
Package ‘dexdash’
January 14, 2026

Type Package

Title Shiny app to explore results from differential expression experiments

Version 0.2.17

Description This R package, designed for interactive exploration and analysis of differential expres-
sion or abundance data, integrates Shiny-based visualization tools with rapid functional enrich-
ment analysis. Users can dynamically select genes from volcano or MA plots and instantly ac-
cess enriched GO, KEGG, and Reactome pathway analyses, facilitating a deeper understand-
ing of gene functions and biological pathways. The package supports customized plotting, fea-
ture information retrieval, and handles large datasets efficiently, making it an ideal tool for ge-
nomic researchers and bioinformaticians seeking to uncover the biological significance be-
hind differential expression patterns.

License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/bartongroup/dexdash

BugReports https://github.com/bartongroup/dexdash/issues

biocViews FunctionalPrediction, DifferentialExpression, GeneSetEnrichment, GO,
KEGG, Reactome, Visualization

Imports methods, stats, rlang, assertthat, tibble, tidyselect, dplyr, stringr,
readr, purrr, ggplot2, ggbeeswarm, DT, jsonlite, fenr, biomaRt, shiny,
bslib, bsicons, shinyWidgets, htmltools

Suggests dexdata, markdown, tidyr, testthat, quarto, forcats

Depends R (>= 4.1)

RoxygenNote 7.3.2

VignetteBuilder quarto

LazyData true

LazyDataCompression xz

Author Marek Gierlinski [aut, cre] (ORCID: <https://orcid.org/0000-0001-9149-3514>)

Maintainer Marek Gierlinski <M.Gierlinski@dundee.ac.uk>

RemoteType github

RemoteHost api.github.com

RemoteUsername bartongroup

RemoteRepo dexdash

RemoteRef main

1

https://github.com/bartongroup/dexdash
https://github.com/bartongroup/dexdash/issues
https://orcid.org/0000-0001-9149-3514


2 dexdash_list

RemoteSha 1d89dc30ac11d0f35a93ebbd3e9ab925383abd8b

GithubHost api.github.com

GithubRepo dexdash

GithubUsername bartongroup

GithubRef main

GithubSHA1 1d89dc30ac11d0f35a93ebbd3e9ab925383abd8b

Remotes bartongroup/dexdash@v0.2.17

Contents

dexdash_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
dexdash_set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
download_feature_information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
download_functional_terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
list_species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
prepare_functional_terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
run_app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

dexdash_list Create a list of *dexdash* data sets.

Description

Merge multiple dexdash_set objects into a dexdah_list. This function is used to merge multiple
data sets into one object, that can be fed into the Shiny app. This allows for browsing results from,
e.g., different experiments in one app.

Usage

dexdash_list(...)

Arguments

... One or more objects of class ‘dexdash_set‘.

Value

A named list of ‘dexdash_set‘ objects with class attribute ‘dexdash_list‘.



dexdash_set 3

dexdash_set Create *dexdash* data set

Description

This function creates a data set for *dexdash* Shiny app, based on user-provided data.

Usage

dexdash_set(de, data, metadata, name)

Arguments

de Differential expression data as a data frame, expected to contain the following
columns: ‘id‘ - feature id, ‘log_fc‘ - log-fold change, ‘expr‘ - expression or
abundance, e.g. gene read count, ‘p_value‘ - uncorrected p-value from the DE
test, ‘contrast‘ - name of the contrast used for the test.

data A data frame containing the primary dataset for exploration, expected to contain
the following columns: ‘id‘ - feature id, the same as in ‘de‘ data frame, ‘sample‘
- sample name, the same as in the ‘metadata‘ data frame, ‘value‘ - the expression
or abundance.

metadata Metadata associated with the ‘data‘ parameter, providing additional context or
grouping for the samples or features included in ‘data‘. Expected to contain the
following columns: ‘sample‘ - must match samples in the ‘data‘ object, ‘group‘
- a grouping variable, e.g., condition or treatment, ‘replicate‘ - replicate name.

name A string to identify the name of the set.

Value

An object of class dexdash_set required by the Shiny app launcher run_app.

Examples

## Not run:
library(dexdata)
data(yeast_de, yeast_data, yeast_metadata)
dexset <- dexdash_set(yeast_de, yeast_data, yeast_metadata, "Yeast")

## End(Not run)

download_feature_information

Download feature (gene or protein) information for a given species

Description

Connects to the Ensembl BioMart for the specified species and downloads feature information in-
cluding feature IDs, gene symbols, and descriptions. It cleans up the gene descriptions and handles
missing gene names and duplicate entries.



4 download_functional_terms

Usage

download_feature_information(
species,
species_file = NULL,
id = "ensembl_gene_id"

)

Arguments

species A character string specifying the species for which to download data. Available
species can be listed using function ‘list_species()‘.

species_file (Optional) A character string providing the path to a JSON file containing species
information. If ‘NULL‘, the default species.json file from the package will be
used. See Details for more information.

id A string with the BioMart attribute used as identifier. Default value is "en-
sembl_gene_id", referring to Ensembl gene ID. For UniProt identifiers, use
"uniprotswissprot"; for NCBI identifiers use "entrezgene_id".

Details

BioMart requires a biomart name, a host name and a dataset, to connect to the right database.
For example, for human, these arguments are "ensembl", "https://www.ensembl.org", and "hsapi-
ens_gene_ensembl", respectively. This package contains a small JSON file (can be found at system.file("extdata",
"species.json", package = "dexdash")), with Ensembl information for a few species. If your
species is not included, you need to create a JSON file in the same format, as the included file.

Value

A tibble containing gene IDs, gene names (cleaned), and gene descriptions (cleaned).

Examples

## Not run:
gene_info <- download_feature_information("mouse")

## End(Not run)

download_functional_terms

Download Functional Annotation Terms

Description

Retrieves Gene Ontology (GO), Reactome, and KEGG terms for a given species.

Usage

download_functional_terms(species, species_file = NULL)



list_species 5

Arguments

species A character string specifying the species for which to download data. Available
species can be listed using function ‘list_species()‘.

species_file (Optional) A character string providing the path to a JSON file containing species
information. If ‘NULL‘, the default species.json file from the package will be
used. See Details for more information.

Details

The GO, KEGG and Reactome databases use different species designation names. For exam-
ple, designation for yeast is "sgd", "Saccharomyces cerevisiae" and "sce", for GO, Reactome and
KEGG, respectively. In oder to interrogate these databases, the correct designations must be passed
on. This package contains a small JSON file (can be found at system.file("extdata", "species.json",
package = "dexdash")), with designation information for a few species. If your species is not
included, you need to create a JSON file in the same format, as the included file. The species
designations can be found using ‘fenr::fetch_go_species()‘, ‘fenr::fetch_reactome_species()‘ and
‘fenr::fetch_kegg_species()‘. These three functions return data frames, where column ‘designation‘
contains the species designation required.

Value

A list of three elements named "go", "reactome" and "kegg", each containing two data frames with
term descriptions and feature mapping.

Examples

## Not run:
fterms <- download_functional_terms(species = "yeast", feature_name = "gene_id")

## End(Not run)

list_species List Available Species

Description

Retrieves a list of species names used in the package. These names are specified available in the
JSON configuration file.

Usage

list_species(species_file = NULL)

Arguments

species_file Optional path to the species JSON file. If ’NULL’, the default file, available at
system.file("extdata", "species.json",package = "dexdash") will be used.

Value

A character vector of species names.



6 run_app

prepare_functional_terms

Prepare functional terms for fast enrichment

Description

Prepare functional terms for fast enrichment

Usage

prepare_functional_terms(
terms,
feature_name = c("gene_symbol", "gene_id"),
all_features = NULL

)

Arguments

terms A list of three elements, named "go", "reactome" and "kegg". Each element is a
list with two data frames, "terms" and "mapping". See vignette("fenr") for
more details. In a normal workflow, this object is created with download_functional_terms.

feature_name The name of the column in the mapping tibble to be used as the feature identifier.
It can be "gene_symbol" or "gene_id". If your data contain gene symbols (e.g.
"BRCA1" or "FOXP1"), use feature_name = "gene_symbol". If your data
contain other identifiers (e.g. "ENSG00000012048" or "ENSG00000114861"),
use feature_name = "gene_id".

all_features (Optional) A vector of all possible features (such as gene symbols) to prepare
the data for enrichment analysis.

Value

An object to be used by the Shiny app.

Examples

## Not run:
terms <- download_functional_terms(species = "yeast")
fterms <- prepare_functional_terms(terms)

## End(Not run)

run_app Launches an interactive differential expression (DE) data explorer

Description

This function creates and launches a Shiny application designed for exploring differential expres-
sion (DE) data. It integrates various data inputs and initializes interactive visualization modules
for an enhanced data exploration experience. The application offers a sidebar layout with themed
UI components and a range of interactive modules including global input, volume-magnitude plot,
feature plot, feature information, and enrichment analysis.



run_app 7

Usage

run_app(
dexset,
features,
fterms,
title = "DE explorer",
x_variable = "sample",
value_variable = "value",
colour_variable = NULL,
volma_fdr_limit = 0.05,
volma_logfc_limit = 0,
enrichment_fdr_limit = 0.05

)

Arguments

dexset Either a dexdash_set object containing data from one set, or a dexdash_list
object containing data from multiple sets. The former one is created using
dexdash_set() function, the latter one is created with dexdash_list() func-
tion.

features A data frame that maps feature identifiers to names and descriptions. Expected
to contain the following columns: ‘id‘ - feature id, must match the identifier
in the ‘data‘ object, ‘name‘ - human-friendly name of the feature, e.g. gene
symbol, ‘description‘ - a brief description of the feature. This data frame can be
obtained using function download_gene_informarion().

fterms An object containing functional term information, created using function download_functional_terms.

title A string with a short title, which is presented at the top of the side bar.

x_variable A string with the name of the startup x-axis variable for the feature plot. It should
correspond to a column name in dexset$metadata. The default is "sample".

value_variable A string with the name of the startup value variable for the feature plot, used
on the y-axis of a single feature plot and for fill colour in the mutliple features
heatmap. It should correspond to a column name in dexset$data. The default is
"value".

colour_variable

A string with the name of the startup colour variable for the feature plot. It
should correspond to a column name in dexset$metadata. If left NULL (default),
the second column from metadata will be used.

volma_fdr_limit

Initial FDR limit for volcano/MA plot.

volma_logfc_limit

Initial |logFC| limit for volcano/MA plot.

enrichment_fdr_limit

Initial FDR limit for enrichment analysis.

Value

The function does not return a value but launches a Shiny application in the user’s default web
browser, allowing for interactive exploration of the differential expression data.



8 run_app

Examples

if(interactive()) {
library(dexdata)
data(de, data, metadata, features)
dexset <- dexdash_set(de, data, metadata, "Yeast")
fterms <- download_functional_terms("yeast", feature_name = "gene_id")
run_app(dexset, features, fterms)

}


	dexdash_list
	dexdash_set
	download_feature_information
	download_functional_terms
	list_species
	prepare_functional_terms
	run_app

