofactors/prosthetic

group/E. C. no. etc.)
Tertiary structural class Set {all-a, all-B, o + B. atB,

irregular)
Quaternary structural class Set {monomer, dimer, trimer,

teteramer, etc.l
Results of biophysical and biochemical assays

2D NMR distance constraints Set {pairs of residue distances}
Secondary structure composition 7o a structure and 7o B structure

(parallel/antiparallel )
Results of proteolysis Set {sequence positions of

lragmentsi
Disulphide linkage Set {linked cysteine pairs}
Domairr positions N and C terminal sequence positions
Results of x-ray studies Electron density maps of varying

resolution
Sequence composition Absolute/relative composition of

amrno acids
Results of mutagenesis Interpretation of site directed,

experiments cassette, deletion and substitution
mutagenesls

Results of other experiments Various, see text
Results of database queries, sequence analyses and other software

Internal repeats Set {seq AMINO ACID/GAP}
Similar sequences Set {protein IDs}
Alignment Set {seq AMINO ACID/GAP}
Important patterns/regions Residue identifiers or templates
Sequence profiles seq VALUES
Similar structures Protein IDS and domain/region

identifiers

Entity Description

"seq, sequence datatype.

ues or conformations of B in some situation, and A is not Similarly, the results of proteolysis can be used to constrain
a minimal or additional precondition for B. Thus, disulfide an alignment since cleaved regions will usually be in ex-
linkage constrains an alignment because corresponding cys- posed loops which are unlikely to be conserved unless at
teine residues in the disulfide linkage should be aligned, an active site.
and disulfide linkage is not a precondition for alignment. In general, the nature of constraints as requirements for

J. Mol. Graphics, 1990, Vol. 8, June 99



consistency means that the relation is symmetric; i.e., if A
constrains B, then B also constrains A. So just as cleaved
regions are not usually conserved in an alignment (unless
at an active site), conserved regions in an alignment would
not be expected to be cleaved. For simplicity, Figure 2
shows some constraints unidirectionally, where the direction
shown indicates a move from more to less reliable infor-
mation.

Complex interdependencies between entities can be
modeled using the minimal precondition and constraint re-
lations. For example, secondary structure prediction is a
minimal precondition for secondary structure composition,
which is, in turn, a minimal precondition for structural class.
But secondary structure prediction is not a minimal pre-
condition for structural class because its action in predicting
structural class is predominantly through the assessment of
secondary structure composition (Figure 3). It is, however,
a constraint on structural class because, under some con-
ditions (-l1%o a and -157a B structure), the particular
secondary sffucture prediction can help disambiguate whether
a protein domain belongs to the al B or a * B structural
classes by observation of whether the predicted a helices
and B strands alternate (as in TIM) or are clustered into
groups (as in lysozymc;.

PROTOTYPE SYSTEM

A prototype system has been developed that illustrates how
the network model can be employed in a knowledge-based
support system for orchestration of sequence analysis and
data acquisition for protein structure prediction. The system
is written in PROPS2, a Prolog production system inter-
preter and knowledge programming language,2e'r8 and runs
on a SUN 3. The interface is written in C using SunView.
This interface includes dynamic, walk-through menus and
an interactive (clickable) facade. Executing (clicking) a fa-
cade item or selecting a menu item is equivalent to typing
that item via the keyboard. For the purposes of demonstra-
tion it is assumed that the field of interest is confined to
Figure 3. Other assumptions are described below.

The system has 6 modules (Figure 4). The IIO module
accepts keyboard and mouse-based input and handles screen
formatting. The network description (Figure 5) is a set of

t mHER--lmrABesel r-
lsoFrwARE |  '

Figure 4 . Architecture of the prototype system. The network
description is shown in Figure 5, while the operation of the
other modules is demonstrated in Figures 6-10

prolein id isa D,nim.t preondr,on of protein sequence by protein sequence database scan
purifiad protein N a ninimat prcondition ofprotein sequence by protein sequencing techniques.
purified protein isaminimar pr€ondiion orbiochemical data br biochcmical assays.
purified protein is, md,mat p.Rondirion ofxray studies br crystallographic mathods.
purilied ptotein E r mininat p.Nndlion ofsecondary struclure composition by circular

dichroism spectra analysis.
puri f ied protein ram.ninatprmDdironordisulphide l inkagebrchemical meihods.
protein sequence r a niniDat prsondition ofsecondary structure by secondary structure

prediclion techniques.
seCOndary slruCtureis.mininat precondftoDoasecondary structufe compositionby secondary

structure frequency analysis.
secondary structure s a minimat p.econdilrcn orteniary structure by rhe Cohen packing

algori thm.

secondary structure composition s a ninimat p.Nndilion otstructural class by secondary
structure composition analysis.

tertiary structurc 6 a ninimar preondirion ofbiochemical data br biochemical hypothesis
generat ion

tertiary structure h r mininar prmodilion ofdisulphide linkage br disulphide definition.
terliary structute isamininat prtronditon ofsecondary structure by kabsch/sander definitions,
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SeCOndary StrUClute 6 a condrarnr of StruCtUral ClaSS,
StruClural CIaSS 's r.onsta'nt orseCOndary Slruclure
structural  c lass'saconsharntortert iary structure

Figure 5. PROPS2 facts showing network description of
F-igure 3. This version of the prototype assumes only one
method per process

propositions that describe the relevant network (in this case
Figure 3). The transaction manager maintains a transaction
database that records sources of information and consis-
tency between entities and uses this with the network de-
scription to determine which transactions are permissible at
each stage of an interaction. The browser allows the user
to browse features of the network description and the trans-
action database while Ihe advice manoger responds to other
user queries illustrated below.

There are five formal transactions known to the trans-
action manager. These are knowledge entry (entering knowl-
edge about the protein(s) ofinterest), node derivatiorz (deriving
values for one entity from another via the connecting pro-
cess, e.9., deriving a secondary structure prediction from a
protein sequence), consistency checking (determining the
mutual permissibility of values for two entities), node up-
dating (changing the value of an entity to accommodate new
constraints or make it consistent with some other node). and
retraction (retracting either user supplied information or
withdrawing system processes).

Interactions have no fixed structure but might begin with
the user entering information about a protein. This may be
anything from simply the name or some other (database)
identifier (e.g., human growth hormone) to a wide variety
of biochemical/biophysical and interpreted data. In this
demonstration, five pieces of information are entered cor-
responding to stage I in Table l. These are the protein id,
the protein sequence, the disulfide linkage (previously de-
termined by biochemical means), the secondary structure
composition (previously determined from CD spectra), and
purified protein (Figure 6). Entering purified protein indi-
cates that the user has a quantity of purified protein. On the
basis of this information and the network description (Figure
5) the transaction manager uses rules such as that shown in
Figure 7 to determine which transactions are possible. The
set of data input by the user is initially assumed to be
consistent by the system.

Figure 7 states that if some piece of information (X) is
known and this information is a minimal precondition for
the derivation of some other information (I/), which is not

100
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Figure 6. Screen from interactive PROPS2 facade showing,
information supplied by the user at start of a session. The
left side of the facade has three walk-throug,h menus with

.functions of the browser, transaction manager, and advice
manager modules of the prototype system (Figure 4). Se-
lecting a menu item or clicking on an item displayed on the

facade is equivalent to typing that item

known, then it is possible to derive the unknown information
(Y) from the known information (X) by the connecting pro-
cess (Z). The term derive is used throughout this description
for consistency. However, the process of deriving may var-
iously be thought of as generating. creating, executing or
predicting, as in predicting the secondary structure of a
protein from its sequence. For this demonstration all ad-
ditional preconditions are assumed to be true.

For the rule in Figure 7 to be executed, the three premises
(the IF part) of the rule in Figure 7 must all be true. PROPS2
does not try to prove that I/ js not known is true but employs
ne gation as failure , a logic programming concept3o in which
all negated propositions (such as X is not known) are as-
sumed to be true unless explicitly contradicted by an af-
firmative proposition in the database. The rule in Figure 7
is executed. therefore. each time a match is found for an X
in X is known, and in X is a minimal precondition of Y by
Z and where it is not true that Y is known. Therefore. if
protein sequence is known is entered, the transaction man-
ager uses the network description fact (Figure 5) protein
sequence is a minimal precondition of secondary structure
prediction by secondary structure prediction techniques to
infer that it is possible to derive secondary structure pre-

if X is known
and X is a minimal precondition of Y by Z
and Y is not known

then it is possible to derive Y from X by Z

Figure 7. A transaction manager rule for inferring possible
derivations (uppercase letters are variables)

diction from protein sequence by secondary structure pre-
diction techniques. However, should a secondary structure
prediction subsequently be determined and the proposition
secondary structure prediction is known become true, the
third premise (Figure 7) will become false and it is possible
to derive secondary structure prediction from protein se-
quence by secondary structure prediction techniques would
be retracted. There are further rules in the system that de-
termine the applicability of the other types of transactions.

Because of the separation of descriptive knowledge and
the specification of how that knowledge is to be used, the
system can operate and switch between data-driven mode
of operation (data are supplied and possible actions re-
quested) and goal-directed mode (goal is supplied and ac-
tions to achieve goal are requested), illustrated below.

Data-driven interaction

Having entered what is known about the protein, the system
is now asked to show the set ofpossible transactions (Figure
8a). These are the transactions that are possible given the
network description, the current transaction database, and
the definitions of the transactions. Four possible transactions
are identified by the transaction manager: Three are simple
derivationst the fourth (the derivation of a secondary struc-
ture prediction) has the constraint of consistency with the
secondary structure composition. Clearly, the composition
of secondary structure derived from CD spectra should be
consistent with the proportion suggested by the secondary
structure prediction.

Following the stages reported by Cohen and Kuntz8 1Ta-
ble I ) the derivation of structural class from secondary struc-
ture composition is simulated by executing derive structural
class from secondary structure composition. The secondary
structure composition of HGH was estimated to be 45-50Va
d structure andoTo B structure; therefore, the structural class
assigned was all-a. As a result of this transaction, the set
of possible transactions is changed to those shown in Figure
8b. The differences between Figures 8a and 8b are that
derivation of structural class has been eliminated from the
set of possible transactions and that structural class has been
added as a constraint to secondary structure prediction.

Similarly, the prediction of secondary structure from pro-
tein sequence is simulated, taking into account constraints
imposed by the secondary structure composition and the
predicted structural class. Note that the all-a structural class
assignment does allow small amounts of B strand to be
predicted. In this example, it is assumed that the constraints
from the secondary structure composition and structural class
can both be accommodated within the secondary structure
predicted. In general, it is assumed that all known infor-
mation that constrains an entity is applied when a value for
that entity is initially derived. If this were not possible, the
inconsistency between the constraint nodes (secondary
structure composition and structural class), the generating
node (protein sequence), and the associated process (sec-
ondary structure prediction techniques) would be recorded
as an impasse and indicated to the user (see Figure 8l).

The new set of possible transactions is shown in Figure
8c. When predicting tertiary structure from secondary struc-
ture the system observes that both the disulfide linkage of
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possible transactions :
. deive strucrurul class from rccondty structure composition

usitg secondary slructure compositian analtsis
, derive secondary structurcfrom protein seqvence

using secondary structure prcdictiln technique s
and conshaints from second4ry sttuclure composition

. deive ,ro! studies from purified prcteil
usin g crys tallo gra phic metho tls

. deive biochemical datafrom purified protein

Prcdict structural class trcm
structurc composition

*condary

Now try to include results of X-ray crystailography

to resolve inconsistency of tertiary structure h,ith xra!
. retractcrlstallogtaphicmethods
. rctracl puifted protein supplied b! the user

. retroct the cohen packing algorithm

. retract conslrainls on tertiary structure from structural cless

. retract secondary structuie composiion analysts

. relracl secondiry structure composition supplied by the uset

. retract coqstraints on tertiar! structure fron disulphide linkage

. relract disulphide linkage supplied bt the user

retroct secondary structure plediction techniques
retract conslraints on secondar! st/uctilre from sEuctural class

rellacl secondary struclure composilion anallsas
retlacl secondary structure composilion supplied b! the user

retract conslrainls on secondary stucture from secondary sbuclurc
retract secondary structure composition supplied b! the user

fettuct protein sequetce supplied by lhe user

OR

composunn

Figure 8. Figures 8a-j show the textual output from the
prototype system as a result of various user actions. F-or
explanation purposes, the usual output (see Figure 6) has
been simplified. Lines beginning with the bullet symbol are
executable transactions. Boldface italic items are items that
have not previously appeared on the screen. Items that are
not boldface have already appeared on the screen. The
prototype makes a number of assumptions for demonstration
purposes, which are described in the text. These include
the assumption that the field of protein structure prediction
is limited to the nodes and relations shown in Figure 3.
Figure 8a is a request for the set of possible transactions
given the information shown in Figure 6. Figure 8b shows
the new set following the prediction of structural class from
secondary structure composition. F igure 8c shows the set
of possible transactions following prediction of secondary
structure . Figure 8d likewise shows the set of possible trans-
actions following the prediction of tertiary structure from
secondary structure using the Cohen helix packing algo-
rithm. Figure 8e shows the consistent nodes at this stag,e
in the interaction, while Figure 8f gives advice on how the
accuracy of the predicted tertiary structure may be assessed.
Figure 8g shows the set of possible transactions following
the derivation of x-ray data by crystallography. At this point
the consistency ofthe proposed tertiary structure is checked
against the x-ray data andfound to be inconsistent. Figure
8h shows the new set of possible transactions, while Figure
8i shows the system message in response to a request to the
unexecutable request to update (make consistent) the pre-
dicted tertiary structure with the x-ray data. Figure 8j shows
the possible retraction operations to remove this inconsis-
tency

Prcdict secondary structurc

possibletransactions :
. deire tertiar! sfructure ftom seconilary structure

using the cohen packing algorithm
and constrairts from sfiuctural cldss
and constraints from disulphide linkoge

, denre xrq sudes from purlied prc.en
. denvebrcchetucaldatalrcmpunfiedproteh 

C

Ptedict teniary structure lrom secondary structure
using Cohen's helix packing algorithm

transactions :
deive biochemical dalafrcm krtiar! stucture

using biochemical hypothcsis generution
deNe vat \tdtesfrcn punfredproten
denre bn(hemrcal datalton punfied prcteil

How do you check the accurccy of a prc-
dicted teniary structure?

to check accuracy of tertiary structure:
. derive xray studies Ircm puriJied protein

u si ng c r!stallographic me thods
then check consistency ofrertiary structute with vay stutlies

. derive biochemicol daraJrom teiliary structurc
using bioc hemical hlpotheris genemtion
then deiv. biochemical data frcm puriJied protein
using bioc hemical assays
then check consistency of biochemical dala derived
from tertiar! structurc
with biochemical data derivedfrom purified prctein f

X-ray crystailography data obtained

possible transactions :
. check consistenc! of tertiary structure ||ith val studies
. derrve bnchemual dataIromtertrary structure

usrng broc hemtcal hypothests generatton
. denve bnchemtcal data from punfied protetn

usmg brochemtcal assays

deriv? secondary structwe frcm protein sequence
using secondar! slructure prediction techniques
and coQstraints frcm sbucturol closs

and constroints trcm secondory structure c ompositio n
denve vay studrcs lrcm punfied prcten
(knve brcchemLcal doefrom punfied prcten

b

Use X-ray crystallography to check the consistency ol I
the te,7iary structurc prcdiction 

I

@ t t

)

)

updale tertiary structurc using vay studies
deilve bn.henrcal don lrcm rcruan srructwe

denve bn( h?n(al tu@ lron put|ied pnnn n

cannot update terttary structure wtth xra! studies because oJ unre-

the tertiary structure
derived bt the cohen packing algorithmfrom secondary structurc

[consnained by the structural class and disulphide linkage]
derived by secondary st/ucturc ptedicrton tuchniques

[constrained b! lhe slruclural class and secondary structurc composit on]
froil protein sequnce silpplied by the user

and the xral studies
derived by crystallographic methods

from purified pntein tupplied by the user i

What are the consistent relationships
established thus fat?

:Onslslen[ i lnKs :
disulphide linkage is consistent ||ilh krtiary sbucture
protein sequence is consisteil with secondar! stucturc
secondar! sfructure is consistent with tertiary st/ucttre

protein sequence, secondarJt structure composition
structural cl4ss

secondar! structure composition is consistent with
secondar! structurc, sfructural class

structural class is cotsisted with tertiar! structure
se condary structure, s eco ndar! sttucture composition

teiiar! struclure is consistent with secondar! structurc
disulphide linkage, structurol class g
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the protein and structural class specific folding constraints
should be taken into account. One such constraint imposed
by Cohen and Kuntz, but subsequently demonstrated to be
incorrect, was the assumption that all four helical bundles
are right handed (HGH was shown to contain a lefthanded
four helical bundle).

Tertiary structure is now derived from the secondary
structure prediction by Cohen's combinatorial algorithm,
incorporating constraints from disulfide linkage and struc-
tural class to simulate the processes described in Table l,
steps 4-7. Cohen and Kuntz describe the incorporation of
constraints as a sequential process of first generating a com-
plete set of topologies from their secondary structure pre-
diction and then reducing this set to exclude those topologies
not consistent with the proposed disulfide linkage and struc-
tural class folding rule. In the demonstration the process is
presented as a parallel operation. The resulting set of pos-
sible transactions is shown in Figure 8d.

Figures 8e and/show aspects of the functionality of the
browser and the advice manager. Figure 8e is the browsers'
response to a user query to show consistent links (which
pairs of entities are consistent) in the transaction database.
Figure 8/ shows the advice manager's response to a query
to give advice on how to assess the accuracy ofthe predicted
tertiary structure. The advice is given in terms of transac-
tions known to the transaction manager and is generated
dynamically by the advice manager from planning rules,
the network description, and the transaction database. Using
general (sometimes recursive) planning rules, it is possible
to construct complex advice. In reply to the specific query,
the advice manager suggests two methods. First, x-ray data
(an electron density map) can be produced by crystallog-
raphy and its consistency checked against the predicted ter-
tiary structure (note that this need not be a high-resolution
electron density map). Second. the tertiary structure could
be used to predict the outcome of various biochemical assays
(e.g., proteolysis) and these predictions could then be as-
sessed experimentally. For more complex networks such
advice can assist scientists in the determination of methods
for evaluating hypotheses about protein structure and func-
tion.

Following Table l, the generation of x-ray data is now
simulated and a new set ofpossible transactions is requested
(Figure 8g). This set includes consistency checking, which
gives the result as true or false. If predicted events were
characterized by probabilities, consistency checking would
involve the assignment of second-order probabilities. In this
demonstration, it is assumed that the set of predicted to-
pologies is not consistent with the x-ray data, as was the
case for the prediction of HGH. This leads to a new option
of update predicted topologies using x-ray data (Figure Sft).
The idea is that by eliminating proposed structures that are
inconsistent with the x-ray data, the remaining set will be
consistent. Generally, resolving the inconsistency between
two nodes may be possible by updating either. For example,
if the existing functional classification of a set of similar
sequences is not consistent with the individual known func-
tions (e.g., all the sequences did not have the same func-
tion), it is possible to restore consistency by updating
(changing) the set of sequences to eliminate those whose
functions differ or update the functional classification ofthe
set (e.g., make the classification more general). In the case

of tertiary structure and x-ray data the transaction manager
does not propose updating the x-ray data to account for the
tertiary structure, because the network description is aug-
mented by the fact derivation of x-ray data is independent
of tertiary structure (not shown in Figure 5). This means
that the tertiary structure cannot be used to change the x-ray
data, though the tertiary structure can affect the interpre-
tation of the x-ray data.

Attempting to update the set of predicted topologies using
the x-ray data is unsuccessful (since all the proposed to-
pologies are right-handed four helical bundles), yielding an
impasse report (Figure 8i ). Here it is clear that the set of
information (both input and derived data about the particular
protein and the knowledge bases that are used in the deri-
vation) is inconsistent.

The advice manager is now asked for information to show
how the inconsistency might be resolved. In general, re-
solving inconsistency involves retracting (changing or de-
leting) either the input information or the knowledge that is
used to derive further results from the input information
(Figure 8j). The report is generated from information in the
transaction database and lists all the information that has a
direct bearing on the inconsistency of the proposed topol-
ogies with the x-ray data. So, for example, there might have
been a crystallographic error (such as the wrong space group)
or the sample might be from some protein other than HGH.
Alternatively, the Cohen helix packing algorithm or the
disulfide linkage or the secondary structure prediction and
so on may be wrong.

Goal-directed interaction

Advice on checking the accuracy of the predicted tertiary
structure requires some goal-directed reasoning (Figure 8fl;
however, the system can operate in a completely goal-driven
manner. Given the initial data shown in Figure 6, Figure
9a shows the advice manager response to a user goal to
predict tertiary structure. Two routes are shown: (l) predict
secondary structure and then use the Cohen combinatorial
algorithm and (2) by crystallography. Executing derive sec-
ondary structure prediction by secondary structure predic-
tion techniques produces the augmented screen in Figure
9b. It is possible to switch between a data-driven and goal-
driven modes and to access any system function at any time.

DISCUSSION

The prototype system demonstrates some ways in which the
entities and relations in Figure 2 can be utilized within a
knowledge-based system to provide a computer-based sup-
port environment for protein sequence analysis and structure
prediction. However, many other systems incorporating a
network architecture can be envisaged. In addition to spec-
ification of further network elements and transactions, there
are several routes to extension. The network model can be
employed as part of an intelligent interface to molecular
biology software for report construction, e.9., by running
every applicable piece of analysis software and then pro-
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Starting with the same starting knowledge base
how do you prcdict a tertiary structurc?

to derive tertiary structure :
lrom protem seqilence I supplrcd by the user ]
derive secondory structure using secondary siucturc prediction techniques
incotporaling constraints frcm secordar! ttructure composition

then dertve krtiary structure usitg the cohen packing algorithm
incorporating constraints Jrom disulphide linkage

flom puif,ed prctein I supplied by the user ]
denve x/a! studrcs using crystallographic methods
the\ denve tertary structure ustng Edm soluton techntques

incorporating constraints from disulphide linkage

Figure 9. Figures 9a and b demonstrate the goal-directed

features of the prototype system. Figure 9a is the resuk of
queries to show how tertiary structure may be predicted
given the information in Figure 6, while Figure 9b gives
the same information following the prediction of secondary
structure

ducing a report. Alternatively, higher-level advice could be
implemented by identifying recommended, rather than just
possible, transactions. This could be done in at least three
ways: ( I ) by using a predetermined high-level strategy, such
as that proposed by Taylor (Figure l); (2) using dynamic
utility assessment methods, assigning utility and reliability
measures to entities and procedures and then maximizing
some composite function,3t or (3) by symbolic decision
making.l2'33

To illustrate symbolic decision making, it is clear from
the demonstration that the order in which transactions are
performed can affect the resulting state of the transaction
database. For example, if A constrains .8 and B is derived
before A is known, then A and B will not necessarily be
consistent. However, if A is derived before B and then B is
derived incorporating the constraints from A, then A and B
will be consistent. It is therefore possible to write symbolic
heuristics such as Figure 10, which utilize redundancy.

Currently an interface is being developed between the
transaction manager and a subset of processes in Figure 2
which can be implemented as software. While some of the
required software is publically available or has been written
locally, there are two principal difficulties to be overcome
in producing a complete operational system, relating both
to software and biological knowledge.

Most existing softwaie is inflexible to the imposition of
constraints on the manner in which information is processed
or solutions generated. Examples of programs that do permit
incorporation of external constraints either through the use
of user selected parameters or weights include the AMPS
package,3a'35 which permits secondary structure and specific
residues to be weighted in alignment, and the Robson sec-
ondary structure prediction algorithm,36'37 where decision

if goal is X
and A is a minimal preconditions of X by C
and B is a additional preconditions of X by C
and constraints of A include B

then derive B before A in context of goal X.

Figure 10. Symbolic scheduling rule for constaining se-
quence of process execution

constants can be used to incorporate information about struc-
tural class. To introduce constraints, some software must
be reimplemented in a more flexible manner.

A more general difficulty is the nonstandardization of
some of the knowledge and concepts of molecular biology
(e.g., the definition of a structural domain) and the absence
of a coherent functional classification of nonenzyme pro-
teins. These are both unfortunate since functional infor-
mation and knowledge of structural domains are potentially
very powerful sources of information for reasoning about
protein structure. This is because structural domains can be
treated as independent folding units, while functional in-
formation is determined by and therefore constrains 3D
structure. Any rapidly developing science is expected to
revise and generalize the concepts it employs to characterize
the entities of interest. However, the lack of standard def-
initions makes additional demands on software develop-
ment. In particular, it increases the need for flexibility and
modifiability in the way in which knowledge is represented.
Fortunately, such flexibility is afforded by AI languages
such as Prolog and PROPS. The network architecture pre-
sented here provides a strategy for tackling the general prob-
lem of integrating the diverse sources of knowledge that
characterize many areas of science. For example, the net-
work in Figure 2 could readily be extended to cover the
management of the diverse sources of information used in
the design of experiments in genetic manipulation and other
areas of biology.3s

The goal of this research was to develop an architecture
for a knowledge-based system to assist scientists in the task
ofprotein sequence analysis and structure prediction. It was
argued that the required architecture should be capable of
representing the large body of relevant information, flexible
with respect to strategic knowledge, and modular to permit
extension and refinement.

The network architecture presented in this paper satisfies
this goal. In particular, it has been shown that the knowledge
used in the prediction of HGH is amenable to representation
in terms of the simple network architecture presented and
elsewhere it has been demonstrated that it is possible to
represent all the information employed in each of the case
studies as a subgraph of the network in Figure 2.3e Finally,
it has been demonstrated that the network representation can
be used as the basis for the development of a useful knowl-
edge-based protein sequence analysis and structure predic-
tion support system.

In terms of the broader goals of molecular biology, the
question to be posed is whether the architecture can be used

Execute the secondary structure prediction

to derive tertiary structure :
from secondary structuru

. derive tertiar! structurc using the cohen packing algorithm
incorporaling constroints trom disulphide linkage
from puriJied prclein I supplied b! rhe user ]

. derNe xray studrcs usug crystallographrc methods
lhen denve ternary structure usng Edm solu\on tethnques

tn( orporattnq conttrotnts lrom &:ulphrle lml,age
D
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to predict protein structures more accurately. In this respect,
we argue that the concept of combining different types of
information intelligently has already been empirically dem-
onstrated by both the successful prediction of Crawford et
al.1o and the studies that have shown that the accuracy of
secondary structure prediction techniques can be improved
by the incorporation of additional constraining information
such as the structural class of a protein,36 using a family of
aligned sequences,ao top-down constraints from super sec-
ondary structural motifs,ar and the judicious combination
of different secondary structure prediction techniques. ro'42

The next task is to demonstrate that it is possible to go
beyond pairwise coupling of information and improve the
accuracy of protein structure predictions using many mu-
tually constraining sources of information. A knowledge-
based architecture is the most appropriate vehicle for such
an endeavor.

APPENDIX I. SUMMARIZED PREDICTION
OF ALPHA SUBUNIT OF TRYPTOPHAN
SYNTHASEIO

l. Initially, the protein identifier, quaternary struc-
ture class (a2B2 in all procaryotes, (aB)2 in asco-
mycetes), functional class (synthase), and results of
mutation studies (two-site revertants and biochem-
ical modification studies (single site and cross-link-
ing) were known to Crawford et al..

2. A set of 10 similar sequences were defined on the
basis of functional class.

3. The similar sequences were aligned by a system of
pairwise comparisons followed by adjustments by eye.

4. Secondary structure predictions were performed on
the aligned sequences by two distinct methods.
a. Garnier, Osguthorpe, and Robson (GOR) pre-

diction performed on each aligned sequence. This
prediction suggested that the protein belonged to
the al B class, so the DCs were modified and the
prediction repeated. The individual predictions
were maintained and a consensus GOR predic-
tion was obtained by averaging the prediction pro-
files at each aligned position and taking the highest
scoring state at that position.

b. Chou and Fasman (CF) performed on each aligned
sequence, ambiguities resolved by arbitrary rules.
Consensus prediction obtained by taking best
scoring state at each aligned position-just how
is not clear .

5. Hydropathy and flexibility profiles for each aligned
sequence were determined and average profiles taken
over the alignment.

6. Consensus structure prediction obtained by com-
bining the GOR and CF predictions. Where ambiguity
existed and CF differed from GOR then GOR was
taken as correct since it is generally better at predicting
o/B proteins. Constraints were applied to the pre-
diction in the form of Indels being expected in loop
regions and hydrophobic, nonflexible regions in B
strands.

Hypothesis: that the protein is an alB TIM-like banel
proposed on the basis ofthe presence of 8 strands and
alternating helices.
Proteins of known tertiary structure that fold like TIM
were identified from the database/literature to check
for consistency with the proposed model for the a
subunit.
Consistency checks
a. Overall length of the a subunit is consistent with

observed TIM barrels (approximately 200 amino
acids). Note that Hurle et al .e quote alB barrel
as about 250 residues.

b. Lengths of secondary structure elements are sim-
ilar to observed TIM barrels and consistent with
other al B proteins. Also, the extrahelix is likely
to be a0 since it is very short in the Bacillus
subtilis a subunit.

c. Scatter of secondary structure lengths about the
mean is random. This is necessary to allow a
symmetrical barrel to form.

d. The most highly conserved region of the a subunit
is predicted to be at the end of the molecule that
has the C terminals of the p strands. This is in
agreement with the other known TIM-like banel
proteins. It also suggests that the contact site with
the B subunit is at this end of the protein, since
it is known from biochemical experiments that
the active site is composed of elements from both
a and B subunits. (quaternary structure con-
straints).

e. Conserved residues exist at the same side of the
molecule as the predicted active site. Some of
these are polar and might be involved in the cat-
alytic mechanism, while others are nonpolar and
might be expected to form the contact site with
the B subunit.

f . Limited proteolysis of the protein cleaves at sites
that are predicted to be in loops or at the ends of
secondary structures.

g. Indolepropanol phosphate bound to the a subunit
protects R179 from chemical modification, sug-
gesting that this residue is close to the active site.
This residue is also on the C-terminal face of the
protein (tenuous).

h. Cross-linking can be performed between two Cys
residues (81 and ll8) that in the model are on
adjacent a helices and could be spatially close.

i. Single-site and two-site mutants provide data
consistent with the al Bbarrel model.

j. X-ray crystallography confirms that this structure
is indeed a TIM-like barrel.

Negative evidence: The only evidence that does not
support the view of a single al B barrel are the two
step unfolding studies. However, this is not particu-
larly reliable information since other single-domain
proteins (e.g., carbonic anhydrase) can be shown to
have two partially folded intermediates.
Other (difficult to classify) evidence is that one site
(R188) is accessible to trypsin even in the quaternary
structure. This suggests that this residue is not buried
in the interface.

7 .

8 .

9 .

1 0 .

1 1 .
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APPENDIX 2. SUMMARIZED PREDICTION
OF ALPHA SUBUNIT OF TRYPTOPHAN
SYNTHASB9

l. Initially known: 5 homologous protein sequences,
2-site revertant mutagenesis sfudies, chemical cross-
linking and modification data, limited proteolysis
and unfolding data, functional class and quaternary
structure classification, dzBz..

2. The protein was purified and then VUV CD studies
were conducted using reference spectra from proteins
of known structural composition by the method of
Hennesey and Johnson.a This study gave composition
data of 4l + 2Vo d structure, 12 + l7o parallel B
structure, and 16 -r 37o F tum.

3. The CD data were deemed most consistent with the
a/B class of proteins. In particular, they were con-
sidered most consistent with an ul B barrel!

4. The five sequences were aligned (not explicitly stated).
Overall identity across the five sequences was 25Vo.

5. Secondary structure predictions were performed for
each sequence individually and a "majority rules"
strategy was adopted (Cohen et al.7 approach). The
prediction procedure first assigned turns, then the
interturn regions were assigned to a,B or unstructured
by applying rules that include a knowledge of the
structural class,

Three consensus predictions were maintained at this
stage, these had slight differences in the location and
length of some of the secondary structures. Note that
the rationale by which these particular predictions were
chosen is not explicitly stated in the text.

One prediction was made using the Chou and
Fasmana3 procedure.

One prediction was made on the basis of a single
domain assumption. This prediction was subsequently
eliminated, however, because the proteolysis and re-
folding experiments suggested that the protein had two
independent domains. Not that this assumption dis-
cards the possibility of an al B barrel structure.

6. Sheet versus Barrel argument. Proteolysis and re-
folding experiments suggest that there are two distinct
folding units. If two domains are present then neither
would be long enough to be a barrel. Hence the con-
clusion that this protein is not a barreln but must be
some sort of nonbarrel sheet.

7. Fold predictions. Secondary structure prediction
produced four sets of predictions; all these were main-
tained at this level. Assuming only one sheet, all pos-
sible topologies were generated, then screened by
applying several class specific constraints.
a. Sequential B strands have right-handed connec-

tions.
b. Parallel B sheets have no more than one change

in winding direction.
c. a helices evenly cover the sheet on both sides.
d. Steric conflicts between a helices that connect

strands are forbidden. These led to only one pos-
sible fold.

This led to a set of topologies. These were then further
constrained by considering strand alignment.

e. The B sheets must contain a hydrophobic stripe
on both faccs.

f. The stripe is diagonal with respect to the strands
when viewed flat.

g. Hydrogen bonding is maximized in the sheet (within
2-3 of the maximum possible).

Candidate structures were finally screened by considering
chemical cross-linking and checking that the hydrophobic
patches were conserved in all species.

8. For the single structure remaining, the a helices were
packed against the sheet by first identifying suitable
patches and the docking sites.

9. a-Carbon coordinates were generated by reference to
"idcal" structures.

10. Validity of the structure was considered by checking
that the model was consistent with chemical cross-
linking data, labeling, proteolysis, and protection
studies. It appeared to be so; however, consistency
checking with the x-ray structure showed that the model
was wrong.
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