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Protein sequence alignment and
database scanning

G E O F F R E Y  J .  B A R T O N

1,, Introduction
In the context of protein structure prediction, there are two principle reasons
for comparing and aligning protein sequences:

(a) To obtain an accurate alignment. This may be for protein modelling by
comparison to proteins of known three-dimensional structure.

(b) To scan a database with a newly determined protein sequence and identify
possible functions for the protein by analogy with well-characterized
proteins.

In this chapter I review the underlying principles and techniques for
sequence comparison as applied to proteins and used to satisfy these two aims.

2, Amino acid scoring schemes
All algorithms to compare protein sequences rely on some scheme to score
the equivalencing of each of the 2L0 possible pairs of amino acids, (i.e. 190
pairs of different amino acids plus 20 pairs of identical amino acids). Most
scoring schemes represent the 210 pairs of scores as a 20 x 20 matrix of simi-
larities where identical amino acids and those of similar character (e.g. I, L)
give higher scores compared to those of different character (e.g. I, D). Since
the first protein sequences were obtained, many different types of scoring
scheme have been devised. The most commonly used are those based on
observed substitution and of these, the t976 Dayhoff matrix for 250 PAMS
(1) has until recently dominated. This and other schemes are discussed in the
following sections.

2.1 Identity scoring
This is the simplest scoring scheme: amino acid pairs are classified into two
types; identical and non-identical. Non-identical pairs are scored zero and
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identical pairs given a positive score (usually one). The scoring scheme is
generally considered less effective than schemes that weight non-identical
pairs, particularly for the detection of weak similarities (2,3). The normalized
sum of identity scores for an alignment is popularly quoted as 'percentage
identity', but although this value can be useful to indicate the overall similarity
between two sequences, there are pitfalls associated with the measure. These
are discussed in Section 4.I.1.

2,2 Genetic code scoring
Whereas the identity scoring scheme considers all amino acid transitions with
equal weight, genetic code scoring as introduced by Fitch (4) considers the
minimum number of DNA/RNA base changes (0, 1, 2, or 3) that would be
required to interconvert the codons for the two amino acids. The scheme has
been used both in the construction of phylogenetic trees and in the determi-
nation of homology between protein sequences having similar three-dimen-
sional structures (5). However, today it is rarely the first choice for scoring
alignments of protein sequences.

2.3 Chemical similarity scoring
The aim with chemical similarity scoring schemes is to give greater weight to
the alignment of amino acids with similar physico-chemical properties. This is
desirable since major changes in amino acid type could reduce the ability of the
protein to perform its biological role and hence the protein would be selected
against during the course of evolution. The intuitive scheme developed by
Mclachlan (6) classified amino acids on the basis of polar or non-polar char-
acter, size, shape, and charge, and gives a score of six to interconversions
between identical rare amino acids (e.g. F, F) reducing to zero for substitu-
tions between amino acids of quite different character (e.g. F, E).Feng et al.
(3) encode features similar to Mclachlan by combining information from the
structural features of the amino acids and the redundancy of the genetic code.

2,4 Observed substitutions
Scoring schemes based on observed substitutions are derived by analysing
the substitution frequencies seen in alignments of sequences. This is some-
thing of a chicken and egg problem, since in order to generate the align-
ments, one really needs a scoring scheme but in order to derive the scoring
scheme one needs the alignments! Early schemes based on observed sub-
stitutions worked from closely related sequences that could easily be aligned
by eye. More recent schemes have had the benefit of the earlier substitution
matrices to generate alignments on which to build. Long experience with
scoring schemes based on observed substitutions suggests that they are
superior to simple identity, genetic code, or intuitive physico-chemical
property schemes.
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2: Protein sequence alignment and database scanning

2,4.1 The Dayhoff mutation data matrix
Possibly the most widely used scheme for scoring amino acid pairs is that
developed by Dayhoff and co-workers (1). The system arose out of a general
model for the evolution of proteins. Dayhoff and co-workers examined align-
ments of closely similar sequences where the likelihood of a particular muta-
tion (e.g. A-D) being the result of a set of successive mutations (e.g.
A-x-y-D) was low. Since relatively few families were considered, the result-
ing matrix of accepted point mutations included a large number of entries
equal to zero or one. A complete picture of the mutation process including
those amino acids which did not change was determined by calculating the
average ratio of the number of changes a particular amino acid type under-
went to the total number of amino acids of that type present in the database.
This was combined with the point mutation data to give the mutation proba-
bility matrix (M) where each element Mi,1 gives the probability of the amino
acid in column 7 mutating to the amino acid in row i after a particular evolu-
tionary time, for svnsvple after two PAM (percentage of acceptable point
mutations per 108 years).

The mutation probability matrix is specific for a particular evolutionary
distance, but may be used to generate matrices for greater evolutionary dis-
tances by multiplying it repeatedly by itself. At the level of 2000 PAM
Schwartz and Dayhoff suggest that all the information present in the matrix
has degenerated except that the matrix element for Cys-Cys is I0" higher
than would be expected by chance. At the evolutionary distance of. 256
PAMs one amino acid in five remains unchanged but the amino acids vary in
their mutability;48"/" of the tryptophans, 41o/o of the cysteines, and20o/o of
the histidines would be unchanged, but only 7o/o of. serines would remain.

When used for the comparison of protein sequences, the mutation proba-
bility matrix is usually normalized by dividing each element M,,jby the rela-
tive frequency of exposure to mutation of the amino acid i. This operation
results in the symmetrical'relatedness odds matrix'with each element giving
the probability of amino acid replacement per occurrence of i per occurrence
of /. The logarithm of each element is taken to allow probabilities to be
summed over a series of amino acids rather than requiring multiplication.
The resulting matrix is the 'log odds matrix'which is frequently referred to as
'Dayhoff's matrix' and often used at a distance of close to 256 PAM since this
lies near to the limit of detection of distant relationships where approxi-
mately 80% of the amino acid positions are observed to have changed (2).

2.4,2 PET9l-an updated Dayhoff matrix
The 1978 family of Dayhoff matrices was derived from a comparatively small
set of sequences. Many of the 190 possible substitutions were not observed at
all and so suitable weights were determined indirectly. Recently, Jones et al.
(7) have derived an updated substitution matrix by examining 262l families
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of sequences in the SWISS-PROT database release 15.0. The principal differ-
ences between the Jones et al. matrix (PET91) and the Dayhoff matrix are
for substitutions that were poorly represented in the 1978 study. However,
the overall character of the matrices is similar. Both reflect substitutions that
conserve size and hydrophobicity, which are the principle properties of the
amino acids (8).

2,4.3 BLOSUM-matrix from ungapped alignments
Dayhoff-like matrices derive their initial substitution frequencies from global
alignments of very similar sequences. An alternative approach has been
developed by Henikoff and Henikoff using local multiple alignments of more
distantly related sequences (9). First a database of multiple alignments with-
out gaps for short regions of related sequences was derived. Within each
alignment in the database, the sequences were clustered into groups where
the sequences are similar at some threshold value of percentage identity.
Substitution frequencies for all pairs of amino acids were then calculated
between the groups and this used to calculate a log odds BLOSUM (blocks
substitution matrix) matrix. Different matrices are obtained by varying the
clustering threshold. For example, the BLOSUM 80 matrix was derived using
a threshold of 80% identity.

2.4.4 Matrices derived from tertiary structure alignments
The most reliable protein sequence alignments may be obtained when all the
proteins have had their tertiary structures experimentally determined. Com-
parison of three-dimensional structures also allows much more distantly
related proteins to be aligned accurately. Analysis of such alignments should
therefore give the best substitution matrices. Accordingly, Risler et al. (L0)
derived substitution frequencies from 32 proteins structurally aligned in 1L
groups. On similar lines, Overington et al. (11) aligned seven families for
which three or more proteins of known three-dimensional structure were
known and derived a series of substitution matrices. Overington et al. also
subdivided the substitution data by the secondary structure and environment
of each amino acid, however this led to rather sparse matrices due to the lack
of examples. Bowie et al. (L2) have also derived substitution tables specific
for different amino acid environments and secondarv structures.

2.5 Which matrix should I use?
The general consensus is that matrices derived from observed substitution
data (e.g. the Dayhoff or BLOSUM matrices) are superior to identity,
genetic code, or physical property matrices (for example see ref. 3). How-
ever, there are Dayhoff matrices of different PAM values and BLOSUM
matrices of different percentage identity and which of these should be used?

Schwartz and Dayhoff (2) recommended a mutation data matrix for the
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distance of 250 PAMs as a result of a study using a dynamic programming
procedure (13) to compare a variety of proteins known to be distantly
related. The 250 PAM matrix was selected since in Monte Carlo studies (see
Section 4.1) matrices reflecting this evolutionary distance gave a consistently
higher significance score than other matrices in the range F750 PAM. The
matrix also gave better scores when compared to Mclachlan's substitution
matrix (6), the genetic code matrix, and identity scoring. Recently, Altschul
(14) has examined Dayhoff-style mutation data matrices from an information
theoretical perspective. For alignments that do not include gaps he con-
cluded, in broad agreement with Schwarz and Dayhoff, that a matrix of 200
PAMS was most appropriate when the sequences to be compared were
thought to be related. However, when comparing sequences that were not
known in advance to be related, for example when database scanning, a I20
PAM matrix was the best compromise. When using a local alignment method
(Section 6.7) Altschul suggests that three matrices should ideally be used:
PAM40, PAM120, and PAM250, the lower PAM matrices will tend to find
short alignments of highly similar sequences, while higher PAM matrices will
find longer, weaker local alignments. Similar conclusions were reached by
Collins and Coulson (15) who advocate using a compromise PAM100 matrix,
but also suggest the use of multiple PAM matrices to allow detection of local
similarities of all types.

Henikoff and Henikoff (16) have compared the BLOSUM matrices to
PAM, PET, overington, Gonnet (1.7), and multiple PAM matrices by evalu-
ating how effectively the matrices can detect known members of a protein
family from a database when searching with the ungapped local alignment
program BLAST (18). They conclude that overall the BLOSUM 62 matrix is
the most effective. However, all the substitution matrices investigated per-
form better than BLOSUM 62 for a proportion of the families. This suggests
that no single matrix is the complete answer for all sequence comparisons. It
is probably best to complement the BLOSUM 62 matrix with comparisons
using PET91 at 250 PAMS, and Overington structurally-derived matrices. It
seems likely that as more protein three-dimensional structures are deter-
mined, substitution tables derived from structure comparison will give the
most reliable data.

3. Comparison of two sequences
Given a scoring scheme, the next problem is how to compare the sequences,
decide how similar they are, and generate an alignment. This problem may
be subdivided into alignment methods for two sequences, multiple alignment
methods, and methods that incorporate additional non-sequence informa-
tion, for example from the tertiary structure of the protein.

The simplest two sequence comparison methods do not explicitly consider
insertions and deletions (gapr). More sophisticated methods make use of
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dynamic programming to determine the best alignment including gaps (see
Section 3.2).

3.1. sequence comparison without gaps-fixed length
segments

Given two sequences A and B of length m and n,, allpossible overlapping seg-
ments having a particular length (sometimes called a 'window length') from.4
are compared to all segments of B. This requires of the order of m X n compari-
sons to be made. For each pair of segments the amino acid pair scores are accu-
mulated over the length of the segment. For example, consider the comparison
of two seven residue segments, ALGAWDE and ALATWDE, using identity
scoring. The totalscoreforthispairwouldbe 1 + 1 + 0 + 0 + 1 + 1 + 1 : 5.

In early studies of protein sequences, statistical analysis of segment com-
parison scores was used to infer homology between sequences. For example,
Fitch (a) applied the genetic code scoring scheme to the comparisor of o-
and B-haemoglobin and showed the score distribution to be non-random.
Today, segment comparison methods are most commonly used in association
with a 'dot plot' or 'diagram' (19) and can be a more effective method of find-
ing repeats than using dynamic programming.

The scores obtained by comparing all pairs of segments from A and B may
be represented as a comparison matrix R where each element R,.; represents
the score for matching an odd length segment centred on residue',4, with one
centred on residue 87 This matrix can provide a graphic representation of
the segment comparison data particularly if the scores are contoured at a
series of probability levels to illustrate the most significantly similar regions.
Collins and Coulson (20) have summarizedthe features of the 'dot plot;. The
runs of similarity can be enhanced visually by placing a dot at all the con-
tributing match points in a window rather than just at the centre.

Mclachlan (6) introduced two further refinements into segment comparison
methods. The first was the inclusion of weights in the comparison of two seg-
ments in order to improve the definition of the ends of regions of similarity. For
example, the scores obtained at each position in a five residue segment com-
parison might be multiplied by 1, 2,3,2,1 respectively before being summed.
The second refinement was the development of probability distributions which
agreed well with experimental comparisons on random and unrelated sequences
and which could be used to estimate the significance of an observed comparison.

3.1.1 Correlation methods
Several experimental, and semi-empirical properties have been derived
associated with amino acid types, for example hydrophobicity (ZI), and
propensity to form an ct-helix (22). Correlation methods for the comparison
of protein sequences exploit the large number of amino acid properties as an
alternative to comparing the sequences on the basis of pair scoring schemes.

36



2: Protein sequence alignment and database scanning

Kubota et al. (23) gathered 32 property scales from the literature and
through application of factor analysis selected six properties which for carp
parvalbumin gave good correlation for the comparison of the structurally
similar CE- and EF-hand region Ca2* binding sites and poor correlation in
other regions. They expressed their sequence comparisons in the form of a com-
parison matrix similar to that of Mclachlan (6) and demonstrated that their
method could identify an alignment of cr-lytic protease and Stryptomyces
griseus protease A which agrees with that determined from comparison of
the available crystal structures.

Argos (24) determined the most discriminating properties from a set of
55 by calculating correlation coefficients for all pairs of sequences within
30 families of proteins that had been aligned on the basis of their three-
dimensional structures. The correlation coefficients for each property were
then averaged over all the families to leave five representative properties.
Unlike Kubota et al. (23), Argos applied the correlation coefficients from the
five properties in addition to a more conventional segment comparison
method using the Dayhoff matrix scoring scheme. He also combined the
result of using more than one segment length on a single diagram such that
the most significant scores for a particular length always prevail.

3,1.2 Variable length segments
The best local ungapped alignments of variable length may be found either
by dynamic programming with a high gap penalty, or using heuristic methods.
Since the heuristic methods are primarily used for database searching they
are described in Section 6.

3.2 Sequence comparison with gaps
The segment-based techniques described in Section 3.1 do not consider
explicitly insertions and deletions. Deletions are often referred to as 'gaps',
while insertions and deletions are collectively referred to as 'indels'. Inser-
tions and deletions are usually needed to align accurately even quite closely
related sequences such as the a- and B-globins. The naive approach to finding
the best alignment of two sequences including gaps is to generate all possible
alignments, add up the scores for equivalencing each amino acid pair in each
alignment, then select the highest scoring alignment. However, for two
sequences of L00 residues there are more than 107s alternative alignments, so
such an approach would be time-consuming and not feasible for longer
sequences. Fortunately, there is a group of algorithms that can calculate the
best score and alignment in the order of mn steps. These dynamic program-
ming algorithms were first developed for protein sequence comparison by
Needleman and Wunsch (13), though similar methods were independently
devised during the late 1960s and early 1970s for use in the fields of speech
processing and computer science (25).
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3,2.1 Finding the best alignment with dynamic programming
Dynamic programming algorithms may be divided into those that find a
global alignment of the sequences and those that find local alignments. The
difference between global and local alignment is illustrated in Figure 1.
Global alignment is appropriate for sequences that are known to share
similarity over their whole length. Local alignment is appropriate when the
sequences may show isolated regions of similarity, for example multiple
domains or repeats. Local alignment is best applied when scanning a
database to find similarities or when there is no a priori knowledge that the
protein sequences are similar.

There are many variations on the theme of dynamic programming applied
to protein comparisons. Here I give a brief account of a basic method for
finding the global best score for aligning two sequences. For a clear and
detailed explanation of dynamic programming see Sankoff and Kruskal (26).

B

A

+ 
LocalAlisnment

IT-I

rE-I

Figure 1. Comparison of global and local alignment. Global alignment optimizes the
aligr,ment over the full- length of the sequences A and B. Local alignment locates the
best alignment between subregions of A and B. There may be a large number of distinct
local alignments.
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Let the two sequences of length m and nbe A - (At, Az, . . . A*), B : (Br,
Br, . . . Bn), and the symbol for a single gap be A. At each aligned position
there are three possible events.

w(Ai, B) substitution of, Aiby Bi.
w(Ai, A) deletion of .4;.
w(A, B;) deletion of B;.

The substitution weight w(Ai, B) is derived from the chosen scoring
scheme-perhaps Dayhoff's matrix. Gaps A are normally given a negative
weight often referred to as the 'gap penalty' since insertions and deletions are
usually less common than substitutions.

The maximum score M for the alignment of A with B may be represented
as s(Ar..^, 8r...). This may be found by working forward albng each
sequence successively finding the best score for aligning Ar..., with 81...i for
al l i ,  jwhere L < i <m and 1 </ < n.Thevalues of s(,41...u8r...) are stored
in a matrix H where each element of H is calculated as follows:

Hi, j : max

The element H^,, contains the best score for the alignment of the complete
sequences.

If the alignment is required as well as the best score, then the alignment
path may be determined by tracing back through the H matrix. Alternatively
a matrix of pointers is recorded to indicate which of the three possibilities
was the maximum at each value H;,i.

3,2.2 Alternative weighting for gaps
The above scheme showed a simple length-dependent weighting for gaps.
Thus two isolated gaps give the same score as two consecutive gaps. It is
possible to generalize the algorithm to allow gaps of length greater than one
to carry weights other than the simple sum of single gap weights (27). Such
gap weighting can give a more biologically meaningful model of transitions
from one sequence to another since insertions and deletions of more than
one residue are not uncommon events between homologous protein
sequences. Most computer programs that implement dynamic programming
allow gaps to be weighted with the form v * uk where k is the gap length and
v and u are constantr 2 0, since this can be computed efficiently (2S).

3.3 Identification of local similarities
Although segment-based comparison methods (see Section 3.1) rely on local
comparisons, if insertions and deletions have occurred, the match may be
disrupted for a region of the order of the length of the segment. In order to
circumvent these difficulties algorithms which are modifications of the basic

I  H,-r . , - ,  + wei,nj)

7 H,, i - t  l  wAi,L I
lH, - t , i *  wn,Bj  )
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global alignment methods have been developed to locate common sub-
sequences including a consideration of gaps (29-3I). For protein sequences,
the most commonly used local alignment algorithm that allows gaps is that
described by Smith and Waterman 930). This is essentially the same as the
global alignment algorithm described in Section 3.2."1., except that a zero is
added to the recurrence equation.

Hi, i :  max

Thus all H i,lmust have a value > 0. The score for the best local alignment
is simply the largest value of. H and the corresponding alignment is obtained
by tracing back from this cell.

3.3.1 Finding second and subsequent best local alignments
The Smith-Waterman algorithm returns the single best local alignment, but
two proteins may share more than one common region. Waterman and
Eggert (32) have shown how all local alignments may be obtained for a pair
of sequences with minimal recalculation. Recently, Barton (33) has described
how for a simple length-dependent gap penalty, nearly all locally optimal
alignments may be determined in the order of mn steps without recalculation.

4. Evaluation of alignment accuracy
What is a good alignment? The amino acid sequence codes for the protein
three-dimensional structure. Accordingly, when an alignment of two or more
sequences is made, the implication is that the equivalenced residues are per-
forming similar structural roles in the native folded protein. The best judge of
alignment accuracy is thus obtained by comparing alignments resulting from
sequence comparison with those derived from protein three-dimensional
structures. There are now many families of proteins for which two or more
members have been determined to atomic resolution by X-ray crystallogra-
phy or NMR. Accurate alignment of these proteins by consideration of their
tertiary structures (34-36) provides a set of test alignments against which to
compare sequence-only alignment methods. Care must be taken when per-
forming the comparison since within protein families, some regions show
greater similarity than others. For example, the core B-strands and ct-helices
are normally well conserved, but surface loops vary in structure and align-
ments in these regions may be ambiguous, or if the three-dimensional struc-
tures are very different in a region, alignment may be meaningless.
Accordingly, evaluation of alignment accuracy is best concentrated on the
core secondary structures of the protein and other conserved features (37);

[fi,;,'::+.,rr'l
L 
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such regions may automatically be identified by the algorithm of Russell and
Barton (36).

4,1 Predicting overall alignment accuracy
It is important to know in advance what the likely accuracy of an alignment
will be. A common method for assessing the significance of a global align-
ment score is to compare the score to the distribution of scores for alignment
of random sequences of the same length and composition. The result (the SD
score) is normally expressed in standard deviation units above the mean of
the distribution.

Comparison of the SD score for alignment to alignment accuracy obtained
by comparison of the core secondary structures, suggests that for proteins of
100-200 amino acids in length, a score above 15 SD indicates a near ideal
alignment, scores above 5.0 SD a 'good' alignment where > 70"/o of the
residues in core secondary structures will be correctly equivalenced, while
alignments with scores below 5.09 SD should be treated with caution (37,38).

Figure 2 shows the distribution of SD scores for 100000 optimal alignments
of length > 20 between proteins of unrelated three-dimensional structure.

8
o
a4t

()
g
o
3cro
' i 8

ool

S.D. Score

Figure 2. Distribution of SD scores obtained for 100000 alignments of length > 20
between unrelated proteins. The SD scores were calculated from 100 randomizations
using a global alignment method (13), PAM250 matrix with eight added to each element,
and length-independent gap penalty of eight.
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Figure 3. A local alignment found between citrate synthase (Brookhaven code: 2cts) and
transthyrit in (2paba). The SD score for this alignment is 7.55, its length is 54 residues,
and the identity is 25.9%. Despite this apparently high similarity, the sequences are of
completely different secondary structu re.

From Figure 2, the mean SD score expected for the comparison of unrelated
protein sequences is 3.2 SD with a SD of 0.9. However, the distribution is
skewed with a tail of high SD scores. In any large collection of alignments it
is possible to have a rare, high scoring alignment that actually shares no
structural similarity. For example , Figure 3 illustrates an optimal local align-
ment between regions of citrate synthase and transthyritin which gives 7.55
SD though the secondary structure of these two protein segments are com-
pletely different.

4.1.1 Predicting quality using percentage identity
Percentage identity is a frequently quoted statistic for an alignment of two
sequences. However, the expected value of percentage identity is strongly
dependent upon the length of alignment (39) and this is frequently over-
looked. Figure 4 shows the percentage identities found for a large number of
locally optimal alignments of differing length between proteins known to be
of unrelated three-dimensional structure. Clearly, an alignment of length 200
showing 30"/" identity is more significant than an alignment of length 50 with
the same identity. Applying this to the alignment shown in Figure 3 shows
that although the alignment scores over 7.0 SD it has a percentage identity
that one would often see by chance between unrelated proteins.

4,2 Predicting the reliable regions of an alignment
Although the overall accuracy of an alignment may be estimated from the
SD score (see Section 4.1) this value does not indicate which regions of the
alignment are correct. Experience suggests that the reliable regions of an
alignment are those that do not change when small changes are made to the
gap penalty and matrix parameters. An alternative strategy is to examine the
suboptimal alignments of the sequences to flnd the regions that are shared by
suboptimal alignments within a scoring interval of the best alignment. For
any two sequences, there are usually many alternative alignments with scores
similar to the best. These alignments share common regions and it is these
regions that are deemed to be the most reliable. For example, the simple
alignment of ALLIM with ALLM scoring 2 for identities, 1 for mismatch,
and -1 for a gap gives:

A L L I M
A L L M
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Figure 4. Plot of percentage identity versus alignment length for the 100000 alignments
lrom Figure 2.

with a score of.Z + 2 + 2 - 1 + 2 : 7.The suboptimal alignment:

gives a score of.2 + 2 - I + 1 + 2 : 6but shares the alignment of AL and M
with the optimal alignment. Rather than calculate all suboptimal alignments,
Vingron and Argos (40) use an elegant and simple method to identify the
reliable regions in an alignment by calculating the comparison matrix tl both
forwards and backwards and summing the two matrices. The cells in H;,1that
are equal to the best score for the alignment delineate the optimal alignment
path. Cells within a selected value of the best score are flagged and reliable
regions defined as those for which there is no other cell Hi,1, or H4lwith k + j
and I * i. The results of the analysis are displayed in the form of a dot plot
with larger dots identifying the reliable regions.

Although the details of his calculation differ from Vingron and Argos,
Zuker (41) produces a dot plot that highlights the regions where there are
few alternative local alignments. He also caters for optimal local alignments
with gaps. Zuker shows that the alignment of distantly related sequences such
as Streptomyces griseus proteinase A and porcine elastase may be clearly
seen to be unstable with many suboptimal alignments close to the optimal.

A L L I M
A L L M
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Rather than use the dot plot representation, Saqi and Sternberg (42)
directly determine alternative suboptimal alignments. They first calculate the
,FI matrix and best path, then identify the cells that contributed to the best
path, and reduce these by a preset value (usually 10o/o of the typical scoring
matrix value). A new H matrix is calculated and a new best path and
alignment. This process is repeated iteratively to generate a series of global
suboptimal alignments.

Investigating suboptimal alignments by one or more of these methods allows:

(a) The most reliable regions of an alignment to be identified and by in-
ference the overall quality of the alignment.

(b) Alternative alignments close to the optimum to be generated. These can be
useful when building three-dimensional models of proteins by homology.

4,3 Incorporating non-sequence information into
alignment

If the three-dimensional structure of one of the proteins to be aligned is
known, then this information may be encoded in the form of a modified gap
penalty (37,,38,43). The penalty reduces the likelihood of insertions/deletions
occurring in known secondary structure regions, or conversely increases the
likelihood of placing gaps in known loop regions. This approach increases the
usual accuracy of alignment and has the additional bonus of reducing the sen-
sitivity of the alignments to changes in gap penalty (37).

A stricter constraint on the alignment is possible if specific residues are
known to be equivalent in the two proteins. The weight for aligning these
specific residues may be increased to force them to align. However, if this
type of treatment is really necessary, then it is likely that the alignment.will
have a low significance score and must be treated with caution.

5. Multiple sequence alignment
So far I have only considered methods to align two sequences. However,
when the sequence data is available, a multiple alignment is always prefer-
able to pairwise alignment.

Techniques for the alignment of three or more sequences may be divided
into four categories:

o extensions of pairwise dynamic programming algorithms
o hierarchical extensions of pairwise methods
o segment methods
o consensus or'regions' methods

Of these, the second is by far the most practical and widely-used method.
Consensus methods are not greatly used for protein sequence alignment and
so are not discussed further.
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5.1 Extension of dynamic programming to more than two
sequences

Needleman and Wunsch (13) suggested that their dynamic programming
algorithm could be extended to the comparison of many sequences. Waterman
et al. (27) also described how dynamic programming could be used to align
more than two sequences. In practice, the need to store an N-dimensional
affay (where N is the number of sequences) limits these extensions to three-
sequence applications. In addition, the time required to perform the compari-
son of three sequences is proportional to Ns. Murata et al. (44) described a
modification of the Needleman and Wunsch procedure for three sequences
which ran in time proportional to N3; unfortunately this approach required
an additional three-dimensional array thus further limiting its application to
short sequences. One of the earliest practical applications of dynamic pro-
gramming to multiple alignment was the work of Sankoff et aL (5) who
aligned nine 55 RNA sequences that were linked by an evolutionary tree.
Their algorithm which also constructed the protosequences at the interior
nodes of the tree was made computationally feasible by decomposing the
nine-sequence problem into seven three-sequence alignments. The align-
ments were repeatedly performed working in from the periphery of the tree
until no further change occurred to the protosequences.

5,2 Tree or hierarchical methods using dynamic
programming

Practical methods for multiple sequence alignment based on a tree have been
developed in several laboratories (38-49). The principle is that since the
alignment of two sequences can be achieved very easily, multiple alignments
should be built by the successive application of pairwise methods.

The steps are summarized here and illustrated in Figure 5:

(a) Compare all sequences pairwise. For N sequences there are N x (N-I)12
pairs.

(b) Perform cluster analysis on the pairwise data to generate a hierarchy for
alignment. This may be in the form of a binary tree, or a simple ordering.

(c) Build the multiple alignment by first aligning the most similar pair, and
so on. Once an alignment of two sequences has been made, then this is
fixed. Thus for a set of sequences A, B, C, D having aligned A with C and
B with D the alignment of A, B, C, D is obtained by comparing the align-
ments of A and C with that of B and D using averaged scores at each
aligned position.

This family of methods gives good usable alignments with gaps, it can be
applied to large numbers of sequences, and with the exception of the initial
pairwise comparison step is very fast.
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Figure 5. The stages in generating a multiple sequence alignment using a hierarchical
method (see text).

Although based on the successive application of pairwise methods, mul-
tiple alignment will often yield better alignments than any pair of sequences
taken in isolation. This effect was illustrated by Barton and Sternberg (46)
for the alignment of immunoglobulin and globin domains. Figure 6 shows
that for some alignment pairs there is a marked improvement in accuracy
over optimal pairwise alignment (e.g. variable versus constant domains).
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5.3 Extension of segment methods to multiple alignment
A naive extension of the segment comparison methods described in Section
3.1 to N sequences would require a number of comparisons in the order of
the product of the sequence lengths. Clearly, as with dynamic programming
methods, such an approach is not practical. Bacon and Anderson (50)
reduced the magnitude of this problem by considering the alignment in one
specific order. First sequence one is compared to sequence two and the top M
scoring pairs of segments are stored. The next sequence is then compared to
these top scoriqg segments, and the top scoring segments from he three
sequences are kept. This process is continued and leads to a list of. M align-
ments of top scoring segments from N sequences. Bacon and Anderson
also extended the statistical models of Mclachlan (6) to N sequences, and
used this model as well as one based on random sequences to assess the
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significance of the highest scoring segment alignment found. They suggested
that these techniques allow sequences to be objectively grouped,-even when
most of the pairwise interrelationships are weak, and cite eximples of appli-
cations to five ribonucleases, three FAD binding enzymes, and five -crolike
DNA binding proteins. The Bacon and Anderson (1986) algorithm shows
considerable promise for the location of significant short sequence similari-
ties. However, the method does not provide an overall alignment of the
sequences and does not explicitly consider gaps. Johnson and Doolittle (51)
reduce the number of segment comparisons that must be performed by pro-
gressively evaluating selected segments from each reqnetrc" within a specifieO'window'. Their method generates a complete alignment of the ,"qrr.n.",
with a consideratio:t of gaps. Unfortunately, time constraints limit its applica-
tion to four-way alignments whilst five-way alignments become unreasbnably
expensive for sequence lengths above 50 residues.

A variation on segment methods is employed by the alignment tool Macaw
(52).Macaw applies the BLAST algorithm (see Section O.Z) to locate the
most significant ungapped similarities irrespective of length. This facility is
coupled with a flexible alignment display tool under Microioft Windo*s. ih"
program works well for small numbers of sequences, but lacks the con-
venience of the hierarchical dynamic programming methods (see Section 5.2).

5.4 Representation and analysis of multiple alignments
How do we extract the maximum information from a multiple protein
sequence alignment?

When making a multiple sequence alignment a crude tree is normally
generated. The tree shows the gross relationships between the sequences. It
may show that sequences A, D, and C are more similar to each oth"t than
they are to B and E. However, it does not show which individual residues
have changed in order to make A, D, and C different from B and E. These
residues may be the most important ones to investigate by site-directed muta-
genesis. Livingstone and Barton (53) have described a set-based strategy to
identify such differences by comparing pairs of groups of aligned residles.
Their method automatically provides a text summary of the similarities and a
boxed and shaded or coloured alignment. An example of the graphical out-
put of this analysis is illustrate d in Figure 7 for the SH2 domain family.

Providing the alignment is accurate then the following may be inferred
about the secondary structure of the protein family:

(a) The position of insertions and deletions suggests regions where surface
loops exist in the protein.

(b) Conserved glycine or proline suggests a B-turn.
(c) Residues with hydrophobic properties conserved at i, i + Z, i + 4 sepa-

rated by unconserved or hydrophilic residues suggest a surface B-strand.
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(d) A short run of hydrophobic amino acids (four residues) suggests a buried
B-strand.

Pairs of conserved hydrophobic amino acids separated by pairs of unconserved,
or hydrophilic residues suggests an a-helix with one face packing in the pro-
tein core. Likewise, an i, i + 3, i + 4, i + 7 patternof conserved hydrophobic
residues.

These patterns are not always easy to see in a single sequence, but given a
multiple alignment, they often stand out and allow secondary structure to be
assigned with a degree of confidence. For example, patterns were used to aid
the accurate prediction of the secondary structure and position of buried
residues for the annexins and SH2 domains prior to knowledge of their
tertiary structures (5a-56).

6. Database scanning
The techniques described in the previous sections all assume that we already
have two or more sequences to align. However, if we have just determined a
new sequence, then our first task is to find out whether it shares similarities
with other proteins that have already been sequenced. To do this we must
compare our sequence to the sequence database(s) using some computer
algorithm. Any of the methods described in the previous sections may be
used, but database scanning presents special problems that have led to the
development of specialist algorithms. In this section I will review the options
and goals of these methods.

6.1 Basic principles of database searching
When scanning a database we take a query sequence, and use an algorithm to
compare the query to each sequence in the database. Every pair comparison
yields a score where larger scores usually indicate a higher degree of similar-
ity. Thus, a scan of a database containing 60000 sequences will typically pro-
vide 60000 scores for analysis. If a local alignment method is used, then the
total number of scores may be much larger since more than one 'hit' may
occur with each sequence. Figure 8 illustrates three score distributions from
such a scan. The dark shaded bars show scores with sequences known to be
structurally related to the query sequence whereas the light shaded bars show
scores with proteins that are thought not to be related to the query. A perfect
database scanning method would completely separate these two distributions
as shown in Figure 8c. Normally, there is some overlap between the gen-
uinely related and unrelated sequence distributions as shown in Figures 8c
and 8b. There are a number of methods for ranking and rescaling the scores
to improve separation and remove artefacts due to different sequence lengths
and compositions. In their most highly developed form, these methods pro-
vide an estimate of the probability of seeing a score by change given a
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conservat ion is summarized by colour coding the al ignment (shown here as grey shad-
ing).  Pair  conservat ion is summarized as a histogram. The histogram helps to locate con-
servation patterns characteristic of a-helix and B-strand. For full details see ref. 53. For
details of how to obtain AMAS and other programs from the author's group please
download the f i le README from geof f  .  b iop.  ox.  ac .  uk.
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Figure 8' Schematic representation of typical alignment score distributions resulting
from a database scan. The black bars represent proteins that are known to be similar to
the query sequence, the white bars are not related to the query. (a) Shows a scan that
does not discr iminate wel l ,  (c)  shows perfect  d iscr iminat ion,  whi le (b) is the more usual
intermediary resul t  of  database searching.

database of the size used and the query length. However, regardless of the
method of ranking, there are nearly always some proteins giving scores in the
overlap region that in fact are structurally related to the quet. In practice, since
no method succeeds for all protein queries, the aim is to minimue the overlap
and ensure that potentially interesting similarities are scored high enough thai
they will be noticed by the user. Of course, what constitut", in ,inteiesting'
match is dependent upon the subjective biological context of the query.

6.2 Time considerations
In the early days of database scanning, the computer time required to
execute the scan was a major consideration. Today, the ready availability of
cheap, high performance computers means thai computei resources are
rarely a limiting factor. In the early 1980s computers with sufficient memory
and processor speed to comp are a query to a database using dynamic pro-
gramming were expensive shared resources. Over the last ten yeais, the speed
of typical institutional computers has increased by a factor 

'of. 
70 while the

sequence database has only grown by a factor of nine. This disparity coupled
with the dramatic fall in the cost of computing means that it is currently feas-
ible to perform protein database scans in a few hours on a personal computer
using dynamic programming algorithms (57).
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For occasional use, high scanning speed is not essential. After all, if it has
taken months to obtain the sequence data, what is a few hours to check for
similarities? However, much greater speed is helpful when providing a
national or regional database scanning service and when carrying out analyses
that require very large numbers of sequences to be compared. For example,
the comparison of a 25 000 sequence database to itself would require 4.5
months using dynamic programming on a typical workstation (57). The algo-
rithms discussed in Sections 6.6 and 6.7 that make approximations, or imple-
mentations on specialist hardware may reduce this time by a factor of 10--100.

6.3 Which database should I search? Local or network?
The answer to this question depends a little on why you are performing the
search. If you have just determined a new sequence then it is essential that
you search the most recent and up to date databases available to test if your
new protein is unique. Having the most up to date database is less important
if the aim is to gather a well-known family of proteins together for multiple
alignment as an aid to modelling.

The nucleic acid and protein sequence databases are collated by EMBL in
Europe, the NCBI in the USA, and the DDBJ in Japan. In addition, the
NBRF in the USA also provide a database of nucleic acid and protein
sequences. The databases are distributed in CD-ROM by EMBL, NCBI, and
NBRF organrzations and if you require a local database to scan, this is the
preferred method of obtaining it. Some of the database distributions include
software for searching the databases (e.g. NBRF-ATLAS program). The
disks are normally updated every three months but since over 1000 new pro-
tein sequences are deposited per month, even the current disk is out of date
as soon as it arrives! To overcome this problem, the database providers also
maintain daily or weekly updates to the databases since the last CD release.
If searching with a newly-determined sequence one should ideally scan a
database that includes all available sequences up to today and if nothing is
found, periodically rescan the updated database. Maintaining the regular
updates of the sequence databases is usually beyond the scope of an individ-
ual investigator, however major data centres do maintain such updated
databases and software for searching them. Indeed, providing you have
e-mail access to the Internet and are prepared to accept the scanning tools
provided by the database centre, then there is no compelling reason for main-
taining the databases locally. However, while network access to a database
may provide the most up to date version of the data, it does not necessarily
give the most effective scanning method for your sequence.

6.4 Searching with dynamic programming
Dynamic programming requires a matrix of pair scores and a gap penalty and
will return the best score for aligning the two sequences (see Section 3.2).
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Both local and global alignment methods may be applied to database scanning,
but local alignment methods are more useful since they do not make the
assumption that the query protein and database sequence are of similar length.

Although it is feasible to use dynamic programming to search databases on
a desktop computer (Section 6.2) the technique has not generally been
adopted for database searching. This is mainly because fast implementations
of the Smith-Waterman and similar algorithms (33) have not been widely
available until recently.

6,4.1 scanning with parallel computers Prosrch, Mpsrch, and
others

Collins et al. (15,58) are responsible for much of the early work on scanning
sequence databases with dynamic programming. They implemented a variant
of the Smith and Waterman (30) algorithm on the parallel AMT-DAP com-
puter. This provided them with sufficient processing speed to not only record
the top scoring local alignment between the query and each sequence, but also
to record alternative local alignments. As such, the DAP implementation of
local alignment with gaps is currently the only program to provide this service
on the Internet (send the text HELP to dapmair@biocomp.ed.ac.uk).
Collins et al. (15,59) also provide a method to estimate the statistical signifi-
cance of their alignments. They fit a straight line to log(N) where N is the
number of alignments with a given score versus score to the lower 97"/" of the
top 16 384 alignments, then express the score for alignment as a probability
derived from the distance from this line. This scoring method was used since
there is currently no formal statistical method of estimating the expected score
for a local alignment with gaps. The Collins er al. approach provides a con-
venient way of correcting for changes in the score distribution for unrelated
alignments due to differences in composition and length of the query
sequence database.

A development of Collins' work is a parallel Smith-Waterman implemen-
tation for the MasPar range of massively parallel computers (60). Scans can
be made using this program using a service at EMBL Heidelberg (send the
text HELP to BLITZ€embl-heidelberg.de). Unfortunately, the BLITZ
service currently only returns a single top scoring alignment, but like the
DAP program it gives an estimate of the alignment significance. A further
Smith-Waterman implementation (BLAZE) has been developed by Intelli-
genetics and is commercially available for the MasPar. The GenQuest system
at Oak Ridge National Laboratory, USA, also supports database searching
with the Smith-Waterman algorithm using a specialized parallel computing
environment (send the text HELP to grail@ornl. gov for instructions).

6.5 Index methods
6.5.1 Simple index for identical matching
Indexing has long been used for identifying identical ungapped regions in
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sequences. For example the SCAN facility in the PSQ and ATLAS programs
distributed with the NBRF-PIR data bank allows the rapid identification of
short identical strings (61). This is achieved by pre-processing the entire data
bank once to identify the locations of all unique tripeptides. These data are
stored in a direct access file together with pointers to the sequence identifier
codes. The query peptide is also divided into a series of tripeptides and
identification of the sequence in the data bank then becomes a simple matter
of looking up the starting positions of each peptide in the list held on file.
There is a tradeoff with indexing methods between the time and space taken
to build and store the index and the number of queries expected. Search
times are usually very fast and involve a few disk accesses, the drawback with
simple indexes is that they are restricted to exact matching without gaps.

6.5.2 Indexing with gaps-the FLASH algorithm
Recently, Rigoutsos and Califano of the IBM T. J. Watson Research Center
have extended the idea of indexing to allow for gaps and mismatches (62).
The indexes, or look up tables are highly redundant and based on a proba-
bilistic model. As a consequence the index files are very large and the prob-
lem is less one of absolute CPU speed, and more a question of fast disk
access. For example, the index for SWISS-PROT releas e 25 requires 2.8
GBytes of disk space (I. Rigoutsos personal communication). However, the
Rigoutsos and Califano FLASH algorithm permits very rapid scans to be
performed on protein databases with claimed sensitivity and accuracy close
to dynamic programming. The algorithm has been implemented on a net-
work of seven non-dedicated RISC workstations which provides sufficient
speed to service a searching facility via e-mail (send the text SEND HELP to
dflash@watson, ibm. com for information). As databases grow in size with
a large amount unchanging, and the cost of disk storage falls, it seems likely
that indexing techniques will become increasingly important methods of
searching.

6.6 Approximations: the FASTP and FASTA algorithm
The early personal computers had insufficient memory and were too slow to
carcy out a database scan using dynamic programming. Accordingly, Wilbur
and Lipman (63) developed a fast procedure for DNA scans that in concept
searches for the most significant diagonals in a dot plot. The initial step in the
algorithm is to identify all exact matches of length k (k-tuples) or greater
between the two sequences. Speed is achieved by employing a look up pro-
cedure. For example, for proteins, if. k :3 then there are 8000 (20t) possible
k-tuples and each element of an array C of length 8000 is set to represent one
of these k-tuples. Sequence A is scanned once and the location of each k-
tuple in A is recorded in the corresponding element of C. Sequence B is then
scanned and by reference to C the location of all k-tuple matches common to
A and B may be identified. If two k-tuples are present on the same diagonal
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then the difference between their starting position (offset) is also the same,
thus the diagonals with the most significant number of matches may be iden-
tified. Since runs of identity are relatively rare even between related proteins,
Lipman and Pearson (64) first identified the five diagonals of highest similarity
with k set to L, or 2. They then applied Dayhoff's scoring scheme (Section
2.4.I) to the amino acid pairs over these regions. The region giving the high-
est score for the protein comparison was used to rank order the sequences
located in the data bank for further study by more rigorous procedures. Pear-
son and Lipman (65) have refined these ideas in the program FASTA.
FASTA saves the ten highest regions of identity which are then rescored with
the PAM250 matrix (see Section 2.4.I). If there are several initial regions
above a preset cut-off score then those that could form a longer alignment
are joined, allowing for gaps and a score initn is calculated by subtracting a
penalty for each gap. initn is used to rank the database sequences by similarity.
Finally, dynamic programming is used over a narrow region of the high scor-
ing diagonal to produce an alignment with score opt. These steps are illus-
trated in Figure 9.

FASTA only shows the top scoring region, it does not locate all high
scoring alignments between two sequences. As a consequence FASTA may not
identify directly repeats or multiple domains that are shared between two pro-
teins. The FASTA software can be obtained by anonymous ftp from virginia.
edu and a number of sites offer searching facilities with FASTA (e.g. EMBL).

6,7 Approximations: BLAST basic local alignment search
tool

BLAST (18) is a heuristic method to find the highest scoring locally optimal
alignments between a query sequence and a database. The important simpli-
flcation that BLAST makes is not to allow gaps, but the algorithm does allow
multiple hits to the same sequence. The BLAST algorithm and family of pro-
grams rely on work on the statistics of ungapped sequence alignments by
Karlin and Altschul (66). The statistics allow the probability of obtaining an
ungapped alignment (MSP-maximal segment pair) with a particular score to
be estimated. The BLAST algorithm permits nearly all MSPs above a cut-off
to be located efficiently in a database.

The algorithm operates in three steps:

1. For a given word length w (usually three for proteins) and score matrix
(see Section 2) a list of all words (w-mers) that can score > T when com-
pared to w-mers from the query is created.

2. The database is searched using the list of w-mers to find the corresponding
w-mers in the database (hits).

3. Each hit is extended to determine if an MSP that includes the w-mer
scores > S, the preset threshold score for an MSP. Since pair score matrices
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Figure 9. Summary of the steps in the FASTA sequence comparison program.

typically include negative values, extension of the initial w-mer hit may
increase or decrease the score. Accordingly, a parameter X defines how
great an extension will be tried in an attempt to raise the score above S.

The steps involved in the BLAST algorithm are illustrated in Figure 10.
A low value for T reduces the possibility of missing MSPs with the

required S score, however lower Z values also increase the size of the hit list
generated in step 2 and hence the execution time and memory required. In
practice, the BLAST program used for protein searches sets compromise
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values of Z and X to balance the processor requirements and sensitivity.
BLAST is unlikely to be as sensitive for all protein searches as a full

dynamic programming algorithm. However, the underlying statistics provide
a direct estimate of the significance of any match found. The program was
developed at the NCBI and benefits from strong technical support and con-
tinuing refinement. For example, filters have recently been developed to
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(1) For the query f ind the l ist of high scoring words of length w.

Query Sequence of length L

Maximum of L-w+1 words (typically w = 3 for proteins)

For each word from the query sequence
find the list of words that will score
at least T when scored using a pairscore
matrix (e.9. PAM 250). For typical parameters
there are around 50 words per residue of the query..

(2) Compare the word list to the database andidentify exact matches.

Database
Sequences

Exact matches of words
from word list
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exclude automatically regions of the query sequence that have low composi-
tional complexity, or short periodicity internal repeats. The presence of such
sequences can yield extremely large numbers of statistically significant but
biologically uninteresting MSPs. For example, searching with a sequence that
contains a long section of hydrophobic residues will find many proteins with
transmembrane helices.

BLAST runs on virtually all types of computer (the program may be
obtained by anonymous ftp from ncbi. nlm. nih. gov). Parallel processing
is also supported on multiprocessor computers such as the 4 or 8-processor
Silicon Graphics POWER series. Searches using BLAST may be conducted
by e-mail at NCBI (send the text HELP to blast0ncbi. nlm. nih. gov for
instructions). Recently, specialist hardware has been developed to implement
the BLAST algorithm at even higher speed. A network service based on these
developments is available from the University of North Carolina at Chapel
Hill (send the text HELP on the subject line to bioscanGcs . unc . edu).

6.8 Guidelines for database scanning
Which is the best method for database scanning? Sadly, there is not a
straightforward answer to this question. Attempts have been made to make
comparisons but the process is complicated by the difficulty of designing suit-
able test cases and the number of adjustable parameters. The most effective
method of assessing the success of a scanning technique is to test its ability to
find all the members of a known protein family from the database of all
known sequences (67,68). The principle is simple.

o record the identifier codes of all proteins known to be in the family

o select a member to scan with (the query)
o perform the scan using the method of choice
o count how many of the known members are found with higher scores than

known non-members

A less strict criterion is to count the number of members that score as high
as the top 0.5% of the non-members in the data bank (68).The best scanning
method will give the most members before non-members, i.e. will have the
fewest false positives. of course, evaluation is not as simple as this appears.
First one must choose well-characterized protein families with which to test.
Do we really know all the members? A high scoring non-member may in fact
be a previously undiscovered family member. Further difficulties arise for
scans where there are many false negatives. If two methods both miss 30
known members, are they missing the same 30? Ideally, evaluation should
also explore alternative parameter combinations, but this greatly increases
the number of tests that need to be done and complicates the data analysis.
For example, if we consider scanning with dynamic programming, then there
is a choice of pair-score matrix and gap penalty, local or global alignment.
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The best gap penalty depends on the matrix in use. If both length-dependent
and independent penalties are used, then the number of alternative combina-
tions increases dramatically. The best combination of matrix and penalty may
not be appropriate for other algorithms. BLAST does not consider gaps, so
the situation is a little easier and this feature was exploited by Henikoff and
Henikoff to evaluate different substitution matrices (16), however we still
have the choice of other parameters special to the BLAST algorithm.

When given a newly-determined sequence, a search with BLAST or
FASTA will quickly tell you if a close homologue exists. Although a scan
with full dynamic programming takes longer on a local workstation, the turn-
round time from e-mail servers such as BLITZ are similar to BLAST
searches at NCBI. Accordingly, it is worth scanning one of these services as
well. If no similar sequences are found then alternative PAM matrices should
be tried. Start with PAM120, then try PAM250, and in each case vary the gap
penalty around the minimum value of the matrix. For PAM250 this is eight,
values of seven to ten are worth trying. Care should always be taken to con-
sider the likely significance of an apparent match. The methods for predicting
the accuracy of alignment are discussed in Section 4.1..

7. Summary
In the early years of sequence searching, only a few specialized centres had
access to the necessary computing facilities and programming expertise to
perform the scans. In the early-mid 1980s, the availability of personal com-
puters and software that could perform useful analyses on them (e.g. FASTP)
meant that it was normally most efficient for searches to be performed
locally. Today, the optimum choice is again swinging towards databases
maintained at a few centres, but now fast networks and windowing worksta-
tions allow the user to use software locally and be unaware that the search is
being carried out on a computer in another country. Perhaps the best example
of this to date is the Entrez software (69) available from the U.S. NCBI (ask
the information from info0ncbi. nrm. nih. gov). Entrez provides a
windowing interface to a database that integrates the nucleotide and protein
sequence databases with associated references and abstracts. Entrez will
either use the database on CD-ROM or alternatively, with suitable network
connection can interrogate the master database at the NCBI in Washington.
While Entrez does not provide searching facilities for a new sequence it
stores pre-computed similarities between pairs of sequences in the database.
Thus, one can quickly navigate between a protein name, the sequence, its close
homologues, the corresponding DNA sequence, and all relevant publications.
Network Entrez was heavily used when compiling this chapter!

The advantages of centralized databases for the user are:

(a) That he need only have a comparatively low powered computer and net-
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work connection.

(b) The database centres can keep the database up to date far more effec-
tively than the individual investigator.

The centres can provide access to a range of software to interrogate the data,
either as a simple text search (e.g. find all entries with the word 'kinase') or
using sequence comparison algorithms. They can update the software as new
algorithms become available.

The drawback with a centralized service is that one has to accept the
service providers view of the best way to perform the search. However, with
more database centres giving public access to search facilities every year
there is an increasing choice of algorithms available.
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