next up previous contents
Next: About this document ... Up: No Title Previous: FIGURE 2


Altschul et al., 1990
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990).
Basic local alignment search tool.
J. Mol. Biol. 215, 403-410.

Barton, 1990
Barton, G. J. (1990).
Protein multiple sequence alignment and flexible pattern matching.
Methods Enzymol. 183, 403-428.

Barton, 1993a
Barton, G. J. (1993a).
An efficient algorithm to locate all locally optimal alignments between two sequences allowing for gaps.
CABIOS, 9, 729-734.

Barton, 1993b
Barton, G. J. (1993b).
Alscript: a tool to format multiple sequence alignments.
Protein Engineering, 6, 37-40.

Barton, 1993c
Barton, G. J. (1993c).
An efficient algorithm to locate all locally optimal alignments between two sequences allowing for gaps.
Comput. Appl. Biosci. 9, 729-734.

Barton & Sternberg, 1987a
Barton, G. J. & Sternberg, M. J. E. (1987a).
Evaluation and improvements in the automatic alignment of protein sequences.
Protein Eng. 1, 89-94.

Barton & Sternberg, 1987b
Barton, G. J. & Sternberg, M. J. E. (1987b).
A strategy for the rapid multiple alignment of protein sequences: confidence levels from tertiary structure comparisons.
J. Mol. Biol. 198, 327-337.

Barton & Sternberg, 1990
Barton, G. J. & Sternberg, M. J. E. (1990).
Flexible protein sequence patterns - a sensitive method to detect weak structural similarities.
J. Mol. Biol. 212, 389-402.

Bucher et al., 1996
Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. (1996).
Computers and Chemistry, 20 (1), 3-23.

Dayhoff et al., 1978
Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. (1978).
A model of evolutionary change in proteins. matrices for detecting distant relationships.
In Atlas of protein sequence and structure, (Dayhoff, M. O., ed.), vol. 5, pp. 345-358. National biomedical research foundation Washington DC.

Gibbs & McIntyre, 1970
Gibbs, A. J. & McIntyre, G. A. (1970).
The diagram method for comparing sequences. its use with amino acid and nucleotide sequences.
Eur. J. Biochem. 16, 1-11.

Gotoh, 1982
Gotoh, O. (1982).
An improved algorithm for matching biological sequences.
J. Mol. Biol. 162, 705-708.

Gotoh, 1996
Gotoh, O. (1996).
Significant improvement in accuracy of multiple protein-sequence alignments by iterative refinement as assessed by reference to structural alignments.
J. Mol. Biol. 264 (4), 823-838.

Gribskov et al., 1987
Gribskov, M., McLachlan, A. D. & Eisenberg, D. (1987).
Profile analysis: Detection of distantly related proteins.
Proc. Natl. Acad. Sci. USA, 84, 4355-4358.

Gusfield, 1997
Gusfield, D. (1997).
Algorithms on strings, trees, and sequences: Computer science and computational biology.
Cambridge University Press, Cambridge, CB2 1RP, UK.

Henikoff & Henikoff, 1992
Henikoff, S. & Henikoff, J. G. (1992).
Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA, 89, 10915-10919.

Henikoff & Henikoff, 1993
Henikoff, S. & Henikoff, J. G. (1993).
Performance evaluation of amino acid substitution matrices.
Proteins: Struct., Funct., Genet. 17, 49-61.

Jones et al., 1992
Jones, D. T., Taylor, W. R. & Thornton, J. M. (1992).
The rapid generation of mutation data matrices from protein sequences.
Comput. Appl. Biosci. 8, 275-82.

Krogh et al., 1994
Krogh, A., Brown, M., Mian, I. S., Sjolander, K. & Haussler, D. (1994).
Hidden markov models in computational biology.
J. Mol. Biol. 235, 1501-1531.

Lesk et al., 1986
Lesk, A. M., Levitt, M. & Chothia, C. (1986).
Alignment of the amin acid sequence of distantly related proteins using variable gap pentalties.
Protein Eng. 1, 77-78.

Lipman et al., 1989
Lipman, D. J., Altschul, S. F. & Kececioglu, J. (1989).
A tool for multiple sequence alignment.
Proc. Natl. Acad. Sci. USA, 86, 4412-4415.

Livingstone & Barton, 1993
Livingstone, C. D. & Barton, G. J. (1993).
Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation.
Comput. Appl. Biosci. 9, 745-756.

Livingstone & Barton, 1996
Livingstone, C. D. & Barton, G. J. (1996).
Identification of functional residues and secondary structure from protein multiple sequence alignment.
Methods Enzymol. 266, 497-512.

Murata et al., 1985
Murata, M., Richardson, J. S. & Sussman, J. L. (1985).
Simultaneous comparison of three protein sequences.
Proc. Natl. Acad. Sci. USA, 82, 3073-3077.

Myers & Miller, 1988
Myers, E. W. & Miller, W. (1988).
Optimal alignments in linear-space.
Comput. Appl. Biosci. 4, 11-17.

Needleman & Wunsch, 1970
Needleman, S. B. & Wunsch, C. D. (1970).
A general method applicable to the search for similarities in the amino acid sequence of two proteins.
J. Mol. Biol. 48, 443-453.

Notredame & Higgins, 1996
Notredame, C. & Higgins, D. G. (1996).
Saga - sequence alignment by genetic algorithm.
Nucl. Acid. Res. 24 (8), 1515-1524.

Overington et al., 1992
Overington, J., Donnelly, D., Johnson, M. S., Sali, A. & Blundell, T. L. (1992).
Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.
Protein Sci. 1, 216-226.

Pascarella & Argos, 1992
Pascarella, S. & Argos, P. (1992).
Analysis of insertions/deletions in protein structures.
J. Mol. Biol. 224, 461-471.

Russell & Barton, 1992
Russell, R. B. & Barton, G. J. (1992).
Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels.
Proteins: Struct., Funct., Genet. 14, 309-323.

Sankoff & Kruskal, 1983
Sankoff, D. & Kruskal, J. B., eds (1983).
Time warps, string edits and macromolecules: the theory and practice of sequence comparison.
Addison Wesley.

Saqi & Sternberg, 1991
Saqi, M. A. S. & Sternberg, M. J. E. (1991).
A simple method to generate non-trivial alternate alignments of protein sequences.
J. Mol. Biol. 219, 727-732.

Sellers, 1974
Sellers, P. H. (1974).
On the theory and computation of evolutionary distances.
SIAM J. Appl. Math. 26, 787-793.

Smith & Waterman, 1981
Smith, T. F. & Waterman, M. S. (1981).
Identification of common molecular subsequences.
J. Mol. Biol. 147, 195-197.

Sonnhammer & Durbin, 1995
Sonnhammer, E. L. L. & Durbin, R. (1995).
A dot-matrix program with dynamic threshold control suited for genomic DNA and protein-sequence analysis.
Gene-Combis, 167, 1-10.

Staden, 1982
Staden, R. (1982).
An interactive graphics program for comparing and aligning nucleic-acid and amino-acid sequences.
Nucl. Acid. Res. 10 (9), 2951-2961.

Taylor, 1986a
Taylor, W. R. (1986a).
Classification of amino acid conservation.
J. Theor. Biol. 119, 205-218.

Taylor, 1986b
Taylor, W. R. (1986b).
Identification of protein sequence homology by consensus template alignment.
J. Mol. Biol. 188, 233-258.

Thompson et al., 1994
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994).
CLUSTAL W: improving the sesitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weigh matrix choice.
Nucl. Acid. Res. 22, 4673-4680.

Vingron & Argos, 1990
Vingron, M. & Argos, P. (1990).
Determination of reliable regions in protein sequence alignments.
Protein Eng. 3, 565-569.

Vogt et al., 1995
Vogt, G., Etzold, T. & Argos, P. (1995).
An assessment of amino acid exchange matrices in aligning protein sequences: The twilight zone revisited.
J. Mol. Biol. 249, 816-831.

Waterman & Eggert, 1987
Waterman, M. S. & Eggert, M. (1987).
A new algorithm for best subsequence alignments with application to trna-rrna comparisons.
J. Mol. Biol. 197, 723-728.

Waterman et al., 1976
Waterman, M. S., Smith, T. F. & Beyer, W. A. (1976).
Some biological sequence metrics.
Advances in Mathematics, 20, 367-387.

Zuker, 1991
Zuker, M. (1991).
Suboptimal sequence alignment in molecular biology: alignment with error analysis.
J. Mol. Biol. 221, 403-420.